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Abstract. In many locations, our ability to study the processes which shape the Earth are greatly enhanced

through the use of high-resolution digital topographic data. However, although the availability of such datasets

has markedly increased in recent years, many locations of significant geomorphic interest still do not have high-

resolution topographic data available. Here, we aim to constrain how well we can understand surface processes

through topographic analysis performed on lower-resolution data. We generate digital elevation models from

point clouds at a range of grid resolutions from 1 to 30 m, which covers the range of widely used data resolutions

available globally, at three locations in the United States. Using these data, the relationship between curvature

and grid resolution is explored, alongside the estimation of the hillslope sediment transport coefficient (D, in

m2 yr−1) for each landscape. Curvature, and consequently D, values are shown to be generally insensitive to grid

resolution, particularly in landscapes with broad hilltops and valleys. Curvature distributions, however, become

increasingly condensed around the mean, and theoretical considerations suggest caution should be used when

extracting curvature from landscapes with sharp ridges. The sensitivity of curvature and topographic gradient to

grid resolution are also explored through analysis of one-dimensional approximations of curvature and gradient,

providing a theoretical basis for the results generated using two-dimensional topographic data. Two methods

of extracting channels from topographic data are tested. A geometric method of channel extraction that finds

channels by detecting threshold values of planform curvature is shown to perform well at resolutions up to 30 m

in all three landscapes. The landscape parameters of hillslope length and relief are both successfully extracted

at the same range of resolutions. These parameters can be used to detect landscape transience and our results

suggest that such work need not be confined to high-resolution topographic data. A synthesis of the results

presented in this work indicates that although high-resolution (e.g., 1 m) topographic data do yield exciting

possibilities for geomorphic research, many key parameters can be understood in lower-resolution data, given

careful consideration of how analyses are performed.

1 Introduction

Geomorphologists have always made use of topographic

data, from initial qualitative observations of surface mor-

phology and its link to process (e.g., Gilbert, 1909) to di-

rectly measuring landscape geometries from contour maps,

constraining river dynamics and morphometric relationships

(e.g., Horton, 1932, Schumm, 1956, and Chorley, 1957). Fur-

ther quantitative analyses of the Earth’s surface were fa-

cilitated through the advent of gridded topographic data.

Work to generate digital elevation models (DEMs) from

photogrammetry, contour maps, and active remote sensing

platforms (Yamaguchi et al., 1998; Wolock and McCabe,

2000; Rabus et al., 2003; Walker and Willgoose, 2006) pro-

duced datasets at tens to thousands of meters’ grid reso-

lution, along with geomorphic analyses designed for such

datasets (O’Callaghan and Mark, 1984; Tarboton et al., 1991;

Montgomery and Dietrich, 1994; Burbank et al., 1996; Tar-

boton, 1997). Algorithms have subsequently been developed

which exploit the higher-resolution topographic data now
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available, predominantly from light detection and ranging (li-

dar), which not only refined existing techniques (Passalac-

qua et al., 2010; Pelletier, 2013; Clubb et al., 2014) but

also allowed the study of hitherto unresolvable features on

landscapes (Tarolli and Dalla Fontana, 2009; Vianello et al.,

2009; Roering et al., 2010; DiBiase et al., 2012; Tarolli,

2014; Milodowski et al., 2015b).

Presently, lidar data coverage is predominantly focused

around locations of particular scientific interest or infrastruc-

tural importance, as can be seen on many lidar data por-

tals (e.g., Krishnan et al., 2011). It is unlikely that global li-

dar coverage can be achieved in the near future, leaving the

provision of commercially available 12 m TanDEM-X data

(Krieger et al., 2007) and freely available 30 m Shuttle Radar

Topography Mission (SRTM) data (Rabus et al., 2003) as the

best available data options for many study sites.

As a consequence of this data availability it is crucial to

understand the limitations of lower-resolution data when per-

forming topographic analysis for geomorphic research. Ex-

tracting channels from topography is a common requirement

of many analyses, and it is expected that the accuracy of

extracted channel networks will be affected by increasing

grid resolution (Orlandini et al., 2011). Roering et al. (2007),

Hurst et al. (2013b), and Grieve et al. (2016b) used mea-

surements of hillslope length and relief to identify signals of

landscape transience. However, all such work was performed

on high-resolution topography and the impact of grid resolu-

tion on these metrics is unknown. Roering et al. (2007) and

Hurst et al. (2012) demonstrated that the curvature of ridge-

lines measured from high-resolution topography can be used

as a proxy for erosion rates in soil-mantled landscapes. This

observation has been used in many studies in which cosmo-

genic radionuclide-derived erosion rates are unavailable (Pel-

letier et al., 2011; Hurst et al., 2013c, b; Grieve et al., 2016b).

However, it can also be used in locations with an independent

constraint on erosion rates in order to quantify a sediment

transport coefficient that relates hillslope sediment flux to the

topographic gradient, which is set by the material properties

of soils (Furbish et al., 2009). Therefore, understanding the

effect of grid resolution on the extraction of curvature is cru-

cial in order to evaluate the applicability of calculating the

sediment transport coefficient from coarse-resolution data.

Here, we grid topographic data at a range of resolutions

in order to test the sensitivity of these techniques to decreas-

ing grid resolution, with the aim of placing constraints on the

estimation of common geomorphic parameters when lidar to-

pographic data are unavailable. Through an analysis of one-

dimensional curvature and topographic gradient approxima-

tions, the changes in fidelity as grid resolution decreases for

both curvature and topographic gradient are examined and

placed within the context of the two-dimensional results of

this study and the wider literature.

1.1 Previous work

It has long been recognized that the scale of topographic data

used in an analysis or model will have an impact on the scale

of the processes which can be measured (Vaze et al., 2010).

It is intuitive that in order to measure the properties of hills-

lope processes the resolution of the data must be high enough

that variations in hillslope form can be captured adequately.

The resolution of topographic data defines the Nyquist fre-

quency, given as (2Res)−1 where “Res” is the grid resolution

of the dataset (Warren et al., 2004). The inverse of this fre-

quency yields the minimum wavelength resolvable from a

given dataset. In the example of a 1 m grid resolution, the

smallest features that could be resolved would have a length

scale of 2 m. Recognizing this, many authors have attempted

to quantify this uncertainty, aiming to answer the following

question: at what point does a dataset become unsuitable for

a given analysis? (e.g., Quinn et al., 1991).

Many attempts to constrain the error content of topo-

graphic measurements have focused on comparisons be-

tween elevation values taken from differing resolution data

products, often in conjunction with field survey data, with

the aim of discriminating between DEM generation meth-

ods. Walker and Willgoose (2006) performed a comparison

of DEMs generated using cartometric and photogrammetric

methods against field-surveyed elevation data. They demon-

strated that at grid resolutions of 6.25, 12.5, and 25 m the car-

tometric DEM produced less error than the photogrammetric

DEM when compared to the field-surveyed data, collected at

3.25 m intervals.

The advent of lidar-derived topographic data provided a

new technique and increased the range of possible grid reso-

lutions to evaluate. Hodgson et al. (2003) assessed the qual-

ity of high-resolution topographic data sourced from interfer-

ometry and lidar for a heavily vegetated catchment in North

Carolina. This analysis demonstrated that, under such condi-

tions, the lidar-derived DEM outperformed the interferomet-

ric data in addition to both classes of USGS DEM product.

However, concerns were raised about the overall accuracy

of the lidar data with a requirement for improved methodolo-

gies to be developed to process multistory vegetation. Further

work was carried out in North Carolina to constrain the min-

imum number of lidar returns required to generate a DEM

at a given grid resolution (Anderson et al., 2006). This work

indicated that a 5 m grid (the finest resolution used) required

approximately 115 points ha−1, whereas at 30 m grid reso-

lution the requirement reduced to approximately 35 points

ha−1.

Vaze et al. (2010) resampled a 1 m lidar-derived DEM to

a range of grid resolutions up to 25 m and assessed the ac-

curacy of elevation values for each of these resampled grids

when compared to a 1 m resolution field survey. It was found

that there was little variation in the distribution of elevation

values between the resampled data sets. However, when the

data was compared with 25 m DEMs generated from topo-
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graphic maps and contour generalization, there were con-

siderable errors, supporting earlier authors’ conclusions that

lidar-derived topographic data contain more useful geomor-

phic information than other methods of topographic data col-

lection.

Topographic gradient (or slope) is one of the most fun-

damental topographic derivatives across the disparate dis-

ciplines which utilize topographic data. This measurement

has been used in geomorphology (e.g., Burbank et al.,

1996), ecology (e.g., Milodowski et al., 2015a), soil science

(e.g., Nearing, 1997), and hydrology (e.g., Zhang and Mont-

gomery, 1994). Wolock and McCabe (2000) endeavored to

constrain the accuracy with which this parameter can be cal-

culated as grid resolution is increased from 100 to 1000 m

and showed that as the grid resolution is decreased, there is a

clear reduction in the slope values produced for a landscape.

Similar wide-scale analysis has also been performed within

the context of global hydrological analysis (e.g., Hutchinson

and Dowling, 1991, and Jenson, 1991), indicating that from

meter to kilometer scale the reduction in quality of slope

measurements is an issue which must be considered when

working with topographic data.

Gao (1997) considered the accuracy of slope measure-

ments at locations manually classified as valleys, peaks, and

ridges. They found an initially small increase in the error of

slope measurements at intermediate resolutions (10–20 m)

and a much more rapid increase in error between 20 and

30 m resolution, suggesting a threshold minimum resolution

for analysis of these landforms. More recent work has con-

sidered how high-resolution lidar data impact the quality of

slope measurements. Vaze et al. (2010) demonstrated a sim-

ilar trend to previous authors working with lower-resolution

data: as grid resolution is decreased from 1 to 25 m, there is

a considerable reduction in the slope values generated for a

landscape. Warren et al. (2004) evaluated the reliability of

slope measurements by contrasting 10 methods of gradient

calculation against field measurements of topographic gra-

dient. The error between DEM and field-derived slope mea-

surements was shown to increase with decreasing grid reso-

lution (from 1 to 12 m), resulting in the recommendation to

increase data resolution wherever possible to decrease errors

in topographic analysis.

