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Abstract. Observations over the last 30 yr have shown that

the sea ice extent in the Southern Ocean has slightly in-

creased since 1979. Mechanisms responsible for this positive

trend have not been well established yet. In this study we

tackle two related issues: is the observed positive trend com-

patible with the internal variability of the system, and do the

models agree with what we know about the observed inter-

nal variability? For that purpose, we analyse the evolution of

sea ice around the Antarctic simulated by 24 different gen-

eral circulation models involved in the 5th Coupled Model

Intercomparison Project (CMIP5), using both historical and

hindcast experiments. Our analyses show that CMIP5 models

respond to the forcing, including the one induced by strato-

spheric ozone depletion, by reducing the sea ice cover in the

Southern Ocean. Some simulations display an increase in sea

ice extent similar to the observed one. According to models,

the observed positive trend is compatible with internal vari-

ability. However, models strongly overestimate the variance

of sea ice extent and the initialization methods currently used

in models do not improve systematically the simulated trends

in sea ice extent. On the basis of those results, a critical role

of the internal variability in the observed increase of sea ice

extent in the Southern Ocean could not be ruled out, but cur-

rent models results appear inadequate to test more precisely

this hypothesis.

1 Introduction

The way climate models reproduce the observed character-

istics of sea ice has received a lot of attention (e.g. Flato,

2004; Arzel et al., 2006; Parkinson et al., 2006; Lefebvre and

Goosse, 2008a; Sen Gupta et al., 2009). One conclusion of

those studies is that the models’ skill is higher in the North-

ern Hemisphere than in the Southern Hemisphere. In partic-

ular, simulations performed for the 3rd Coupled Model Inter-

comparison Project (CMIP3) are generally able to reproduce

relatively well the timing of the seasonal cycle of Southern

Ocean sea ice extent, but fail in simulating the observed am-

plitude (Parkinson et al., 2006). Furthermore, the models are

usually unable to simulate the observed increase in Southern

Ocean sea ice extent (e.g. Arzel et al., 2006; Parkinson et al.,

2006), which is estimated to be of 11 200 ± 2680 km2 yr−1

between 1979 and 2006 (Comiso and Nishio, 2008). At

the regional scale, the 1979–2006 trend in observed sea ice

extent is positive in all the sectors of the Southern Ocean,

except in the Bellingshausen–Amundsen seas sector, and the

Ross Sea sector exhibits the largest positive trend (e.g. Cava-

lieri and Parkinson, 2008; Comiso and Nishio, 2008). Lefeb-

vre and Goosse (2008a) have studied the trend simulated by

several CMIP3 models in the different sectors of the South-

ern Ocean, and they have shown that these models were not

able to reproduce this observed spatial structure.

The observed increase in sea ice extent during the past

decades is statistically significant at the 95 % significant level

(e.g. Cavalieri and Parkinson, 2008). However, its potential

causes are still debated. We do not know the part of this trend

that can be attributed to external forcing and the one that

is due to natural variability. This issue has already been ad-

dressed for the Arctic sea ice extent (e.g. Kay et al., 2011),

but remains poorly investigated for the Southern Ocean sea

ice.
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Several studies dealing with the potential role of the forced

response have pointed out the relationship between strato-

spheric ozone depletion over the past few decades (Solomon,

1999) and changes in the atmospheric circulation at high lat-

itudes (e.g. Turner et al., 2009; Thompson et al., 2011). In-

deed, variations of sea ice extent in the Southern Ocean are

strongly influenced by changes in the atmosphere circulation

(e.g. Holland and Raphael, 2006; Goosse et al., 2009b). How-

ever, the link between atmospheric circulation and the sea ice

extent integrated over the Southern Ocean is not straightfor-

ward (e.g. Lefebvre and Goosse, 2008b; Stammerjohn et al.,

2008; Landrum et al., 2012) and several recent studies came

to the conclusion that the stratospheric ozone depletion does

not lead to an increase in the sea ice extent (e.g. Sigmond

and Fyfe, 2010; Smith et al., 2012; Bitz and Polvani, 2012).

A second potential cause of the observed expansion of sea ice

cover relies on an enhanced stratification of the ocean which

would inhibit the heat transfer to the surface. This strength-

ened stratification is mainly due to a freshening of the surface

water, triggered by an increase in the precipitation over the

Southern Ocean, the melting of the ice shelf, and changes in

the production and transport of sea ice (e.g. Bitz et al., 2006;

Zhang, 2007; Goosse et al., 2009b; Kirkman and Bitz, 2010).

Liu and Curry (2010) pointed out that an enhanced hydrolog-

ical cycle may also increase the snowfalls at high latitudes in

the Southern Ocean. In that case, the snow cover on thicker

sea ice would raise the surface albedo, strengthen the insula-

tion between the atmosphere and the ocean, and thus would

protect the sea ice from melting. Nevertheless, this mecha-

nism mainly impacts thick ice because for thin ice, the higher

snow load leads to seawater flooding and to the formation of

snow ice. This decreases the effect of the initial increase in

snow thickness.

Another hypothesis suggests that the positive trend in the

Southern Ocean sea ice extent could arise from the internal

variability of the system that masks the warming signal in

the Southern Ocean that should characterize the response to

an increase in greenhouse gases concentration, according to

climate models. In this framework some recent studies have

drawn the attention to the importance of distinguishing the

lack of agreement between models from the lack of signifi-

cant signal (e.g. Tebaldi et al., 2011; Deser et al., 2012). A

trend can be significant from a statistical point of view, i.e. if

it is above a threshold of significance computed through a

statistical test. This does not imply that its value is outside of

the range that can be reached by the internal variability. For

instance, Landrum et al. (2012) have pointed out that large in-

terannual variability in simulated sea ice concentration leads

to late 20th Century trends in sea ice concentration that are

not always statistically significant for individual members

of an ensemble simulation. The observed positive trend of

Southern Ocean sea ice extent is statistically significant at

the 95 % level for the last 30 yr (e.g. Cavalieri and Parkin-

son, 2008). However, this time period is too short to prop-

erly assess the multidecadal variability of the system. Conse-

quently, we cannot estimate if this trend is exceptional or if

similar conditions have already occurred many times in the

recent past. The period spanning the last 30 yr during which

sea ice cover slightly expanded in the Southern Ocean might

follow a large melting that may have happened before 1979

(e.g. de la Mare, 1997, 2009; Cavalieri et al., 2003; Curran

et al., 2003; Cotté and Guinet, 2007; Goosse et al., 2009b).

This suggests that multidecadal variability in the Southern

Ocean is large, but the available data do not allow a quan-

titative estimation of its value. Sparse data from the 1960s

are currently being processed (e.g. Meier et al., 2013), mak-

ing observations of the sea ice extent available over a longer

time period. Further analyses based on these prolonged time

series might therefore improve our knowledge of the internal

variability of the sea ice extent. Nevertheless, until longer

continuous time series are available, the results from model

simulations appear to be crucial to balance the lack of obser-

vations. Provided that models are compatible with the avail-

able observations, they can help addressing the issue whether

the observed positive trend in the Antarctic sea ice extent is

due to external forcing or to internal variability, or to both of

them.

