
How Does Control Timing Affect Performance?

Cervin, Anton; Henriksson, Dan; Lincoln, Bo; Eker, Johan; Årzén, Karl-Erik

Published in:
Control Systems Magazine

DOI:
10.1109/MCS.2003.1200240

2003

Link to publication

Citation for published version (APA):
Cervin, A., Henriksson, D., Lincoln, B., Eker, J., & Årzén, K-E. (2003). How Does Control Timing Affect
Performance? Control Systems Magazine, 23(3), 16-30. https://doi.org/10.1109/MCS.2003.1200240

Total number of authors:
5

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/MCS.2003.1200240
https://portal.research.lu.se/en/publications/7a046306-dc00-4136-b8b1-b193deb5dc75
https://doi.org/10.1109/MCS.2003.1200240


How Does Control Timing
Affect Performance?

Analysis and Simulation of Timing
Using Jitterbug and TrueTime

C
ontrol systems are becoming in-

creasingly complex from both the

control and computer science

perspectives. Today, even seem-

ingly simple embedded control

systems often contain a multi-

tasking real-time kernel and support networking. At

the same time, the market demands that the cost of

the system be kept at a minimum. For optimal use

of computing resources, the control algorithm and

the control software designs need to be considered

at the same time. For this reason, new com-

puter-based tools for real-time and control

codesign are needed.

Many computer-controlled systems are distrib-

uted systems consisting of computer nodes and a

communication network connecting the various

systems. It is not uncommon for the sensor, actua-

tor, and control calculations to reside on different

nodes, as in vehicle systems, for example. This

gives rise to networked control loops (see [1]).

Within the individual nodes, the controllers are of-

ten implemented as one or several tasks on a micro-

processor with a real-time operating system. Often

the microprocessor also contains tasks for other

functions (e.g., communication and user inter-

faces). The operating system typically uses multi-

programming to multiplex the execution of the

various tasks. The CPU time and the communica-

tion bandwidth can hence be viewed as shared re-

sources for which the tasks compete.

Digital control theory normally assumes equidis-

tant sampling intervals and a negligible or constant

control delay from sampling to actuation. However,

16 IEEE Control Systems Magazine June 2003

0272-1708/03/$17.00©2003IEEE

Cervin (anton@control.lth.se), Henriksson, Lincoln, Eker, and Årzén are with the Department of Automatic Control, Lund Institute of
Technology, Box 118, SE-221 00 Lund, Sweden.

By Anton Cervin, Dan Henriksson,
Bo Lincoln, Johan Eker, and

Karl-Erik Årzén

©
M

A
S

T
E

R
S

E
R

IE
S



this can seldom be achieved in practice. Within a node, tasks

interfere with each other through preemption and blocking

when waiting for common resources. The execution times of

the tasks themselves may be data dependent or may vary

due to hardware features such as caches. On the distributed

level, the communication gives rise to delays that can be

more or less deterministic depending on the communication

protocol. Another source of temporal nondeterminism is the

increasing use of commercial off-the-shelf (COTS) hardware

and software components in real-time control (e.g., gen-

eral-purpose operating systems such as Windows and Linux

and general-purpose network proto-

cols such as Ethernet). These compo-

nents are designed to optimize

average-case rather than worst-case

performance.

The temporal nondeterminism

can be reduced by the proper choice

of implementation techniques and

platforms. For example, time-driven

static scheduling improves deter-

minism, but at the same time it reduces the flexibility and

limits the possibilities for dynamic modifications. Other

techniques of a similar nature are time-driven architectures

such as TTA [2] and synchronous programming languages

such as Esterel, Lustre, and Signal [3]. Even with these tech-

niques, however, some level of temporal nondeterminism is

unavoidable.

The delay and jitter introduced by the computer system

can lead to significant performance degradation. To achieve

good performance in systems with limited computer re-

sources, the constraints of the implementation platform

must be taken into account at design time. To facilitate this, soft-

ware tools are needed to analyze and simulate how timing af-

fects control performance. Thisarticledescribestwosuchtools:

Jitterbug (http://www.control.lth.se/~lincoln/jitterbug) and

TrueTime (http://www.control.lth.se/~dan/TrueTime).

The Software Tools
Jitterbug is a MATLAB-based toolbox that computes a qua-

dratic performance criterion for a linear control system un-

der various timing conditions. The tool can also compute

the spectral density of the signals in the system. Using the

toolbox, one can easily and quickly assert how sensitive a

control system is to delay, jitter, lost samples, etc., without

resorting to simulation. The tool is quite general and can

also be used to investigate jitter-compensating controllers,

aperiodic controllers, and multirate controllers. The main

contribution of the toolbox, which is built on well-known

theory (linear quadratic Gaussian (LQG) theory and jump

linear systems), is to make it easy to apply this type of sto-

chastic analysis to a wide range of problems.

The use of Jitterbug assumes knowledge of sampling pe-

riod and latency distributions. This information can be diffi-

cult to obtain without access to measurements from the

true target system under implementation. Also, the analysis

cannot capture all the details and nonlinearities (especially

in the real-time scheduling) of the computer system. A natu-

ral approach is to use simulation instead. However, today’s

simulation tools make it difficult to simulate the true tempo-

ral behavior of control loops. Normally time delays are in-

troduced in the control loop representing average-case or

worst-case delays. Taking a different approach, the

MATLAB/Simulink-based tool TrueTime facilitates simula-

tion of the temporal behavior of a multitasking real-time ker-

nel executing controller tasks. The tasks are controlling

processes that are modeled as ordinary Simulink blocks.

TrueTime also makes it possible to simulate simple models

of communication networks and their influence on net-

worked control loops. Different scheduling policies may be

used (e.g., priority-based preemptive scheduling and earli-

est-deadline-first (EDF) scheduling). (For more on real-time

scheduling, see [4].)

TrueTime can also be used as an experimental platform

for research on dynamic real-time control systems. For in-

stance, it is possible to study compensation schemes that

adjust the control algorithm based on measurements of ac-

tual timing variations (i.e., to treat the temporal uncertainty

as a disturbance and manage it with feedforward or gain

scheduling). It is also easy to experiment with more flexible

approaches to real-time scheduling of controllers, such as

feedback scheduling [5]. There the available CPU or net-

work resources are dynamically distributed according to

the current situation (CPU load, the performance of the dif-

ferent loops, etc.) in the system.

