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ABSTRACT

The process of solving a programming assignment is generally
invisible to the teacher. We only see the end result and maybe
a few snapshots along the way. In order to investigate this
process with regard to Parsons problems, we used an online
environment for Parsons problems in Python to record a de-
tailed trace of all the interaction during the solving session. In
these assignments, learners are to correctly order and indent
a given set of code fragments in order to build a functioning
program that meets the set requirements. We collected data
from students of two programming courses and among other
analyses present a visualization of the solution path as an
interactive graph that can be used to explore such patterns
and anomalies as backtracking and loops in the solution.
The results provide insights into students’ solving process
for these types of problems and ideas on how to improve
the assignment environment and its use in programming
education.
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K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—Computer science education

General Terms

Human Factors
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1. INTRODUCTION

Programming is inherently a complex mental process where
a programmer solves a domain problem, transforms the solu-
tion into an algorithmic form coding it using a programming
language, designs an appropriate structure for the program,
and finally implements, tests, and debugs the program in an
iterative process. In programming education, we train this
process heavily by requiring our students to solve many pro-
gramming assignments. However, the experience has widely
been that the results are unsatisfactory and a large number of
students have serious difficulties in learning programming [8,
12].

A great challenge in teaching programming is that the
whole process of solving a programming task is mostly invis-
ible to teachers because there is no possibility to monitor all
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students’ working and give guidance and feedback for them
when they face problems. Even in closed labs with a few
dozen students and a tutor, the tutor mostly sees only snap-
shots of students’ work. This has obvious drawbacks. First,
we cannot give students enough adequate feedback and guid-
ance when they would need it; even in closed labs they often
need to wait a considerable time, until the tutor is available
for them, not to mention open labs. Second, as we at best
only see a few snapshots, which often have problems or errors,
we have a hard time concluding how students ended up with
these solutions. Students may also develop bad practices,
such as using automatic assessment tools as testers. Poor
development habits and misconceptions about programming
constructs and concepts acquired early on the introductory
programming courses can easily stick. Therefore, we should
seek to identify and correct unsound practices and flawed
understanding as early as possible.

In this study, we have analyzed how students solve Parsons
programming puzzles. These are a type of scaffolded program
construction tasks where the learner is given a set of code
fragments, blocks of a single or multiple lines of code, and the
task is to piece together a program from these [13]. We have
used a Parsons assignment environment for Python, called js-
parsons [5], where learners not only select and order but also
indent code fragments. These are called two-dimensional (2D)
Parsons problems for the two degrees of freedom. In Python,
code indentation has a semantic meaning, as an indented
statement falls into the surrounding control structure, which
has lower indentation. That is, code blocks are defined by
indentation instead of start and end symbols like curly braces
(see Tables 3-5 for examples). Compared to the basic Parsons
problems, indentation makes such problems better resemble
actual programming tasks.

The research reported in this paper has two aims. First,
we study methods to visualize and analyze the process of
constructing a program. To this end, we have built a tool
which performs analyses and allows interactive investigation
of Parsons problems’ solution paths. Second, by means of the
different analyses and visualizations, we study students’ prob-
lem solving process in 2D Parsons problems. Students solve
Parsons assignments in an environment that gives automatic
feedback and guides them towards a solution. In addition,
the system logs all student interaction, i.e., all reorderings
of the code fragments, as well as, feedback requests. Using
this kind of data we can explore many interesting questions,
such as:

e How do they arrive at the solution? Can we observe



common solving patterns in an assignment or across
assignments? How similar or different are the solution
paths across students? What types of ineffective solving
patterns do students exhibit? Do students’ solution
paths share common incorrect states, where the rows
are ordered or indented incorrectly? How can these
states be characterized?

e Do students backtrack or go in circles in their solution
paths, i.e., do the solution paths have loops where stu-
dents return to an earlier state in their solution path?
How can these loops be characterized?

e How do students use automatic feedback? When and
how often do they ask for feedback? How can the situ-
ations when they use feedback be characterized?

