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Abstract. A few decades ago, Kerker et al. [J. Opt. Soc. Am. 73, 765-767 (1983)] 
theoretically pointed out the interesting possibility of conceiving small magnetodielectric 
spheres that may provide zero scattering in the forward direction, despite significantly larger 
scattering in any other direction. Recent experimental and theoretical papers on the topic have 
further discussed this possibility in more realistic scenarios. Inspecting some of their analyses, 
it seems indeed possible to conceive nanoparticles characterized by a scattering pattern with a 
sharp minimum, although not zero, in the forward direction. From a theoretical standpoint, 
however, it is well known that the total scattered power from any object has to be proportional 
to a portion of the scattered field in the forward direction, implying that very small or zero 
forward scattering should be synonymous to even smaller or zero total scattering, regardless 
of the nature of the object and of its design. Using analytical theory and an accurate scattering 
formulation, we clarify the nature of this apparent paradox and the limitations of this 
anomalous phenomenon in terms of particle size. In this way, we shed some new light on 
theoretical and experimental papers on the topic, identifying relevant missteps in some of 
their physical interpretation, and considering the general possibility of verifying these effects. 
This discussion may also be relevant to some cloaking applications using exotic artificial 
materials. 

Keywords: Scattering, nanoparticles, invisibility, cloaking. 

1 INTRODUCTION 
The scattering of electromagnetic waves has been the subject of interest in the scientific 
community for centuries. The exact formal solution of the scattering problem for a spherical 
object [1], explains, among other things, many optical phenomena that we experience every 
day, from the color of the sky, to the bright features of metallic nanoparticles, fascinatingly 
discussed in Professor Bohren’s best-selling book [1]. Prof. Bohren’s studies on scattering 
from small nanoparticles have spanned a large variety of topics, many of them characterized 
by renewed interest at present times, from optically active materials [2], to resonant [3] or 
anomalously low-scattering [1] nanoparticles. The recent progress in nanotechnology 
provides us with various exciting possibilities for verification of many of the theoretical 
predictions that Dr. Bohren and his colleagues have outlined in the past decades related to 
scattering from electrically small particles. 

In particular, in the field of scattering cancellation and cloaking, the possibility to 
manufacture special materials with anomalous electromagnetic properties has led to various 
exciting possibilities in drastically reducing the overall scattering from a given object, by 
properly covering it with metamaterials or plasmonic materials [4-10]. Anomalous scattering 
from nanoparticles made of materials with exotic electromagnetic properties have been 
predicted since decades [1], and their verification is now within the framework of current 

Journal of Nanophotonics, Vol. 4, 041590 (19 May 2010)

©  2010 Society of Photo-Optical Instrumentation Engineers [DOI: 10.1117/1.3449103]
Received 1 Dec 2009; accepted 3 May 2010; published 19 May 2010 [CCC: 19342608/2010/$25.00]
Journal of Nanophotonics, Vol. 4, 041590 (2010)                                                                                                                                    Page 1

Downloaded from SPIE Digital Library on 13 Oct 2010 to 130.91.117.41. Terms of Use:  http://spiedl.org/terms



 
 

nanofabrication possibilities. As another one of these anomalous scattering features, Kerker 
and his colleagues have analyzed the scattering from small magnetodielectric spheres [11], 
predicting that a small particle with diameter much smaller than the wavelength of operation 
may have a zero forward scattering, but a significantly larger (even orders of magnitude) 
scattering in all other directions, when the following condition is held: 

 

min
4
2 1

με ε
μ
−= =

+
 , (1) 

 
where ε  is its relative permittivity and μ  the corresponding relative permeability of the 
object at the frequency of interest. Although this condition was derived in the ideal quasi-
static limit, it has been predicted that it may also hold for moderately sized magnetodielectric 
spheres in a fully dynamic scenario. In fact, renewed interest in this topic has been reported in 
recent theoretical [12-13] and experimental [14-16] papers on the topic. 

One puzzling aspect of this anomalous scattering feature, surprisingly not addressed in all 
the aforementioned works, but raised in a recent comment [16], resides in the apparent 
violation of the fundamental theorem of optics (i.e., the optical theorem) that relates the total 
extinction cross section of an object extσ  (sum of absorption and scattering cross sections) to 
the normalized scattering amplitude polarized in parallel with the impinging field in the 
forward direction ( )0,0sθ : 

 

( )
2
0 Im 0,0ext sθ

λσ
π

= ⎡ ⎤⎣ ⎦ , (2) 

 
where 0λ  is the wavelength of operation. This well-known identity, often addressed as the 
“optical theorem” for its generality, applies to the scattering from any object illuminated by a 
linearly polarized plane wave [17-18]. Clearly, Eq. (2) implies that near-zero forward 
scattering should be synonymous of near-zero total scattering, i.e., a nearly transparent object. 
Eq. (1), however, allows canceling only the forward scattering of the sphere in the quasi-static 
limit, implying that it may still be possible to achieve a significantly larger scattering in all 
other directions. This apparent incongruence was first outlined in a sentence of [16], in which 
the validity of the experimental evidence presented in [14] was seriously argued against. 