The decreasing trend in many model simulations may be

due to a misrepresentation of the response of the circulation

and/or of the hydrological cycle to the forcing. Alternatively,

the observed changes may belong to the range of the trends

that can be attributed to the internal variability of the sys-

tem. In this hypothesis the positive trend observed over the

last decades is just one particular realization among all the

possible ones. A negative trend in one model’s simulations

does not imply necessarily a disagreement between model

and data as another simulation with the same model (another

member of an ensemble, for instance) would likely display a

positive one. Furthermore, if this is valid and if the internal

variability is to some extent predictable, an adequate initial-

ization of the system could lead to a better simulation of the

evolution of the sea ice cover around the Antarctic.

In this paper we examine outputs from general circulation

models (GCMs) following the 5th Coupled Model Intercom-

parison Project (CMIP5) protocol. To further study the role

of the internal variability in the increasing trend in sea ice ex-

tent in the Southern Ocean and in the apparent disagreements

between models and observations, we deal with two kinds of

simulations: historical and hindcast (or decadal) simulations.

The first ones are driven by external forcing and are initial-

ized without observational constraints. They are used to as-

sess how well each model simulates the observed mean state,

variability and trends in sea ice concentration and extent. The

objective is to study the possible links between the internal

variability of the system and the simulated trend in sea ice

extent. Our purpose is, on the one hand, to test if the internal

variability of the models agrees with the one of the observa-

tions. On the other hand, we check if the observed positive

trend stands in the range of trends provided by models inter-

nal variability. Analysing the mean state also appears to be
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important here because of its impact on the simulated vari-

ability (e.g. Goosse et al., 2009a). In addition to those points

related to the variability of the system, the way stratospheric

ozone is taken into account in models is also discussed to es-

timate if this has a significant impact on the simulated trends.

However, it is out of the scope of this study to discuss specific

mechanisms that link the sea ice extent and the stratospheric

ozone variations.

The second kind of simulations – the hindcasts – are also

driven by external forcing, but, in contrast to the historical

simulations, are initialized through data assimilation of ob-

servations. Consequently, these simulations allow us to as-

sess how the state of the system in the early 80s impacts the

variability of the models and their representation of the trend

over the last 30 yr. Idealized model studies have shown high

potential predictability at decadal time scales in the Southern

Ocean (e.g. Latif et al., 2010), i.e. models have determinis-

tic decadal variability, in particular for surface temperatures

(Pohlmann et al., 2004). The predictive skill of the models at

decadal time scales is also discussed here to see if this poten-

tial predictability is confirmed in real applications.

An initial investigation of the results of CMIP5 models

has shown that, in agreement with previous studies related

to CMIP3 models (e.g. Lefebvre and Goosse, 2008a), cur-

rent GCMs do not simulate a spatial structure of the trend

in sea ice extent similar to the observed one. This spatial

structure might as well arise from the internal variability. In

such a case, models would not have to fit the observed pattern

as discussed above. However, this remains a hypothesis and

we have chosen to focus on the sea ice extent in the whole

Southern Ocean rather than in the individual sectors to avoid

the additional complexity associated with the spatial struc-

ture of the changes. Models and observation data are briefly

presented in Sect. 2. The time period we analyse is limited

by the available observations. For the Southern Ocean, val-

idation data are quite sparse before 1979. We therefore ex-

amine outputs between 1979 and 2005. Results provided by

models’ historical simulations are presented and discussed in

Sect. 3. The analyses of hindcast simulations are described in

Sect. 4. Finally, Sect. 5 summarizes our results and proposes

conclusions.

2 Models and observation data

The models’ data were obtained from the CMIP5 (Taylor

et al., 2011) multi-model ensemble: http://pcmdi3.llnl.gov/

esgcet/home.htm. We have analysed results of historical sim-

ulations from 24 models which have the required data avail-

able. Among these models, 10 of them provide results for

hindcast simulations. Both historical and hindcast simula-

tions consist of ensemble simulations of various sizes. His-

torical runs finish in 2005 and we have decided not to prolong

them with the RCP (Representative Concentration Pathways)

simulations. Given that these latter contain less members,

it would have made the analysis of the internal variability

less reliable. Models and their respective modelling groups

are listed in Table 1, along with the number of members in

each model historical and hindcast simulations. The models

have different spatial resolution and representation of physi-

cal processes. The spatial resolution of models’ components

is summarized in Table S1 of the Online Supplement Tables

of this paper. A reference is also given for more complete

documentation.

We give specific information on the treatment of ozone in

Table 2 as a basis for the discussion presented in Sect. 3.3.

The AC&C/SPARC ozone database (Cionni et al., 2011) is

used to prescribe ozone in most of the models without in-

teractive chemistry. In this database, stratospheric ozone for

the period 1979–2009 is zonally and monthly averaged. It

depends on the altitude and it takes solar variability into ac-

count. Whether they have interactive chemistry or prescribed

stratospheric ozone, the 24 models analysed in this study

thus take into account the stratospheric ozone depletion in

their historical simulations. This is an improvement since

the CMIP3 simulations. Indeed, nearly half of the CMIP3

models prescribed a constant ozone climatology (Son et al.,

2008). Nevertheless, some of the models have a coarse at-

mosphere resolution which sometimes does not encompass

the whole stratosphere. In that case, processes related to the

interaction between radiation and ozone as well as the ex-

change between the stratosphere and the troposphere may be

represented rather crudely.

The hindcast simulations were initialized from a state that

has been obtained through a data assimilation procedure,

i.e. constrained to be close to some observed fields. There

is a large panel of data assimilation methods, but most of the

models involved in CMIP5 assimilate observations through

a nudging. This method consists of adding to the model equa-

tions a term that slightly pulls the solution towards the ob-

servations (Kalnay, 2007). MIROC4h and MIROC5 incor-

porate observations in their data assimilation experiments

by an incremental analysis update (IAU). Details about this

method can be found in Bloom et al. (1996). Table 3 sum-

marizes the data assimilation method corresponding to each

model as well as the variable it assimilates. The relevant doc-

umentation was not available to us for CCSM4, FGOALS-

g2 and MRI-CGCM3. All the models for which we have

the adequate information, except BCC-CSM1.1 and CNRM-

CM5, assimilate anomalies. Those anomalies are calculated

for both model and observations by subtracting their respec-

tive climatology, computed over the same reference period.

Working with anomalies does not prevent model biases, but it

avoids the initialization of the model with a state which is too

far from its own climatology and thus limits model drift (e.g.

Pierce et al., 2004; Smith et al., 2007; Troccoli and Palmer,

2007; Keenlyside et al., 2008; Pohlmann et al., 2009), as dis-

cussed in Sect. 4.
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Table 1. Model name, Institute and number of members in models historical and hindcast simulations.