2. RELATED WORK

2.1 Parsons Programming Puzzles

Originally, Parsons problems were conceived to provide
an engaging learning environment with immediate feedback
that allows focused rote learning of syntax without being
sidetracked by complex program logic [13]. In addition to
online learning environments (e.g. Cort [4], VILLE [17], and
js-parsons [5]), they can be used in traditional pen-and-paper
exams where actual programming, i.e., straightforward writ-
ing of code from scratch, is problematic [2, 11]. There are
many variants and flavours of Parsons problems [5]:

Extra code fragments that are not part of the correct
solution can be used to make the problems more chal-
lenging. These distractors are often modified from a
correct line with the aim of revealing misconceptions
related to the syntax [13].

A context can be provided by having fixed lines of code
before, in the middle, and after the code fragments to
be rearranged [4]. This allows making the programs
larger and, thus, more concrete and meaningful.

User-defined blocks raise complexity and emphasize prob-
lem solving and program logic in the problems. This
can be realized by letting learners insert code block
delimiters, such as, curly braces in Java.

As discussed in Section 1, the js-parsons tool implements
a Python-specific variant of users defining blocks where code
fragments must be both re-ordered and indented correctly [5].
The tool is further described in Subsection 3.1.

An interesting question is which types of skills Parsons
problems test and how they relate to the commonly assigned
tasks of tracing, explaining, and writing code. Initially, it was
postulated that Parsons problems lie somewhere between
tracing and writing code [21]. Denny et al. found a notable
correlation between Parsons scores and code writing scores
but a low correlation between tracing and writing, and Par-
sons problems and tracing [2]. This suggests that tracing and
writing require different skills and that Parsons problems
are similar to writing code. Whereas, Lopez et al. found
strong correlation between tracing and writing, and reading
and writing code [11]. Moreover, they found evidence of the
existence of a hierarchy of programming-related skills and
indications that Parsons problems might be a lower skill

than tracing or writing code. However, they note that the
difficulty of a task may also be a function of its size and
the programming constructs involved than merely the task
type. Indeed, as they also note, the one and only Parsons
problem they used was rather simple and could mostly have
been solved using shallow heuristics, especially, since the code
blocks were pre-determined with curly braces. Further studies
have found more evidence of a hierarchy where some skill
in tracing precedes explaining and some skill in these two
precede writing code while all are still believed to develop
in parallel reinforcing each other [9, 10, 20]. Nevertheless,
Venables et al. do note that the strength of the relationships
varies considerably according to the nature of the task [20].
Finally, Lister et al. give some results of a found correlation
between the scores of a Parsons problem and scores in tracing
and writing in an exam [9]. Overall, the topic warrants some
more studies with clearer focus on Parsons problems and a
clear separation of the different types and mediums of Par-
sons problems which may have very different characteristics
in relation to the skills being practiced.

2.2 Programming Assignment Trace Analysis

There is a growing body of research into programming be-
havior analysis based on recorded interaction traces. Blikstein
has logged students’ actions in the NetLogo programming en-
vironment [1]. In the modeling assignments, he identified such
behaviors as copy-pasters who would switch away from the
environment for long periods of time and then suddenly the
code would grow notably. Kiesmiiller et al. have studied stu-
dents’ problem solving strategies in the finite state machine
-based visual programming environment Kara [7]. They have
built a real-time identifier for previously observed problem
solving approaches based on methods from speech recognition.
Jadud, Rodrigo, Tabanao et al. have studied novice compila-
tion behavior within the BlueJ programming environment [6,
19]. They have presented a visualization for a programming
session recorded at compilation events and quantified how
much a student struggles in a session based on compilation
events. They have shown that this measure correlates neg-
atively with the exam score. Recently, Piech et al. logged
compilation events in Eclipse and modeled programming as-
signment development paths using machine learning [15]. The
different groups of development paths correlated with stu-
dents’ performance and their predictive power was stronger
than that of the assignment scores. At a larger granularity,
analyzing submissions of an automatic assessment system,
Edwards et al. have found quantitative evidence, e.g., that
starting early relates to better performance [3]. Spacco et al.
have presented a schema for representing program evolution
with data captured from Marmoset [18] which captures pro-
gram code at every save. Poncin et al. have applied process
mining techniques from business process analysis to investi-
gate software repositories of students’ capstone projects [16].