Numerous authors have considered the impact of grid res-

olution on hydrological applications, which often require

slope calculation as a fundamental processing step. It has

been demonstrated across many landscapes and scales that as

grid resolution is decreased the upslope contributing area will

increase and the local slope will decrease, which will have a

significant impact on any hydrological analysis (Wolock and

Price, 1994; Zhang and Montgomery, 1994; Wu et al., 2008).

Similarly, from the perspective of modeling global-scale sed-

iment fluxes to the oceans, Larsen et al. (2014) noted that

measurements of slope dropped logarithmically with increas-

ing grid resolution, and failing to account for this may lead

to a substantial underestimate of the contribution of steep,

montane regions.

Kenward et al. (2000) performed analyses on the accuracy

of hydrological networks generated through photogramme-

try and radar interferometry at 5 and 30 m grid resolution,

respectively. Their error analysis was extended to consider

the vertical errors generated both through the downsampling

of the topographic data, as well as from the techniques used

to capture the topographic information. Predicted catchment

runoff was up to 7 % larger in the lower-resolution datasets,

considered to be driven by both the vertical errors and the

reduction in spatial resolution increasing variables such as

upslope drainage area.

Topographic wetness index (TWI), calculated as ln(A/S),

where A is the specific upslope area and S is the slope, is

used as a single variable to compare the hydrological set-

ting of differing parts of the landscape, providing insight into

factors including groundwater properties and overland flow

rates. Sørensen and Seibert (2007) used lidar data to test

the robustness of TWI calculations on spatial scales rang-

ing from 5 to 50 m, concluding that the most sensitive part

of the TWI calculation was the specific upslope area mea-

surements. This sensitivity resulted in significant variation in

the TWI values across the range of resolutions tested. Pre-

dicted slope stability, modeled in part as a function of TWI,

was assessed by Tarolli and Tarboton (2006), who demon-

strated that, for large-scale landsliding, a lidar-derived DEM

downsampled to 10 m resolution was more suitable to iden-

tify landslide hazard than the highest-resolution data avail-

able. This highlights the requirement to consider the scale

of the process being studied when selecting the appropriate

grid resolution for a study and corresponds to the challenges

of selecting the correct size of smoothing window to capture

processes on a suitable scale (e.g., Roering et al., 2010, Hurst

et al., 2012, and Grieve et al., 2016b).

The accuracy of channel network extraction from topo-

graphic data was tested by Murphy et al. (2008), who tested

a 1 m lidar DEM and a 10 m photogrammetrically generated

DEM against a field-mapped channel network in a catchment

in Alberta, Canada. The 1 m lidar-derived channel network

was found to be the best representation of the field-mapped

channel network, exceeding the quality of an additional chan-

nel network mapped by hand from aerial photographs. How-

ever, as no intermediate datasets were tested, it is not possible

to understand at what resolution the degradation in channel

network extraction quality occurs for this location.

As models of agricultural soil loss depend heavily on to-

pographic variables such as slope, work has been carried out

to understand the influence of grid resolution on calculated

rates of soil loss. Schoorl et al. (2000) tested data resolu-

tions from 1 to 81 m and demonstrated that in all cases, rates

of predicted soil loss increased with grid resolution. How-

ever, the rates of soil loss were also influenced by the type of

flow routing utilized, with the multiple flow direction algo-

rithm (e.g., Freeman, 1991, and Quinn et al., 1991) proving
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most sensitive to resolution decreases. Work by Erskine et al.

(2007) considering models of crop yields in Colorado, USA,

demonstrated that on relatively flat surfaces, such as agricul-

tural fields, the spatial resolution is less important than the

vertical accuracy when predicting crop yields, with signifi-

cant errors being produced due to centimeter-scale vertical

displacements. Decreasing the grid resolution from 5 to 30 m

had limited effect on the yield calculations.

Although considerable work has been carried out on the

sensitivity of various factors to grid resolution, much of it

has been focused on a specific application (e.g., Wolock and

Price, 1994, Schoorl et al., 2000, Erskine et al., 2007, and

Sørensen and Seibert, 2007) with few studies considering the

impact of DEM grid resolution within a geomorphic context.

Here we aim to extend existing methodologies to constrain

the utility of low-resolution data products across a suite of

geomorphic analyses to understand the following: (1) how

hillslope length, topographic curvature, and relief vary with

grid resolution; (2) how best to extract channel networks in

lower-resolution datasets in order to minimize errors; and

(3) whether it is possible to estimate sediment transport co-

efficients from low-resolution topographic data, where an in-

dependent constraint on erosion rate is available.

2 Theory and methods

2.1 Generating topographic data

Previous studies that have explored the impact of chang-

ing grid resolution on topographic or geomorphic parame-

ters have typically produced coarser-resolution topographic

data by downsampling the highest-resolution data product

available for their study sites (e.g., Thompson et al., 2001,

Anderson et al., 2006, Claessens et al., 2005, and Sørensen

and Seibert, 2007). Work has been undertaken to understand

the influence of various re-gridding schemes on topographic

measurements (Wu et al., 2008), with focus placed upon un-

derstanding the use of downsampling high-resolution data

in order to facilitate computationally expensive analysis on

larger spatial areas with minimal loss in data fidelity. How-

ever, as computational power increases, cost decreases and

more efficient algorithms are developed (Tesfa et al., 2011;

Qin and Zhan, 2012; Braun and Willett, 2013; Schwang-

hart and Scherler, 2014), the need to downsample data for

computational convenience becomes reduced. Instead, it be-

comes more important to understand the limitations of avail-

able data products, to facilitate geomorphic analysis in loca-

tions in which high-resolution topographic data are not avail-

able. This is of particular importance in many studies of nat-

ural hazards (e.g., Saha et al., 2002, and Carranza and Castro,

2006) in which data quality is limited. It will also open geo-

morphic research up to communities which do not have the

resources to acquire high-resolution topographic data.

As a consequence of these constraints we have generated

topographic data for our three study sites without down-

Table 1. Lidar point cloud metadata.

Location Point density Vertical Horizontal

(points m−2) accuracy accuracy

(m) (m)

Santa Cruz Island 8.27 0.067∗ 1.07∗

Gabilan Mesa 5.56 0.20 ± 0.15 0.11

Oregon Coast Range 6.55 0.07 ± 0.03 0.06

∗ Accuracy is the 95 % confidence level of the root mean squared error of measurements

compared to static GPS control points.

sampling or re-gridding high-resolution data products, as

is commonly performed (Thompson et al., 2001; Anderson

et al., 2006; Claessens et al., 2005; Sørensen and Seibert,

2007). Instead we have followed established techniques to

grid the processed lidar point cloud data provided by Open-

Topography (http://www.OpenTopography.org) at a range of

data resolutions which span from 1 m, considered to be the

limit of the Oregon Coast Range dataset by Grieve et al.

(2016a) to 30 m, which is equal to the grid resolution of the

global SRTM dataset (Rabus et al., 2003) and the Advanced

Spaceborne Thermal Emission and Reflection Radiometer

(ASTER) dataset (Yamaguchi et al., 1998) and in excess of

the TanDEM-X dataset (Krieger et al., 2007) and as such

should span the vast majority of grid resolutions used in mod-

ern geomorphic research. The direct comparison between el-

evation products generated using differing methodologies is

challenging (e.g., DeWitt et al., 2015), and more work is re-

quired within the context of geomorphic research to under-

stand limitations in topographic datasets, such as SRTM and

TanDEM-X, which arise from data capture and processing

rather than purely from resolution constraints. By generating

the topographic data from the same source, we aim to isolate

the signal of decreasing data resolution, without the intro-

duction of new sources of error which may arise from data

collected using a different instrument. The error estimates of

the raw point clouds used in this re-gridding process are pro-

vided by OpenTopography and can be found in Table 1.

The point clouds are gridded using Points2Grid, which

employs a local binning algorithm, searching for points

within a circular window of radius defined by Kim et al.

(2006) as

Radius = ⌈
√

2Res⌉. (1)

An inverse distance-weighted averaging approach is then

performed to assign an elevation value to each grid cell.

This approach, which has been employed in previous stud-

ies (Grieve et al., 2016a, b), yields a reliable representation

of the topographic surface, with few data gaps and a mini-

mal amount of interpolation. The level of interpolation per-

formed is controlled by the density of lidar ground returns

within each search window, consequently more interpolation

may be performed in areas of high vegetation density such

as the Oregon Coast Range. This is an additional source of
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Figure 1. Example shaded reliefs of the same section of Santa Cruz Island at increasing grid resolutions. All coordinates are in UTM Zone

11◦ N. Panels (a)–(f) represent resolutions of 1, 2, 5, 10, 20, and 30 m. Tick spacing is in meters. The red box outlines an extensively gullied

first-order drainage, clearly visible in the highest-resolution data, but as the grid resolution is decreased, this feature and its internal structure

become indistinguishable from the surrounding hillslopes.

error which must be considered when processing lidar data,

and this consideration informed the selection of 1 m as the

maximum resolution used in this study as it is the highest

resolution these datasets can have been gridded to in the past

(e.g., Perroy et al., 2010, and Grieve et al., 2016a, b).

The topographic data used in this study have been grid-

ded at 20 resolutions, and Fig. 1 provides representative hill-

shades of a section of Santa Cruz Island, highlighting the

degradation of topographic information as grid resolution is

decreased.

2.2 Measuring curvature from topography

Landscape curvature has long been recognized as a key ge-

omorphic characteristic of landscapes, from Gilbert’s (1909)

qualitative observations of hilltop convexity to more recent

approaches to quantify landform curvature using digital to-

pography (e.g., Schmidt et al., 2003, and Hurst et al., 2012).