Comparison of the Tools
Jitterbug offers a collection of MATLAB routines that allow

the user to build and analyze simple timing models of com-

puter-controlled systems. A control system is built by con-

necting a number of continuous- and discrete-time systems.

For each subsystem, optional noise and cost specifications

may be given. In the simplest case, the discrete-time systems

are assumed to be updated in order during the control pe-

riod. For each discrete system, a random delay (described by

a discrete probability density function) can be specified that

must elapse before the next system is updated. The total cost

of the system (summed over all subsystems) is computed al-

gebraically if the timing model system is periodic or

iteratively if the timing model is aperiodic.

June 2003 IEEE Control Systems Magazine 17

Jitterbug is a MATLAB-based toolbox
that computes a quadratic performance

criterion for a linear control system
under various timing conditions.



To make the performance analysis feasible, Jitterbug can

only handle a certain class of system. The control system is

built from linear systems driven by white noise, and the per-

formance criterion to be evaluated is specified as a qua-

dratic, stationary cost function. The timing delays in one

period are assumed to be independent from the delays in

the previous period. Also, the delay probability density

functions are discretized using a time-grain that is common

to the whole model.

Even though a quadratic cost function can hardly capture

all aspects of a control loop, it can still be useful when one

wants to quickly judge several possible controller implemen-

tations against each other. A higher value of the cost function

typically indicates that the closed-loop system is less stable

(i.e., more oscillatory), and an infinite cost means that the

control loop is unstable. The cost function can easily be eval-

uated for a large set of design parameters and can be used as

a basis for the control and real-time design.

TrueTime makes it possible to study more general and

detailed timing models of computer-controlled systems.

The toolbox offers two Simulink blocks: a real-time kernel

block and a real-time network block. The delays in the con-

trol loop are captured by simulation of the execution of

tasks in the kernel and the transmission of messages over

the network.

Being a simulation tool, TrueTime is not restricted to

the evaluation of a quadratic performance criterion but

can be used to evaluate any time-domain behavior of the

control loop. If there are many random variables, however,

very long simulations may be needed to draw conclusions

about the system.

The Simulink blocks are event driven, so there is no need

to specify a time-grain for the model. The execution of a task

can be simulated on an arbitrarily fine time scale by dividing

the code into segments. Typically, it is enough to divide a

control task into a few segments (for instance, Calculate and

Update) to capture its temporal behavior. The code seg-

ments can be likened to the discrete-time subsystems in Jit-

terbug. A difference is that they can contain any user-

written code (including calls to real-time primitives) and not

just linear update equations.

Finally, although Jitterbug can only analyze the station-

ary behavior of a control loop, TrueTime can be used to in-

vestigate transient responses in conjunction with, for

example, temporary CPU overloads. It can also be used to

study systems where the controller and scheduling parame-

ters are adapted to the current situation in the real-time con-

trol system.

Networked Control System
As a recurring example in this article (among other exam-

ples), we will study a control loop that is closed over a com-

munications network. Closing control loops over networks

is becoming increasingly popular in embedded applica-

tions because of its flexibility, but it also introduces many

new problems. From a control perspective, the computer

system will introduce (possibly random) delays in the con-

trol loop. There is also the potential problem of lost mea-

surement signals or control signals. From a real-time

perspective, the first problem is figuring out the temporal

constraints (deadlines, etc.) of the different tasks in the

system and then scheduling the CPUs and the network

such that all constraints are met during runtime.

In the example, we will study the setup shown in Figure 1.

In our control loop, the sensor, the actuator, and the control-

ler are distributed among different nodes in a network. The

sensor node is assumed to be time driven, whereas the con-

troller and actuator nodes are assumed to be event driven. At

a fixed period h, the sensor samples the process and sends

the measurement sample over the network to the controller

node. There the controller computes a control signal and

sends it over the network to the actuator node, where it is

subsequently actuated. This kind of setup was studied in [6],

where an optimal, delay-compensating LQG controller was

derived. Here we are more interested in the interplay be-

tween control and real-time design and choose to study a

simple process and controller.

We will assume that the process to be controlled is a dc

servo and that the controller is a simple proportional-differ-

ential (PD) controller. In the Jitterbug section, we will study

the impact of sampling period, delay, and jitter on the con-

trol-loop performance. A simple jitter-compensating con-

troller is introduced where the parameters of the PD

controller are adjusted according to the actual measured

delay from the sensor node to the controller node. The de-

lay model at this point is very simple: the delay from one

node to another is described by a uniformly distributed ran-

dom variable. In the TrueTime section, a more detailed de-

lay model is obtained by simulating the execution of tasks in

the nodes and the scheduling of messages in the network.

18 IEEE Control Systems Magazine June 2003

DC Servo

Sensor

Node

Actuator

Node

Network

Controller

Node

Disturbance

Node

Figure 1. The networked control system is used as a recurring

example in the article.



Long random delays are caused by interfering traffic gener-

ated by a disturbance node in the network. It will be seen

that the behavior in the simulations agrees with the results

obtained by the more simplistic analysis.

Analysis Using Jitterbug
In Jitterbug, a control system is described by two parallel mod-

els: a signal model and a timing model. The signal model is

given by a number of connected, linear, continuous- and dis-

crete-time systems. The timing model consists of a number of

timing nodes and describes when the different discrete-time

systems should be updated during the control period.

An example of a Jitterbug model is shown in Figure 2,

where a computer-controlled system is modeled by four

blocks. The plant is described by the continuous-time sys-

tem G, and the controller is described by the three dis-

crete-time systems H1, H2, and H3. The system H1 could

represent a periodic sampler, H2 could represent the com-

putation of the control signal, and H3 could represent the ac-

tuator. The associated timing model says that, at the

beginning of each period, H1 should first be executed (up-

dated). Then there is a random delay τ1 until H2 is executed,

and another random delay τ2 until H3 is executed. The de-

lays could model computational delays, scheduling delays,

or network transmission delays.

Signal Model
A continuous-time system is described by

& ( ) ( ) ( ) ( )

( ) ( ),

x t Ax t Bu t v t

y t Cx t

c c c

c

= + +
=

where A, B, and C are constant matrices, and vc is a continu-

ous-time white noise process with covariance R c1 . (In the

toolbox, it is also possible to specify discrete-time measure-

ment noise. This will be interpreted as

input noise at any connected dis-

crete-time system.) The cost of the sys-

tem is specified as

J
T

x t

u t
Q

x t

u t
dtc

T

c

T
T

c

c=










→ ∞ ∫lim

( )

( )

( )

( )

1

0
,

where Qc is a positive semidefinite

matrix.