With regard to Parsons problems, in the original paper, the
authors suggest that in future versions of the tool they would
like to be able to record learners’ interaction with the tool
in order to analyze their patterns of error [13]. Subsequently,
the js-parsons tool has implemented this and the authors
intend this feature to allow analysis of how the assignments
are solved [5]. However, we are not aware of any previous
work that has performed these analyses, or with regard to
Python, of anything similar.



3. DATA COLLECTION
3.1 Method and Tool

The js-parsons tool provides a web environment for solving
2D Parsons problems in Python as described in Section 1.
In this study, we used a mode where the input, i.e., the
building blocks for the code, is given in random order on the
left and the learner is to construct the solution on the right
by drag-and-dropping code fragments to their place. Code
fragments can be freely inserted in the solution between other
fragments, moved around, indented, and also removed from
the code back to the input area (see Figure 1).

The program should define a class Node with fields value and next. It should also
construct a linked list with a structure like:

b->a->b

Both b letters refer to the same structure so the list forms a cycle.
Drag from here Construct your solution here

self.value = value
self.next = next

class Node():

def __init__(self, value, next=None):
b = Node(2, a)

a.next = b

a = Node(1)

| Get feedback |

Figure 1: Parsons problem in js-parsons. Student has
requested feedback, and the line in incorrect posi-
tion is highlighted in red.

Feedback can be requested at any time and an unlim-
ited number of times. There are three types of feedback: 1)
there are too few lines, 2) the order or 3) the indentation is
incorrect. The first two feedback types can occur simultane-
ously but feedback on indentation is given only after all the
right fragments have been added and are in correct order.
Previously, js-parsons would give feedback on ordering by
highlighting in red the first incorrect fragment counting from
the top [5]. However, we felt that this type of feedback would
encourage adding lines linearly from top to bottom with a
trial-and-error strategy of using repeated feedback requests
to select the fragments. Thus, in this study, we modified the
feedback so that we highlight a minimal set of fragments that
need to be moved to fix the order, and the learner is informed
that these fragments are in wrong positions relative to the
others (see Figure 1). Incorrect indentation is pointed out by
highlighting in red the start of the first incorrectly indented
fragment. The size of whitespace used for indentation in
Python can vary. For the feedback, indentation is normalized
and any particular absolute indentation is not forced but
feedback is given on the relative correctness of indentation
in the learner’s code. In addition to the use of color to high-
light errors, a message window pops up. It is important to
note that for this type of detailed feedback to be possible,
the problem must be puzzle-like in the sense that there is a
single correct combination, ordering, and indentation of code
fragments, a unique solution.

The tool records a full trace of the learner’s interactions
during the problem solving session. Any changes in the input,
solution, and all feedback requests are recorded with time
stamps. We used this trace as the basis of our analyses.

As discussed in Section 2.1, the research is inconclusive on
the skills needed to solve Parsons problems. However, we ar-

gue that it is not clear that 2D Parsons problems, as described
here, are so simple that solving them lies beneath actual pro-
gramming tasks such as tracing, explaining, and writing code.
We argue that, depending on the exact task, they require
similar skills and will invoke similar solving patterns and
difficulties, and are thus an interesting, while simplified, data
source to learn about the program construction process.

3.2 Assignments and Learners

We collected data on the solving of five different problems
from students of two different programming courses at Aalto
University, Finland. The problems are described below. In
some problems, lines of code have been placed together as
a fragment in order to force a unique solution. None of the
problems included distractors. A student was able to advance
to the next problem only after solving the current one.

P1: Find max (8 lines in 7 code fragments): Construct a
function that finds the maximum value in a list.

P2: Draw triangle 1 (3 lines): Construct a function that
prints a text triangle.

P3: Linked list (7 lines in 6 code fragments): Construct
a program that defines a Node class and creates two
objects to form a linked list with a cycle. See Figure 1
and Table 3.