Model name Institute ID Modelling center Number of

members in

historical

Number of

members in

hindcasts

BCC-CSM1.1 BCC Beijing Climate Center, China Meteorological Administration 3 4

CanESM2 CCCMA Canadian Centre for Climate Modelling and Analysis 5 –

CCSM4 NCAR National Center for Atmospheric Research 6 10

CNRM-CM5 CNRM-

CERFACS

Centre National de Recherches Meteorologiques / Centre Europeen de

Recherche et Formation Avancees en Calcul Scientifique

10 10

CSIRO-Mk3.6.0 CSIRO-

QCCCE

Commonwealth Scientific and Industrial Research Organization in

collaboration with Queensland Climate Change Centre of Excellence

10 –

EC-EARTH EC-EARTH EC-EARTH consortium 1 –

FGOALS-g2 LASG-CESS LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences

and CESS,Tsinghua University

1 3

FGOALS-s2 LASG-IAP LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences 3 –

GFDL-CM3 NOAA GFDL NOAA Geophysical Fluid Dynamics Laboratory 5 –

GFDL-ESM2M NOAA GFDL NOAA Geophysical Fluid Dynamics Laboratory 1 –

GISS-E2-R NASA GISS NASA Goddard Institute for Space Studies 5 –

HadCM3 MOHC Met Office Hadley Centre 10 10

HadGEM2-CC MOHC Met Office Hadley Centre 1 –

HadGEM2-ES MOHC Met Office Hadley Centre 1 –

INM-CM4 INM Institute for Numerical Mathematics 1 –

IPSL-CM5A-LR IPSL Institut Pierre-Simon Laplace 4 6

IPSL-CM5A-MR IPSL Institut Pierre-Simon Laplace 1 –

MIROC4h MIROC Atmosphere and Ocean Research Institute (The University of Tokyo),

National Institute for Environmental Studies, and Japan Agency for

Marine-Earth Science and Technology

3 3

MIROC5 MIROC Atmosphere and

Ocean Research Institute (The University of Tokyo), National Institute for Environmental

Studies, and Japan Agency for Marine-Earth Science and Technology

1 6

MIROC-ESM MIROC Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean

Research Institute (The University of Tokyo), and National Institute for Environmental

Studies

3 –

MIROC-ESM-CHEM MIROC Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean

Research Institute (The University of Tokyo), and National Institute for Environmental

Studies

1 –

MPI-ESM-LR MPI-M Max Planck Institute for Meteorology 3 10 (3 in 30-

yr hindcast)

MRI-CGCM3 MRI Meteorological Research Institute 3 3

NorESM1-M NCC Norwegian Climate Centre 3 –

The model skill is measured through its representation of

the sea ice concentration (the fraction of grid cell covered

by sea ice) and sea ice extent (the sum of the areas of all

grid cells having an ice concentration of at least 15 %). We

consider the sea ice extent over the whole Southern Ocean

and for models it has been calculated on the original models’

grids. For each model providing an ensemble of simulations,

the model mean is the average over the members belonging

to the ensemble. The multi-model mean is then derived by

computing the mean of the individual models means without

applying any weighting to the models. Sea ice concentration

comes from the satellite observation of the National Snow

and Ice Data Center (NSIDC) (Comiso, 1999, updated 2008).

The sea ice extent is then derived from this dataset following

the method described in Cavalieri et al. (1999) and applied

by Cavalieri and Parkinson (2008) for the period 1979–2006.

3 Historical simulations

The historical simulations are driven by external forcing and

are initialized without observational constraints. These sim-

ulations are here used to assess the mean state and the vari-

ability of the models using recent observations.

3.1 Mean state and variability

In a first step, we analyse the mean sea ice concentration over

the period 1979–2005. Figure 1 shows the multi-model mean

of sea ice concentration in the Southern Ocean and compares

the simulated sea ice edge to the observed one. Results are

given for February (September), the month during which the

observed sea ice extent reaches its minimum (maximum). In

February the multi-model mean underestimates the sea ice

cover in the Bellingshausen and Amundsen Seas as well as in

the eastern part of the Ross Sea. In the Western Ross Sea and

in small parts of the Weddell Sea and of the Indian Ocean

sector, the multi-model mean overestimates the sea ice ex-

tent. In September the shape of the sea ice edge computed

The Cryosphere, 7, 451–468, 2013 www.the-cryosphere.net/7/451/2013/
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Table 2. Summary of atmosphere vertical resolution and stratospheric ozone representation. Models in bold are the ones with interactive

chemistry, activated during the CMIP5 simulations or only activated in an offline simulation used to compute the ozone dataset prescribed in

the CMIP5 simulations.

Model name Atmosphere

vertical resolution

Stratospheric ozone

BCC-CSM1.1 26 layers

Top layer at 2.9 hPa

Prescribed;

AC&C/SPARC ozone database (Cionni et al., 2011).

CanESM2 35 layers

Top layer at 1 hPa

Prescribed;

AC&C/SPARC ozone database (Cionni et al., 2011).

CCSM4 26 layers Prescribed;

Data from an offline simulation of the CAM3.5 model

with a fully interactive chemistry (Landrum et al.,

2012).

CNRM-CM5 31 layers

Top layer at 10 hPa

Interactive chemistry (Voldoire et al., 2012).

CSIRO-Mk3.6.0 18 layers Prescribed;

AC&C/SPARC ozone database (Cionni et al., 2011).

EC-EARTH 62 layers

Top layer 5 hPa

Prescribed;

AC&C/SPARC ozone database (Cionni et al., 2011).

FGOALS-g2 26 layers No information available to us.

FGOALS-s2 26 layers

Top layer at 2.19 hPa

No information available to us.

GFDL-CM3 48 layers Interactive chemistry (Donner et al., 2011).

GFDL-ESM2M 24 layers Prescribed;

AC&C/SPARC ozone database (Cionni et al., 2011).

GISS-E2-R 40 layers

Top layer at 0.1 hPa

Prescribed;

Observational analyses of Randel and Wu (1999).

HadCM3 19 layers Prescribed;

Observational analyses of Randel and Wu (1999).

HadGEM2-CC 60 layers

Top layer at 0.006 hPa

Prescribed;

AC&C/SPARC ozone database (Cionni et al., 2011).

HadGEM2-ES 38 layers

Top layer at 4 hPa

Prescribed;

AC&C/SPARC ozone database (Cionni et al., 2011).

INM-CM4 21 layers

Top layer at 10 hPa

Prescribed;

AC&C/SPARC ozone database (Cionni et al., 2011).

IPSL-CM5A-LR 39 layers

Top layer at 0.04 hPa

Prescribed;

Data from an offline simulation of the LMDz-

REPROBUS model (Szopa et al., 2012).

IPSL-CM5A-MR 39 layers

Top layer at 0.04 hPa

Prescribed;

Data from an offline simulation of the LMDz-

REPROBUS model (Szopa et al., 2012).

MIROC4h 56 layers

Top layer at 40 km

Prescribed;

Data from an offline simulation of Kawase et al. (2011).

MIROC5 40 layers

Top layer at 3 hPa

Prescribed;

Data from an offline simulation of Kawase et al. (2011).

MIROC-ESM 80 layers

Top layer at 0.003 hPa

Prescribed;

Data from an offline simulation of Kawase et al. (2011).

MIROC-ESM-CHEM 80 layers

Top layer at 0.003 hPa

Interactive chemistry (Watanabe et al., 2011).

MPI-ESM-LR 47 layers

Top layer at 0.01 hPa

Prescribed;

AC&C/SPARC ozone database (Cionni et al., 2011).

MRI-CGCM3 48 layers

Top layer at 0.01 hPa

Interactive chemistry (Yukimoto et al., 2011).

NorESM1-M 26 layers

Top layer at 2.9 hPa

No information available to us.

www.the-cryosphere.net/7/451/2013/ The Cryosphere, 7, 451–468, 2013
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Table 3. Data assimilation methods used by the 10 models providing hindcast simulations.

Model name Data assimilation method References

BCC-CSM1.1 Nudging of 3-D ocean temperature (raw data). Gao et al. (2012)

CCSM4 Information not available to us

CNRM-CM5 Nudging of 3-D ocean temperature and salinity (raw data)

as a function of depth and space, sea surface temperature and

salinity nudging (raw data).

ftp://ftp.cerfacs.fr/pub/globc/

exchanges/cassou/Michael/

Aspen CMIP5 wrkshop cassou

2.ppt

FGOALS-g2 No information available to us.

