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Abstract

Learning with noisy labels is one of the hottest

problems in weakly-supervised learning. Based

on memorization effects of deep neural networks,

training on small-loss instances becomes very

promising for handling noisy labels. This fosters

the state-of-the-art approach “Co-teaching” that

cross-trains two deep neural networks using the

small-loss trick. However, with the increase

of epochs, two networks converge to a consen-

sus and Co-teaching reduces to the self-training

MentorNet. To tackle this issue, we propose a

robust learning paradigm called Co-teaching+,

which bridges the “Update by Disagreement”

strategy with the original Co-teaching. First, two

networks feed forward and predict all data, but

keep prediction disagreement data only. Then,

among such disagreement data, each network

selects its small-loss data, but back propagates

the small-loss data from its peer network and

updates its own parameters. Empirical results

on benchmark datasets demonstrate that Co-

teaching+ is much superior to many state-of-the-

art methods in the robustness of trained models.

1. Introduction

In weakly-supervised learning, learning with noisy labels

is one of the most challenging questions, since noisy labels

are ubiquitous in our daily life, such as web queries (Liu

et al., 2011), crowdsourcing (Welinder et al., 2010), medi-

cal images (Dgani et al., 2018), and financial analysis (Aı̈t-

Sahalia et al., 2010). Essentially, noisy labels are systemat-

ically corrupted from ground-truth labels, which inevitably

degenerates the accuracy of classifiers. Such degeneration

becomes even more prominent for deep learning models

(e.g., convolutional and recurrent neural networks), since
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these complex models can fully memorize noisy labels

(Zhang et al., 2017; Arpit et al., 2017).

To handle noisy labels, classical approaches focus on either

adding regularization (Miyato et al., 2016) or estimating

the label transition matrix (Patrini et al., 2017). Specif-

ically, both explicit and implicit regularizations leverage

the regularization bias to overcome the label noise issue.

Nevertheless, they introduced a permanent regularization

bias, and the learned classier barely reaches the optimal

performance. Meanwhile, estimating the label transition

matrix does not introduce the regularization bias, and the

accuracy of classifiers can be improved by such accurate

estimation. However, the label transition matrix is hard to

be estimated, when the number of classes is large.

Recently, a promising way of handling noisy labels is to

train on small-loss instances (Jiang et al., 2018; Ren et al.,

2018). These works try to select small-loss instances, and

then use them to update the network robustly. Among those

works, the representative methods are MentorNet (Jiang

et al., 2018) and Co-teaching (Han et al., 2018b). For

example, MentorNet pre-trains an extra network, and then

it uses the extra network for selecting clean instances to

guide the training of the main network. When the clean

validation data is not available, self-paced MentorNet has

to use a predefined curriculum (e.g., small-loss instances).

Nevertheless, the idea of self-paced MentorNet is similar

to the self-training approach, and it inherits the same

inferiority of accumulated error.

To solve the accumulated error issue in MentorNet, Co-

teaching has been developed, which simultaneously trains

two networks in a symmetric way (Han et al., 2018b).

First, in each mini-batch data, each network filters noisy

(i.e., big-loss) samples based on the memorization effects.

Then, it teaches the remaining small-loss samples to

its peer network for updating the parameters, since the

error from noisy labels can be reduced by peer networks

mutually. From the initial training epoch, two networks

having different learning abilities can filter different types

of error. However, with the increase of training epochs, two

networks will converge to a consensus gradually and Co-

teaching reduces to the self-training MentorNet in function.

To address the consensus issue in Co-teaching, we should

consider how to always keep two networks diverged within
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Figure 1. Comparison of divergence (evaluated by Total Varia-

tion) between two networks trained by the “Disagreement” strat-

egy, Co-teaching and Co-teaching+, respectively. Co-teaching+

naturally bridges the “Disagreement” strategy with Co-teaching.

the training epochs, or how to slow down the speed that

two networks will reach a consensus with the increase of

epochs. Fortunately, we find that a simple strategy called

“Update by Disagreement” (Malach & Shalev-Shwartz,

2017) may help us to achieve the above target. This strategy

conducts updates only on selected data, where there is a

prediction disagreement between two classifiers.