P4: Draw triangle 2 (6 lines): Construct a function that
prints an upside-down triangle. See Table 4.

P5: Sublist test (7 lines): Construct a function that tests
whether a list is a sublist of the other. See Table 5.

In Fall 2011, these assignments were used on a Web Soft-
ware Development (WSD) course. They were part of a com-
pulsory exercise round on Python but students could pass
this round without solving these assignments. Still, almost
all students solved all of them. The assignments were given
in the order described above.

In Spring 2012, the assignments were used on a CS2 course
taught with Python. On that course, the assignments were
optional, additional exercises. For this course, we switched
the order of the first two assignments.

Before solving the assignments, students were asked two
questions: Have you programmed with Python before (yes/no)
and How much have you programmed before (Python or some
other programming language). The results of this background
survey are summarized in Table 1. Based on the survey, 44%
of the students on the WSD course had no previous Python
experience whereas for CS2 this was only 11%. Parsons prob-
lems have not been used at Aalto University before so it is
unlikely that students had previously been exposed to the
concept.

4. ANALYSIS AND RESULTS

The recorded interaction traces comprise a lot of data.
To aid our analyses, we implemented a tool that does pre-
processing and provides different quantitative measures and
visualizations of the data. We conceptualized a solution as
a graph where the nodes are different states of the code
on the right as in Figure 1 and edges are transitions from a
state to another invoked with the different possible operations:
inserting a code fragment to the (partial) solution on the right,



Table 1: Learners’ background on WSD and CS2
courses as evaluated by themselves. Programming
experience choices were: 1) I am new to program-
ming or have done very little programming. 2) I
know basic programming. I have taken basic courses
in programming and/or learned similar skills in my
work or hobbies. 3) I have experience in program-
ming. I have taken several courses in programming
on various topics and/or have learned similar skills
in my work or hobbies. 4) I am an experienced pro-
grammer with much practical experience. Program-
ming is my profession or a hobby I am passionate
about.

fa.miliar progr?‘mming WSsD S92
with python experience
1 4 (7.3%) 1 (25%)
no 2 13 (23.6%) 1 (25%)
3 23 (41.8%) -
4 12 (21.8%) 2 (50%)
1 - 2 (6.1%)
2 22 (31.0%) | 12 (36.4%)
yes 3 35 (49.3%) | 16 (48.5%)
4 14 (19.7%) 3 (9.1%)

moving a code fragment within the solution and thus changing
the order or indentation, and removing a code fragment from
the solution. Each successfully completed solving session is
thus a path from a state of empty code to a state with the
correct solution, and the number of steps in the solution
path is the number of edges traversed. The minimum is the
number of code fragments in the solution which is reached
when they are all added directly to their correct place. In
addition, at each state along the path the student may have
requested feedback. Code can also be rearranged in the input
area but students were instructed to build the solution on
the right and, looking from data, code reordering in the input
area was relatively rare and code cannot be indented there,
so we chose to focus only on the solution area.

Because the assignments were optional and not rewarded
on the CS2 course, the number of students solving the assign-
ments was quite low. Thus, we chose to focus our analysis
efforts on the WSD course only. However, we have used the
data from CS2 to validate some of our observations as dis-
cussed in Section 5. Furthermore, at first on the WSD course,
P1 had an error in that the solution was not unique but that
it was possible to build two different solutions with the given
code fragments but still only one was accepted. Therefore,
we had to omit a large portion of this data. It is also worth
noting that P2 was a trivial problem with only three code
fragments. So we have focused on P3, P4, and P5 in our
analyses. Table 2 gives a summary of the general nature
of the data collected as medians and their median absolute
deviations (MAD). The table indicates that P4 and P5 were
likely the most difficult assignments for the students.

4.1 Use of Automatic Feedback

In general, automatic feedback was used sparingly in solv-
ing the assignments. The median of how many times a student
asked for feedback in a solution ranged from 1 to 3 in the
different assignments and there was little variance. Indeed,
the median absolute deviation ranged from 0 to 2. Except for

Table 2: Average steps taken and time spent in solv-
ing the assignments. P1, P2, P3, P4, and P5 had 7,
3, 6, 6, and 7 code fragments, respectively.