HadCM3 Nudging of 3-D ocean temperature and salinity

(anomalies), nudging of 3-D atmosphere temperature and

wind speed, nudging of surface pressure.

http://www.met.reading.ac.

uk/∼swr06jir/presentations/

JIR dept seminar.pptx

IPSL-CM5A-LR Nudging of sea surface temperature (anomalies). Swingedouw et al. (2012)

MIROC4h Incremental analysis update (IAU) of 3-D ocean

temperature and salinity (anomalies).

Chikamoto et al. (2012)

MIROC5 Incremental analysis update (IAU) of 3-D ocean

temperature and salinity (anomalies).

Chikamoto et al. (2012)

MPI-ESM-LR Nudging of 3-D ocean temperature and salinity

(anomalies), except in the area covered by sea ice.

Matei et al. (2012b)

MRI-CGCM3 No information available to us.

from multi-model mean roughly fits the observations. How-

ever, the multi-model mean overestimates the sea ice cover

everywhere except in the Indian Ocean sector and in the east-

ern part of the Ross Sea sector.

This reasonable multi-model mean extent is the result of

the average of a wide range of individual behaviours. To ac-

count for this variety of mean model states, we have plot-

ted, for individual models, the mean of sea ice extent of each

month of the year during the period 1979–2005. Figure 2a

confirms that the multi-model mean fits quite well the obser-

vations, especially during winter months. However, the sea-

sonal cycle of sea ice extent of the various models is largely

spread around the observations and the timing of the mini-

mum/maximum sea ice extent varies from one model to the

other. In summer, 16 of the models underestimate the sea ice

extent. In particular, CNRM-CM5 and MIROC5 are nearly

sea ice free during summer. The latter strongly underesti-

mates the ice extent all over the year, and its winter sea ice

extent is smaller than some models’ summer sea ice extent.

On the contrary, CCSM4 and CSIRO-Mk3.6.0 overestimate

the sea ice extent during the whole year, especially during

summer. In winter, when the simulated sea ice cover reaches

its maximum, the sea ice extent ranges from approximately

5×106 to 24×106 km2, while the observations display a sea

ice extent of about 17×106 km2. 10 models underestimate

the sea ice extent in September.

Since the internal variability of the climate system may

also have played a role in the observed expansion of sea ice

cover, we assess its representation in models by computing

the standard deviation of the sea ice extent for each month

of the year, over the period 1979–2005 (Fig. 2b). Here, to

obtain both the ensemble mean of each model and the multi-

model mean of standard deviations, an average of the individ-

ual standard deviations has been performed. We have chosen

to detrend data before computing the standard deviation in

order to suppress the direct impact of a trend on the stan-

dard deviation that could obscure our analysis of the poten-

tial links between those two variables discussed in Sect. 3.2.

The monthly standard deviation indicates that the variabil-

ity strongly differs between models. In February, 15 mod-

els have a standard deviation higher than the observed one,

and all of the 24 models overestimate the standard deviation

during September. Consequently, the multi-model mean of

standard deviations does not fit very well the observations.

It overestimates the standard deviation all over the year, par-

ticularly during winter. The interannual variability in some

models is significantly larger during winter months than dur-

ing summer months. As a result these models have a pro-

nounced seasonal cycle of their standard deviation, in con-

trast to the observations, which display a relatively constant

value throughout the year. The causes of the overestimated

winter variability of modelled sea ice have not been iden-

tified yet. We have performed some preliminary analyses

that indicate that, for some models, changes in the oceanic

convection could be associated to the higher winter variabil-

ity (not shown). The oceanic or the atmospheric circulations

may also play a role in the high winter sea ice variability sim-

ulated by the models. However, this aspect is out of the scope

of the present study and it will be addressed in future work.

The analysis of Fig. 2b tells us two important things. On

the one hand, it points out the inability of the majority of

models to reproduce the observed interannual variability. In

particular, they all overestimate the winter interannual vari-

ability. On the other hand, it highlights the fact that some
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Fig. 1. Multi-model mean of sea ice concentration, computed from historical simulations over the period 1979–2005. White (black) line

refers to the sea ice edge, i.e. the 15 % concentration limit of the multi-model ensemble mean (observations, Comiso, 1999, updated 2008).
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Fig. 2. (a) Monthly mean of Southern Ocean sea ice extent, computed over the period 1979–2005. (b) Standard deviation of detrended

Southern Hemisphere sea ice extent, computed over the period 1979–2005 for each month of the year. Colours correspond to the ensemble

mean of historical simulations from 24 different models. Dotted lines refer to models that provide both historical and hindcast simulations, but

here results are only from historical simulations. Orange bold line is the multi-model mean. Black bold line refers to observations (Cavalieri

and Parkinson, 2008).

models are characterized by a very different magnitude of

the interannual variability from one season to the other. In

order to avoid a loss of information, we have thus chosen

in the following analysis to work with seasonal mean rather

than with annual mean and to treat the summer and winter

separately.

3.2 Trend over the period 1979–2005

For the historical simulations, we have computed for each

member of the ensemble the trend from 1979 to 2005 of

summer (average of January, February and March) and win-

ter (average of July, August and September) sea ice extent.

Each trend has been computed through a linear regression of

the yearly values (between 1979 and 2005) of the summer or

winter sea ice extent. We have checked if the trends were sig-

nificant at the 95 % level (see Table S2 and S3 of the Online

Supplement Tables of this paper). The autocorrelation of the

residuals has been taken into account in the computation of

the standard deviation of each trend as well as in the num-

ber of degrees of freedom used to determine the threshold of

significance, as proposed by Santer et al. (2000) and applied,

for instance, by Stroeve et al. (2012). In addition to a direct

evaluation of model skill, one of our goals is to analyse if

a relationship can be established between the mean state, the

interannual variability simulated by the model and the ability

to reproduce the observed trend.

Observations show that the summer sea ice extent ex-

panded between 1979 and 2005 at a rate of approximately

149 000 km2 per decade. The seasonal trends of the obser-

vations are not statistically significant at the 95 % level,
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Fig. 3. Sea ice extent trend for the period 1979–2005 over the whole Southern Ocean vs. mean (a, c) and standard deviation (b, d). The

first row corresponds to summer (JFM), the second to winter (JAS). The different colours correspond to the historical simulations from 24

different models. For each colour, the small dots refer to model individual members and the symbol specified in the legend is for the model

ensemble mean. The number of members in each model is indicated in brackets in the legend. Orange refers to multi-model means, for which

the diamond sign is for the average over all the models, circle sign is for the mean of models with interactive chemistry (in bold in Table 2)

and triangle sign is for the mean of models with 35 atmospheric levels or more on the vertical. Black square is for the observations (Cavalieri

and Parkinson, 2008), surrounded by 2 standard deviations (dark-grey rectangle). Horizontal (vertical) solid black line with the light-grey

shade refers to the trend (mean/standard deviation) of the observations along with 2 standard deviations. The computed standard deviation of

the observed trend takes into account the autocorrelation of the residuals (see for instance Santer et al., 2000; Stroeve et al., 2012).

in contrast to the trend of the annual mean (not shown).