A discrete-time system is described

by

x t x t u t v t

y t Cx t Du t

d k d k k d k

k d k k

( ) ( ) ( ) ( )

( ) ( ) ( )

+ = + +
= +

1 Φ Γ
+ e td k( ),

where Φ, Γ, C, and D are possibly

time-varying matrices (see below). The

covariance of the discrete-time white noise processesvd and

ed is given by

R
v t

e t

v t

e t
d

d k

d k

d k

d k

T

=












E
( )

( )

( )

( )
.

The input signal u is sampled when the system is updated,

and the state xd and the output signal y are held between up-

dates. The cost of the system is specified as

J
T

x t

u t
Q

x t

u t
dtd

T

d

T
T

d

d=










→ ∞ ∫lim

( )

( )

( )

( )

1

0
,

where Qd is a positive semidefinite matrix. Note that the up-

date instants tk need not be equidistant in time and that the

cost is defined in continuous time.

The total system is formed by appropriately connecting the

inputs and outputs of a number of continuous- and discrete-

time systems. Throughout, multi-input, multi-output formula-

tions are allowed, and a system may collect its inputs from a

number of other systems. The total cost to be evaluated is

summed over all continuous- and discrete-time systems:

J J Jc d= +∑ ∑ .

Timing Model
The timing model consists of a number of timing nodes.

Each node can be associated with zero or more dis-

crete-time systems in the signal model, which should be up-

dated when the node becomes active. At time zero, the first

node is activated. The first node can also be declared to be

periodic (indicated by an extra circle in the illustrations),

which means that the execution will restart at this node ev-

ery h seconds. This is useful for modeling periodic control-

lers and also greatly simplifies the cost calculations.

June 2003 IEEE Control Systems Magazine 19

H z3( ) H z1( )

H z2( )

H z3( )

H z2( )

H z1( )

G s( )

1

2

3

τ1

τ2

v

u y

(a) (b)

Figure 2. A simple Jitterbug model of a computer-controlled system: (a) signal model and

(b) timing model. The process is described by the continuous-time system G s( ), and the

controller is described by the three discrete-time systems H z
1
( ), H z

2
( ), and H z

3
( ),

representing the sampler, the control algorithm, and the actuator. The discrete systems are

executed according to the periodic timing model.



Each node is associated with a time delay τ, which must

elapse before the next node can become active. (If unspeci-

fied, the delay is assumed to be zero.) The delay can be used

to model computational delay, transmission delay in a net-

work, etc. A delay is described by a discrete-time probabil-

ity density function

P P P Pτ τ τ τ= [ ( ) ( ) ( ) ]0 1 2 K ,

where P kτ ( ) represents the probability of a delay of kδ sec-

onds. The time-grain δ is a constant that is specified for the

whole model.

In periodic systems, the execution is preempted if the to-

tal delay ∑ τ in the system exceeds the period h. Any remain-

ing timing nodes will be skipped. This models a real-time

system where hard deadlines (equal to the period) are en-

forced and the control task is aborted at the deadline.

An aperiodic system can be used to model a real-time

system where the task periods are allowed to drift if there

are overruns. It could also be used to model a controller

that samples “as fast as possible” instead of waiting for the

next period.

Node- and Time-Dependent Execution
The same discrete-time system may be updated in several

timing nodes. It is possible to specify different update

equations (i.e., differentΦ,Γ,C, and D matrices) in the vari-

ous cases. This can be used to model a filter where the up-

date equations look different depending on whether or not

a measurement value is available. An example of this type

is given later.

It is also possible to make the update equations depend on

the time since the first node became active. This can be used,

for example, to model jitter-compensating controllers.

Alternative Execution Paths
For some systems, it is desirable to specify alternative exe-

cution paths (and thereby multiple next nodes). In Jitter-

bug, two such cases can be modeled:

• A vector n of next nodes can be specified with a proba-

bility vector p. After the delay, execution node n i( )will

be activated with probability p i( ). This can be used to

model a sample being lost with some probability.

• A vector n of next nodes can be specified with a time

vector t. If the total delay in the system since the node

exceeds t i( ), node n i( ) will be activated next. This can

be used to model time-outs and various compensa-

tion schemes.

Computation of Cost and
Spectral Densities
The computation of the total cost is performed in three

steps. First, the cost functions, the continuous-time noise,

and the continuous-time systems are sampled using the

time-grain of the model. Second, the closed-loop system is

formulated as a jump linear system, where Markov nodes

are used to represent the time steps in and between the exe-

cution nodes. Third, the stationary

variance of all states in the system is

calculated.

For periodic systems, the Markov

state always returns to the periodic

execution node every h / δ time

steps. The stationary variance in the

periodic execution node can then be

obtained by solving a linear system

of equations. The cost is then calcu-

lated over the time steps in one period. In this case, the cost

calculation is fast and exact. It is also straightforward to

compute the spectral densities of all outputs as observed in

the periodic timing node. For systems without a periodic

node, the variance must be computed iteratively. In both

cases, the toolbox will return an infinite cost if the total sys-

tem is not stable (in the mean-square sense). More details

about Jitterbug’s  internal workings can be found in [7].

Networked Control System
The first example we will look at is the networked control

system introduced earlier. We will begin by investigating

how sensitive the control loop is to slow sampling and de-

lays, and then we will look at delay and jitter compensation.

The Jitterbug model of the system was shown in Figure 2.

The dc servo process is given by the continuous- time system

G s
s s

( )
( )

=
+

1000

1
.

The process is driven by white continuous-time input

noise. There is assumed to be no measurement noise.

The process is sampled periodically with the interval h.

The sampler and the actuator are described by the trivial

discrete-time systems

H z H z1 3 1( ) ( )= = ,

and the discrete-time PD controller is implemented as

H z K
T

h

z

z

d
2 1

1
( ) = − +

−




,

20 IEEE Control Systems Magazine June 2003

TrueTime facilitates simulation of
the temporal behavior of a multitasking
real-time kernel executing
controller tasks.



where the controller parameters are chosen as K =1 5. and

Td = 0 035. . (A real implementation would include a low-pass

filter in the derivative part, but that is ignored here.)