However, unlike other key landscape properties such as gra-

dient (Gao, 1997; Wolock and McCabe, 2000; Warren et al.,

2004; Vaze et al., 2010), hydrology (Wolock and Price, 1994;

Zhang and Montgomery, 1994; Murphy et al., 2008; Wu

et al., 2008), or soil characteristics (Schoorl et al., 2000; Er-

skine et al., 2007), the influence of grid resolution on curva-

ture has not been fully explored, particularly within a geo-

morphic context.

This is particularly important with the proliferation of

high-resolution topographic data from lidar, allowing the

analysis of curvature on increasingly fine scales. Recent

developments in channel extraction techniques (Lashermes

et al., 2007; Passalacqua et al., 2010; Pelletier, 2013; Clubb

et al., 2014) typically require the identification of topo-

graphic convergence in high-resolution topography using a

curvature threshold. Roering (2008) and Hurst et al. (2012)

demonstrated that hilltop curvature scales with erosion rate

and as such demonstrated the importance of accurately con-

straining the impact of grid resolution on this landscape pa-

rameter. Its importance is highlighted by an increasing num-

ber of studies using this relationship as a proxy for erosion

rate (Pelletier et al., 2011; Hurst et al., 2013c, b; Grieve et al.,

2016b). Hilltop curvature can also be used to constrain the

sediment transport coefficient of a landscape where an inde-

pendent constraint on erosion rate is available (Hurst et al.,

2013c).

The measured curvature of a topographic surface depends

on the orientation of the measurement. Here, we consider two

common types of curvature, with the following definitions:

(1) total curvature (CTotal) – the curvature of a surface cal-

culated in two dimensions (Evans, 1980; Zevenbergen and

Thorne, 1987; Moore et al., 1991) – and (2) tangential cur-

vature (CTan) – the curvature calculated normal to the slope

gradient (Mitášová and Hofierka, 1993). These two measures

are employed to extract hilltop curvature and channel net-

works, respectively. However, these definitions vary between

studies and software packages; see Schmidt et al. (2003) for

a full review of the varying nomenclature and definitions of

curvature measurements used in the literature.

Work by Schmidt et al. (2003) utilized 10 m resolution

DEMs to evaluate the most accurate method for calculating
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curvature from digital topographic data. It was concluded

that curvature could be most accurately calculated when a

nine-term polynomial was fitted to the elevation surface, with

the caveat that this will only be effective where the data qual-

ity is high enough. In cases in which the data are of lower

accuracy, Schmidt et al. (2003) recommended using quadrat-

ics to fit the elevation data. This work was extended by Hurst

et al. (2012) to consider whether these patterns held for high-

resolution topographic data, and it was found that fitting a

six-term quadratic or nine-term polynomial yielded similar

results. Therefore, Hurst et al. (2012) chose to use the six-

term quadratic to compute curvature. For this study we also

chose to use the six-term quadratic in order to reduce com-

putation time and, more importantly, to provide more robust

curvature values as the data quality is degraded to resolutions

below 10 m (Schmidt et al., 2003).

We calculate curvature using a circular window passed

across the landscape, with a radius defined by identifying

scaling breaks in the standard deviation and interquartile

range of curvature calculated at increasing window sizes,

consistent with the length scales of individual hillslopes

(Lashermes et al., 2007; Roering et al., 2010; Hurst et al.,

2012; Grieve et al., 2016a, b). Consequently, curvature mea-

surements on the hillslope scale can only be considered at

data resolutions high enough to resolve individual hillslope

features, considered here to be no more than 10 m, based on

the window sizes identified for each landscape. A quadratic

function of the form

ζ = ax2 + by2 + cxy + dx + ey + f (2)

is then fitted to the elevation values within the window by

least squares regression (Evans, 1980), where ζ is the eleva-

tion, x and y are horizontal coordinates, and a through f are

fitting coefficients. The fitted coefficients of this polynomial

can be used to calculate differing types of curvature:

CTotal = 2a + 2b (3)

and

CTan =
2ae2 − 2cde + 2bd2

(d2 + e2)
√

(1 + d2 + e2)
. (4)

From the measure of CTotal for every cell in a DEM, we

can also extract a subset of curvature values from the hill-

tops. The value of curvature at a hilltop (CHT) can be readily

evaluated if the positions of the hilltops are known. To ex-

tract hilltops we follow Hurst et al. (2012) in defining a hill-

top as the boundary between two drainage basins of the same

stream order. These points in the landscape can be algorith-

mically extracted once a channel network is defined through

the identification of points in the landscape where two chan-

nels of the same Strahler order meet and the identification

of that point’s upslope contributing area. Each of these ar-

eas defines a basin of a given order, and by repeating this

process across the range of Strahler orders found in the land-

scape, a network of hilltops can be defined. This network is

then used to sample the curvature values at these locations to

provide the CHT values across the landscape. To ensure con-

sistency between CHT measurements at changing grid reso-

lutions, the same channel network, generated using the ge-

ometric method described in Sect. 2.3 from 1 m resolution

data, is used as the basis of the hilltop extraction algorithm.

For our data on hilltop curvature, CHT, hilltops with a

gradient exceeding 0.4 are excluded as Hurst et al. (2012)

demonstrated that this gradient is the point at which > 15%

of sediment transport is nonlinear. Under nonlinear sediment

flux hilltop curvature scales nonlinearly with erosion rate

(Roering, 2008) and consequently cannot be used as a proxy

for erosion rates. As hilltops have a convex form, their curva-

ture should be negative, so as a final step any points identified

as hilltops which have a positive curvature are excluded from

further analysis.

2.3 Channel extraction

Extracting channel networks from digital topographic data

remains a fundamental challenge for many areas of topo-

graphic analysis. Without the ability to discriminate between

fluvial and hillslope domains, it is not possible extract many

topographic metrics such as hillslope length (Grieve et al.,

2016a), mean basin slope (DiBiase et al., 2010), or hilltop

curvature (Hurst et al., 2012), and the accuracy of each of

these metrics will be influenced by the accuracy of the chan-

nel network extracted. At a more fundamental level, the abil-

ity to identify where channels initiate will facilitate better un-

derstanding of the processes acting at the transition between

diffusive (hillslope) and advective (fluvial) sediment trans-

port (Perron et al., 2008a).

Many authors have made use of field-mapped channel

heads both as a basis for geomorphic analysis and as a

method for evaluating channel extraction methods (Mont-

gomery and Dietrich, 1989; Orlandini et al., 2011; Julian

et al., 2012; Jefferson and McGee, 2013; Clubb et al., 2014).

Prior to the availability of high-resolution topographic data,

contributing area and slope-area scaling thresholds were

commonly used to define the location of channel heads di-

rectly from DEMs (Mark, 1984; O’Callaghan and Mark,

1984; Montgomery and Dietrich, 1989; Tarboton et al., 1991;

Dietrich et al., 1992, 1993). The influence of decreasing grid

resolution on such channel extraction methods was evaluated

by Orlandini et al. (2011), who demonstrated a strong sen-

sitivity in predicted channel head location to grid resolution,

suggesting that coarser-resolution data may not be suitable

for channel extraction through an area threshold. We apply

the method described by Orlandini et al. (2011) to quan-

tify the accuracy of an extracted channel network, detailed

in Sect. 2.4.

Several methods have been proposed to identify chan-

nel heads from high-resolution topography. Typically these
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methods exploit the high-resolution nature of topographic

data to resolve morphometric or process-based signatures of

channel initiation or the transition between the hillslope and

fluvial domain (Lashermes et al., 2007; Passalacqua et al.,

2010; Pelletier, 2013; Clubb et al., 2014). Here we evaluate

how two techniques – one geometric method built upon work

by Pelletier (2013) and Passalacqua et al. (2010) and one

process-based method, the DrEICH algorithm, developed by

Clubb et al. (2014) – are influenced by decreasing grid reso-

lution.

The DrEICH method was selected for evaluation as the

technique on which it is based has been shown to operate suc-

cessfully in lower-resolution data (Mudd et al., 2014). The

DrEICH method makes use of χ analysis, performed by in-

tegrating drainage area along a river profile to facilitate com-

parisons between river profiles of differing drainage area,

with fewer uncertainties than traditional slope-area analysis

(Royden et al., 2000; Perron and Royden, 2013). When plot-

ting the χ value against elevation for a river profile, river

channels will plot as linear segments, whereas hillslopes will

display nonlinear segments. The DrEICH algorithm identi-

fies the transition between these linear and nonlinear seg-

ments as the best-fit location of the channel head.

The geometric method, used by Grieve et al. (2016b), re-

moves noise from the raw topographic data using a Wiener

filter (Wiener, 1949), as recommended by Pelletier (2013).

This smoothed topography is then processed to identify chan-

nelized portions of the landscape using a tangential curvature

threshold (e.g., Pelletier, 2013), selected using the deviation

of the probability density function of curvature from a nor-

mal distribution on a quantile–quantile plot (e.g., Lashermes

et al., 2007, and Passalacqua et al., 2010). The identified ar-

eas of channelization are then combined into a contiguous

channel network by employing a connected-components al-

gorithm (He et al., 2008) and thinned into a final channel net-

work skeleton using the algorithm of Zhang and Suen (1984).

Channels were extracted from the 5, 10, 20, and 30 m

DEMs generated in Sect. 2.1 using both of the channel ex-

traction methodologies. Parameters required in the operation

of each algorithm were selected based on values used in pre-

vious studies (Grieve et al., 2016a, b), and these values can

be found in Appendix A.