In Fig. 3a it appears that almost all of the simulations

performed with the 24 models fail in simulating the sign

of this observed trend. Only three models (FGOALS-g2,

GFDL-CM3 and GISS-E2-R) have an ensemble mean with

a positive trend, while most of them simulate a relatively

large negative trend. For four additional models (CCSM4,

CSIRO-Mk3.6.0, HadCM3 and MRI-CGCM3), some en-

semble members display a positive trend. Nevertheless,

CCSM4, CSIRO-Mk3.6.0 and FGOALS-g2 have a mean

summer sea ice extent much larger than what is observed,

while GFDL-CM3 and GISS-E2-R are well below the ob-

servations. Moreover, CCSM4 and CSIRO-Mk3.6.0 have an

interannual variability which is on average twice the one of

the observations.

For summer sea ice extent, some given models display

a standard deviation that could be quite different between

members (Fig. 3b). Besides, the individual means of ensem-

ble members performed with the same model are relatively

similar (Fig. 3a). The range of values reached by the trends of

the different members belonging to one model’s simulation

also differs strongly from one model to the other (Fig. 4a).

We quantify the various ranges provided by the different

models, thanks to the ensemble standard deviation of the

trends, for models that have at least 3 members in their his-

torical simulations. This ensemble standard deviation of the

trends stands between 26 000 km2 per decade for MIROC-

ESM and 470 000 km2 per decade for BCC-CSM1.1 (see Ta-

ble S2 of the Online Supplement Tables of this paper). On

average the ensemble standard deviation of the trend equals

The Cryosphere, 7, 451–468, 2013 www.the-cryosphere.net/7/451/2013/
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Fig. 4. Ensemble mean, minimum and maximum value of the sea ice extent trend for the period 1979–2005 over the whole Southern Ocean

for summer (a) and winter (b). The different colours correspond to the historical simulations from the 15 models that have at least 3 members

in their ensemble. Dots refer to the ensemble means of the trends. Horizontal bars show the minimum and the maximum value of the

trend reached by the members of one model ensemble. Solid black line is for the trend of the observations (Cavalieri and Parkinson, 2008)

surrounded by 1 standard deviation (dark grey shade) and 2 standard deviations (light grey shade). The computed standard deviation of the

observed trend takes into account the autocorrelation of the residuals (see for instance Santer et al., 2000; Stroeve et al., 2012).

166 000 km2 per decade. If we consider this average as an es-

timate of the range of the trend that can be associated with in-

ternal variability, the observed positive trend of 149 000 km2

per decade is well among the values that could be due to natu-

ral processes alone and compatible with the available ensem-

ble of model results. Nevertheless, given that many models

have an interannual variability that is much larger than the

one of the observations, it is not sure whether the range of

the trends they provide is representative of the reality.

The comparison between the trend, the mean extent, and

standard deviation does not display any clear link in summer

between those variables: some of the models that simulate

an increase in the ice extent in at least one of their members

overestimate the observed mean and variability, some under-

estimate it. Figure 3b also underlines the fact that models

with little ice during summer often have a small interannual

variability of summer sea ice extent, in agreement with re-

sults of Goosse et al. (2009a). Moreover, the spread of the

sea ice extent trends and standard deviations of members be-

longing to one model ensemble grows with the mean summer

sea ice extent.

Winter sea ice extent also increased between 1979 and

2005 by approximately 86 000 km2 per decade. Two mod-

els have an ensemble mean whose trend is positive: GFDL-

CM3 and IPSL-CM5A-MR (Fig. 3c). The ensemble mean of

GFDL-CM3 (5 members) has a positive trend which is close

www.the-cryosphere.net/7/451/2013/ The Cryosphere, 7, 451–468, 2013
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(a) 1981−2005 JFM hindcast VS. historical trend (b) 1981−2005 JAS hindcast VS. historical trend
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Fig. 5. Hindcast vs. historical Southern Ocean sea ice extent trend for summer (a) and winter (b), computed over the period 1981–2005. The

different colours refer to the different models. For each model the dot refers to the ensemble mean of the trends and the horizontal (vertical)

bar shows the ensemble mean of the standard deviations of the trends in the historical (hindcast) simulations. Black square is for the trend

of the observations (Cavalieri and Parkinson, 2008). The vertical and the horizontal black bars are for the standard deviation of the observed

trend which are barely distinguishable due to their small values. Dashed line represents the line y(x) = x. The computed standard deviations

of the trends takes into account the autocorrelation of the residuals (see for instance Santer et al., 2000; Stroeve et al., 2012).

to the observed one, but it strongly underestimates the mean

winter sea ice extent. It is also an ensemble whose mem-

bers are highly scattered along the trend axis, three having

a positive trend (from approximately 470 × 103 to 1300 ×

103 km2 decade−1) and two having a negative one (from ap-

proximately −290×103 to −1120×103 km2 decade−1). The

IPSL-CM5A-MR ensemble is made up of one member only.

Its trend and its mean are both close to observations.

The 22 remaining models all have an ensemble mean

showing a decrease in winter sea ice extent. However, as no-

ticed for summer, a few of them have ensemble members

displaying positive trends (BCC-CSM1.1, CSIRO-Mk3.6.0,

IPSL-CM5A-LR and MRI-CGCM3). Two of three BCC-

CSM1.1 historical simulation members present a positive

trend. The last one has a very negative trend, reaching

−2520 × 103 km2 decade−1. Contrarily, the mean sea ice ex-

tent does not vary much between members of BCC-CSM1.1,

all of them being larger than the observations. CSIRO-

Mk3.6.0 ensemble contains 10 members. They all simulate

a mean sea ice extent in winter relatively close to the ob-

servations. Only one member shows an increase in sea ice

extent.

Figure 3d confirms that all the 24 models overestimate the

interannual variability in winter. It also underlines the fact

that simulations that have an ensemble mean of the trends

close to the observed one have generally a standard deviation

which is much larger than the one of the observations. IPSL-

CM5A-MR single member, which has a trend and a mean

state relatively close to the observations, has a standard de-

viation equals to 0.85×106 km2, while the observed stan-

dard deviation stands around 0.25×106 km2. GFDL-CM3 is

a model that has a very high standard deviation (around 4

times the standard deviation of the observations). It is also a

model with a large range of trends reached by its members

(Fig. 4b).

For winter sea ice extent, considering again models

that have at least 3 members in their historical sim-

ulations, the ensemble standard deviation of the trends

varies between 100×103 km2 decade−1 for FGOALS-s2 and

1 704×103 km2 decade−1 for BCC-CSM1.1 (see Table S3

of the Online Supplement Tables of this paper). On aver-

age, this ensemble standard deviation of the trends equals

428 000 km2 decade−1. As for summer, if this value is repre-

sentative of the range of trends due to internal variability, the

observed trend of 86 000 km2 per decade appears compatible

with natural processes and the model ensemble. However, the

model biases in their representation of the variance in winter

during the last 30 yr is even larger than in summer, making

this estimate of the uncertainty based on model results very

questionable.