The delays in the computer system are modeled by the

two (possibly random) variables τ1 and τ2. The total delay

from sampling to actuation is thus given by τ τ τtot = +1 2. It is

assumed that the total delay never exceeds the sampling pe-

riod (otherwise Jitterbug would skip the remaining updates).

Finally, we need to specify the control performance crite-

rion to be evaluated. As a cost function, we choose the sum of

the squared process input and the squared process output:

( )J
T

y t u t dt
T

T

= +
→ ∞ ∫lim ( ) ( )

1

0

2 2 .
(1)

An outline of the MATLAB commands

needed to specify the model and compute the

value of the cost function are given in Figure 3.

Sampling Period and Constant Delay
A control system can typically give satisfactory

performance over a range of sampling periods.

In textbooks on digital control, rules of thumb

for sampling period selection are often given.

One such rule suggests that the sampling inter-

val h should be chosen such that

0 2 0 6. .< <ωbh ,

where ωb is the bandwidth of the closed-loop

system. In our case, a continuous-time PD con-

troller with the given parameters would give a

bandwidth of about ωb = 80 rad/s. This would

imply a sampling period of between 2.5 and 7.5

ms. The effect of computational delay is typi-

cally not considered in such rules of thumb,

however. Using Jitterbug, the combined effect

of sampling period and computational delay

can be easily investigated. In Figure 4, the cost

function (1) for the networked control system

has been evaluated for different sampling peri-

ods in the interval 1 to 10 ms and for constant to-

tal delay ranging from 0 to 100% of the sampling

interval. As can be seen, a one-sample delay

gives negligible performance degradation when

h =1 ms. When h =10 ms, a one-sample delay

makes the system unstable (i.e., the cost J goes

to infinity).

Random Delays and Jitter Compensation
If system resources are very limited (as they of-

ten are in embedded control applications), the

control engineer may have to live with long sam-

pling intervals. Delay in the control loop then be-

comes a serious issue. Ideally, the delay should

be accounted for in the control design. In many practical

cases, however, even the mean value of the delay will be un-

known at design time. The actual delay at runtime will vary

from sample to sample due to real-time scheduling, the load

of the system, etc. A simple approach is to use gain schedul-

ing—the actual delay is measured in each sample, and the

controller parameters are adjusted according to precalcu-

lated values that have been stored in a table. Since Jitterbug

allows time-dependent controller parameters, such delay

compensation schemes can also be analyzed using the tool.

In the Jitterbug model of the networked control system,

we now assume that the delays τ1 and τ2 are uniformly dis-

tributed random variables between 0 and τmax / 2, where τmax

denotes the maximum round-trip delay in the loop. A range

of PD controller parameters (ranging from K =1 5. and

June 2003 IEEE Control Systems Magazine 21

Figure 3. This MATLAB script shows the commands needed to compute the

performance index of the networked control system using Jitterbug.

3

2.5

2

1.5

1

0.010

0.005

0.001 0
20

40
60

80
100

Sampling Period h Total Delay [in % of ]h

C
o
s
t
J

Figure 4. Example of a cost function computed using Jitterbug. The plot shows

the cost as a function of sampling period and delay in the networked control system

example.



Td = 0 035. for zero delay to K = 0 78. and Td = 0 052. for 7.5 ms

delay) are derived and stored in a table. When a sample ar-

rives at the controller node, only the delay τ1 from sensor to

controller is known, however, so the remaining delay is pre-

dicted by its expected value of τmax / 4.

The sampling interval is set to h =10 ms to make the ef-

fects of delay and jitter clearly visible. In Figure 5, the cost

function (1) has been evaluated with and without delay

compensation for values of the maximum delay ranging

from 0 to 100% of the sampling interval. The cost increases

much more rapidly for the uncompensated system. The

same example will be studied in more detail later using the

TrueTime simulator.

Signal Processing Application
As a second example, we will look at a signal processing appli-

cation. Cleaning signals from disturbances using notch filters

is important in many control systems. In some cases, the fil-

ters are very sensitive to lost samples due to their nar-

row-band frequency characteristics, and in real-time systems

lost samples are sometimes inevitable. In this example, Jitter-

bug is used to evaluate the effects of lost samples in different

filters and possible compensation techniques.

The setup is as follows. A good signal x (modeled as

low-pass-filtered white noise) is to be cleaned from an addi-

tive disturbance e (modeled as band-pass-filtered white

noise). An estimate $x of the good signal should be found by

applying a digital filter with the sampling interval h = 0 1. to

the measured signal x e+ . Unfortunately, a frac-

tion p of the measurement samples are lost.

A Jitterbug model of the system is shown in

Figure 6. The signals x and e are generated by fil-

tered continuous-time white noise through the

two continuous-time systemsG1 andG2. The dig-

ital filter is represented as two discrete-time

systems: Samp and Filter. The good signal is buf-

fered in the system Delay and is then compared

to the filtered estimate in the system Diff.

In the execution model, there is a probability

p that the Samp system will not be updated. In

that case, an alternative version, Filter( )2 , of the

filter dynamics will be executed and used to

compensate for the lost sample.

Two different filters are compared. The first

filter is an ordinary second-order notch filter

with two zeros on the unit circle. It is updated

with the same equations even if no sample is

available. The second filter is a second-order

Kalman filter, which is based on a simplified

model of the signal dynamics. In the case of a

lost sample, only prediction is performed in the

Kalman filter.

The performance of the filters is evaluated

using the cost function

J
T

x t dt
T

T

=
→ ∞ ∫lim ~ ( )

1 2

0
,

which measures the variance of the estimation

error. In Figure 7, the cost has been plotted for

22 IEEE Control Systems Magazine June 2003

4.5

4

3.5

3

2.5

2

1.5
0 20 40 60 80 100

Maximum Total Delay [in % of ]h

No Delay Compensation

Dynamic Delay Compensation

C
o

s
t

J

Figure 5. Cost as a function of maximum delay in the networked

control system example with random delays.

G s2( )

G s1( )

v2

v1

e

x

Samp

Samp

Filter(i)

Filter(2) Filter(1)

x^

Diff

Diff

x
~

Delay

Delay

(a)

1

2

3

5

4

p

1 – p

(b)

Figure 6. Jitterbug model of the signal processing application: (a) signal

model and (b) timing model.



different probabilities of lost samples. The figure shows that

the ordinary notch filter performs better in the case of no

lost samples, but the Kalman filter performs better as the

probability of lost samples increases. This is because the

Kalman filter can perform prediction when no sample is

available.

