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How does a system respond when driven away from thermal

equilibrium?

C. Jarzynski
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM

chrisj@lanl.gov

It is widely appreciated that our understanding of non-equilibrium phenomena has not
kept pace with its equilibrium counterpart. In recent years, however, consideration of the
above question, posed at the microscopic level of statistical mechanics, has yielded some
intriguing theoretical results distinguished by two common features. First, they remain
valid far from equilibrium, that is, even if the system is disturbed violently from its initial
equilibrium state. Second, they incorporate information about the history of the system over
some span of time: e�ectively, these are statistical predictions about what we would see if
we could watch a movie of the system �lmed at the atomic level, rather than predictions
about individual snapshots.

To date, this work has been theoretical, though supplemented with numerical simulations.
However, in the current issue of PNAS, Hummer and Szabo [1] show how to combine these
theoretical advances with single molecule manipulation experiments, so as to extract useful
equilibrium information from non-equilibrium laboratory data. What these authors propose
amounts to a novel method of deducing the equilibrium mechanical properties of individual
molecules.

The scenario, roughly, is the following. Imagine a molecule, perhaps a linear polymer,
which can be stretched like a tiny rubber band by tugging at one end, using micromanipu-
lation technology such as atomic force microscopy or optical tweezers. Suppose we want to
determine the equilibrium tension of this molecule as a function of its elongation, or exten-
sion, at a given temperature. We therefore stretch it, pulling out one end of the molecule
at some constant speed while simultaneously measuring the restoring force. From this data
we can construct a plot of force vs. extension, as shown in the inset of Fig.2 of Ref. [1].
However, this might not be the information we are after: if we stretch the molecule too fast,
we drive it out of equilibrium, resulting in hysteresis. The measured force will then tend to
over-estimate the equilibrium tension. (The same happens with macroscopic rubber bands,
which heat up and become more tense when stretched rapidly.) One solution to this prob-
lem is to pull very slowly, allowing the molecule to maintain a gradually changing state of
equilibrium. Hummer and Szabo's surprising alternative involves numerous \rapid" pulling
experiments, rather than a single slow pull. They provide a prescription for combining the
data from these repeated experiments, so that what ultimately emerges is the equilibrium
tension as function of elongation, even if the molecule was driven away from equilibrium
during the pulling process! Moreover, they make a solid case { using simulations as well as
analysis of published micromanipulation data { that their method is experimentally feasible.

Hummer and Szabo anchor their proposal in rigorous analysis, invoking the Feynman-
Kac theorem for stochastic processes. While this analysis is novel, and important for anyone
wishing to gain a true appreciation of the theoretical ideas behind the work, the essence of
those ideas can be conveyed without delving into the technical details of the derivation. In
what follows, I will present a cartoon version of the experiments proposed in Ref. [1], using
it to illustrate the underlying principles.
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Imagine the chain-like, one-dimensional \molecule" shown in Fig.1. The three beads
depict atoms, the springs represent the forces between them. One end of the chain is tethered
to a wall (or some other appropriately immovable object), while the other is attached to a
handle which we are able to grasp and move at will. The variable �, denoting the distance
between the wall and the handle, is viewed as an external parameter. The vector x =
(x1; x2; x3) denotes the microscopic con�guration of the molecule, specifying the position
of each atom. Let us furthermore imagine that this molecule is immersed in a thermal
environment at temperature T , so that if we hold �xed the value of � the molecule will relax
to a state of equilibrium.

We now adopt a statistical attitude, imagining in�nitely many copies, or realizations, of
the system. We will then make statements about the response of this ensemble to a rapid
change in �, assuming an initial state of equilibrium. E�ectively, we will be discussing the
statistics of a collection of microscopic histories, each representing one possible scenario for
the evolution of the molecule over a �xed time interval during which the handle is drawn
out from one position to another.

In equilibrium, with the handle held at some distance �A from the wall, the con�gurations
of the molecule are distributed according to the Boltzmann-Gibbs formula:

p(x) / e�E(x;�A)=kBT ; (1)

where E is the energy of the con�guration. Let us take this to de�ne our initial conditions.
Now imagine that, starting from this equilibrium state, we perturb the system by pulling
the handle outward from �A to some new position �B. Unless we pull very slowly, the state
of the ensemble will soon lag behind the instantaneous equilibrium state.

It is quite possible that there exists no simple, general formula describing the nonequi-
librium distribution of con�gurations at the instant the handle reaches �B: the ensemble
response to the perturbation may simply be too complicated, and too dependent on nu-
merous details of the thermal environment. This is in marked contrast to the sweeping
generality of equilibrium statistical mechanics, where at most a few parameters characteriz-
ing the environment (e.g. temperature, pressure, chemical potential) suÆce to pin down the
statistical state of any system which has been allowed to equilibrate with that environment.
However { and this is at the heart of the method proposed in Ref. [1] { we can indeed make
statements of comparable generality in this nonequilibrium situation, if we are willing to
consider the entire evolution of each realization, rather than just the instantaneous state of
the ensemble.