To demonstrate that the “Disagreement” strategy can keep

two networks diverged during training, we train two 3-layer

MLPs (Goodfellow et al., 2016) on MNIST simultaneously

for 10 trials, and report total variations of Softmax outputs

between two networks in Figure 1. We can clearly observe

that two networks trained by Co-teaching (blue in Figure 1)

converge to a consensus gradually, while two networks

trained by the “Disagreement” strategy (orange in Figure 1)

often keep diverged.

Motivated by this phenomenon, in this paper, we propose

a robust learning paradigm called Co-teaching+ (Figure 2),

which naturally bridges the “Disagreement” strategy with

Co-teaching. Co-teaching+ trains two deep neural net-

works similarly to the original Co-teaching, but it consists

of the disagreement-update step (data update) and the

cross-update step (parameters update). Initially, in the

disagreement-update step, two networks feed forward and

predict all data first, and only keep prediction disagreement

data. This step indeed keeps two networks (trained by Co-

teaching+) diverged (green in Figure 1). Then, in the cross-

update step, each network selects its small-loss data from

such disagreement data, but back propagates the small-loss

data from its peer network and updates its own parameters.

Intuitively, the idea of disagreement-update comes from
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Figure 2. Comparison of error flow among MentorNet (M-Net),

Co-teaching and Co-teaching+. Assume that the error flow

comes from the selection of training instances, and the error flow

from network A or B is denoted by red arrows or blue arrows,

respectively. Left panel: M-Net maintains only one network

(A). Middle panel: Co-teaching maintains two networks (A & B)

simultaneously. In each mini-batch data, each network selects its

small-loss data to teach its peer network for the further training.

Right panel: Co-teaching+ also maintains two networks (A &

B). However, two networks feed forward and predict each mini-

batch data first, and keep prediction disagreement data (!=) only.

Based on such disagreement data, each network selects its small-

loss data to teach its peer network for the further training.

Co-training (Blum & Mitchell, 1998), where two classifiers

should keep diverged to achieve the better ensemble effects.

The intuition of cross-update comes from culture evolving

hypothesis (Bengio, 2014), where a human brain can learn

better if guided by the signals produced by other humans.

We conduct experiments on both simulated and real-world

noisy datasets, including noisy MNIST, CIFAR-10, CIFAR-

100, NEWS, T-ImageNet and three Open-sets (Wang et al.,

2018). Empirical results demonstrate that the robustness

of deep models trained by the Co-teaching+ approach is

superior to many state-of-the-art methods, including Co-

teaching, MentorNet and F-correction (Patrini et al., 2017).

Before delving into details, we clearly emphasize our

contribution as follows.

• We denote that “Update by Disagreement” (i.e., the

Decoupling algorithm) itself cannot handle noisy la-

bels, which has been empirically justified in Section 3.

• We realize that the “Disagreement” strategy can keep

two networks diverged, which significantly boosts the

performance of Co-teaching.

• We summarize three key factors towards training

robust deep networks with noisy labels: (1) using the

small-loss trick; (2) cross-updating parameters of two

networks; and (3) keeping two networks diverged.

The rest of this paper is organized as follows. In Section 2,

we propose our robust learning paradigm Co-teaching+.

Experimental results are discussed in Sections 3 and 4.

Conclusions are given in Section 5.
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2. Co-teaching+: Towards Training of Robust

Deep Networks with Noisy Labels

Similar to Co-teaching, we also train two deep neural

networks. As in Figure 2, in each mini-batch data, each

network conducts its own prediction, then selects instances

for which there is a prediction disagreement between two

networks. Based on such disagreement data, each network

further selects its small-loss data, but back propagates the

small-loss data selected by its peer network and updates

itself parameters. We call such algorithm as Co-teaching+

(Algorithm 1), which consists of disagreement-update step

and cross-update step. This brings the question as follows.