In the following, we address this issue by reviewing the general theory of scattering from 
magnetodielectric particles, and we show that Kerker’s original theory is indeed valid in the 
quasi-static limit, without necessarily violating the optical theorem. Moreover, we discuss the 
validity of the zero-forward scattering condition in the general case, and we show up to what 
limit on the electrical size of the particles “zero-forward scattering” may be practically 
achieved. By doing that, we will discuss the validity of recent papers on the topic, that have 
often misinterpreted the original findings from Kerker. Finally, we relate these concepts to 
recently proposed metamaterial cloaking techniques, discussing how this anomalous 
scattering properties of small magnetodielectric nanoparticles may be somehow related to the 
anomalous features of cloaked objects [6-7], sensors and antennas [28-29]. For simplicity, we 
focus our results on nanoparticles of spherical shape, consistent with the original work from 
Kerker [11], but it is clear that analogous results may be obtained with different shapes and 
geometries. 
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2 THEORETICAL FORMULATION 

2.1 General scattering solution 
The scattering problem of a homogeneous magnetodielectric sphere of radius a , relative 
permittivity ε  and relative permeability μ  may be approached using the rigorous Mie 
expansion in spherical harmonics [1]. In particular, using the compact formalism that we have 
used in Ref. 19, it is easy to show that the scattered electric field for plane wave incidence 

02 /
0ˆ iz

inc E e π λ=E x  may be expressed as a superposition of spherical harmonics: 

 

( ) ( )1 1
0 0

1 1
2TM TE

s n n n n
n n

E c if cψ π μ ψ
∞ ∞

= =

⎛ ⎞= ∇×∇× + ∇×⎜ ⎟
⎝ ⎠
∑ ∑E r r , (3)  

 
where 0μ  are the free-space permeability and m

nψ  are scalar spherical harmonics, solutions of 
Helmholtz equation in the spherical coordinate system ( ), ,r θ φ , and we have assumed an 

i te ω−  time dependence. Using the notation introduced in Ref. 19, the Mie scattering 
coefficients nc  may be compactly written as: 
 

TM
TM n
n TM TM

n n

U
c

U iV
= −

+
, 

TE
TE n
n TE TE

n n

U
c

U iV
= −

+
, (4) 

 
with: 
 

( ) ( )
( ) ( )

0

0 0/

n nTM
n

n n

j x j x
U

xj x x j xε
= ′ ′⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

, 
( ) ( )

( ) ( )
0

0 0/

n nTE
n

n n

j x j x
U

xj x x j xμ
= ′ ′⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

, 

( ) ( )
( ) ( )

0

0 0/

n nTM
n

n n

j x y x
V

xj x x y xε
= ′ ′⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

, 
( ) ( )

( ) ( )
0

0 0/

n nTE
n

n n

j x y x
V

xj x x y xμ
= ′ ′⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

, (5) 

 
where ( )nj x  and ( )ny x  are the spherical Bessel functions of order n , 0 02 /x aπ λ=  and  

02 /x aπ εμ λ= . It should be noted that this notation is different from that used in [1], where 
the scattering coefficients (4) are indicated by na  and nb , respectively. 

In the far-field of the sphere, using the well known approximation of Hankel functions 

( ) ( ) 1lim
iz

n
n nz

ej z iy z i
z

− −

→∞
+ =⎡ ⎤⎣ ⎦ , the two non-zero components of the scattered electric field  

(3) may be written in simplified form as: 
 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

0

0

1 1
0

0
1

1 1
0

0
1

cos cos2 1, cos
2 1 sin

cos cos2 1, sin
2 1 sin

ik r
n nTM TE

n n
n

ik r
n nTM TE

n n
n

dP Pe nS iE c c
r n n d

P dPe nS iE c c
r n n d

θ

ϕ

θ θλθ ϕ ϕ
π θ θ

θ θλθ ϕ ϕ
π θ θ

∞

=

∞

=

⎛ ⎞+= +⎜ ⎟⎜ ⎟+ ⎝ ⎠
⎛ ⎞+= − +⎜ ⎟⎜ ⎟+ ⎝ ⎠

∑

∑
  (6) 

where ( )m
nP x  are the associated Legendre functions. 
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This implies that the differential scattering cross section ( ),d
scatσ θ φ , defined as the ratio 

of the scattered power in the angular sector 2r d dθ φ  over the impinging power flux density 
may be written as: 