From this analysis of historical simulations, it appears

that among all the simulations analysed, only a few of them

present a positive trend of the sea ice extent, for both summer

and winter. 12 members over 85 have a positive trend over

the last 30 yr in summer and 10 over 85 have a positive trend

in winter. Those positive values appear thus as relatively rare

The Cryosphere, 7, 451–468, 2013 www.the-cryosphere.net/7/451/2013/
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Fig. 6. Correlation between Southern Ocean summer (JFM) sea ice extent in model results and observations. For each model the correlation

is computed from a series of 4 hindcasts ensembles, initialized every 5 yr between January 1981 and January 1996 (between November 1980

and November 1995 for HadCM3). In each plot the dashed line refers to the 95 % significance level.

events, but are within the range of internal variability accord-

ing to model results. The important point here is that these

positive trends are generally found in models that overesti-

mate the interannual variability. Because of their high inter-

annual variability, such models can provide a large range of

possible trends, some of them agreeing with the observations.

3.3 Stratospheric ozone

CMIP5 models all take into account the stratospheric ozone

depletion that occurred during the last 30 yr (see Table 2

for details). However, this improvement compared to CMIP3

brought to the stratospheric ozone does not lead to major

changes in their representation of the trend in sea ice extent

in the Southern Ocean.
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Fig. 7. Correlation between Southern Ocean winter (JAS) sea ice extent in models results and observations. For each model the correlation is

computed from a series of 4 hindcasts ensembles, initialized every 5 yr between January 1981 and January 1996 (between November 1980

and November 1995 for HadCM3). In each plot the dashed line refers to the 95 % significance level.

To go a step further, we discuss if the way stratospheric

ozone is treated has an influence on the results. The mod-

els with interactive chemistry (activated during the simula-

tion or used in an offline simulation to compute the ozone

dataset) and the ones with higher atmospheric vertical reso-

lution (≥ 35 layers) have on average a slightly smaller extent

of sea ice in summer (Fig. 3a, respectively circle and trian-

gle orange symbols). In winter the models with high atmo-

spheric resolution underestimate the sea ice extent, while the

ones with interactive chemistry overestimate it (Fig. 3c). The

influence on the trend is hardly detected. This shows that, on

average, the inclusion of an interactive chemistry or an in-

creased vertical resolution does not make major differences

compared to other models.
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Looking now at individual models, we have seen in

Sect. 3.2 that CSIRO-Mk3.6.0, GFDL-CM3 and IPSL-

CM5A-MR provide results for sea ice extent trends in win-

ter in relatively good agreement with observations, but with

much too high a standard deviation for GFDL-CM3 and

IPSL-CM5A-MR. CSIRO-Mk3.6.0 has a quite coarse resolu-

tion in its atmosphere component (18 vertical layers) and pre-

scribes the ozone from the AC&C/SPARC database. GFDL-

CM3 and IPSL-CM5A-MR have a finer resolution (48 and 39

layers, respectively). They both have interactive chemistry,

but IPSL-CM5A-MR treats the interaction between ozone

and climate through a semi-offline approach. Again, from

the available ensemble, the representation of ozone in mod-

els does not seem to be the dominant factor influencing the

simulation of the trend in sea ice extent.

4 Hindcast simulations

We have shown in Sect. 3 that the lack of agreement between

simulated and observed variance over the last 30 yr does not

allow us to confidently establish the link between the inter-

nal variability and the positive trend found in observations of

the sea ice extent. Nevertheless, if this link exists and if the

internal variability in the Southern Ocean is in some way pre-

dictable, an adequate initialization of the system should im-

prove the results of the simulated evolution of the sea ice ex-

tent. This hypothesis is tested in this section using the hind-

cast simulations performed in the framework of CMIP5. In

contrast to the historical simulations, the hindcasts are ini-

tialized through data assimilation of observations. The data

assimilation method and the variables assimilated vary from

one model to the other, as summarized in Table 3.

4.1 Impact of the initialization on the simulated trends

The models used for the hindcast analysis have been chosen

on the basis of the availability of their results. Fortunately,

we see on Fig. 2 that these 10 models (dotted lines) constitute

a subset which represents reasonably well the variety of gen-

eral circulation models. In order to outline the effect of the

initialization on the simulated trend in sea ice extent for each

model, we have computed the ensemble mean of the trends

in hindcast simulations spanning the period 1981–2005, for

winter and summer extent, and compared them to the ones

from historical simulations (i.e. uninitialized) over the same

time period. This period has been chosen as no hindcast was

started in 1979. Here the hindcasts were initialized in Jan-

uary 1981 for all the models except HadCM3, whose hind-

cast members were started in November 1980. On Fig. 5,

showing the trend in sea ice extent computed from hindcast

simulations against the one computed from historical simula-

tions, a dot located on the line y(x) = x means that the trend

in hindcast simulation equals the one of historical simulation.

If the trend simulated by hindcast is greater (smaller) than the

one computed from historical simulation, then the dot will be

above (below) the line y(x) = x.

Regarding summer sea ice extent (Fig. 5a), the initializa-

tion through a data assimilation procedure does not improve

systematically the simulated trend. HadCM3, MIROC4h and

MRI-CGCM3 hindcasts trends are closer to the observa-

tion than are their historical trends, but they remain neg-

ative. BCC-CSM1.1, CNRM-CM5, IPSL-CM5A-LR and

MPI-ESM-LR simulate a more negative trend in their hind-

casts than in their historical runs. FGOALS-g2 has a largely

positive trend in its hindcast, while the trend in its histori-

cal simulation is slightly negative. CCSM4 hindcast displays

a slightly positive trend, while the one of its historical simu-

lation is negative.

When initialized through data assimilation of obser-

vations, CCSM4, FGOALS-g2, CNRM-CM5 and BCC-

CSM1.1 present a systematic drift (not shown). This drift

is likely responsible for the high positive or negative trends

found in the hindcasts of these models. Such a drift has its

origin in the initialization of a model with a state that forces

it to produce much more (or less) sea ice than its climatolog-

ical mean. After the initialization, the model does not have

any constraint from observations anymore, and the simula-

tion tends to go back towards the model’s climatology. We

do not have information about the method used to initialize

the models FGOALS-g2 and CCSM4. The use of raw data

in the initialization procedures applied to BCC-CSM1.1 and

to CNRM-CM5 may partly account for the drift occurring in

their hindcast simulations.

Similarly, for winter sea ice extent, the initialization with

observations does not systematically lead to a simulated

trend in better agreement with observations. Figure 5b shows

that hindcast simulations of MIROC4h, MIROC5 and MRI-

CGCM3 have trends that are slightly closer to the observa-

tion than are the historical trends. The 7 other models per-

form worse or do not offer any improvement when they are

initialized with observations. As in the case of summer sea

ice extent (Fig. 5a), FGOALS-g2 simulates a large positive

trend in its winter sea ice extent when it is initialized with

observations, and CNRM-CM5 has a more negative trend in

its hindcast for the same reasons as the one proposed above.

For BCC-CSM1.1, the hindcast trend in winter sea ice extent

does not differ significantly from the historical trend.