How does disagreement benefit Co-teaching? To an-

swer this question, we should first understand the main

drawback of Co-teaching. In the early stage of training,

the divergence of two networks mainly comes from dif-

ferent (random) parameter initialization. Intuitively, this

divergence between two networks pushes Co-teaching to

become more robust than self-paced MentorNet, since

two diverged networks have different abilities to filter

different types of error. However, with the increase of

training epochs, two networks will gradually converge to

be close to each other (blue in Figure 1). Thus, Co-

teaching degenerates to self-paced MentorNet, and will

not promote the learning ability to select clean data any

more. To overcome this issue, we need to keep the constant

divergence between two networks or slow down the speed

that two networks reach a consensus. This intuition comes

from Co-training algorithm, where in semi-supervised

learning (Chapelle et al., 2009), the better ensemble effects

require to keep diverged more between two classifiers.

Fortunately, the “Disagreement” strategy (Malach &

Shalev-Shwartz, 2017) can help us to keep two networks

diverged (orange in Figure 1), since this strategy conducts

algorithm updates only on selected data, where there is

a prediction disagreement between the two classifiers.

Therefore, within the whole training epochs, if two

networks always select the disagreement data for further

training, the divergence of two networks will be always

maintained. Specifically, during the training procedure of

Co-teaching, if we use the “Disagreement” strategy to keep

two networks diverged, then we can prevent Co-teaching

reducing to self-training MentorNet in function. This

brings us the new robust training paradigm Co-teaching+

(Algorithm 1, green in Figure 1).

Take “complementary peer learning” as an illustrative

example for Co-teaching+. When students prepare for

their exams, the peer learning will normally more boost

their review efficiency than the solo learning. However,

if two students are identically good at math but not good at

literature, their review process in literature will have no any

Algorithm 1 Co-teaching+. Step 4: disagreement-update;

Step 5-8: cross-update.

1: Input w(1) and w(2), training set D, batch size B, learning rate
η, estimated noise rate τ , epoch Ek and Emax;
for e = 1, 2, . . . , Emax do

2: Shuffle D into
|D|
B

mini-batches; //noisy dataset

for n = 1, . . . , |D|
B

do

3: Fetch n-th mini-batch D̄ from D;
4: Select prediction disagreement D̄′ by Eq. (1);

5: Get D̄
′(1) = argminD′:|D′|≥λ(e)|D̄′| ℓ(D

′;w(1));
//sample λ(e)% small-loss instances

6: Get D̄
′(2) = argminD′:|D′|≥λ(e)|D̄′| ℓ(D

′;w(2));
//sample λ(e)% small-loss instances

7: Update w(1) = w(1) − η∇ℓ(D̄
′(2);w(1)); //update

w(1) by D̄
′(2);

8: Update w(2) = w(2) − η∇ℓ(D̄
′(1);w(2)); //update

w(2) by D̄
′(1);

end
9: Update λ(e) = 1−min{ e

Ek

τ, τ} or 1−min{ e

Ek

τ, (1+
e−Ek

Emax−Ek

)τ};

end

10: Output w(1) and w(2).

progress. Thus, the optimal peer should be complementary,

which means that a student who is good at math should

best review with another student who is good at literature.

This point also explains why the diverged peer has more

powerful learning ability than the identical peer.

Algorithm description. Algorithm 1 consists of the

disagreement-update step (step 4) and the cross-update

step (step 5-8), where we train two deep neural networks

in a mini-batch manner.