For any one of the \mental copies" in our ensemble, the evolution of the molecule is
described by a trajectory x(t), detailing the motion of each atom as the handle is drawn
from �A to �B. From knowledge of this trajectory we can compute, among other interest-
ing quantities, the microscopic external work, W , performed on the molecule by whatever
agent pulls the handle. (In the present context W is the tension of the red spring shown
in Fig.1, integrated over the distance along which the handle is pulled.) Since the precise
thermal jiggling of each atom di�ers from one realization to the next, the value of W will
di�er as well. Now imagine that we note down two pieces of information about each real-
ization: the �nal con�guration of the molecule, xf , at the instant the handle reaches �B,
and the total work W performed by pulling the handle from �A to �B. We then use this
data to construct two distributions characterizing the ensemble: an ordinary, \democratic"
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distribution of the �nal con�gurations xf , with each realization contributing equally; and a
weighted, \undemocratic" distribution of the same xf 's, in which the contribution of each
realization is scaled by a factor e�W=kBT . (See Fig.2 for a schematic representation, or Figs.
5 and 6 of Ref. [2] for an actual construction of such distributions.) While the former is
simply the �nal nonequilibrium state of our ensemble, the latter will be proportional to the
Boltzmann-Gibbs distribution corresponding to parameter value �B, and this remains valid
no matter how slowly or quickly we pull the handle! (Various proofs of this assertion are
found in Refs. [1{3].)

Of course, there is nothing unique about position �B: once we start to perturb the system
away from equilibrium, we can at any time note down { for each realization { both the current
con�guration of the molecule, x(t), and the work performed up to that instant, W (t). This
suggests a dynamical picture of a collection of trajectories evolving through con�guration
space, each bearing a time-dependent statistical weight e�W (t)=kBT . At every instant in time,

this weighted ensemble will be proportional to the equilibrium distribution associated with the

current value of �. Even if � is changed very quickly and each realization barely has time
to respond, the weighted distribution will nevertheless keep up with the rapidly changing
associated equilibrium state.

An immediate implication of this result is that we can extract equilibrium information
from non-equilibrium data in this situation, simply by tagging each realization with a statis-
tical weight e�W (t)=kBT , and computing averages using the weighted distribution. Essentially,
Hummer and Szabo bring this idea to the experimental arena of molecular micromanipula-
tion. Their proposed method is in fact somewhat more sophisticated, taking into account
complicating features of a realistic laboratory set-up, but the underlying philosophy is the
same. They show how to reconstruct the potential of mean force (PMF) associated with a
particular pulling coordinate, which in the proposed experiments is guided externally. If this
coordinate also happens to be a good reaction coordinate, accurately describing the path
taken by the molecule during a spontaneous transition from one long-lived state to another {
for instance, from a bound to an unbound protein-ligand complex { then the deduced PMF
will characterize not just the static properties of the molecule, but its dynamic behavior as
well.

The recent theoretical progress in this area has included other results as well, such
as the nonequilibrium work relation of Ref. [4], and Crooks' elegant formula relating the
probabilities of \forward" and \reverse" trajectory segments (a kind of detailed balance
statement for microscopic histories). [5] Taking a broader perspective, the idea of studying
the statistics of entire trajectories has enjoyed a certain popularity in recent years, making
appearances in the Fluctuation Theorem [6], the eÆcient sampling of transition paths and
calculation of rate constants of complex chemical reactions [7], and derivations of inequalities
for transitions between nonequilibrium steady states [8].

My primary aim in this comment has been to summarize the theoretical result behind
the method proposed in Ref. [1]. Namely, when a system is perturbed away from equilibrium
by the arbitrary variation of an external parameter, then a particular statistical description
of its response { constructed via the weighting procedure outlined above { behaves with
remarkable simplicity: it exactly follows the instantaneous equilibrium state associated with
the changing value of the parameter. Hummer and Szabo have translated this abstract
notion into a concrete proposal for an experimental method of measuring the properties of
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molecules. Not only does this represent a potentially useful laboratory technique, but an
experiment along these lines would provide the �rst direct test of the underlying theory.

It is a pleasure to thank Professors David Chandler and Christoph Dellago for useful
correspondence regarding this commentary.
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FIG. 1. A toy molecule, as described in the text.

FIG. 2. A schematic representation of the ordinary and weighted distributions of molecule con-

�gurations. The panel on the left depicts a simple snapshot of the ensemble at a given moment

in time, for instance when the handle reaches the position �B: each circle represents the current

con�guration of a speci�c realization. In the panel on the right, each realization is additionally

assigned a statistical weight, depicted by the size of the size of the circle.
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