2.4 Comparing channel networks

To assess the accuracy of the channel networks extracted us-

ing both methods, we employ two measures of quality de-

scribed by Orlandini et al. (2011). These measures oper-

ate on classifications of the predicted location of channel

heads placing each channel head into one of three categories:

true positives (TPs), false positives (FPs), and false nega-

tives (FNs). A TP is where a predicted channel head from

low-resolution data occupies the same spatial location as the

channel head derived from 1 m resolution topography. An

FP is where a predicted channel head is placed in a loca-

tion where there is no channel head in the high-resolution

data. An FN is when a channel head from high-resolution to-

pography does not have a predicted channel head from low-

resolution topography in the same spatial location.

We follow Orlandini et al. (2011) in employing a 30 m

search radius around the 1 m derived channel heads and con-

sider a low-resolution channel head falling within this radius

to be spatially coincident. This has the effect of normalizing

the size of each channel head point, to ensure that we can

perform comparisons between predictions made at different

spatial resolutions.

The reliability, r , of a channel extraction method is the

ability of a method to not predict channel heads in areas

where none are located and is calculated as

r =
∑

TP
∑

TP + FP
, (5)

where
∑

TP is the total number of true positives and
∑

FP

is the total number of false positives. The sensitivity, s, of a

channel extraction methodology is given by

s =
∑

TP
∑

TP +
∑

FN
, (6)

where
∑

FN is the total number of false negatives. The

sensitivity is the ability of a method to predict all of the

channel heads expected. Using these two indexes it is pos-

sible to quantify the quality of channel heads predicted using

low-resolution data, as well as understand why a particular

method fails, by distinguishing between methods which fail

due to either over- or underpredicting the number of channel

heads in a landscape or by simply placing channel heads in

the wrong spatial location.

2.5 Estimating the hillslope sediment transport

coefficient from hilltop curvature

The sediment transport coefficient, D [L2T−1] (dimensions

of mass [M], length [L], and time [T] denoted in square

brackets), of a landscape is a measure of its sediment trans-

port efficiency and was demonstrated by Furbish et al. (2009)

to be controlled by the material properties of soil such as

grain size, cohesion, and thickness. The value of D within

a landscape will exert a control on the morphology of hill-

slopes (e.g., Roering et al., 1999). Diffusion-like hillslope

evolution can be modeled using a 1-D mass conservation

equation, assuming that the contribution to surface lowering

from chemical processes is negligible when contrasted with

the signal of surface lowering from physical processes (e.g.,

Roering et al., 1999, and Mudd and Furbish, 2004):

ρs
∂ζ

∂t
= −ρs

∂qs

∂x
+ ρrU, (7)

where ζ [L] is the elevation of the land surface, ρs and ρr

[ML−3] are densities of dry soil and rock, respectively, and
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U [LT−1] is the uplift rate. In steady-state landscapes, where

U = E and ∂ζ/∂t = 0, Eq. (7) simplifies to

ρr

ρs
E =

∂qs

∂x
, (8)

with E [LT−1] denoting the erosion rate. To solve this equa-

tion, a statement of the volumetric sediment flux per unit con-

tour length, qs [L2 T−1], must be derived. A nonlinear rela-

tionship between sediment flux and topographic gradient has

been proposed by a number of authors (Andrews and Buck-

nam, 1987; Koons, 1989; Anderson, 1994; Howard, 1997;

Roering et al., 1999, 2001; Pelletier and Cline, 2007). Sup-

port for such models has been found from both tests of the

resulting topographic predictions (Roering et al., 2007; Hurst

et al., 2012; Grieve et al., 2016a) as well as through indepen-

dent measurements of sediment flux across hillslopes (Roer-

ing et al., 2001; Roering, 2008).

The nonlinear model proposed by Andrews and Bucknam

(1987) and Roering et al. (1999) is of the form

qs = DS

[

1 −
(

|S|
Sc

)2
]−1

, (9)

where Sc is a critical gradient, and as the hillslope gradient

approaches this threshold, qs asymptotes towards infinity.

At low hillslope gradients (e.g., on hilltops), the term

within brackets in Eq. (9) approximates to unity (Hurst et al.,

2012). Equation (9) can therefore be substituted into Eq. (8)

and can be solved for D on low-gradient hilltops, assuming

that an independent constraint on E is available,

D = −
Eρr

CHTρs
. (10)

2.6 Hillslope length and relief

Hillslope length (LH) is a crucial landscape parameter to

constrain as it controls the rate of mass flux by overland

flow within catchments (Dunne et al., 1991, 2016; Thomp-

son et al., 2010), influences rates of soil erosion (Liu et al.,

2000), and presents a first-order control on the maximum

source area of landslides (Hurst et al., 2013a). Furthermore,

it may be used to demonstrate nonlinearity in hillslope sed-

iment flux (Roering et al., 1999, 2007; Grieve et al., 2016a,

b).

Many studies have attempted to calculate hillslope length

through the inversion of drainage density (Tucker et al.,

2001), analysis of plots of local slope against drainage area

(Roering et al., 2007), direct measurements from topographic

maps (Hovius, 1996; Talling et al., 1997), and by mea-

suring the length of overland flow from ridgeline to chan-

nel (Hurst et al., 2012; Grieve et al., 2016a). Grieve et al.

(2016a) demonstrated that the most geomorphologically suit-

able technique to use, particularly in the context of hillslope

sediment transport, was that of measuring the length of over-

land flow. An additional measure which can be derived from

this technique is the topographic relief, which is the differ-

ence in elevation between a hilltop and channel connected

by a hillslope flow path. Topographic relief has been esti-

mated in a number of ways and is frequently used in studies

of tectonic geomorphology (e.g., Gabet et al., 2004, Hilley

and Arrowsmith, 2008, Gallen et al., 2011, and Gallen et al.,

2013). Furthermore, topographic relief may be used to gen-

erate dimensionless erosion and relief plots (Roering et al.,

2007; Hurst et al., 2012; Sweeney et al., 2015; Grieve et al.,

2016b), which can be used to identify landscape transience

(Hurst et al., 2013b; Mudd, 2016). Consequently, we intend

to test the robustness of measuring hillslope length and re-

lief as grid resolution decreases, with the aim of facilitating

increased confidence in geomorphic analyses performed in

locations where high-resolution topography is unavailable.

Using the 20 topographic datasets generated in Sect. 2.1

for each of the three landscapes, hillslope length measure-

ments were generated following the methods outlined in

Grieve et al. (2016a). We measured hillslope length on each

dataset using two different channel networks. Firstly, chan-

nel heads were extracted from the highest-resolution data

set, in each case 1 m, using the geometric method outlined in

Sect. 2.3. These high-resolution channel heads were mapped

onto the coarser-resolution topographic data, to ensure that

changing channel extraction results will not have an influ-

ence on the measures of hillslope length. This allows im-

proved isolation of the factors driving variations in hillslope

length as grid resolution is decreased. Secondly, the analy-

sis was performed using coarser-resolution channel networks

extracted using the geometric method of channel extrac-

tion. We use the geometric method as opposed to the DrE-

ICH method because, as we will show below, the geometric

method is less sensitive to grid resolution. These two channel

networks effectively provide upper and lower bounds for the

accuracy of hillslope length and relief measurements.

3 Study sites

Three study sites from the United States have been selected

for this study: Santa Cruz Island, California; Gabilan Mesa,

California; and the Oregon Coast Range, Oregon. The first

two sites have regularly spaced valleys at a range of length

scales, particularly Gabilan Mesa, which has been the fo-

cus of previous work in this context (Perron et al., 2008b,

2009). Santa Cruz Island, while less studied in the context of

topographic analysis than Gabilan Mesa, has a wider range

of hilltop curvatures (Fig. 2). The Oregon Coast Range has

been considered to be very regular, with uniform first-order

drainage areas (Roering et al., 1999, 2007). However, more

recent work has demonstrated the spatial variability of many

topographic measurements in this landscape (Marshall and

Roering, 2014; Grieve et al., 2016b), and as such it provides
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Figure 2. (a) Map showing the location of each of the study sites within the USA. (b–d) Shaded reliefs of representative sections of each

study site, generated from 1 m resolution data. Tick spacing is in meters. All coordinates are in UTM. (b) Gabilan Mesa, California, UTM

Zone 10◦ N. (c) Santa Cruz Island, California, UTM Zone 11◦ N. (d) Oregon Coast Range, Oregon, UTM Zone 10◦ N.

a more challenging test case for our analyses. Furthermore,

these sites were selected as they each have high-resolution li-

dar data covering a large spatial area and have been the sub-

ject of many previous studies (Reneau and Dietrich, 1991;

Roering et al., 1999, 2001; Montgomery, 2001; Pinter and

Vestal, 2005; Roering et al., 2007; Perron et al., 2009; Per-

roy et al., 2010, 2012; Marshall and Roering, 2014; Grieve

et al., 2016a, b), which should provide a good basis for the

evaluation of the results of this study in a wider geomorphic

context.

3.1 Gabilan Mesa

Gabilan Mesa, a section of the Central Coast Ranges in Cali-

fornia, USA (Fig. 2b), is a highly regular landscape with very

gentle transitions between hillslopes and channels, which

correspond to topographic predictions of diffusion-like sed-

iment transport (Roering et al., 2007). The area’s semiarid

climate supports a range of vegetation from oak savanna to

chaparral shrubland (Shreve, 1927; Roering et al., 2007). The

nature of this lower-density vegetation allows a larger pro-

portion of lidar pulses to reach the ground, requiring less pro-

cessing and interpolation to generate a final bare-earth DEM

for analysis (Liu, 2008; Meng et al., 2010).

A series of large, linear canyons running northeast to

southwest are fed by parallel tributaries which flow perpen-

dicular to the main trunk channel. These regularly spaced

valleys present two distinct length scales in the landscape

which have been observed both qualitatively (Dohrenwend,

1978, 1979) and quantitatively through measurements of hill-

slope length distributions (Grieve et al., 2016a). Relation-

ships between dimensionless erosion rate and relief, the uni-

formity of hilltop curvatures, and the regularity of valley

spacing have all been used to assert that much of this land-

scape is in steady state (Roering et al., 2007; Perron et al.,

2009; Grieve et al., 2016b), although localized observations

of a relict plateau surface add complexity to this steady-state

observation.