 

( )
( )

( ) ( )

( )
( ) ( )

21 1
2

2 1
0

2 21 1
2

1

cos cos2 1sin
1 sin

,
4 cos cos2 1cos

1 sin

n nTM TE
n n

n
d
scat

n nTM TE
n n

n

P dPn c c
n n d

dP Pn c c
n n d

θ θ
ϕ

θ θλσ θ φ
π θ θ

ϕ
θ θ

∞

=

∞

=

⎡ ⎤⎛ ⎞+⎢ ⎥+ +⎜ ⎟⎜ ⎟⎢ ⎥+ ⎝ ⎠⎢ ⎥=
⎢ ⎥⎛ ⎞+⎢ ⎥+ +⎜ ⎟⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦

∑

∑
. (7) 

 
Integrating over the visible angles and exploiting the orthogonality of Legendre 

polynomials yields the well-known result for the total scattering cross section [1]: 
 

( ) ( )( )2
2 20

1

, 2 1
2

d TE TM
scat scat n n

n

d n c c
λσ σ θ φ
π

∞

Ω
=

= Ω = + +∑∫ , (8) 

 
defined as the ratio of the total scattered power over the impinging plane-wave power flux 
density.  

Using (7), we may also define the scattering cross section in specific directions of interest. 
For instance, noticing that: 

 
( ) ( ) ( ) ( )1 1

1cos cos 1
lim lim 1

sin 2
nn nP dP n n

dθ π θ π

θ θ
θ θ

+

→ →

+
= − = − , (9) 

 
the backscattering cross section yields the known formula: 

 

( ) ( )( )
22

0

1

1 2 1
4

n TM TE
bw n n

n

n c c
λσ
π

∞

=

= − + −∑ . (10) 

 
Similarly, we may define the forward scattering cross section, noticing that: 
 

( ) ( ) ( )1 1

0 0

cos cos 1
lim lim

sin 2
n nP dP n n

dθ θ

θ θ
θ θ→ →

+
= = − , (11) 

 
yielding the result: 

 

( )( )
22

0

1

2 1
4

TE TM
fw n n

n

n c c
λσ
π

∞

=

= + +∑ . (12) 

 
Moreover, applying the optical theorem (2) with normalized scattered field 

0
0 0/
2

ik rE e
s S

r
λ

π
=  and using the identity (11), the extinction cross section may be written in the 

well-known form [1]: 
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( )
2
0

1

2 1 Re
2

TE TM
ext n n

n

n c c
λσ
π

∞

=

⎡ ⎤= − + +⎣ ⎦∑ . (13) 

 
The absorption cross section abs ext scatσ σ σ= −  is zero for real ε  and μ  (limit of zero 

losses), and in this case it is expected that Eq. (8) and (13) yield the same value. All these 
properties are valid for any choice of the sphere parameters a , ε , μ . 

2.2 Quasi-static limit and the zero-forward scattering condition 

In the case of electrically small spheres 0 1x , the scattering coefficients usually tend to zero 

as ( )2 1
0

no x + , implying that the 1n =  coefficients and the associated dipolar fields dominate 
the scattering. In this case, these scattering coefficients are usually approximated by their 
first-order Taylor expansion [11-16]: 

 

0

3
1 00

2 1lim
3 2

TM

x

ic x ε
ε→

−=
+

, 
0

3
1 00

2 1lim
3 2

TE

x

ic x μ
μ→

−=
+

, (14) 

 
whereas the higher-order terms may be safely neglected, implying that: 
 

( )

( )

0

0

0

0

3 0
0 00

3 0
0 00

1 1lim , cos cos
2 2 2

1 1lim , sin cos
2 2 2

ik r

x

ik r

x

e
S E x

r

e
S E x

r

θ

ϕ

λ ε μθ ϕ ϕ θ
π ε μ

λ ε μθ ϕ ϕ θ
π ε μ

→

→

⎛ ⎞− −= +⎜ ⎟+ +⎝ ⎠
⎛ ⎞− −= − +⎜ ⎟+ +⎝ ⎠

, (15) 

 
and in particular for the forward scattering cross section: 
 

22
60
0

1 1
2 2fw x

λ ε μσ
π ε μ

− −= +
+ +

. (16) 