In step 4, two networks feed forward and predict the same

mini-bach of data D̄={(x1, y1), (x2, y2), · · · , (xB , yB)}
first, where the batch size is B. Then, they keep pre-

diction disagreement data D̄′ (Eq. (1)) according to their

predictions {ȳ
(1)
1 , ȳ

(1)
2 , . . . , ȳ

(1)
B } (predicted by w(1)) and

{ȳ
(2)
1 , ȳ

(2)
2 , . . . , ȳ

(2)
B } (predicted by w(2)):

D̄′ = {(xi, yi) : ȳ
(1)
i 6= ȳ

(2)
i }, (1)

where i ∈ {1, . . . , B}. The intuition of this step

comes from Co-training, where two classifiers should keep

diverged to achieve the better ensemble effects.

In step 5-8, from the disagreement data D̄′, each network

w(1) (resp. w(2)) selects its own small-loss data D̄
′(1)

(resp. D̄
′(2)), but back propagates the small-loss data D̄

′(1)

(resp. D̄
′(2)) to its peer network w(2) (resp. w(1)) and

updates parameters. The intuition of step 5-8 comes from

the aforementioned culture evolving hypothesis (Bengio,

2014), where a human brain can learn better if guided by

the signals produced by other humans.
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In step 9, we update λ(e), which controls how many small-

loss data should be selected in each training epoch. Due to

the memorization effects, deep networks will fit clean data

first and then gradually over-fit noisy data.

Thus, at the beginning of training, we keep more small-

loss data (with a large λ(e)) in each mini-batch, which is

equivalent to dropping less data. Since deep networks will

fit clean data first, noisy data do not matter at the initial

training epochs. With the increase of epochs, we keep less

small-loss data (with a small λ(e)) in each mini-batch. As

deep networks will over-fit noisy data gradually, we should

drop more data. The gradual decrease of λ(e) prevents

deep networks over-fitting noisy data to some degree.

Similar to Co-teaching, we decrease λ(e) quickly at the

first Ek epochs to stop networks over-fitting to the noisy

data, namely λ(e) = 1 − e
Ek

τ . However, after Ek epochs,

Co-teaching+ has two types of λ(e). The first type keeps

a constant λ(e), where λ(e) = 1 − τ ; while the second

type further decreases λ(e) slowly, where λ(e) = 1− (1 +
e−Ek

Emax−Ek

)τ . We take an example to explain the difference.

Assume that the estimated noise rate τ is 30%. It

means that, after Ek epochs, the first type will constantly

fetch 70% small-loss data in each mini-batch as “clean”

data. However, the τ estimation tends to be inaccurate

in practice. Therefore, given the estimated τ , we should

fetch less data, e.g., 60% small-loss data, to keep remained

data more clean. This explains why, in real-world noisy

datasets, Co-teaching+ chooses the second type to further

decrease λ(e) slowly after Ek epochs (Section 4).

Relations to other approaches. We compare our Co-

teaching+ with related approaches in Table 1. We try to find

the connections among them, and pinpoint the key factors

that can handle noisy labels. First, self-paced MentorNet

(Jiang et al., 2018) employs the small-loss trick to handle

noisy labels. However, this idea is similar to the self-

training approach, and it inherits the same inferiority of

accumulated error caused by the sample-selection bias.

Inspired by Co-training (Blum & Mitchell, 1998) that

trains double classifiers and cross updates parameters, Co-

teaching (Han et al., 2018b) has been developed to cross

train two deep networks, which addresses the accumulated

error issue in MentorNet. Note that, Co-training does not

exploit the memorization in deep neural networks, while

Co-teaching does (i.e., leveraging small-loss trick).

However, with the increase of training epochs, two net-

works trained by Co-teaching will converge to a consensus,

and Co-teaching will reduce to the self-training MentorNet.

This brings us to think how to address the consensus issue

in Co-teaching. Although Decoupling algorithm (Malach

& Shalev-Shwartz, 2017) (i.e., “Update by Disagreement”)

itself cannot combat with noisy labels effectively, which

has been empirically justified in Section 3, we clearly

realize that the “Disagreement” strategy can always keep

two networks diverged. Such divergence effects can boost

the performance of Co-teaching and bring us Co-teaching+,

since the better ensemble effects require to keep diverged

more between two classifiers due to Co-training.