Simulation Using TrueTime
Analysis using Jitterbug can be used to quickly determine

how sensitive a control system is to slow sampling, delay, jit-

ter, and so on. For more detailed analysis as well as

systemwide real-time design, the more general simulation

tool TrueTime can be used.

In TrueTime, computer and network blocks are intro-

duced. The computer blocks are event driven and execute

user-defined tasks and interrupt handlers representing, e.g.,

I/O tasks, control algorithms, and network interfaces. The

scheduling policy of the individual computer blocks is arbi-

trary and decided by the user. Likewise, in the network, mes-

sages are sent and received according to a chosen network

model.

The level of simulation detail is also chosen by the user; it

is often neither necessary nor desirable to simulate code ex-

ecution on instruction level or network transmissions on bit

level. TrueTime allows the execution time of tasks and the

transmission times of messages to be modeled as constant,

random, or data-dependent. Furthermore, TrueTime allows

simulation of context switching and task synchronization

using events or monitors.

TrueTime can be used in several ways:

• to investigate the effects of timing nondeterminism,

caused, for example, by preemption or transmission

delays, on control performance

• to develop compensation schemes that adjust the

controller dynamically based on measurements of ac-

tual timing variations

• to experiment with new, more flexible approaches to

dynamic scheduling, such as feedback scheduling of

CPU time and communication bandwidth and qual-

ity-of-service (QoS)-based scheduling approaches

• to simulate event-driven control systems (e.g., engine

controllers and distributed controllers).

Simulation Environment
The interfaces to the computer and network Simulink blocks

are shown in Figure 8. Both blocks are event driven, with the

execution determined by both internal and external events.

Internal events are timely and correspond to events such as

“a timer has expired,” “a task has finished its execution,” or “a

message has completed its transmission.” External events

correspond to external interrupts, such as “a message ar-

rived on the network” or “the crank angle passed 0°.”

The block inputs are assumed to be discrete-time signals,

except for the signals connected to the A/D converters of

the computer block, which may be continuous-time signals.

All outputs are discrete-time signals. The schedule and mon-

itors outputs display the allocation of common resources

(CPU, monitors, network) during the simulation.

The blocks are variable-step, discrete, MATLAB S-func-

tions written in C++, the Simulink engine being used only for

timing and interfacing with the rest of the model (the contin-

uous dynamics). It should thus be easy to port the blocks to

other simulation environments, provided these environ-

ments support event detection (zero-crossing detection).

The Computer Block
The computer block S-function simulates a computer with a

simple but flexible real-time kernel, A/D and D/A converters,

a network interface, and external interrupt channels.

Internally, the kernel maintains several data structures

that are commonly found in a real-time kernel: a ready queue,

a time queue, and records for tasks, interrupt handlers, moni-

tors, and timers that have been created for the simulation.

The execution of tasks and interrupt handlers is defined

by user-written code functions. These functions can be writ-

ten either in C++ (for speed) or as MATLAB m-files (for ease

June 2003 IEEE Control Systems Magazine 23

10

8

6

4

2

0
0 0.05 0.1

Probability of Lost Sample p

C
o

s
t
J

Notch Filter

Kalman Filter

Figure 7. The variance of the estimation error with the different

filters as a function of the probability of lost samples.

Figure 8. The TrueTime block library. The Schedule and Monitor

outputs display the allocation of common resources (CPU, monitors,

network) during the simulation.



of use). Control algorithms may also be defined graphically

using ordinary discrete Simulink block diagrams.

Tasks
The task is the main construct in the TrueTime simulation en-

vironment. Tasks are used to simulate both periodic activi-

ties, such as controller and I/O tasks, and aperiodic activities,

such as communication tasks and event-driven controllers.

An arbitrary number of tasks can be created to run in the

TrueTime kernel. Each task is defined by a set of attributes

and a code function. The attributes include a name, a re-

lease time, a worst-case execution time, an execution time

budget, relative and absolute deadlines, a priority (if fixed-

priority scheduling is used), and a period (if the task is peri-

odic). Some of the attributes, such as the release time and

the absolute deadline, are constantly updated by the kernel

during simulation. Other attributes, such as period and pri-

ority, are normally kept constant but can be changed by

calls to kernel primitives when the task is executing.

In accordance with [8], it is furthermore possible to at-

tach two overrun handlers to each task: a deadline overrun

handler (triggered if the task misses its deadline) and an ex-

ecution time overrun handler (triggered if the task executes

longer than its worst-case execution time).

Interrupts and Interrupt Handlers
Interrupts may be generated in two ways: externally or in-

ternally. An external interrupt is associated with one of the

external interrupt channels of the computer block. The in-

terrupt is triggered when the signal of the corresponding

channel changes value. This type of interrupt may be used

to simulate engine controllers that are sampled against the

rotation of the motor or distributed control-

lers that execute when measurements arrive

on the network.

Internal interrupts are associated with tim-

ers. Both periodic timers and one-shot timers

can be created. The corresponding interrupt

is triggered when the timer expires. Timers

are also used internally by the kernel to imple-

ment the overrun handlers described in the

previous section.

When an external or internal interrupt oc-

curs, a user-defined interrupt handler is sched-

uled to serve the interrupt. An interrupt handler

works much the same way as a task, but it is

scheduled on a higher priority level. Interrupt

handlers will normally perform small, less

time-consuming tasks, such as generating an

event or triggering the execution of a task. An in-

terrupt handler is defined by a name, a priority,

and a code function. External interrupts also

have a latency during which they are insensitive

to new invocations.

24 IEEE Control Systems Magazine June 2003

Execution of User Code

Simulated Execution Time

1 2 3

Figure 9. The execution of the code associated with tasks and

interrupt handlers is modeled by a number of code segments with

different execution times. Execution of user code occurs at the

beginning of each code segment.

Figure 10. Example of a simple code function.

ttAnalogIn(ch) Get the value of an input channel

ttAnalogOut(ch, val) Set the value of an output channel

ttSendMsg(rec,data,len) Send message over network

ttGetMsg() Get message from network input

queue

ttSleepUntil(time) Wait until a specific time

ttCurrentTime() Current time in simulation

ttCreateTimer(time,ih) Trigger interrupt handler at a

specific time

ttEnterMonitor(mon) Enter a monitor

ttWait(ev) Await an event

ttNotifyAll(ev) Activate all tasks waiting for an

event

ttSetPriority(val) Change the priority of a task

ttSetPeriod(val) Change the period of a task



Priorities and Scheduling
Simulated execution occurs at three distinct priority levels:

the interrupt (highest priority), kernel, and task (lowest pri-

ority) levels. The execution may be preemptive or non-

preemptive; this can be specified individually for each task

and interrupt handler.