3.2 Santa Cruz Island

Santa Cruz Island (Fig. 2c), the largest of the eight California

Channel Islands located to the west of California, USA, is

divided by a large east–west trending valley, which follows

the Santa Cruz fault (Pinter et al., 2003; Muhs et al., 2014).

Parallel to this valley are two large ridges – one to the north

and one to the south – which exhibit regularly spaced parallel

channels draining north to south (Pinter et al., 1998; Pinter
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Figure 3. Maps showing the spatial variation in total curvature measurements as grid resolution is decreased for the same section of Santa

Cruz Island as displayed in Fig. 1. All coordinates are in UTM Zone 11◦ N. Panels (a)–(f) represent resolutions of 1, 2, 5, 10, 20, and 30 m.

Tick spacing is in meters. The black boxes outline the same features as highlighted in Fig. 1, showing the reduction in the curvature signal

with grid resolution for such a feature.

and Vestal, 2005); this regular pattern is particularly evident

in the northwest section of the study area. The Santa Cruz

Fault has been demonstrated to have left-lateral strike slip

motion, which deflects channels away from the perpendicular

to the main valley in the center of the island (Pinter et al.,

1998). Studies of marine terraces in the region suggest that

the Channel Islands have been steadily uplifted through the

late Quaternary (Muhs et al., 2014).

The island has a Mediterranean climate similar to that of

Gabilan Mesa (Pinter and Vestal, 2005), supporting exten-

sive grassland with occasional patches of pine forest and cha-

parral vegetation (Pinter and Vestal, 2005; Perroy et al., 2010,

2012). Human activities led to overgrazing across the island

at the turn of the 19th century, causing a period of gullying

and rapid erosion, particularly evident in the southwest of the

island (Pinter and Vestal, 2005; Perroy et al., 2012). The lidar

data collected for this location have been extensively tested

and ground truthed, ensuring that they are suitable for use in

a geomorphic context (Perroy et al., 2010) and for perform-

ing topographic analysis at high spatial resolutions.

3.3 Oregon Coast Range

The Oregon Coast Range in Oregon (Fig. 2d), USA, is a

densely vegetated upland landscape, dominated by conifer-

ous and hardwood forests (Schmidt et al., 2001), with a hu-

mid climate (Roering et al., 1999). Qualitative observations

of the landscape suggest that the valleys are regularly spaced,

with a particular uniformity found in the dimensions of first-

order drainage basins (Roering et al., 1999, 2007; Marshall

and Roering, 2014). Such observations have been supported

by measurements of hillslope length across the landscape

(Grieve et al., 2016a). However, comparisons of the dimen-

sionless relief and erosion rate performed by Grieve et al.

(2016b) highlight the small-scale topographic variability in-

herent in this otherwise regular landscape. The Oregon Coast

Range is considered to be in steady state due to the corre-

lation between uplift rates from marine terrace data (Kelsey

et al., 1996) and erosion rates from cosmogenic radionuclides

(Beschta, 1978; Reneau and Dietrich, 1991; Bierman et al.,

2001; Heimsath et al., 2001). The hillslopes are steeper and

the ridgelines sharper than in Gabilan Mesa, consistent with

observations of debris flows and shallow landsliding across

the range (Dietrich and Dunne, 1978; Heimsath et al., 2001;

Montgomery, 2001), which have the potential to create a dis-

tinct topographic signature (Booth et al., 2009).

4 Results

4.1 Curvature

Figure 3 illustrates the variations in total curvature with grid

resolution for a section of Santa Cruz Island. As the grid res-

olution is decreased, the range of CTotal measurements are

reduced, with much of the landscape becoming apparently

planar. Within the black box, which covers the same spatial

area as the boxes in Fig. 1, the impact of degrading resolution

on small topographic features is observed, with the curvature
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Figure 4. Plots of the distribution of CTotal (a, c, e) and CTan (b, d, f) measurements as resolution is decreased for each of the study

landscapes. Whiskers are the 2nd and 98th percentiles; the box covers the 25th and 75th percentiles; the blue bar is the mean and the red bar

is the median. The gray outline is the probability density function of each dataset.

signal of this first-order feature being lost as the grid resolu-

tion approaches 30 m.

Figure 4 displays the variations in the distribution of total

and tangential curvature measurements with grid resolution

for each of the study landscapes. Santa Cruz Island shows lit-

tle variation in mean and median curvature with resolution,

with the majority of the changes in each distribution with res-

olution occurring at the extremes of the curvature distribution

for each dataset, as the representation of ridgelines and chan-

nel bottoms becomes increasingly diffuse. As resolution is

decreased, the range between 2nd and 98th percentiles and

the 1st and 3rd quartiles decreases, with a more rapid reduc-

tion in the more extreme values than in the quartiles (Fig. 5).

While this effect is most marked at the extremes, the distribu-

tions are condensed across all percentile intervals as grid res-

olution is increased beyond 3–4 m. This behavior is observed

for both CTotal and CTan as grid resolution is decreased.

In the Oregon Coast Range for both measurements of cur-

vature, there is little variation between the 1, 2, and 3 m

datasets, with a broad range of measurements shown in the

probability distributions. Beyond this point the mean and me-

dian do not significantly change, but as in Santa Cruz Island,

the overall distribution of measurements compresses towards

the average value for the landscape. The Gabilan Mesa data

show similar trends to those of Santa Cruz Island but exhibit

less variability at lower resolutions. The probability distri-

butions of each measurement also exhibit less change with

resolution than the other two datasets, indicating a reduced

sensitivity to grid resolution at this location.
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Figure 5. Plots of the reduction in range between the 2nd and 98th percentiles (blue triangles) and the interquartile range (red circles) of

CTotal (a, c, e) and CTan (b, d, f) measurements as resolution is decreased for each of the study landscapes.

4.2 Channel networks

Figure 6 provides a qualitative overview of the changes of

channel network extent with decreasing grid resolution for

both methods, across the three test landscapes. In each case

the general patterns are that as the grid resolution is de-

creased, the lowest-order channels are lost, as they exist on

a spatial scale below that of the data resolution. In contrast,

large parts of the predicted networks appear to occupy sim-

ilar spatial locations in larger, higher-order channels where

the topographic signal of a channel is more pronounced. The

geometric method shows less reduction in drainage density

than the DrEICH method, as data resolution is decreased.

Figure 7 provides a quantitative assessment of channel ex-

traction quality by presenting the indexes of reliability and

sensitivity for both the geometric channel extraction and

extraction based on DrEICH, as the grid resolution is de-

creased. In Gabilan Mesa the channels extracted by the ge-

ometric method exhibit a high reliability which does not de-

crease considerably with decreasing grid resolution, suggest-

ing that for each resolution step a large proportion of the pre-

dicted channel heads are spatially coincident with the chan-

nel heads generated from the 1 m data. The sensitivity val-

ues for this method and location are lower and decline more

steadily with decreasing grid resolution, suggesting an in-

creasing number of channel heads being missed by the al-

gorithm as grid resolution is decreased. The DrEICH method

does not perform as well in Gabilan Mesa, with lower in-

dex values for the 5 m data than the geometric method, and

a rapid decline towards index values of 0, suggesting that

the predicted channel heads bear little relation to the channel

heads from the 1 m data.
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Figure 6. Representative sections of each landscape’s channel network displaying the extent of each network as grid resolution is decreased.

Panels (a), (b), and (c) are generated using the DrEICH method of channel extraction. Panels (d), (e), and (f) are generated using the

geometric method. All coordinates are in UTM. Tick spacing is in meters. The left column is from Santa Cruz Island, UTM Zone 11◦ N, the

central column is from Gabilan Mesa, UTM Zone 10◦ N, and the right column is from the Oregon Coast Range, UTM Zone 10◦ N.

Figure 7. The variations in reliability (Eq. 5) and sensitivity (Eq. 6)

of each channel network with decreasing grid resolution. Panels (a),

(c), and (e) are generated using the geometric method of channel

extraction. Panels (b), (d), and (f) are generated using the DrEICH

method. The top row is from Gabilan Mesa, the middle row is from

Santa Cruz Island, and the bottom row is from the Oregon Coast

Range. The full results from this analysis can be found in Tables 3

and 4.

In Santa Cruz Island the geometric method’s reliability in-

dex is similar to Gabilan Mesa; however, the sensitivity index

is not as high, which indicates that a large number of channel

heads are being missed, but where a prediction is made, it is

typically accurate. The DrEICH method exhibits a similarly

large reliability initially but again shows more rapid degra-

Figure 8. Changes in the estimated sediment transport coefficient,

D, calculated using Eq. (10) and parameters in Table 2 for each

of the three study landscapes, with decreasing data resolution. The

error bars on each data point represent the uncertainties reported for

each landscape’s erosion rate data.

dation in the index value as grid resolution is decreased. The

sensitivity values again decline more rapidly and reach a 0

value at 20 m grid resolution.

The data for the Oregon Coast Range show similar pat-

terns for both methods, although the geometric method ex-

hibits systematically larger index values. In each case the re-

liability increases slightly from 5 to 10 m resolution and then

declines gradually towards 30 m resolution. The sensitivity

indexes for both methods begin at a larger value than the re-

www.earth-surf-dynam.net/4/627/2016/ Earth Surf. Dynam., 4, 627–653, 2016



640 S. W. D. Grieve et al.: How does grid-resolution modulate geomorphic processes?

Table 2. Published parameters used to calculate diffusivity.

Location Soil density Rock density Erosion rate Reference

(kg m−3)∗ (kg m−3)∗ (mm yr−1)

Santa Cruz Island 1.4 2.4 0.069 ± 0.007 Perroy et al. (2012)

Gabilan Mesa 1.4 2.4 0.36+0.38
−0.22 Roering et al. (2007)

Oregon Coast Range 1.4 2.4 0.1 ± 0.05 Roering et al. (1999)

∗ Soil and rock densities are representative of typical measurements of the field sites and are taken from Hillel (1980).