To sum up, there are three key factors that can contribute

to effectively handle noisy labels (first column of Table 1).

First, we should leverage the memorization effects of deep

networks (i.e., the small-loss trick). Second, we should

train two deep networks simultaneously, and cross update

their parameters. Last but not least, we should keep two

deep networks diverged during the whole training epochs.

3. Experiments on Simulated Noisy Datasets

3.1. Experimental setup

Datasets. First, we verify the efficacy of our approach

on four benchmark datasets (Table 2), including three

vision datasets (i.e., MNIST, CIFAR-10, and CIFAR-100)

and one text dataset (i.e., NEWS). Then, we verify our

approach on a larger and harder dataset called Tiny-

ImageNet (abbreviated as T-ImageNet) 1. These datasets

are popularly used for the evaluation of learning with noisy

labels in the literature (Reed et al., 2015; Goldberger &

Ben-Reuven, 2017; Kiryo et al., 2017).

Since all datasets are clean, following (Reed et al., 2015;

Patrini et al., 2017), we need to corrupt these datasets

manually by the label transition matrix Q, where Qij =
Pr(ỹ = j|y = i) given that noisy ỹ is flipped from clean y.

Assume that the matrix Q has two representative structures:

(1) Symmetry flipping (van Rooyen et al., 2015); (2) Pair

flipping (Han et al., 2018b): a simulation of fine-grained

classification with noisy labels, where labelers may make

mistakes only within very similar classes.

Baselines. We compare Co-teaching+ (Algorithm 1) with

the following state-of-art approaches, and implement all

methods with default parameters by PyTorch, and conduct

all the experiments on a NVIDIA Titan Xp GPU.

(i). MentorNet (Jiang et al., 2018). An extra teacher

network is pre-trained and then used to filter out noisy in-

stances for its student network to learn robustly under noisy

labels. Then, student network is used for classification. We

used self-paced MentorNet in this paper;

(ii). Co-teaching (Han et al., 2018b), which trains two

networks simultaneously and cross-updates parameters of

peer networks. This method can deal with a large number

of classes and is more robust to extremely noisy labels;

(iii). Decoupling (Malach & Shalev-Shwartz, 2017), which

1https://tiny-imagenet.herokuapp.com/
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Table 1. Comparison of state-of-the-art and related techniques with our Co-teaching+ approach. In the first column, “small loss”:

regarding small-loss samples as “clean” samples, which is based on the memorization effects of deep neural networks; “double

classifiers”: training two classifiers simultaneously; “cross update”: updating parameters in a cross manner instead of a parallel manner;

“divergence”: keeping two classifiers diverged during the whole training epochs.

MentorNet Co-training Co-teaching Decoupling Co-teaching+

small loss X ✗ X ✗ X

double classifiers ✗ X X X X

cross update ✗ X X ✗ X

divergence ✗ X ✗ X X

Table 2. Summary of data sets used in the experiments.

# of train # of test # of class size

MNIST 60,000 10,000 10 28×28

CIFAR-10 50,000 10,000 10 32×32

CIFAR-100 50,000 10,000 100 32×32

NEWS 11,314 7,532 7 1000-D

T-ImageNet 100, 000 10, 000 200 64×64

updates the parameters only using the instances which have

different prediction from two classifiers.

(iv). F-correction (Patrini et al., 2017), which corrects the

prediction by the label transition matrix. As suggested by

the authors, we first train a standard network to estimate the

transition matrix Q.

(v). As a simple baseline, we compare Co-teaching+ with

the standard deep network that directly trains on noisy

datasets (abbreviated as Standard).

Network structure. For MNIST, we use a 2-layer MLP.