 
It is evident that in this limit the forward scattering tends to zero as 6

0x  and, as predicted 
by Kerker [11], it may be possible to achieve zero forward-scattering by applying condition 
(1), without necessarily implying zero scattering in all other directions [see Eq. (15)]. Notice 
that using Eq. (1) implicitly assumes that ε  and μ  are real quantities, i.e., in what follows 
we will neglect absorption losses. In practice, Kerker’s condition aims at canceling the 
forward scattering by achieving TE TM

n nc c= − , without necessarily making both of them zero, 
which is indeed possible using (14) in combination with (1). This ensures that the overall 
scattering may be significantly different from zero, despite its zero in the forward direction. 

However, since the scattered fields are non-zero for all other values of θ  in Eq. (15), this 
seems to contradict the optical theorem (13), that indeed would yield zero extinction cross 
section in this same limit. Indeed, in this limit Eq. (8) yields: 

 
222

60
0

2 1 1
3 2 2scat x
λ ε μσ
π ε μ

⎛ ⎞− −
⎜ ⎟= +
⎜ ⎟+ +⎝ ⎠

, (17) 

 
which, when condition (1) is applied, provides a non-zero scattering cross section: 
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( )
22

1 60
0

4 1
3 2scat x
λ μσ
π μ

−=
+

. (18) 

 
Also the total scattering cross-section tends to zero as 6

0x  in this quasi-static limit, but it 
may be evidently made much larger (even orders of magnitude larger) than the forward 
scattering cross-section when condition (1) is satisfied. On the other hand, Eq. (13) provides, 
in this limit for which TE TM

n nc c= − : 
 

( ) ( )1 1 0ext fwσ σ= = . (19) 
 
It is noticed, as an aside, that the total scattering cross section ( )1

scatσ  in (18) is actually 
twice as large as scatσ  for a regular sphere of same size with same value of μ , but 1ε =  [see 
Eq. (17)]. In other words, the proper choice of permittivity following Eq. (1) may drastically 
reduce the forward scattering of the sphere, but also double the total scattering for all other 
angles, compared to a magnetic sphere with same size and same permeability! The only 
possibility this may hold within power balance considerations is the trivial case for which 

1ε μ= = , for which zero forward scattering obviously coincides with zero total scattering. In 
all other circumstances, the total scattering appears to be larger than the total extinction of the 
particle, yielding an evident inconsistency in the power balance and in the application of the 
optical theorem to this special situation. 

2.3 A self-consistent quasi-static solution 
The solution of this incongruence in Eqs. (18) and (19) may be found by improving the 
approximation of the scattering coefficients represented by Eq. (14). Although this 
assumption is generally used when 0 0x →  [1], [3], [11-16], it should be realized that this 
approximation does not comply with power conservation requirements [20-24]. A purely 
imaginary scattering coefficient would indeed necessarily imply an effective polarization 
current in quadrature with the excitation field, which in turn would imply identically zero 
extracted power [from which the zero extinction cross section in Eq. (19)]. A correct, 
complete expression for the quasi-static scattering coefficients (14), which is consistent with 
power conservation, was originally suggested in Ref. 20, and it is commonly identified as the 
radiative correction [21]. This is given by the following expression within the present 
notation [24]: 

 

0

1
3

00

3 2lim 1
2 1

TM
nx

ic x ε
ε

−
−

→

+⎛ ⎞= − −⎜ ⎟−⎝ ⎠
, 

0

1
3

00

3 2lim 1
2 1

TE
nx

ic x μ
μ

−
−

→

⎛ ⎞+= − −⎜ ⎟−⎝ ⎠
. (20) 

 
It is noticeable that, for practical purposes, when 0 0x →  Eq. (20) tends to Eq. (14), but 

neglecting the relevant real part of the scattering coefficients [which is equivalent to 
neglecting nU  in the denominators of Eq. (4)] may affect the overall power balance, as in the 
present case. Of course, this choice is also consistent with the more general unitarity condition 
introduced in Ref. 22 to preserve the power balance in quasi-static scattering problems. 

Using (20) in combination with condition (1), we find that the forward scattering ( )0,0Sθ  
is now non-zero even in the limit of condition (1) and its residual value is: 
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( )
0

0

26
0 0

00

4 1lim 0,0
2 3 2

ik r

x

e x
S iE

rθ
λ μ

π μ→

−= −
+

, (21) 

 
in whose derivation we have implicitly assumed that 3

02 2 1 / 3xμ μ− − . This is usually 
the case in this quasi-static limit, since 0 0x → , unless we are very close to the special 
resonant condition of such magnetodielectric nanosphere, for which 2ε μ −  [still 
supported by condition (1)]. As first noticed in Ref. 12, this special resonant condition 
represents an exception to the zero-forward scattering theorem. In the following, we 
concentrate on all the other pairs of ( ),ε μ  values that satisfy (1) and support Eq. (21). 