Results presented in Fig. 5 show that the initialization of

models through data assimilation of observation does not

bring significant improvement on the simulated trend. When

raw data are used instead of anomalies, the initialization ap-

parently deteriorates the trend in sea ice extent simulated by

models. Corrections can be introduced to take into account

that kind of bias (e.g. Troccoli and Palmer, 2007; Vannitsem

and Nicolis, 2008). Nevertheless, such a procedure requires

a larger amount of initialized simulations spanning several

decades. Proposing such a method for sea ice and analysing

how it would impact the analysis of the trend is out of the

scope of our study.
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4.2 Correlation between models and observations

The forecast skill of the models can also be assessed by
analysing the predictions a few years ahead. To do so, for
each model, we have computed the anomaly correlation co-
efficient used in Pohlmann et al. (2009):

COR(t) =

∑N
i=1

∑M
j=1

[

xij (t) − x̄
][

oi(t) − ō
]

√

∑N
i=1

∑M
j=1

[

xij (t) − x̄
]2 ∑N

i=1 M
[

oi(t) − ō
]2

, (1)

where t is the lead time (in years), xij are the hindcast simu-

lations, i is the ensemble index (different indices correspond

to different times when the hindcast simulations are started)

and j is the index of the member belonging to the ensem-

ble i. N is the number of ensembles and M is the number of

members within each ensemble. oi is the observation cover-

ing the time period spanned by the ensemble i. The overbar

stands for the climatological mean of the uninitialized (his-

torical) simulation and of the observations, over the analysed

period (here 1981–2005).

The correlation between hindcast simulations and obser-

vations is shown for summer (Fig. 6) and winter (Fig. 7) sea

ice extent. This correlation has been computed from a se-

ries of 4 hindcasts ensemble simulations, initialized every

5 yr between January 1981 and January 1996 (every 5 yr be-

tween November 1980 and November 1995 for HadCM3).

The 95 % significance level is computed using a t-test. This

significance level varies from one model to another because

of the different number of members in each model ensemble

(see Table 1).

In summer, none of the 10 models analysed here has

a significant correlation for the first year after initialization

(Fig. 6). HadCM3, IPSL-CM5A-LR and MIROC4h never

outstrip the 95 % significant level. The 7 remaining models

present one or two peaks of significant correlation several

years after the initialization, and almost all the models have

a negative correlation during most of the 10 yr. The emer-

gence of correlation later on in the simulation can occur ran-

domly, or it might still be a consequence of the initializa-

tion. Indeed, models might undergo an initial shock due to

the initialization procedure before getting stabilized and ben-

efit from the initialization. For winter sea ice extent (Fig. 7),

the correlation is significantly positive during the first year

for CCSM4, MIROC5 and MPI-ESM-LR models, indicat-

ing some predictive skill. Then the correlation decreases and

reaches negative values. A negative correlation is also found

in the other models. The significant correlation after one year

in three models in winter likely arises from the initialization,

but the memory of the system is apparently not sufficient to

keep a significant correlation during the following years. Un-

like in the Arctic, sea ice around the Antarctic is relatively

young. It disappears almost entirely during the melting sea-

son and recovers during winter months, preventing this sea

ice to retain information from initialization. The ocean can

keep the information over longer periods, but in the available

experiments its role appears weak during the first year after

initialization. Still, it may be responsible for the emergence

of correlation several years after initialization, for both sum-

mer and winter sea ice extent, through local interactions or

teleconnections with remote areas.

In any case, the skill of model predictions for Southern

Ocean sea ice extent is quite poor compared to the one ob-

tained for other variables. For instance, Kim et al. (2012)

have analysed hindcasts results from seven CMIP5 models

and have shown that these models have a high skill in fore-

casting surface temperature anomalies over the Indian, North

Atlantic and Western Pacific oceans up to 6–9 yr ahead.

Matei et al. (2012a) have pointed out a significant correlation

between hindcast and observations for the Atlantic Merid-

ional Overturning Circulation (AMOC) strength at 26.5◦ N

up to 4 yr ahead.

5 Summary and conclusions

From 24 CMIP5 models available to date, we have analysed

results of historical and hindcast simulations. This is still

a small ensemble, but we consider that it is diverse enough

to constitute a reasonable sample to draw conclusions about

current models behaviour in the Southern Ocean.

The multi-model mean reproduces well the observed sum-

mer and winter sea ice edge as well as the annual cycle of

sea ice extent. The skill of individual models is much lower.

The majority of the biases in the simulated Southern Ocean

sea ice highlighted for CMIP3 models persist for the CMIP5

ones. Furthermore, all the models analysed here overestimate

the variability of the sea ice extent in winter. In addition, we

saw that, in contrast to observations, the variability in some

models can vary significantly from one season to the other.

We have thus chosen to analyse seasonal means rather than

annual mean, but the conclusions are similar whether we con-

sider summer or winter sea ice extent.

The analyses performed in this paper aimed at better un-

derstanding the role played by the internal variability in the

observed increase of sea ice extent in the Southern Ocean.

Our approach can be summarized in three questions that we

can now partly answer.

Firstly, is the trend of winter and summer observed sea ice

extent compatible with a combination of the forced response

and the internal variability according to model results? The

models generally respond to the external forcing by a de-

crease in their sea ice extent. Our analysis of its representa-

tion in the different models has shown that the inclusion of

stratospheric ozone depletion does not modify strongly the

sign of the simulated trend in sea ice extent in the Southern

Ocean compared to CMIP3, in which only half of the models

took into account this forcing. Moreover, models with inter-

active chemistry or with higher atmospheric vertical resolu-

tion do not provide better results that the other ones. Nev-

ertheless, natural variability can overwhelm the influence of
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the forced response, leading to a positive trend in some en-

semble members. This case appears relatively rare among

the available simulations. However, if we consider the wide

range of trends each model provides because of its own dy-

namics only, the positive observed trend in sea ice extent can

be accounted for by internal variability.

Secondly, does the models’ internal variability agree with

the one of the observations? From our model analysis, posi-

tive trends in sea ice extent, such as the observed one, can

arise from internal variability. Nevertheless, to have con-

fidence in this conclusion, the models’ internal variability

must fit the one of the observations. Unfortunately, we have

shown that the models often have a climatological mean

which is far from the observations, or too high an interannual

variability, or even both. None of the CMIP5 models provides

thus a reasonable estimate of all the main characteristics of

the sea ice cover over the last decades in the Southern Ocean,

in contrast to the Arctic (e.g. Stroeve et al., 2012; Massonnet

et al., 2012). Moreover, the few models that display an in-

crease in sea ice extent have such a large variability that the

sign of the trend is not robust. One may argue that the higher

internal variability found in the models, compared to the one

of the observations, is due to some transient, specific char-

acteristics of the last decades. However, this hypothesis has

not been confirmed since the mean state and the internal vari-

ability of the models is roughly constant over the past 150 yr.

Because of those models’ biases, we cannot reasonably con-

sider the results of these models as a good representation of

the behaviour of the Southern Ocean sea ice. As a conse-

quence, even if the positive observed trend in sea ice extent

is compatible with the models internal variability, the biases

of these models prevent us from firmly assessing the link be-

tween the internal variability in the Southern Ocean and the

observed increase in sea ice extent.

Thirdly, how does the initialization method impact the

simulated evolution of sea ice extent in the Southern Ocean?

If the internal variability is important, a correct initializa-

tion of the model state may lead to a better agreement with

data. In this hypothesis, constraining the model with obser-

vations would put the system in a state that favours an in-

crease in ice extent, for instance because of a more strati-

fied or colder ocean. However, results from hindcast simu-

lations have shown that there is no systematic improvement

of the simulation of sea ice extent observed trend. Previous

studies have demonstrated that models have a high poten-

tial predictability in the Southern Ocean region at decadal

time scales (e.g. Latif et al., 2010), i.e. in models there exists

deterministic decadal variability. The test in real conditions

has not shown such predictability for sea ice extent. This

may be due to some inadequate representation of physics

and/or feedbacks in models, but also to the initialization pro-

cedure. Indeed, observations required to initialize properly

the system are quite sparse in that area and the time period

they cover is relatively short. Furthermore, data assimilation

methods used in general circulation models are essentially

based on nudging, and improvement may be expected if more

sophisticated methods are applied and systematically tested

in the Southern Ocean.