For CIFAR-10, we use a network architecture with 2

convolutional layers and 3 fully connected layers. For

CIFAR-100, the 7-layer network architecture in our paper

follows (Wang et al., 2018). For NEWS, we borrowed

the pre-trained word embeddings from GloVe (Pennington

et al., 2014), and a 3-layer MLP is used with Softsign

active function. For T-ImageNet, we use a 18-layer Pre-

act ResNet (He et al., 2016). The network structure here is

standard test bed for weakly-supervised learning, and the

details are in Table 3.

Optimizer. Adam optimizer (momentum=0.9) is with an

initial learning rate of 0.001, and the batch size is set to

128 and we run 200 epochs. The learning rate is linearly

decayed to zero from 80 to 200 epochs. As deep networks

are highly nonconvex, even with the same network and

optimization method, different initializations can lead to

different local optimal. Thus, following (Malach & Shalev-

Shwartz, 2017), we also take two networks with the same

architecture but different initializations as two classifiers.

Initialization. Assume that the noise rate τ is known. To

conduct a fair comparison in benchmark datasets, we set

the ratio of small-loss samples λ(e) as identical as Co-

teaching:

λ(e) = 1−min{
e

Ek

τ, τ}, (2)

where Ek = 10.

If τ is not known in advanced, τ can be inferred using

validation sets (Liu & Tao, 2016; Yu et al., 2018). Note

that λ(e) only depends on the memorization effect of deep

networks but not any specific datasets.

Measurement. To measure the performance, we use the

test accuracy, i.e., test accuracy = (# of correct predictions)

/ (# of test dataset). Intuitively, higher test accuracy means

that the algorithm is more robust to the label noise.

3.2. Comparison with the State-of-the-Arts

Results on MNIST. Figure 3 shows test accuracy vs.

number of epochs on MNIST. In all three plots, we can

clearly see the memorization effects of deep networks. For

example, test accuracy of Standard first reaches a very high

level since deep network will first fit clean labels. Over the

increase of epochs, deep network will over-fit noisy labels

gradually, which decreases its test accuracy accordingly.

Thus, a robust training method should alleviate or even stop

the decreasing trend in test accuracy.

In the easiest Symmetry-20% case, all new approaches

work better than Standard obviously, which demonstrates

their robustness. Co-teaching+ and F-correction work

significantly better than Co-teaching, MentorNet and De-

coupling. However, F-correction cannot combat with the

other two harder cases, i.e., Pair-45% and Symmetry-50%.

Especially in the hardest Pair-45% case, F-correction can

learn nothing at all, which greatly restricts its practical

usage in the wild. Besides, in two such cases, Co-teaching+

achieves higher accuracy than Co-teaching and MentorNet.

Results on CIFAR-10. Figure 4 shows test accuracy vs.

number of epochs on CIFAR-10. Similarly, we can clearly

see the memorization effects of deep networks, namely test

accuracy of Standard first reaches a very high level then

decreases gradually. In the easiest Symmetry-20% case,

Co-teaching+ works much better than all other baselines,
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Table 3. MLP and CNN models used in our experiments on MNIST, CIFAR-10, CIFAR-100/Open-sets, and NEWS.
MLP on MNIST CNN on CIFAR-10 CNN on CIFAR-100/Open-sets MLP on NEWS

28×28 Gray Image 32×32 RGB Image 32×32 RGB Image 1000-D Text

3×3 Conv, 64 BN, ReLU 300-D Embedding
5×5 Conv, 6 ReLU 3×3 Conv, 64 BN, ReLU Flatten → 1000×300

2×2 Max-pool 2×2 Max-pool Adaptive avg-pool → 16×300
3×3 Conv, 128 BN, ReLU

Dense 28×28 → 256, ReLU 5×5 Conv, 16 ReLU 3×3 Conv, 128 BN, ReLU Dense 16×300 → 4×300
2×2 Max-pool 2×2 Max-pool BN, Softsign

3×3 Conv, 196 BN, ReLU
Dense 16×5×5 → 120, ReLU 3×3 Conv, 196 BN, ReLU Dense 4×300 → 300

Dense 120 → 84, ReLU 2×2 Max-pool BN, Softsign

Dense 256 → 10 Dense 84 → 10 Dense 256 → 100/10 Dense 300 → 7

Standard Decoupling F-correction MentorNet Co-teaching Co-teaching+
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(a) Pair-45%.
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(b) Symmetry-50%.
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(c) Symmetry-20%.