Table 3. Reliability and sensitivity metrics for the DrEICH method of channel extraction.

Location Resolution (m)
∑

TP
∑

FP
∑

FN r s

Gabilan Mesa 5 555 982 1489 0.36 0.27

10 210 879 1875 0.19 0.1

20 42 734 2088 0.05 0.02

30 13 609 2122 0.02 0.01

Santa Cruz Island 5 3295 1971 4799 0.63 0.41

10 2454 793 6865 0.76 0.26

20 69 838 8235 0.08 0.01

30 27 915 8284 0.03 0.0

Oregon Coast Range 5 507 1718 1131 0.23 0.31

10 144 445 1462 0.24 0.09

20 16 105 1623 0.13 0.01

30 2 442 1639 0.0 0.0

Table 4. Reliability and sensitivity metrics for the geometric method of channel extraction.

Location Resolution (m)
∑

TP
∑

FP
∑

FN r s

Gabilan Mesa 5 1019 519 987 0.66 0.51

10 712 380 1301 0.65 0.35

20 448 332 1592 0.57 0.22

30 292 333 1775 0.48 0.14

Santa Cruz Island 5 4280 991 3109 0.81 0.57

10 2473 777 4998 0.76 0.33

20 334 505 7861 0.4 0.04

30 475 470 7659 0.5 0.06

Oregon Coast Range 5 792 1438 788 0.36 0.5

10 562 602 938 0.48 0.37

20 276 374 1275 0.42 0.18

30 475 277 1418 0.38 0.11

liability indexes and steadily decline towards 0. A sensitiv-

ity value exceeding the reliability value suggests that in this

landscape there are fewer missed channel heads in the 5 m

data but at the expense of too many predicted channel heads

in locations where there are none predicted in the 1 m data.

4.3 Sediment transport coefficient

Using the values for hilltop curvature generated in Sect. 4.1,

published parameters for erosion rate and material properties

outlined in Table 2 and Eq. (10), the average sediment trans-

port coefficient (D) of each landscape can be calculated as

a function of grid resolution. Figure 8 displays the relation-

ship between diffusivity and grid resolution for each of the

three study sites. The data for Santa Cruz Island and Oregon

Coast Range both show a gradual increase in diffusivity with

decreasing grid resolution, the rate of which reduces with de-

creasing grid resolution. The Gabilan Mesa data do not ex-

hibit the same trend, with little variability in calculated D

values as resolution is decreased. Although the Oregon Coast
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Figure 9. Plots of the distribution of hillslope length (a, c) and relief (b, d) measurements as resolution is decreased for Santa Cruz Island.

Whiskers are the 2nd and 98th percentiles; the box covers the 25th and 75th percentiles; the blue bar is the mean and the red bar is the median.

The gray outline is the probability density function of each dataset. The top row presents the best-case scenario, where an independent

constraint on the channel network is available for the lower-resolution data, and the bottom row uses the channel networks extracted using

the geometric method outlined in Sect. 2.3 for each resolution step.

Range and Santa Cruz Island datasets exhibit an increase in

estimated D, all of the values for each location fall within the

range of values for D compiled by Hurst et al. (2013c).

4.4 Hillslope length and relief

The hillslope length measurements for Santa Cruz Island cal-

culated using 1 m channel heads (Fig. 9a) show little varia-

tion in the distribution of the data up to 10 m resolution, with

the main difference being the decrease with grid resolution in

the 2nd percentile measurements, which is a trend observed

within each of the datasets. The mean and median values also

gradually decrease towards the 10 m resolution dataset, be-

fore gradually increasing towards the 30 m resolution step.

However, these variations are very small, with the overall

distributions of hillslope length and relief not varying con-

siderably between resolution steps. When the same hillslope

length algorithm is applied using channel networks extracted

using the geometric method for each resolution step (Fig. 9c),

there is little change in the distribution or average values of

LH until beyond the 10 m resolution step. Beyond this point

the measurements of hillslope length are clearly affected by

the reduction in accuracy of the channel network. The relief

measurements for both channel head methods (Fig. 9b, d) in

Santa Cruz Island exhibit little resolution dependence up to

10 m grid resolution, beyond which point the values increase

steadily. In the case of the 1 m channel heads, the distribution

becomes compressed around the average values at lower res-

olutions, whereas with the variable channel head dataset the

distribution of values increases with decreasing resolution.

In Gabilan Mesa the hillslope length measurements cal-

culated using 1 m channel heads (Fig. 10a) show a gradual

reduction in mean and median values between the highest-

resolution data and the 8 m resolution data before a small

plateau and then a small increase until the 30 m dataset. The

average relief values calculated for the same dataset increase

steadily by approximately 20 m between the highest- and

lowest-resolution datasets (Fig. 10b). The distribution of re-

lief measurements are broadly consistent between 1 and 5 m

resolutions before reducing about the median as grid resolu-

tion is decreased. The same trends are apparent in the hills-

lope length and relief data calculated using the variable chan-

nel heads (Fig. 10c, d) with little change between the two

pairs of datasets.

The hillslope length measurements for the Oregon Coast

Range with channel heads from the 1 m data (Fig. 11a) again

show a gradual reduction in the median values with a gradual

increase in the mean values until 20 m grid resolution. Be-

yond this point the data become considerably more variable,

with a large increase in both the mean and median results.

The relief data shown in Fig. 11b are the most consistent of

the three landscapes, with very little variation in the values

until they begin increasing with grid resolution at approxi-

mately 20 m resolution. The data presented in Fig. 11c and

d show the most sensitivity to grid resolution of the three

landscapes. Average hillslope length values reduce towards

10 m before stabilizing and then rapidly increasing in the

same manner as the fixed channel head data. The relief mea-

surements show a gradual decline in mean relief across the
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Figure 10. Plots of the distribution of hillslope length (a, c) and relief (b, d) measurements as resolution is decreased for Gabilan Mesa.

Whiskers are the 2nd and 98th percentiles; the box covers the 25th and 75th percentiles; the blue bar is the mean and the red bar is the median.

The gray outline is the probability density function of each dataset. The top row presents the best-case scenario, where an independent

constraint on the channel network is available for the lower-resolution data, and the bottom row uses the channel networks extracted using

the geometric method outlined in Sect. 2.3 for each resolution step.

Figure 11. Plots of the distribution of hillslope length (a, c) and relief (b, d) measurements as resolution is decreased for the Oregon Coast

Range. Whiskers are the 2nd and 98th percentiles; the box covers the 25th and 75th percentiles; the blue bar is the mean and the red bar

is the median. The gray outline is the probability density function of each dataset. The top row presents the best case scenario, where an

independent constraint on the channel network is available for the lower-resolution data, and the bottom row uses the channel networks

extracted using the geometric method outlined in Sect. 2.3 for each resolution step. At higher-resolution steps the 98th percentile data is not

shown in the plot, to better highlight the distribution of measurements between the 25th and 75th percentiles, which make up the majority of

the data points.
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range of resolutions from 1 to 10 m, where the fixed data

show much less variation.

5 Discussion

5.1 Curvature and the problem of resolution-dependent

filtering

Across the three landscapes the variance of the distributions

of both total and tangential curvature values are systemat-

ically reduced as resolution is decreased, an effect that is

particularly notable after the grid resolution exceeds 3–4 m

(Fig. 4). In each of the three datasets, the interquartile ranges

remain relatively constant, whereas beyond 4 m resolution in

each case the range between the 2nd and 98th percentiles re-

duces rapidly (Fig. 5), demonstrating that the majority of the

loss of curvature information occurs at the extremes of the

distribution.

In producing a DEM, we are sampling a complex two-

dimensional elevation signal, in which spatial variations in

geomorphic processes drive variations in topographic am-

plitude at different wavelengths (Perron et al., 2008b). De-

creasing the grid resolution of DEMs acts as a low-pass

filter on this topographic signal, which preferentially de-

grades features in the topography that have significant am-

plitude at small wavelengths, such as sharp ridgelines, nar-

row valley bottoms, and local topographic roughness gener-

ated by, for example, landslides, tree throw, and rock expo-

sure (Figs. 1 and 3). While the position of ridges and val-

leys is preserved in coarser-resolution data, the magnitude

of their associated curvature values is reduced as resolution

decreases; this effect is particularly marked for hillslopes

in which curvature is focused at the ridge crest and valley

bottoms, a common characteristic of more rapidly eroding

landscapes (Roering et al., 1999, 2007). For first-order land-

scape features, such as gullies, landslide scars, and first-order

channels, decreasing grid resolution eventually results in the

complete loss of topographic information, as highlighted in

Figs. 1 and 3.

5.1.1 Topographic filtering and its implications for

curvature and slope measurements

We can explain some of the observed behavior in Figs. 4

and 5 through spectral analysis. Spectral analysis assumes

that data can be approximated as the sum of sine waves of

varying frequency. One can apply a spectral filter to any

dataset: this simply means that one transforms input data into

output data using linear functions (that is, we can multiply

the input data by a series of weights). Any filter will have

a gain, which is the ratio between the filtered amplitude and

the original amplitude. A filter will also have a fidelity, which

is the ratio between the continuous gain and the discrete gain.

We are using discrete data, so the fidelity measures how well

our discrete filter is able to reproduce a theoretical signal that

is continuous. We can never have continuous data since lidar

is not continuous: our filters will always represent an imper-

fect version of nature and fidelity quantifies just how imper-

fect it is. Hopefully our readers will not be put off by this

foray into jargon, and we can move on to practical applica-

tion of spectral filters for use in topographic applications.