To sum up, from an exclusive model approach, a positive

trend in the Southern Ocean sea ice extent spanning the last

30 yr, though being a rare event, can be accounted for by

the internal variability of the system. Nevertheless, we have

shown that the models display a mean state or an interannual

variability, or even both that disagree with what is observed.

As a consequence, this raises the question whether we can

consider these models results as reliable estimates of what

happens in reality, and it affects the level of confidence one

has in decadal predictions or projections of the evolution of

the sea ice around the Antarctic performed with those mod-

els.

Supplementary material related to this article is

available online at: http://www.the-cryosphere.net/7/451/

2013/tc-7-451-2013-supplement.pdf.
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Marotzke, J.: Initializing Decadal Climate Predictions with the

GECCO Oceanic Synthesis: Effects on the North Atlantic, J. Cli-

mate, 22, 3926–3938, doi:10.1175/2009JCLI2535.1, 2009.

Randel, W. J. and Wu, F.: A stratospheric ozone trends data set for

global modeling studies, Geophys. Res. Lett., 26, 3089–3092,

doi:10.1029/1999GL900615, 1999.

Santer, B. D., Wigley, T. M. L., Boyle, J. S., Gaffen, D. J., Hnilo,

J. J., Nychka, D., Parker, D. E., and Taylor, K. E.: Statistical sig-

nificance of trends and trend differences in layer-average atmo-

spheric temperature time series, J. Geophys. Res., 105, 7337–

7356, 2000.

Sen Gupta, A., Santoso, A., Taschetto, A. S., Ummenhofer,

C. C., Trevena, J., and England, M. H.: Projected Changes

to the Southern Hemisphere Ocean and Sea Ice in the

IPCC AR4 Climate Models, J. Climate, 22, 3047–3078,

doi:10.1175/2008JCLI2827.1, 2009.

Sigmond, M. and Fyfe, J. C.: Has the ozone hole contributed to

increased Antarctic sea ice extent?, Geophys. Res. Lett., 37,

doi:10.1029/2010GL044301, 2010.

Smith, D. M., Cusack, S., Colman, A. W., Folland, C. K., Harris,

G. R., and Murphy, J. M.: Improved Surface Temperature Pre-

diction for the Coming Decade from a Global Climate Model,

Science, 317, 796–799, doi:10.1126/science.1139540, 2007.

Smith, K. L., Polvani, L. M., and Marsh, D. R.: Mitigation of 21st

century Antarctic sea ice loss by stratospheric ozone recovery,

Geophys. Res. Lett., 39, doi:10.1029/2012GL053325, 2012.

Solomon, S.: Stratospheric ozone depletion: A review

of concepts and history, Rev. Geophys., 37, 275–316,

doi:10.1029/1999RG900008, 1999.

Son, S. W., Polvani, L. M., Waugh, D. W., Akiyoshi, H., Garcia, R.,

Kinnison, D., Pawson, S., Rozanov, E., Shepherd, T. G., and Shi-

bata, K.: The Impact of Stratospheric Ozone Recovery on the

Southern Hemisphere Westerly Jet, Science, 320, 1486–1489,

2008.

Stammerjohn, S. E., Martinson, D. G., Smith, R. C., Yuan, X.,

and Rind, D.: Trends in Antarctic annual sea ice retreat and

advance and their relation to El Niño Southern Oscillation

and Southern Annular Mode variability, J. Geophys. Res., 113,

doi:10.1029/2007JC004269, 2008.

Stroeve, J. C., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T.,

Holland, M., and Meier, W. N.: Trends in Arctic sea ice extent

from CMIP5, CMIP3 and observations, Geophys. Res. Lett., 39,

doi:10.1029/2012GL052676, 2012.

Swingedouw, D., Mignot, J., Labtoulle, S., Guilyardi, E., and

Madec, G.: Initialisation and predictability of the AMOC

over the last 50 years in a climate model, Clim. Dynam.,

doi:10.1007/s00382-012-1516-8, 2012.

Szopa, S., Balkanski, Y., Schulz, M., Bekki, S., Cugnet, D.,

Fortems-Cheiney, A., Turquety, S., Cozic, A., Deandreis, C.,

Hauglustaine, D., Idelkadi, A., Lathiere, J., Lefevre, F., Marc-

hand, M., Vuolo, R., Yan, N., and Dufresne, J.-L.: Aerosol

and Ozone changes as forcing for Climate Evolution between

1850 and 2100, Clim. Dynam., doi:10.1007/s00382-012-1408-y,

2012.

Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of

CMIP5 and the Experiment Design, Bull. Am. Meteorol. Soc.,

93, 485–498, doi:10.1175/BAMS-D-11-00094.1, 2011.

Tebaldi, C., Arblaster, J. M., and Knutti, R.: Mapping model agree-

ment on future climate projections, Geophys. Res. Lett., 38,

doi:10.1029/2011GL049863, 2011.

Thompson, D. W. J., Solomon, S., Kushner, P. J., England,

M. H., Grise, K. M., and Karoly, D. J.: Signatures of the

Antarctic ozone hole in Southern Hemisphere surface climate

change, Nature Geosci, 4, 741–749, doi:10.1038/ngeo1296,

doi:10.1038/ngeo1296, 2011.

Troccoli, A. and Palmer, T. N.: Ensemble decadal predictions from

analysed initial conditions, Philosophical Transactions of the

Royal Society A: Mathematical, Phys. Eng. Sci., 365, 2179–

2191, doi:10.1098/rsta.2007.2079, 2007.

Turner, J., Comiso, J. C., Marshall, G. J., Lachlan-Cope, T. A.,

Bracegirdle, T., Maksym, T., Meredith, M. P., Wang, Z., and

Orr, A.: Non-annular atmospheric circulation change induced

by stratospheric ozone depletion and its role in the recent in-

crease of Antarctic sea ice extent, Geophys. Res. Lett., 36,

doi:10.1029/2009GL037524, 2009.

Vannitsem, S. and Nicolis, C.: Dynamical Properties of Model

Output Statistics Forecasts, Mon. Weather Rev., 136, 405–419,

doi:10.1175/2007MWR2104.1, 2008.

www.the-cryosphere.net/7/451/2013/ The Cryosphere, 7, 451–468, 2013

http://www.pnas.org/content/107/34/14987.abstract
http://dx.doi.org/10.5194/tc-6-1383-2012
http://dx.doi.org/10.5194/tcd-7-35-2013
http://dx.doi.org/10.1023/B:CLIM.0000013676.42672.23
http://dx.doi.org/10.1029/2012GL053325
http://dx.doi.org/10.1029/1999RG900008
http://dx.doi.org/10.1029/2007JC004269
http://dx.doi.org/10.1029/2012GL052676
http://dx.doi.org/10.1007/s00382-012-1516-8
http://dx.doi.org/10.1007/s00382-012-1408-y
http://dx.doi.org/10.1038/ngeo1296
http://dx.doi.org/10.1029/2009GL037524


468 V. Zunz et al.: CMIP5 1979–2005 Southern Ocean sea ice

Voldoire, A., Sanchez-Gomez, E., Salas y Mélia, D., Decharme, B.,
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