At the interrupt level, interrupt handlers are scheduled ac-

cording to fixed priorities. At the task level, dynamic-priority

scheduling may be used. At each scheduling point, the priority

of a task is given by a user-defined priority function, which is a

function of the task attributes. This makes it easy to simulate

different scheduling policies. For instance, a priority function

that returns a priority number implies fixed-priority schedul-

ing, whereas a priority function that returns a deadline implies

deadline-driven scheduling. Predefined priority functions ex-

ist for most of the commonly used scheduling schemes.

Code
The code associated with tasks and interrupt handlers is

scheduled and executed by the kernel as the simulation pro-

gresses. The code is normally divided into several seg-

ments, as shown in Figure 9. The code can interact with

other tasks and with the environment at the beginning of

each code segment. This execution model makes it possible

to model input-output delays, blocking when accessing

shared resources, etc. The simulated execution time of each

segment is returned by the code function and can be mod-

eled as constant, random, or even data-dependent. The ker-

nel keeps track of the current segment and calls the code

functions with the proper arguments during the simulation.

Execution resumes in the next segment when the task has

been running for the time associated with the previous seg-

ment. This means that preemption from higher-priority ac-

tivities and interrupts may cause the actual delay between

the segments to be longer than the execution time.

Figure 10 shows an example of a code function corre-

sponding to the time line in Figure 9. The function imple-

ments a simple controller. In the first segment, the plant is

sampled and the control signal is computed. In the second

segment, the control signal is actuated and the controller

states are updated. The third segment indicates the end of

execution by returning a negative execution time.

The functions calculateOutput and updateState

are assumed to represent the implementation of an arbi-

trary controller. The data structure data represents the lo-

cal memory of the task and is used to store the control signal

and measured variable between calls to the different seg-

ments. A/D and D/A conversion is performed using the ker-

nel primitives ttAnalogIn and ttAnalogOut.

Besides A/D and D/A conversion, many other kernel

primitives exist that can be called from the code functions.

These include functions to send and receive messages over

the network, create and remove timers, perform monitor

operations, and change task attributes. Some of the kernel

primitives are listed in Table 1.

Graphical Controller Representation
As an alternative to textual implementation of the controller

algorithms, TrueTime also allows for graphical representa-

tion of the controllers. Controllers represented using ordi-

nary discrete Simulink blocks may be called from within the

code functions using the primitivettCallBlockSystem. A

block diagram of a PI controller is shown in Figure 11. The

block system has two inputs, the reference signal and the

June 2003 IEEE Control Systems Magazine 25

Figure 11. Controllers represented using ordinary discrete

Simulink blocks may be called from within the code functions. The

example above shows a PI controller.

Figure 12. The dialog of the TrueTime Network block.



process output, and two outputs, the control signal and the

execution time.

Synchronization
Synchronization between tasks is supported by monitors

and events. Monitors are used to guarantee mutual exclu-

sion when accessing common data. Events can be associ-

ated with monitors to represent condition variables. Events

may also be free (i.e., not associated with a monitor). This

feature can be used to obtain synchronization between

tasks where no conditions on shared data are involved.

Output Graphs
Depending on the simulation, several different output graphs

are generated by the TrueTime blocks. Each computer block

will produce two graphs, a computer schedule and a monitor

graph, and the network block will produce a network sched-

ule. The computer schedule will display the execution trace

of each task and interrupt handler during the course of the

simulation. If context switching is simulated, the graph will

also display the execution of the kernel. If the signal is high, it

means that the task is running. A medium signal indicates

that the task is ready but not running (preempted), whereas a

low signal means that the task is idle. In an analogous way, the

network schedule shows the transmission of messages over

the network, with the states representing sending (high),

waiting (medium), and idle (low). The monitor graph shows

which tasks are holding and waiting on the different monitors

during the simulation. Generation of these execution traces

is optional and can be specified individually for each task, in-

terrupt handler, and monitor.

The Network Block
The network model is similar to

the real-time kernel model, albeit

simpler. The network block is

event driven and executes when

messages enter or leave the net-

work. A message contains infor-

mation about the sending and

receiving computer node, arbi-

trary user data (typically mea-

surement signals or control

signals), the length of the mes-

sage, and optional real-time attrib-

utes such as a priority or a

deadline.

In the network block, it is pos-

sible to specify the transmission

rate, the medium access control

protocol (CSMA/CD, CSMA/CA,

round robin, FDMA, or TDMA),

and a number of other parame-

ters; see Figure 12. A long mes-

sage can be split into frames that

are transmitted in sequence,

each with an additional over-

head. When the simulated trans-

mission of a message has

completed, it is put in a buffer at

the receiving computer node,

which is notified by a hardware

interrupt.

Networked
Control System
As a first example of simulation in

TrueTime, we again turn our at-

tention to the networked control

system. Using TrueTime, general

26 IEEE Control Systems Magazine June 2003

Figure 13. TrueTime simulation of the networked control system. The poor control performance is

a result of delays caused by colliding network transmissions and preemption in the controller node.



simulation of the distributed control system is possible

wherein the effects of scheduling in the CPUs and simulta-

neous transmission of messages over the network can be

studied in detail. TrueTime allows simulation of different

scheduling policies of the CPU and network and experi-

mentation with different compensation schemes to cope

with delays.

The TrueTime simulation model of the system contains

one computer block for each node and a network block (see

Figure 13). The time-driven sensor node contains a periodic

task, which at each invocation samples the process and

sends the sample to the controller node over the network.

The controller node contains an event-driven task that is

triggered each time a sample arrives over the network from

the sensor node. Upon receiving a sample, the controller

computes a control signal, which is then sent to

the event-driven actuator node, where it is actu-

ated. Finally, the interference node contains a

periodic task that generates random interfering

traffic over the network.