The forward scattering cross section in this limit reads, using Eq. (21): 
 

( )
42

1 120
0

16 1
27 2fw x

λ μσ
π μ

−=
+

, (22) 

 
which is indeed orders of magnitude smaller compared to the scattering cross section (18), but 
it is not identically zero. 

The total scattering cross section is still well approximated by Eq. (18), but the total 
extinction cross section, which was zero in Sec. 2.2 simply because the scattering coefficients 
were assumed purely imaginary, now is consistent with the optical theorem and it has the 
same value as the scattering cross section, as expected: 
 

( ) ( )
22 2

1 60 0
0

4 1Im 0,0
3 2ext s xθ

λ λ μσ
π π μ

−= =⎡ ⎤⎣ ⎦ +
. (23) 

 
It is worth noticing that indeed Eq. (22) still ensures that, under Kerker’s original 

condition 4
2 1

με
μ
−=

+
, the forward-scattering may be made extremely small, orders of 

magnitude smaller than the scattering in all other directions, which is paradoxical, if read in 
conjunction with the usual interpretation of the optical theorem. We have outlined here, 
however, how this anomalous scattering feature may indeed fully satisfy the optical 
constraints of passivity and energy conservation. Moreover, we notice that under this 
condition the residual scattering in the forward direction (21) is purely imaginary, since its 
dominant real part, represented by (15), is identically zero under condition (1). This small 
residual imaginary term is the one that effectively contributes to the optical theorem, 
consistent with Eq. (2), and it cannot be neglected in this quasi-static limit, if not at the cost of 
violating the power conservation requirements. Indeed, a purely real scattered field in the 
forward direction, as the one calculated in (15) would imply zero extinction power. 

Another way of describing this solution to the previous inconsistency is that it is not 
possible to achieve TE TM

n nc c= −  with passive materials, unless in the special case of a 
transparent material ( 1ε μ= = , 0TE TM

n nc c= − = ). Under Kerker’s condition one can obtain 

Im ImTE TM
n nc c⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦ , which can drastically reduce the forward scattering, but not 

completely suppress it. In fact, using Eq. (20) one should expect a residual 
Re ReTE TM

n nc c⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ , which sum up in phase in the forward direction. This residual 
contribution to the quadrature component of the forward scattered wave is indeed responsible 
for the power balance due to scattering in all other directions. 
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From a physical standpoint, for a small scatterer the radiated spherical wave is indeed 
dominated by the contribution in phase with the impinging field, as is the induced dipole 
moment. In fact, the main shadow we usually experience in the forward direction from a 
regular scatterer is formed by the interference of the impinging fields and the scattered fields 
radiated with opposite phase. However, as discussed above and in Ref. 24, this portion of 
scattered field does not contribute to power extraction from the impinging wave, and it is 
necessary to consider the non-zero component in quadrature to the impinging fields to ensure 
power balance. In the zero-forward scattering limit, as in condition (1), we are effectively 
canceling the dominant in-phase contribution to the scattering in the forward direction, which 
does not contribute to the optical theorem. However, the residual small component of the 
scattered wave (21) in quadrature with the impinging wave, that cannot be canceled, ensures 
power balance, and the satisfaction of the optical theorem. 

It is evident from this discussion that it is indeed possible to conceive the design of a small 
magnetodielectric nanosphere that, although creating a very limited (almost zero) shadow in 
the forward direction, may still scatter a significantly larger field in all the other directions, as 
originally predicted by Kerker [11]. This anomalous particle would still satisfy the optical 
theorem, since the overall scattering from this particle is indeed low and the residual 
quadrature component of the forward scattering take into account of the extinction from the 
sphere. The apparent inconsistency outlined above is therefore explained. However, it is easy 
to realize that for larger sizes the forward scattering may be hardly made close to zero, since 
in such cases the scattering in all directions is expected to be significant and the 
corresponding quadrature component of the forward scattering may not be sufficiently small 
any longer. This implies that a zero-forward scattering particle is necessarily small compared 
to the wavelength, different from what presented in Ref. 14. In the following section, we 
provide some numerical examples that confirm and verify these theoretical findings and 
discuss the size dependency of this effect, in part consistent with Ref. 13. We will show in 
particular that the experimental results presented in Ref. 14 cannot be attributed to this effect, 
since the particles considered there are electrically too large, as anticipated in the comment 
[15]. 