2 g
g %ﬂ steps time (sec) time/steps
S < n | med mad | med mad | med mad
P1 73 13 4 185 76.0 13.9 5.3
n P2 142 3 0 26 8 8.3 2.3
N2 P3 140 10 4 142.5 58 124 4.7
= P4 137 9 3 219 98 19 7.6
P5 136 10 3 247 109.5 | 19.1 8.0
P1 29 10 3 116 44 9 3
~ P2 31 3 0 37 13 11 3.0
8 P3 27 9 3 87 16 9.8 2.8
P4 20 | 7.5 1 145 64 20.9 5.7
P5 17 7 0 177 72 19 7.4

the trivial P2, 35-53% of the students were able complete the
assignment on their first feedback request and, thus, most
requested feedback more than once. Some few individuals re-
quested feedback dozens of times, up to 62 times in a solution.
On closer inspection, these students exhibited trial-and-error-
like behavior where the student would request feedback after
almost every modification they made and they took little
time to think about their next move.

In all the assignments, in over 90% of the solutions, students
asked for feedback for the first time only after all the lines
belonging to the solution had been added. In most cases
(54.8% of all solutions for P1, 90.8% for P2, 82.1% for P3,
78.8% for P4, and 82.4% for P5), this was immediately after
adding the last line of code. The number is significantly lower
for P1. We think this is on the one hand because students
may not have at this point yet fully realized that feedback
could be requested at any time and an unlimited number
of times and on the other hand because an approach where
code was indented only after all of it having been added was
common as described in the next subsection.

Investigation into the states where feedback was requested
reveals that the correct, complete answer is unsurprisingly
the most common such state. In the last three assignments,
the other most common feedback states were the same as the
most common incorrect states described in Subsection 4.3.

4.2 Common Patterns

Overall, the variance of the solution paths across students
was notable. As a quantitative measure of this, the solution
paths in P3, P4, and P5 had in total 453, 444, and 781 different
states, respectively. P5 had a higher count because it had 7
draggable code fragments compared to the 6 for the other two.
The number of states that were included in many solution
paths is quite low: for P3, P4, and P5 there were only 24, 22,
and 14 states that appeared in at least every tenth solution,
respectively. Worth noting is that the few low-performing
students clicking through with a trial-and-error attitude grow
the set of different states with nonsensical states not visited
by others.

We examined whether any common patterns emerge across
solutions by constructing an aggregate graph of all the so-
lution paths for each assignment (see Figure 2). Each node
represents one state and its size is relative to the number of
solutions that have it. Start node is labeled with the number
of solution paths the graph is built from and a solution is



labeled with an F. Node outlines are colored according to the
state correctness: black for correctly ordered, red for wrong
order, and magenta for states with all code fragments in the
correct order but incorrectly indented. Nodes themselves are
colored from white to black to indicate the number of solu-
tion paths where feedback has been requested in that state.
Each edge represents a transition from a state to another in
response to changing the code in the solution area by, e.g.,
moving a code fragment. The width of the edge is relative to
the number of solutions that have this transition. Edges are
also labeled with this number. Edges are colored according
to which drag-and-drop operation they represent: black for
adding code, red for changing order, magenta for increas-
ing indentation, pink for decreasing indentation, and brown
for removing code. We implemented a tool to interactively
browse these graphs that additionally shows the code corre-
sponding to the state when hovering over nodes. To identify
common patterns, we focused on transitions performed by
most students by filtering out edges with weights less than
some varying threshold value, and examining paths that were
left.

For all the assignments we could see one primary overall
pattern which was the simple add all the code fragments
linearly, that is, in top-down order directly to their correct
place. In the first assignment, P1, it was also quite common
to first add the code fragments with no indentation and
then do the indentation separately. This was less common in
subsequent assignments and may be due to the students being
inexperienced with the interface for solving the exercises.
Also, we did not see this with the CS2 course. Because the
assignments studied were rather simple and had few lines of
code, it is not surprising that we see the pattern mentioned
above. However, the variations to this are interesting. Indeed,
we can see that many students preferred to first add code
fragments that defined a block or control structure such as
the for loop statement or the if branching statement. This
is most evident in P5 (aggregate graph in Figure 2) whose
solution included two if statements and one for statement.
Students much preferred starting to construct the program
with adding the for and if statements before the others.
This is a clear deviation from the straightforward linear
approach (the left path in the figure) and an indicator of
some structured control flow- or block-driven thinking when
constructing the program.