Initialization of the Actuator Node
Figure 14 shows the complete code needed to

initialize the actuator node in this particular ex-

ample. The computer block contains one task

and one interrupt handler, and their execution

is defined by the code functions actcode and

msgRcvHandler, respectively. The task and in-

terrupt handler are created in the actua-

tor_init function together with an event

(packet) used to trigger the execution of the

task. The node is “connected” to the network in

the function ttInitNetwork by supplying a

node identification number and the interrupt

handler to be executed when a message arrives

at the node. In the ttInitKernel function, the

kernel is initialized by specifying the number of

A/D and D/A channels and the scheduling pol-

icy. The built-in priority function prioFP speci-

fies fixed-priority scheduling. Other predefined

scheduling policies include rate monotonic

(prioRM), earliest deadline first (prioEDF),

and deadline monotonic (prioDM) scheduling.

Simulations
In the following simulations, we will assume a

CAN-type network where transmission of simul-

taneous messages is decided based on priori-

ties of the packages. The PD controller

executing in the controller node is designed as-

suming a 10-ms sampling interval. The same

sampling interval is used in the sensor node.

In a first simulation, all execution times and

transmission times are set equal to zero. The

control performance resulting from this ideal situation is

shown by the green curves in Figure 15.

Next we consider a more realistic simulation where exe-

cution times in the nodes and transmission times over the

network are taken into account. The execution time of the

controller is 0.5 ms, and the ideal transmission time from

one node to another is 1.5 ms. The ideal round-trip delay is

thus 3.5 ms. The packages generated by the disturbance

node have high priority and occupy 50% of the network

bandwidth. We further assume that an interfering, high-pri-

ority task with a 7-ms period and a 3-ms execution time is ex-

ecuting in the controller node. Colliding transmissions and

preemption in the controller node will thus cause the

round-trip delay to be even longer on average and time vary-

ing. The resulting degraded control performance is shown

June 2003 IEEE Control Systems Magazine 27

Figure 14. Complete initialization of the actuator node in the networked

control system simulation.



by the blue curves in Figure 15. The execution of the tasks in

the controller node and the transmission of messages over

the network can be studied in detail (see Figure 16).

Finally, a simple compensation is introduced to cope

with the delays. The packages sent from the sensor node are

now time stamped, which makes it possible for the control-

ler to determine the actual delay from sensor to controller.

The total delay is estimated by adding the expected value of

the delay from controller to actuator. The control signal is

then calculated based on linear interpolation among a set of

controller parameters precalculated for different delays.

Using this compensation, better control performance is ob-

tained, as shown by the red curves in Figure 15.

Feedback Scheduling
As a second example, we will look at a feedback scheduling

application. Some controllers, including hybrid controllers

that switch between different modes, can have highly vary-

ing execution-time demands. This makes the real-time sched-

uling design for this type of controller difficult. Basing the

real-time design on worst-case execution time (WCET) esti-

mates may lead to low utilization, slow sampling, and poor

control performance. On the other hand, basing the real-time

design on average-case assumptions may lead to temporary

CPU overloads and, again, poor control performance.

One way to solve the problem is to introduce feedback in

the real-time system. The CPU overload problem can be re-

solved by online adjustment of the sampling frequencies of

the hybrid controllers based on feedback from execution-

time measurements. The scheduler may also use feedfor-

ward information from control tasks that are about to

switch mode. The scheme was originally presented in [9]

and is illustrated in Figure 17.

In this example, we consider feedback scheduling of a set

of double-tank controllers. The double-tank process is de-

scribed by nonlinear state-space equations of the form

&

&

x

x

x u

x x

1

2

1

1 2







=
− +

−













α β

α α
.

The objective is to control the level of the lower tank, x 2, us-

ing the pump,u. A hybrid controller for the double-tank pro-

cess was presented in [10]. The controller consisted of two

subcontrollers: a time-optimal controller for set-point

changes and a proportional-integral-differential (PID) con-

troller for steady-state regulation.

Measurements on the controller showed that in optimal

control mode, the execution time was about three times lon-

ger than in PID control mode. The problem becomes pro-

nounced when several hybrid controllers share a common

computational unit. In the worst case, all controllers will be

in optimal control mode at the same time, and the CPU load

can become very high.

28 IEEE Control Systems Magazine June 2003

1.5

0.6

0.6

1

0.5

0

–0.5
0

0

0.2

0.2

0.4

0.4

Control Signal

Measurement Signal

2

1

0

–1

–2

Time [s]

Figure 15. Control performance for the networked control

system in the ideal case (green), with interfering network messages

and an interfering task in the controller node without compensation

(blue) and with delay compensation (red).

Interf.
Node

Controller
Node

Sensor
Node

Interf.
Task

Controller
Task

0 0.05 0.1

Computer Schedule

0 0.05 0.1
Time [s]

Network Schedule

Figure 16. Close-up of schedules showing the allocation of

common resources: network (top) and controller node (bottom). A

high signal means sending or executing, a medium signal means

waiting, and a low signal means idle.

Scheduler Tasks Dispatcher

Mode Changes

Usp { }hi Jobs c Ui,

Figure 17. The feedback scheduling structure.



Simulations
It is assumed that three hybrid double-tank controllers

should be scheduled on the same computer. The tanks have

different time constants, ( , , ) ( , , )T T T1 2 3 210 180 150= , and the

corresponding controllers are therefore assigned different

nominal sampling periods( , , ) ( , , )h h hnom nom nom1 2 3
21 18 15= ms.

Each controller is implemented as a separate TrueTime task.

The simulated execution time of a controller in PID mode is

CPID = 2 ms and the simulated execution time of a controller in

optimal control mode is COpt =10 ms.

First, ordinary rate-monotonic scheduling is at-

tempted. According to this scheduling principle, the task

with the longest period gets the lowest priority. In the

worst case, when all controllers are in optimal control

mode, the utilization will beU C h
i i

= ∑ =( / ) .1 7and the low-

est-priority task (Controller 1) will be blocked. Simulation

results are shown in Figures 18 and 19, displaying the con-

trol performance of the low-priority controller task and a

closeup of the computer schedule. The performance of

Controller 1 is very poor due to preemption from the

higher-priority tasks.

Next, a feedback scheduler is introduced. The feedback

scheduler is implemented as a task executing at the high-

est priority with a period of hFBS =100 ms and an execution

time of CFBS = 2ms. It also executes an extra time whenever

a task switches from PID to optimal mode. The feedback

June 2003 IEEE Control Systems Magazine 29

1

0.5

0

Control Signal

0.15

0.1

4

2

1

0

Lower Tank Level

Total Requested Utilization

0 0.5 1 1.5 2 2.5 3 3.5

Time [s]

Figure 18. Performance of Controller 1 under ordinary

rate-monotonic scheduling. The CPU becomes overloaded and the

controller is blocked, which deteriorates the performance.