2.4 Relationship with scattering cancellation and cloaking of sensors 
The recent interest in metamaterial cloaking and scattering cancellation from objects of 
various sizes [6]-[10] has revived the interest for anomalous scattering properties. It is 
relevant to stress that the forward scattering cancellation outlined here is drastically different 
from cloaking, and in a sense more challenging. The “nearly-zero” forward scattering 
particles analyzed here indeed present, on purpose, a significantly larger scattering in all other 
directions, and are therefore perfectly detectable from any observer not placed directly in the 
back of the object with respect to the source position. However, near absence of forward 
scattering implies the cancellation of shadow from an obstacle, which is the most difficult 
attribute to achieve also in total scattering cancellation and in cloaking. It is indeed less 
challenging to suppress, for instance, the backscattering from an object, which may be 
relatively easily achieved with anti-reflection coatings, stealth technology, or simply 
considering a matched object of any electrical size, since, when ε μ= , duality requires 

TE TM
n nc c= , and therefore 0bwσ =  in Eq. (10). 

The optical theorem is not necessarily an issue in cloaking problems: if the cloaking effect 
is ideal, i.e., no scattering and no absorption, the absence of scattering and absorption implies 
zero extinction, which is consistent with zero forward scattering. Therefore, cloaking and 
scattering cancellation in principle would not suffer from the power restrictions highlighted in 
the previous sections. It is still arguable whether it may be possible to completely suppress the 
scattering from an object, due to the uniqueness in inverse scattering problems [25-27], but 
this is clearly beyond the interests and scope of the present paper. However, there is a relevant 
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connection between cloaking phenomena and the forward scattering theorem in the recently 
introduced concept of cloaked sensors or receiving antennas [28-29]. As we have recently 
shown, the scattering cancellation mechanism that some plasmonic covers offer may be 
applied to sensing devices (e.g., antennas) and absorbing particles, conceiving a system that 
may absorb a portion of the impinging wave without necessarily creating a sensible scattering 
in its surroundings. Clearly, in this case power balance is a relevant factor, due to non-zero 
absorption in the system, and it should be properly taken into account as discussed below.  

In the general case, the extinction power may be expressed as the power associated with 
the cross-coupled interference between the impinging and scattered fields [1]: 

 

( )* *1 Re
2ext inc s s incS

P ⎡ ⎤= − × + ×⎣ ⎦∫ E H E H , (24) 

 
where ( ),inc incE H  are the impinging electric and magnetic fields, ( ),s sE H  are the scattered 
electric and magnetic fields and S  is any given surface surrounding the cloaked sensor. This 
implies that the power absorbed by a cloaked sensing device is necessarily associated with the 
interference between its own scattered fields and the impinging fields. If zero scattering is not 
possible in the case of absorption, we may expect from the previous analysis that the 
significant contribution to the scattering for power balance is the one scattered in the forward-
direction in quadrature with the impinging fields. It is not surprising, therefore, that one may 
achieve drastic reduction of the overall scattered fields by using an external plasmonic cloak 
[28]. Similar to what we have shown in the previous section, a good portion of the scattered 
fields do not contribute to the power balance, and they may be canceled with proper design. 
Of course, this does not mean that one may achieve identically zero scattering in this situation 
in which absorption is desirable, since a non-zero quadrature scattering component in the 
forward direction is always necessary to satisfy power balance and the optical theorem, 
similar to what we have discussed in the previous sections. This is consistent with the general 
requirement of minimum-scattering receiving antennas to produce a directive scattering 
pattern in the forward direction [30]. It is interesting how these seemingly unrelated concepts 
are all connected by common power balance considerations and the relation between different 
phase components of the scattered and incident fields. 

3 NUMERICAL RESULTS 
In order to validate the previous results, consider the scattering from a lossless 
magnetodielectric nanosphere with 3μ =  and 0 /100a λ= . With very good approximation, 
this size falls within the quasi-static limit, and therefore we may expect to see the results of 
the previous sections, and those reported by Kerker [11] to be confirmed. Figure 1(a) (black 
solid line) reports the variation of the forward scattering efficiency, defined as the ratio of the 
forward scattering cross section and the physical cross section of the sphere, 