We will examine the spectral behavior of a simplified one-

dimensional system. We acknowledge that a 1-D approach

cannot fully describe complex two-dimensional topography

of real landscapes, but a one-dimensional system is amenable

to mathematical treatment that can at least give us qualitative

insight into trends observed in our data. In addition, some of

the features of interest, for example ridgelines and channels,

can be roughly approximated as one-dimensional structures

within a two-dimensional landscape.

Curvature in one dimension, Cx [L−1], is often approxi-

mated with the differencing equation:

Cx =
ζ(x−1x) − 2ζx + ζ(x+1x)

(1x)2
, (11)

where ζ [L] is the elevation of the land surface, x [L] is a

location in space, Cx is the curvature at location x, and 1x

[L] is the grid interval. The subscripts denote the discrete lo-

cations where elevation is evaluated. Equation (11) is in fact

a spectral filter. The original data is ζ , which is distributed in

space, and the weights in the filter are (1x)−2, −2(1x)−2,

and (1x)−2 for data points at (x −1x), x, and (x +1x), re-

spectively. From this filter, we can calculate the wave number

response function. A full description of the theory and signif-

icance of a wave number response function can be found in

Jenkins and Watts (1968). For our purposes, it is sufficient

to know that this function must be calculated if we are to

calculate the gain and fidelity of the filter (which here is a

measure of curvature of our elevation data). The wave num-

ber response function (H (ω;1x)) from this filter, given by

Jenkins and Watts (1968) in their Eq. (7.3.7), is

H (ω;1x) =
2

(1x)2
[cos(ω1x) − 1], (12)

where ω = 2π/L [L−1] is the wave number with wave-

length L [L]. Higher wave numbers correspond to shorter

wavelengths. Using this function, we can calculate the gain,

G(ω;1x). Again, the gain measures the ratio of the ampli-

tude of the filtered signal (in this case curvature) to the ampli-

tude of the original signal (in this case elevation) at the wave

number ω. The theoretical gain for continuous waveforms

of curvature (i.e., not discrete filters like Eq. 11) is ω2. The

gain of a discrete filter is the modulus of the wave number

response function (see p. 296 in Jenkins and Watts, 1968), so

in the case of Eq. (12) the resultant gain, G(ω;1x) is

G(ω;1x) =
2

(1x)2
[1 − 2cos(ω1x) + cos2(ω1x)]1/2. (13)

In the case of our curvature filter (Eq. 11), the gain

function reveals how high-frequency waveforms (e.g., ridge
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Figure 12. Plot of fidelity (F ) of two one-dimensional differencing

operations: curvature (Eq. 11) and topographic gradient (Eq. 15) as

a function dimensionless wave number 1x/L to the Nyquist wave

number, 1x/L = 0.5.

crests, tree throw mounds, local roughness) in the elevation

data involve relatively large values of curvature, whereas

low-frequency elevation waveforms (e.g., ridge–valley fea-

tures or geologic folds) with the same amplitude involve rela-

tively small curvatures. Crucially, however, the discrete filter

does not retain all of the high-frequency information. Some

of this information is lost in the discretization process (i.e.,

it is lost because we are sampling the data at fixed intervals

rather than having continuous information about the surface).

We can calculate what information is lost by calculating the

fidelity, which is the ratio between discrete gain (Eq. 13) and

the theoretical gain (ω2):

F (ω;1x) = (14)

2

(1x)2ω2
[1 − 2cos(ω1x) + cos2(ω1x)]1/2.

Again, fidelity is a measure of how closely our discrete

filter (here curvature measured at discrete points in the land-

scape) reflects the true curvature (that is, the curvature mea-

sured if we had a perfectly continuous dataset). Fidelity is a

function of the ratio between the grid interval and the wave-

length (Fig. 12). When the fidelity is unity, the discrete fil-

ter exactly reproduces the underlying continuous function.

Again, the landscape (and its derivative metrics like curva-

ture and gradient) has features at different wavelengths, such

as long-wavelength ridges and valleys and short-wavelength

tree throw mounds.

As the frequency approaches the Nyquist wave number,

defined as 1x/L = 1/2, fidelity decreases (Fig. 12); a fi-

delity of only approximately 0.4 is achieved at the Nyquist

wave number itself. To achieve a fidelity, F , of 0.9 requires

that L/1x is equal to approximately six grid points per

wavelength. A fidelity F = 0.95 requires eight points per

wavelength, and F = 0.99 requires 18. Therefore, while the

grid resolution imposes a minimum wavelength that can be

resolved (defined by the Nyquist wave number), the behavior

of the fidelity function (Fig. 12), clearly illustrates that cur-

vature information will be lost when calculated for features

with wavelengths greater than but still close to the minimum

resolvable at the Nyquist wave number.

What does this mean in practical terms? In our simple,

one-dimensional example, if we use 1 m resolution data we

can only capture the curvature of a one-dimensional ridgeline

that had a wavelength of 3–4 m (one does not need the entire

wave to capture the peak of the waveform) but with a loss of

fidelity on the magnitude of the curvature. Or, in other words,

we would underestimate the magnitude of the curvature.

Another landscape metric that is widely measured is topo-

graphic gradient. In our study we have not computed how to-

pographic gradient varies as a function of grid resolution be-

cause this has been examined by many previous authors (e.g.,

Gao, 1997, Warren et al., 2004, and Vaze et al., 2010). How-

ever, our treatment of the properties of a one-dimensional

filter can give some insight into previous results. Consider a

simple central-difference approximation of the topographic

gradient (Sx , dimensionless):

Sx =
ζ(x+1x) − ζ(x−1x)

21x
. (15)

Equation (15) is yet another spectral filter, with weights of

2(1x)−1 at x+1x and −2(1x)−1 at x−1x. We can follow

the same series of operations that we performed on Eq. (11)

to arrive at the fidelity of Eq. (15), denoted as FS, taking into

account that the theoretical gain is ω (see Eq. 7.3.8 in Jenkins

and Watts, 1968):

FS(ω;1x) =
1

1xω
[sin(ω1x)]. (16)

Equation (16) formally illustrates why estimates of slope

tend to systematically decrease with increasing grid interval

1x (Fig. 12). Namely, an increasing 1x is able to resolve

less local (high wave number) elevation structure while pick-

ing out the slope of more regional structure. The fidelity in-

creases as the ratio of the grid interval to the wavelength,

1x/L, decreases (Fig. 12). To achieve a fidelity FS = 0.9, for

example, requires L/1x or approximately eight grid points

per wavelength. A fidelity FS = 0.95 requires 11 points per

wavelength, and FS = 0.99 requires 18. The fidelity of the

one-dimensional gradient operator goes to 0 when approach-

ing the Nyquist wave number (1x/L = 1/2). These re-

sults explain the pronounced loss of gradient information in

coarse-resolution data observed by many authors (e.g., Gao,

1997, Warren et al., 2004, and Vaze et al., 2010).
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5.1.2 Total and tangential curvature

Having explored simplified one-dimensional filters, we now

return to our two-dimensional results. Although real land-

scapes are two-dimensional and we use polynomial fitting

rather than simple differencing as in Eq. (11), we can still

use Eq. (14) as a qualitative indicator of the grid resolution

required for appropriate curvature estimates. In the Gabilan

Mesa, where ridgelines are broad, lower-resolution data can

still capture the curvature with relatively high fidelity. How-

ever, in locations with sharper ridgelines, such as Santa Cruz

Island, the narrowest ridgelines are no longer adequately re-

solved as the grid resolution is decreased, as can be seen in

Fig. 3.

The loss of fidelity predicted by the simple one-

dimensional system (Eq. 14) qualitatively predicts the pat-

tern observed in Figs. 4 and 5, namely that the curvature val-

ues are smeared over a greater length scale leading to ap-

parently broader ridges with resolution and a systematic un-

derestimation of their peak elevations. This highlights that

in conjunction with data quality, landscape morphology also

exerts a control on the optimal resolution to use for a given

study, where landscapes with more gradual hillslope to val-

ley transition morphologies can be analyzed using coarser-

resolution topographic data with more confidence. Although

the identification of landscape morphology is often achieved

through observations of high-resolution topography, it can be

achieved through field observations and the use of ancillary

datasets, which allow the qualitative checking of results ob-

tained from a low-resolution dataset.

Santa Cruz Island and the Oregon Coast Range have the

highest tangential curvature at 1 m resolution. High tangen-

tial curvature at Santa Cruz Island corresponds to observa-

tions of extensive gullying and hillslope erosion (Pinter and

Vestal, 2005; Perroy et al., 2012). In the Oregon Coast Range,

features such as pit and mound topography produced by tree

throw and other biotic activity are resolved in the lidar dataset

(Roering et al., 2010; Marshall and Roering, 2014), which

manifests itself as an increase in values of curvature. How-

ever, this could also be indicative of non-topographic noise in

the DEM surface produced during the processing of the point

clouds, which is particularly required in heavily forested lo-

cations (Liu, 2008; Meng et al., 2010) such as the Oregon

Coast Range. This suggests an unfortunate collinearity be-

tween the two causes of small-wavelength topographic noise

and warrants further testing in future to disentangle synthetic

and natural noise from high-resolution topographic measure-

ments. However, high curvature is not solely a manifesta-

tion of stochastic disturbance in local topographic roughness

but is also generated at narrow valley bottoms and at ridge-

lines where erosion rates are rapid relative to the hillslope

sediment transport coefficient (Roering et al., 2007; Hurst

et al., 2012). Gabilan Mesa exhibits much lower curvature

values than the other two locations, which is a consequence

of high landscape diffusivity, indicating that sediment trans-

port at Gabilan Mesa is dominated by diffusion-like pro-

cesses (Roering et al., 2007), smoothing the landscape and

reducing the tangential curvature of the hillslope surface.