Task 3

Task 2

Task 1

0.4 0.5 0.6 0.7 0.8 0.9

Time [s]

Computer Schedule

Figure 19. Closeup of the computer schedule during ordinary

rate-monotonic scheduling. When the system becomes overloaded, the

low-priority controller is preempted for a significant amount of time.

1

0.5

0

Control Signal

0.15

0.1

4

2

1

0

Lower Tank Level

Total Requested Utilization

0 0.5 1 1.5 2 2.5 3 3.5

Time [s]

Figure 20. Performance of Controller 1 under feedback

scheduling. The CPU utilization is controlled to never exceed 0.8,

and the control performance is good throughout.

Task 3

Task 2

Task 1

0.4 0.5 0.6 0.7 0.8 0.9

Time [s]

Computer Schedule

FBS

Figure 21. Closeup of the computer schedule during feedback

scheduling. The sampling intervals of the tasks are rescaled to avoid

overload.



scheduler estimates the workload of the controllers and
rescales the task periods, if necessary, to achieve a utiliza-
tion level of, at most, U sp = 0 8. . Results from a simulation
are shown in Figures 20 and 21. The performance of Con-
troller 1 is much better, even though it cannot always exe-
cute at its nominal period.

Conclusion
Designing a real-time control system is essentially a
codesign problem. Choices made in the real-time design will
affect the control design and vice versa. For instance, decid-
ing on a particular network protocol will give rise to certain
delay distributions that must be taken into account in the
controller design. On the other hand, bandwidth require-
ments in the control loops will influence the choice of CPU
and network speed. Using an analysis tool such as Jitterbug,
one can quickly assert how sensitive the control loop is to
slow sampling rates, delay, jitter, and other timing prob-
lems. Aided by this information, the user can proceed with
more detailed, systemwide real-time and control design us-
ing a simulation tool such as TrueTime.

Jitterbug allows the user to compute a quadratic perfor-
mance criterion for a linear control system under various
timing conditions. The control system is described using a
number of continuous- and discrete-time linear systems. A
stochastic timing model with random delays is used to de-
scribe the execution of the system. The tool can also be
used to investigate aperiodic controllers, multirate control-
lers, and jitter-compensating controllers.

TrueTime facilitates event-based cosimulation of a
multitasking real-time kernel containing controller tasks
and the continuous dynamics of controlled plants. The sim-
ulations capture the true, timely behavior of real-time con-
troller tasks and communication networks, and dynamic
control and scheduling strategies can be evaluated from a
control performance perspective. The controllers can be
implemented as MATLAB m-functions, C++ functions, or or-
dinary discrete-time Simulink blocks.

Acknowledgments
This work has been sponsored by ARTES (A network for
Real-Time research and graduate Education in Sweden,
http://www.artes.uu.se) and LUCAS (Lund University Cen-
ter for Applied Software Research, http://www.lucas.lth.se).

References
[1] Special Section on Networks and Control, IEEE Contr. Syst. Mag., vol. 21, Feb.
2001.

[2] H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded

Applications. Boston, MA: Kluwer, 1997.

[3] N. Halbwachs, Synchronous Programming of Reactive Systems. Boston, MA:
Kluwer, 1993.

[4] J.W.S. Liu, Real-Time Systems. Upper Saddle River, NJ: Prentice-Hall, 2000.

[5] J. Eker, P. Hagander, and K.-E. Årzén, “A feedback scheduler for real-time
control tasks,” Contr. Eng. Practice, vol. 8, no. 12, pp. 1369-1378, 2000.

[6] J. Nilsson, “Real-time control systems with delays,” Ph.D. dissertation,
ISRN LUTFD2/TFRT-1049-SE, Dept. of Automatic Control, Lund Inst. Technol.,
Sweden, Jan. 1998.

[7] B. Lincoln and A. Cervin, “Jitterbug: A tool for analysis of real-time control
performance,” in Proc. 41st IEEE Conf. Decision and Control, Las Vegas, NV,
2002, pp. 1319-1324.

[8] G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling, D. Hardin, and M.
Turnbull, The Real-Time Specification for Java. Reading, MA: Addison-Wesley,
2000.

[9] A. Cervin and J. Eker, “Feedback scheduling of control tasks,” in Proc. 39th

IEEE Conf. Decision and Control, Sydney, Australia, 2000, pp. 4871-4876.

[10] J. Eker and J. Malmborg, “Design and implementation of a hybrid control
strategy,” IEEE Contr. Syst. Mag., vol. 19, pp. 12-21, Aug. 1999.

Anton Cervin received an M.Sc. in computer science and
engineering from the Lund Institute of Technology, Sweden,
in 1998. Since then, he has been a Ph.D. student in the De-
partment of Automatic Control at Lund Institute of Technol-
ogy. His research interest is real-time control systems, and
his thesis work is about the integration of control and
real-time scheduling.

Dan Henriksson received an M.Sc. in engineering physics
from the Lund Institute of Technology, Sweden, in 2000. He is
currently a Ph.D. student in the Department of Automatic
Control at Lund Institute of Technology. His research inter-
est is real-time control systems, involving flexible ap-
proaches to real-time control and scheduling design.

Bo Lincoln received an M.Sc. in computer science and engi-
neering from the Linköping Institute of Technology, Sweden,
in 1999, and he has been a Ph.D. student in the Department
of Automatic Control at Lund Institute of Technology since
then. His research interests include networked control sys-
tems and optimal control.

Johan Eker received a Ph.D. in automatic control from the
Lund Institute of Technology, Sweden, in 1999. After complet-
ing a postdoctoral research position at the University of Cali-
fornia, Berkeley, he will join the Ericsson Mobile Platforms
research group in 2003. His interests are real-time control,
software engineering, and programming language design,
and he is currently working on the Cal actor language.

Karl-Erik Årzén received a Ph.D. in automatic control from
the Lund Institute of Technology, Sweden, in 1987. He has
been a professor in the Department of Automatic Control at
Lund Institute of Technology since 2000. His research inter-
ests are real-time systems, real-time control, and program-
ming languages for control applications.

30 IEEE Control Systems Magazine June 2003