( )2/fw fw aη σ π= , versus its permittitivity ε . Correspondingly, Fig. 1(b) reports the total 

scattering efficiency ( )2/scat scat aη σ π= . It is seen that at the value of permittivity predicted 
by (1), in this case 0.143ε , the forward scattering cross section is drastically reduced, 
without necessarily producing a dip in the total scattering efficiency. Indeed, as predicted in 
Sec. 2.2, the total scattering efficiency for this value of permittivity is actually 2 times as large 
as scatη  for 1ε = , despite the dramatic reduction of forward scattering (over 60 dB). Power 
conservation and the optical theorem, however, are indeed verified, consistent with Sec. 2.3, 
by the small residual component of forward scattering, fully in quadrature with the excitation. 
The two dominant scattering coefficients indeed satisfy, for 0.143ε , the relationships: 
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, (25) 

 
derived in the previous section, and ensure drastically reduced forward scattering [otherwise 
dominated by the relatively large imaginary parts of Eq. (25)], but also satisfaction of the 
power conservation requirements, associated with their much smaller residual real parts. 

 
Fig. 1. Variation of: (a) the forward scattering efficiency fwη , (b) the total scattering 

efficiency scatη ,  as a function of the relative permittivity of a magnetodielectric 
particle with relative permeability 3μ = . 

 
When a  is increased (different curves in Fig. 1), a minimum may still be obtained for values 
of permittivity near the one predicted by the quasi-static condition (1), although with some 
deviation associated with the retardation of the fields for larger spheres. Even when the size of 
the sphere is as large as one free-space wavelength, it is possible to somewhat reduce the 
forward scattering by some dBs by properly tuning the permittivity below that of the free-
space. Of course, forward scattering cannot be as small as that in the smaller spheres, due to 
the relevant scattering in other directions, but proper reduction may be obtained by canceling 
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( )Re 0,0sθ⎡ ⎤⎣ ⎦ , which does not contribute to the extinction power. The corresponding 
scattering cross sections, reported in Fig. 1(b), confirm that the total scattering is not 
drastically affected by the choice of permittivity near minε . The scattering peaks for negative 
values of permittivity are clearly associated with plasmonic scattering resonances [1], which 
are not of interest here. 

 
Fig. 2. Scattering pattern ( ),d

scatη θ φ  in the E and H planes for different sphere sizes 
for the minimum forward scattering condition derived as in Fig. 1. 

 
Figure 2 reports the patterns of the differential scattering efficiency 

( ) ( ) ( )2, , /d d
scat scat aη θ φ σ θ φ π=  for different sphere sizes. The sphere radius and the 

corresponding value of ε  are reported in each panel. For very small particles, as in Fig. 2(a), 
the scattering patterns in the E and H planes are identical, since the two scattering coefficients 
have same amplitude, satisfying Eq. (25). It is seen that the cancellation of ( )Re 0,0sθ⎡ ⎤⎣ ⎦  
implies a drastic reduction of forward scattering, producing almost zero shadow in the 
forward direction ( 0θ = ). It is interesting, however, that the scattering in other directions is 
increased, since the total scattering cross section is actually twice the one obtained for 1ε = . 
Even for 0 /10a λ=  [Fig. 2(b)] the situation is quite similar, although small differences in the 
two scattering planes start to arise. For 0 / 4a λ=  [Fig. 2(c)] the scattering pattern is still 
shifted towards the backscattering direction of the sphere, but it is seen that a non-negligible 
forward scattering is now necessary to sustain the total extinction from such larger particle. 
Indeed, in the forward direction a local angular maximum is visible in this case, produced by 
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( )Im 0,0sθ⎡ ⎤⎣ ⎦ , despite this value being the absolute minimum achievable in the forward 

direction (see Fig. 1). Finally, for 0 / 2a λ=  the forward scattering, although minimized, is 
very pronounced in both planes of polarization, and evidently the zero forward scattering 
condition does not hold any more in terms of the scattering pattern. As an aside, the interested 
reader may be referred to Ref. 13 for a series of additional numerical simulations regarding 
the dependence of the zero-forward scattering condition on the particle size. 