Figure 3. Test accuracy vs. number of epochs on MNIST dataset.

where F-correction works similar to MentorNet but a bit

worse than Co-teaching.

However, F-correction cannot combat with two harder

cases easily, i.e., Pair-45% and Symmetry-50%. In the

Symmetry-50% case, F-correction works better than Stan-

dard and Decoupling, but worse than Co-teaching and Co-

teaching+. In the hardest Pair-45% case, F-correction

almost learns nothing. In such two harder cases, our Co-

teaching+ consistently achieves higher accuracy than Co-

teaching and MentorNet.

Results on CIFAR-100. Figure 5 shows test accuracy vs.

number of epochs on CIFAR-100. Similarly, we can clearly

see the memorization effects of deep networks, namely test

accuracy of Standard first reaches a very high level then

decreases gradually. In the easiest Symmetry-20% case,

Co-teaching+ and F-correction work significantly better

than Co-teaching, MentorNet and Decoupling.

However, F-correction cannot combat with two harder

cases easily, i.e., Pair-45% and Symmetry-50%. In the

Symmetry-50% case, F-correction works better than Stan-

dard and Decoupling, but worse than the other three

approaches. In the hardest Pair-45% case, F-correction

almost learns nothing. In such two harder cases, our Co-

teaching+ consistently achieves higher accuracy than Co-

teaching and MentorNet. An interesting phenomenon is,

in the easiest case, Co-teaching+ not only fully stop the

decreasing trend in test accuracy, but also performs better

and better with the increase of epochs.

Results on NEWS. To verify Co-teaching+ comprehen-

sively, we conduct experiments not only on vision datasets,

but also on text dataset NEWS. Figure 6 shows test accuracy

vs. number of epochs on NEWS.

Similar to results on vision datasets, we can still see the

memorization effects of deep networks in all three plots,

i.e., test accuracy of Standard first reaches a very high

level and then gradually decreases. However, Co-teaching+

mitigates such memorization issue, and works much better

than others across three cases. Note that F-correction

cannot combat with all three cases, even in the easiest

Symmetry-20% case. This interesting phenomenon in F-

correction does not occur in vision datasets.

Results on T-ImageNet. To verify our approach on a

complex scenario, Table 4 shows averaged/maximal test

accuracy on T-ImageNet over last 10 epochs. As we can

see, for both Symmetry cases, Co-teaching+ is the best. For

the Pair case, Co-teaching and Co-teaching+ outperform
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Figure 4. Test accuracy vs. number of epochs on CIFAR-10 dataset.
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Figure 5. Test accuracy vs. number of epochs on CIFAR-100 dataset.

other four baselines.

4. Experiments on Real-world Noisy Datasets

4.1. Experimental setup

Dataset. To verify the efficacy of our approach in real-

world scenario, we conduct experiments on open-set noisy

datasets (abbreviated as Open-sets) (Wang et al., 2018).

Specifically, Open-sets are built by replacing some training

images in CIFAR-10 by outside images, while keeping the

labels and the number of images per class unchanged. The

“mislabeled” images come from different outside datasets,

including CIFAR-100, ImageNet-32 (32 × 32 ImageNet

images) and SVHN. Note that outside images whose labels

exclude 10 classes in CIFAR-10 are considered.

Network & Optimizer & Initialization. We follow the

experimental settings in (Wang et al., 2018). Specifically,

we use a network architecture with 6 convolutional layers

and 1 fully-connected layer, and its details can be found

in the third column of Table 3. Batch normalization (BN)

is applied in each convolutional layer before the ReLU

activation, and a max-pooling layer is implemented every

two convolutional layers. All networks are trained by

Stochastic Gradient Descent (SGD) with learning rate 0.01,

weight decay 10−4 and momentum 0.9, and the learning

rate is divided by 10 after 40 and 80 epochs (100 in total).