Another way to look at the pattern in which students solve
the problems is shown in Tables 3-5. The tables show in
which order the code fragments were added to the solution.
For example, Table 4 informs us that after the first step,
98.5% of the solutions had the def-statement. After adding
another line, all of the solutions contained this function signa-
ture and most solutions, 73.7%, also had the for-line. These
tables illustrate the same pattern of preferring to add control
structures before other statements.

4.3 Common Difficulties

Common difficulties can be observed by examining the
most common' incorrect states for each assignment. The
most interesting such observations are in P3 (see Table 3
for the code). The object instantiation code was commonly
indented inside a wrong block: the same level as the code
inside the constructor (in 39% of solutions), the same level as

"We considered states present in at least 10% of the solutions
to be common.

for i in xrange(len(list2)-len(list1)):

[ def is_sublist(list1, list2): ]

for i in xrange(len(list2)-len(list1)):

S def is_sublist(list1, list2):
22 (11 for i in xrange(len(list2)-len(list1)):
[def is_sublist(istd, list2): } if list2[i:i+len(list1)] == list1:

if len(list2) < len(list1): o)
g

def is_sublist(list1, list2):
if len(list2) < len(list1):
list1, list2 = list2, list1
for i in xrange(len(list2)-len(list1)):
if list2[izi+len(list1)] == list1:
return True
return False

def is_sublist(list1, list2):
if len(list2) < len(list1):
list1, list2 = list2, listl
for i in xrange(len(list2)-len(list1)):
if list2[izi+len(list1)] == list1:
return True
return False

Figure 2: Solution strategies of P5 filtered so that
transitions performed by less than five students not
visualized. The resulted graph covers 29 % of tran-
sitions of all students and 27% of all solution paths.

Table 3: Lines added in P3 on the WSD course.

Code S1 S2 S3
class Node(): 64.3 88.6 97.1
def _init_ (self, value, next=None): 35.0 88.6 95.7
self.value = value 0.0 129 68.6
self.next = next
a = Node(1) 0.7 5.0 114
b = Node(2, a) 0.0 00 36
a.next = b 0.0 0.0 0.0

Table 4: Lines added in P4 on the WSD course.

Code S1 S2 S3
def draw_triangle(h): 98.5 100.0 100.0
stars = (2%h-1)** 0.0 175 416
for n in xrange(h): 0.7 737 942
spaces = n 0.0 5.8 40.9
print spaces * >’ + stars 0.0 0.7 16.1
stars = stars|2:] 0.7 2.2 7.3

Table 5: Lines added in P5 on the WSD course.

Code S1 S2 S3 S4
def is_sublist(list1, list2): 99.3 100.0 100.0 100.0
if len(list2) < len(list1): 0.7 53.7 77.9 86.8
list1, list2 = list2, listl 0.0 4.4 36.0 60.3
for i in xrange(len(list2)-len(list1)): 0.0 35.3 55.1 87.5
if list2[izi+len(list1)] == list1: 0.0 4.4 14.0 33.8
return True 0.0 1.5 1.5 6.6
return False 0.0 0.7 14.0 19.9




the constructor definition (33%), and one step deeper than
code inside the constructor (11%). Particularly interesting
is the last one where the code really makes no sense since
the code is indented even though there is no surrounding
control structure. It seems these students were just trying to
get through with no consideration of whether it made sense.

In assignment P5, there was only one common incorrect
state. In that state, the for-loop and code inside it was
indented one step too deep and thus contained within the
wrong block.