5.2 Channel extraction

It is intuitive to consider that when extracting channel net-

works at any data resolution, regardless of method, the

higher-order, larger channels will be more accurately con-

strained than lower-order channels. This pattern is ob-

served in each of the study landscapes, with the majority

of the variations in channel locations occurring in first- and

second-order channels. Such loss of low-order channels from

datasets has implications for studies focusing on upland ar-

eas, in particular where detailed measurements which depend

on channel network position are performed.

The contrast between the extent of channel networks and

their indexes of quality for the two methods outline that

a geometric method of channel extraction outperforms the

process-based DrEICH algorithm. Due to the relative sim-

plicity of the geometric method of channel extraction, er-

rors inherent in the DEM are not compounded on the same

scale as the DrEICH algorithm, which performs more opera-

tions on topographic data. As the geometric method identifies

channels based on their tangential curvature, although chan-

nel head features may be smoothed out of the DEM as reso-

lution is decreased, the channel will still express some pos-

itive curvature in lower-resolution data. The initiation point

may be located downslope of the true channel head but even

in this worst case most of the channel network will be ex-

tracted correctly. This is observed in Fig. 6 which shows a

gradual reduction in drainage density as the grid resolution

is decreased.

The indexes of quality defined by Orlandini et al. (2011)

provide a clear framework to understand the quality of chan-

nel head predictions using these two methods as data reso-

lution is decreased. In each case, the geometric method out-

performs the DrEICH method, both in the accuracy of the

channel heads which are predicted, and in the ability of the

method to not predict channel heads in locations where no

channel exists. These indexes are influenced by the size of

the search radius around each channel head, and reducing

this radius would decrease the index values. However, the

use of a 30 m search radius allows comparisons to be drawn

between predictions made at different data resolutions, and

also between this study and that of Orlandini et al. (2011).

This assessment of high-resolution methods with

degraded-quality data demonstrates the ongoing challenges

that channel extraction poses to the geomorphology com-

munity. Orlandini et al. (2011) performed extensive testing

on channel extraction using threshold channel extraction

methods and demonstrated similar limitations when chan-

nels were extracted using lower-resolution data. Our results

suggest that a geometric method of channel extraction

will provide an optimal channel network as data quality is
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reduced, particularly in uniform landscapes such as Gabilan

Mesa. However, the only way to ensure the highest-quality

results is to employ high-resolution data in conjunction with

field mapping of channel network extents.

5.3 Sediment transport coefficient

The predicted values of the sediment transport coefficient

(D) for the 1 m data fall within the range of values com-

piled by Hurst et al. (2013c) and estimated for the Oregon

Coast Range and Gabilan Mesa by Roering et al. (1999) and

Roering et al. (2007). This suggests that this method can pro-

duce useful estimates of D when employing high-resolution

topography.

The sediment transport coefficients calculated at the Ore-

gon Coast Range and Santa Cruz Island locations both in-

crease with grid resolution, reflecting the sensitivity of CHT

to grid resolution in each of these locations. Despite the Ore-

gon Coast Range eroding 45 % more rapidly (Table 2) than

Santa Cruz Island, the rate of increase in D measurements

remains similar between the two landscapes. Gabilan Mesa

data are generally insensitive to a decrease in grid resolution,

as the scale of hilltop widths measured in Gabilan Mesa is on

the order of tens of meters. This allows datasets with grid res-

olutions approaching half the width of a hilltop to provide an

accurate estimate of hilltop curvature and, thus, the sediment

transport coefficient.

These data suggest that estimating D from low-resolution

topographic data is possible in many landscapes, particularly

those which have average ridgelines broader than the grid

resolution of the topographic data. In the case of landscapes

with sharper ridgelines such as Santa Cruz Island and the

Oregon Coast Range, it is more challenging to constrain D

effectively as the grid resolution is decreased. The magnitude

of the overestimation of D between the highest- and lowest-

resolution diffusivity estimates, 0.0023 m2 a−1 in the case of

the Oregon Coast Range, will be a product of the uncertainty

within the calculation of the erosion rate and material densi-

ties in addition to the local variations of D within each land-

scape.

5.4 Hillslope length and relief

Measurements of hillslope length and relief have been used

to test sediment flux laws (Roering et al., 2007; Grieve et al.,

2016a) and to identify landscape transience (Hurst et al.,

2013b; Mudd, 2016). Such analyses have previously been

restricted to high-resolution topographic data. When consid-

ering hillslope length, we must select a grid resolution that

is at least half the median hillslope length in order to re-

solve any useful information. However, in reality more than

two pixels are required if any meaningful information is to

be extracted from topographic data. As the median hillslope

length for many landscapes has been shown to be in excess

of 100 m (Grieve et al., 2016a), this requirement for sev-

eral pixels per hillslope falls well within the range of many

lower-resolution data products. Therefore, our results show

that meaningful hillslope length measurements can be made

from lower-resolution topographic data, with data products

approaching 30 m resolution proving suitable in some cases.

The relief measurements for each landscape, however,

show more sensitivity to grid resolution, with a systematic

increase in the median values in each location beyond 10 m

grid resolution. As decreasing grid resolution acts as a low-

pass filter on the landscape, the elevation of ridges are ex-

pected to be reduced, whilst the elevation of channel beds are

raised, producing a net reduction in topographic relief. How-

ever, the increased relief observed with decreasing grid res-

olution is produced by the decrease in drainage density with

decreasing resolution observed in Fig. 6; this produces fewer

channels reaching up towards ridgelines and leading to hills-

lope flow paths traveling further downslope before reaching

a channel.

By contrasting the LH and R results computed using

fixed and variable channel heads, it is clear that the opti-

mal method for measuring hillslope length and relief is to

employ as accurate a channel network as possible. How-

ever, the variable channel head data show that the signal of

average hillslope length and relief is broadly insensitive to

data resolution up to grid resolutions of at least 10 m. This

would facilitate the analysis of landscape transience using

these measurements on a global scale, using high-resolution

satellite-derived DEMs, such as TanDEM-X (Krieger et al.,

2007). This relationship is again strongest in Gabilan Mesa,

the landscape with the least topographic complexity which

demonstrates the least sensitivity to curvature measurements

and the estimation of diffusivity. However, even in the more

noisy landscape of the Oregon Coast Range, meaningful

hillslope length and relief measurements can still be made

through the use of a geometric channel extraction algorithm

and lower-resolution topographic data.

6 Conclusions

Through the generation of topographic data spanning the

range of grid resolutions currently used in much of geomor-

phic research, a number of key metrics have been evaluated

for their sensitivity to grid resolution. We have demonstrated

the reduction in the range of total and tangential curvature

values as grid resolution is decreased, across three test land-

scapes. These curvature measurements are important in the

estimation of the hillslope sediment transport coefficient (D),

in their use as a proxy for erosion rate, and in the extraction

of channel networks from topographic data. We demonstrate

that the estimation of D from low-resolution topographic

data is possible, particularly in landscapes such as Gabilan

Mesa where hilltops are broad. Higher resolutions are re-

quired to extract meaningful curvature information in steep

landscapes with sharp ridges and narrow gullies.
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The extraction of channel networks from digital topo-

graphic data is a significant challenge on all spatial scales,

as the definition of a channel network is integral in the ex-

ecution of many analyses (e.g., DiBiase et al., 2012, Hurst

et al., 2012, and Grieve et al., 2016a). We demonstrate that

the use of a geometric channel extraction algorithm produces

channel networks for all three of our landscapes which cor-

respond well to networks extracted from high-resolution to-

pography. This correspondence is tested through the compu-

tation of quality indexes for each predicted network, which

outline the suitability of this algorithm over a process-based

method at coarse DEM resolutions.

Average values of hillslope length and relief for each land-

scape are shown to be broadly insensitive to grid resolu-

tion up to grid resolutions which correspond to the highest-

resolution topographic data globally available. This indicates

that these measurements can be used to identify landscape

transience in locations where lidar data are unavailable. The

accuracy of these measurements is dependent on the accu-

racy of the channel network used, however, as using a geo-

metric method of channel extraction from the 1 m DEM still

provides robust measurements of hillslope length and relief.

The relationships between decreasing grid resolution and

the geomorphic parameters explored here demonstrate the in-

fluence of the spatial scale of the topographic expression of

process on the quality of results which can be extracted from

lower-resolution topography. From these analyses it is chal-

lenging to identify a clear threshold below which data be-

come unsuitable for use in geomorphic analysis. Rather, it is

important to highlight the influence of landscape morphology

and the dominant processes acting upon it in the selection of

an appropriate data resolution for a study. Using this work as

a framework, it is now possible to place constraints on the ac-

curacy of results derived from coarse-resolution topographic

data, particularly where non-topographic or field data can be

used to provide insight into general landscape morphology.

7 Code availability

All of the code used in this analysis is open source and the

topographic analysis routines are available at http://github.

com/LSDtopotools/LSD_Resolution; the code to generate

the figures in this paper, alongside the raw plot data, can

be downloaded from http://github.com/sgrieve/Resolution_

Paper_Figs.

8 Data availability

The topographic data used in this study are freely available

from http://www.OpenTopography.org, and the specific point

clouds used can be downloaded from http://hdl.handle.net/

10283/2071.
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Table A1. Parameters used by the geometric and process-based techniques in the extraction of channel networks.

Location Window Drainage Connected m
n Reference

radius (m) area (m2) components (Pixels) ratio

Santa Cruz Island 4 4 5 0.50 This study

Gabilan Mesa 5 4 5 0.45 Grieve et al. (2016a, b)

Oregon Coast Range 4 4 5 0.45 Grieve et al. (2016a, b)

Appendix A: Channel extraction parameters

This table provides the parameters used to generate channel

networks both using the geometric method and the DrEICH

method. The drainage area value is used to thin the initial ex-

tracted network by removing channels which have a drainage

area below the threshold value. The connected-components

value defines the point at which a group of contiguous chan-

nel pixels are considered to be connected. The m
n

ratio is de-

termined using software provided by Mudd et al. (2014), and

its use within this context is discussed in detail in Clubb et al.

(2014).
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