Note that Open-sets are real-world noisy datasets. To

handle these complex scenarios, we should set the ratio of

small-loss samples λ(e) as follows.

λ(e) = 1−min{
e

Ek

τ, (1 +
e− Ek

Emax − Ek

)τ}, (3)

where Ek = 10 and Emax = 200.
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Figure 6. Test accuracy vs. number of epochs on NEWS dataset.

Table 4. Averaged/maximal test accuracy (%) of different approaches on T-ImageNet over last 10 epochs. The best results are in bold.

Flipping-Rate(%) Standard Decoupling F-correction MentorNet Co-teaching Co-teaching+

Pair-45% 26.14/26.32 26.10/26.61 0.63/0.67 26.22/26.61 27.41/27.82 26.54/26.87

Symmetry-50% 19.58/19.77 22.61/22.81 32.84/33.12 35.47/35.76 37.09/37.60 41.19/41.77

Symmetry-20% 35.56/35.80 36.28/36.97 44.37/44.50 45.49/45.74 45.60/46.36 47.73/48.20

Table 5. Averaged/maximal test accuracy (%) of different approaches on Open-sets over last 10 epochs. The best results are in bold.

Open-set noise Standard MentorNet Iterative (Wang et al., 2018) Co-teaching Co-teaching+

CIFAR-10+CIFAR-100 62.92 79.27/79.33 79.28 79.43/79.58 79.28/79.74

CIFAR-10+ImageNet-32 58.63 79.27/79.40 79.38 79.42/79.60 79.89/80.52

CIFAR-10+SVHN 56.44 79.72/79.81 77.73 80.12/80.33 80.62/80.95

4.2. Comparison with the State-of-the-Arts

Results on three Open-sets. Following (Wang et al.,

2018), we report the classification accuracy on CIFAR-

10 noisy datasets with 40% open-set noise in Table 5.

The Standard and Iterative results are borrowed from

(Wang et al., 2018). For MentorNet, Co-teaching and Co-

teaching+, we report the averaged/maximal test accuracy

over the last 10 epochs. As can be seen, our approach

outperforms other baselines on all three open-set noisy

datasets. For CIFAR-100 noise and ImageNet-32 noise,

both Co-teaching and Co-teaching+ are better than Itera-

tive. For SVHN noise, Co-teaching+ is significantly better

than Iterative; while MentorNet and Co-teaching also work

better than Iterative.

Reflection of results. Different algorithm designs lead

to different results. To sum up, self-paced MentorNet is

concluded as training single deep network using the small-

loss trick. Co-teaching moves further step, which is viewed

as cross-training double deep networks using the small-

loss trick. Based on Co-teaching, Co-teaching+ is regarded

as cross-training double diverged deep networks using

the small-loss trick. Thus, keeping two deep networks

diverged is one of the key ingredients to train robust deep

networks. This point has been empirically verified by the

result difference between Co-teaching and Co-teaching+.

5. Conclusion

This paper presents a robust learning paradigm called Co-

teaching+, which trains deep neural networks robustly

under noisy supervision. Our key idea is to maintain

two networks simultaneously that find the prediction dis-

agreement data. Among such disagreement data, our

method cross-trains on data screened by the “small loss”

criteria. We conduct experiments to demonstrate that, our

proposed Co-teaching+ can train deep models robustly with

the extremely noisy supervision beyond Co-teaching and

MentorNet. More importantly, we summarize three key

points towards training robust deep networks with noisy

labels: (1) using small-loss trick based on memorization

effects of deep networks; (2) cross-updating parameters of

two networks; and (3) keeping two deep networks diverged

during the whole training epochs. In future, we will

investigate the theory of Co-teaching+ from the view of

disagreement-based algorithms (Wang & Zhou, 2017).
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