Assignment P4 was difficult, and the incorrect states in-
cluded almost all permutations of the code fragments. Table 6
illustrates this. It shows the positions of code fragments in
states where students had requested feedback and all the lines
had been added but were ordered incorrectly. From the table
we can see, for example, that a common mistake was to have
the print statement as the last line (69.9% of times, column
6 in the table) while it’s correct position was second to last.
The values are normalized so that every student’s solution
regardless of its length or number of feedback requests has
equal weight.

Table 6: Positions of code fragments in students’ so-
lutions when feedback was requested and the order
was incorrect. From each line of the table, one can
read the percentage of solutions where the code frag-
ment was in the 1st, 2nd, etc position. For example,
0.2% of solutions had the def line as the 3rd line.

Line of Code 1 2 3 4 5 6
def draw_triangle(h): 99 0.7 0.2 0 0 0
stars = (2%¥h-1)%* 0 45 16.4 224 9.3 6.9
for n in xrange(h): 0 43.8 447 74 3.6 0.4
spaces = n 0.8 4.9 29.8 35 28.5 1
print spaces * 7’ + stars 0 0 1.3 7.3 21.8 69.6
stars = stars[2:] 0.2 5.6 7.6 279 36.7 22

4.4 Loops and Backtracking

Using the graph visualization introduced in Subsection 4.2,
we also examined individual solution paths in addition to the
aggregate graphs. Compared to the aggregate graphs, the
node size and the edge width have no meaning in these, the
start node is labeled with an S, and edges are labeled with
the time in seconds between the transition from the state to
the next and low values are greyed out to highlight longer
pauses (see Figure 3). This state-centric view of the student’s
solution allowed us to spot the quite common ineffective
behavior of revisiting states. Table 7 shows data on how
many of the solution paths visited states earlier visited in
the same path, that is, the solution paths had loops. Clearly,
loops were most common in P4. This is not surprising, since
it was also the assignment where students had many common
incorrect states.

To better understand the student behavior in these loops,
we examined and categorized all the solution paths with
loops.

Backtracking happens when the student reverts to an ear-
lier state by undoing the operations exactly in the
reverse order. One might assume that in these cases
returning to the earlier state was intentional.

Circular loop(s) occurs when the student visits multiple

Table 7: Solutions with loops. Count is the number of
solutions with at least one state revisit. Length of a
loop gives the median and median absolute deviation
of the number of steps between state revisits.

Assignment | Count % Length of a loop
med mad
P1 19 26.0% 4 3
P2 1 0.7% 3 0
P3 29 20.7% 5 4
P4 45 32.8% 3 2
P5 28 20.6% 3 2

states and then returns to an earlier state via different
intermediate states. In these cases it is difficult to say
if the student returned to the earlier state intentionally
or by accident.

Let us call the shortest path from start to the solution
state within a solution path the trunk. Combinations of the
two types of loops above are possible and can be further
categorized based on how they are related to each other and
the trunk.

Separate sidetrack(s) , where loops originating from the
trunk do not start from the same or consecutive states
along the trunk, are illustrated in Figure 3.

Concentrated sidetracks where many loops originate from
a smaller number of states in the trunk are illustrated
in Figure 3. We call these states concentration points.

Jumbled combinations where the number of concentra-
tion points is extremely high, there are nested loops,
and the loops are lengthy are illustrated in Figure 4.
In some cases drawing the line between this category
and concentrated sidetracks is difficult.

S. DISCUSSION

The overall aim in our research is to build a tool that would
allow us to monitor students’ programming process, collect
data about the problems they face in the process, and give
tailored feedback to them. Though it is technically possible
to log all students’ interaction when they are using some
programming environment, the problem is to get data that
has adequate granularity. Automatic assessment tools, such
as Web-CAT [3], provide only the submissions. Logging all
editing data, on the other hand, would provide us with lots
of too detailed data, like writing code sentences, misspellings
and correcting them, most of which is not relevant to us.
What we would need is data which includes all changes stu-
dents make in the level of inserting, removing, and reordering
syntactically correct statements, expressions, methods and
other larger programming concepts, as well as all interac-
tion they have when compiling, testing, and debugging their
problems. Here, we have studied Parsons problems in the
js-parsons environment. This has enabled us to examine this
type of data in terms of puzzle-like program construction
sessions.

Nearly all students were able to solve all our Parsons prob-
lems. However, how they solved them varied. Thus, if these
Parsons problems were used to assess some programming
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Figure 3: Separate sidetracks on the left and concen-
trated sidetracks on the right.

Figure 4: A jumbled combination of loops.

skills, we assume that assessing solving strategies is more
meaningful than merely checking the final state. In our previ-
ous work, we observed how four experts solved algorithmic 2D
Parsons puzzles. They seemed to follow a top-down strategy
where they first added the function signature to the solution,
then added loops and ordered them correctly if needed, then
added the if-statements, and finally the remaining lines [5].
As discussed in Subsection 4.2, we found that some students
did indeed follow this pattern while others did not. It would
be interesting to further analyze whether they did not use
the structured approach because they already had the full or
partial solution figured out. Nonetheless, even though we can
observe the tendency of using this approach, there are a lot
of small variations in the solution paths and some guesswork
must be present.

To validate the common solving strategies identified on the
WSD course, we briefly checked the data collected on the CS2
course. It seems the same patterns were there, but since we
only have little data from that course, we cannot definitely
say that they were exactly the same. In the future, we need
to collect more data and analyze patterns more thoroughly
from multiple courses.

In Subsection 4.4, we examined loops in students’ solution
paths. Having no loops in a solution does not guarantee
that the learner was always moving towards the solution,
but loops clearly indicate that the strategy was not optimal.
We assume that separate sidetracks could be slips or at least
something where the learner realized a problem but was
able to proceed immediately after returning to the previous
state. It is, however, difficult to evaluate what the learners
with jumbled state graphs were thinking while solving the
assignment. Concentrated sidetracks are more interesting
because it looks like a learner got somewhat stuck to the
states from where multiple loops originate. In future, we
could provide automated feedback when such behavior is
identified. This could further be combined with feedback
given when we identify eztreme movers, that is, students who
ignore the given feedback or do not use it effectively [14].
This would hopefully guide students away from falling into
these ineffective patterns.

As is typical when new educational tools are introduced,
we also collected comments on the assignments from students.
The opinions of Parsons problems were quite varied ranging
from boring to fun. The only emerging theme was that stu-
dents see these kinds of assignments good for teaching novel
solutions to (algorithmic) coding tasks.

We recognize that the current assignments we have, are
in many sense artificial compared with actual programming
tasks. We therefore direct our future work to extend the anal-
ysis to cases, which allow more realistic programming, such
as allowing distractors, i.e., code fragments not part of the
solution, allowing students to copy lines instead of restricting
the number to one, and to construct expressions. We argue
that most of the analysis methods we have used, would be
readily available for such enhanced assignments. Essentially,
this would move the assignments towards visual program-
ming. and thus allow us to investigate closely how students
solve programming tasks, what kind of strategies they have,
what kind of errors they make and how do they cope with
the errors. Another, interesting direction for research would
be implementing automatic feedback on observations made
from recorded interactions. Finally, one weakness with the
analyses in this study is that we can see anomalies and com-
mon mistakes in the solutions but we can only speculate
where they stem from. Indeed, in further research, we also
need to gather data on what students are thinking, what are
their reasons for doing what they did using methods such as
simulated recall or talk aloud protocols in order to augment
our analysis results.

6. CONCLUSIONS

In this paper, we have demonstrated the use of various
methods to extract meaningful information from Parsons
problems’ solving sessions based on a novel data source of
automatically recorded detailed interaction traces. We have
shown how to visualize the process of solving these problems
as an interactive graph that can be used to explore patterns
and anomalies in the solving process. By analyzing empirical



data collected from students of two programming courses, we
have identified some elements of poorly proceeding solutions,
such as, loops in the solution paths. In future work, we plan
to experiment with giving automatic feedback on these types
of episodes whose recognition requires knowledge of the whole
solution path and not just the current state. Moreover, we
plan to extend the tool for more realistic programming tasks,
collect data from this, and perform similar analyses.
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