It is worth noticing in these plots that for larger particles zero forward scattering is not 
achievable, implying that the interpretation of the experimental evidence presented in Ref. 14 
may be questionable. In that paper, the authors consider a suspension of magnetite 
nanoparticles of few mμ  in diameter inside a ferrofluid background. Such suspension is well 
known to have tunable birefringent properties by varying the applied biasing magnetic field 
[14]. The authors have measured the optical transmission at 0 633nmλ =  through such 
collection of magnetic nanoparticles, verifying absence of transmission for a specific level of 
biasing magnetic field. They have attributed this effect to zero-forward scattering from the 
magnetic nanoparticles. However, their argument and interpretation is evidently flawed in the 
following ways: (a) zero forward scattering implies absence of shadow and therefore total 
transmission through a collection of particles.  This is the opposite of what the authors have 
measured, i.e., no transmission; (b) the particles are few wavelengths large; as evident from 
our Figs. 2 and 3 and from the comment [15], zero forward scattering is not achievable for 
such large particles; (c) the magnetic effects of these particles are only available at much 
lower frequencies, and are not obtainable at optical frequencies, where it is well known that 
all natural materials are characterized by a permeability very close to unity [31]. This implies 
that zero forward-scattering condition might not be attainable in the visible (if not in the 
trivial condition 1ε μ= =  for which the whole sample would become transparent). It is 
evident that the claim of having verified experimentally the zero-forward scattering concepts 
in Ref. 14 is not consistent with the previous theoretical results, and future experimental 
attempts should consider particles with smaller sizes and lower frequencies of operation, 
where magnetic effects are naturally available. 

Figure 3 reports various dispersion plots for the variation of the minimum forward 
scattering condition when the size of the sphere is increased, for different values of its 
permeability. Fig. 3(a) refers to the variation of the required permittivity minε  to achieve the 
minimum forward scattering. It can be seen that this value tends to Eq. (1) for very small 
spheres, but it varies in the region 1 1ε− < <  for larger sizes. A lower value of permittivity is 
required for larger magnetic effects, as expected from (1). Fig. 3(b) reports the dispersion of 

fwη  in the minimum forward scattering condition ( minε ε= , consistent with Fig. 3(a), solid 
lines) and in the regular case of 1ε =  (dashed lines). It is noted that a proper choice for the 
permittivity, following the curves in Fig. 3(a), may provide a substantial reduction of forward 
scattering compared to the regular case, even for relatively larger particles. This effect is 
present, despite the expected non-zero scattering for larger particles. Fig. 3(c) reports similar 
curves, but for the total scattering efficiency scatη . It is seen that, as predicted in the previous 
sections, for small spheres the total scattering is larger in the minimum forward-scattering 
condition than for a simple magnetic nanoparticle with 1ε = . However, for larger spheres the 
situation changes, and as expected the reduction of forward scattering coincides with a 
reduction of total scattering. Indeed, in this case the required permittivity tends to low positive 
values, that have been proven to provide the best cloaking performance in the scattering 
cancellation technique scenario [6-7]. Evidently, the cloaking in this case is not ideal, since 
we are not using a different layer as done in the plasmonic cloaking scenario, but we are 
simply varying the permittivity of the same magnetic sphere. However, it is interesting to 
notice how low positive permittivities in this scenario may also partially suppress the forward 
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and overall scattering from a relatively large sphere. Somehow, this connects once again the 
zero-forward scattering condition with the plasmonic cloaking technique for larger spheres. 

 
Fig. 3. Variation of: (a) the permittivity required for minimum forward-scattering, 
(b) fwη , and (c) scatη  as a function of sphere normalized radius. Solid lines refer to 
the minimum-forward scattering condition, dashed lines to magnetic spheres with 

1ε = . 
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Figure 4 reports similar plots considering the presence of realistic losses in the permittivity, as 
r iiε ε ε= + , for 3μ = . In particular, Fig. 4(a) refers to the forward scattering efficiency, 

showing that the minimum level of forward scattering is necessarily increased by absorption 
in the particle for a given size. This is particularly evident for smaller particles, a regime for 
which it is well known that absorption dominates the extinction properties. It can be seen that 
in this scenario the forward scattering minimization is more relevantly affected by moderate 
losses.  In Fig. 4(b) we have reported in this same scenario the total scattering efficiency scatη  

(solid lines) and the total extinction efficiency  ( )2/ext ext aη σ π=  (dashed lines). It is seen that 
the presence of losses mainly affects the extinction cross section, which is increased more 
relevantly for smaller particles. This is evidently connected with the increase in the forward-
scattering in panel a). One may speculate, however, that with moderate losses the minimum 
forward-scattering effects may still be experimentally verifiable for moderately sized spheres. 

 
Fig. 4. Similar to Fig. 3b and 3c, but considering losses in the permittivity of the 
particle, as r iiε ε ε= + . The dashed lines in panel b) correspond to the extinction 
efficiency. 
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4 CONCLUSIONS 
We have presented here a thorough analysis of the zero forward-scattering condition for small 
magnetic particles, first introduced by Kerker et al. in 1983 [11]. In particular, we have 
resolved an apparent inconsistency between the zero forward-scattering condition and the 
optical theorem, by using an improved quasi-static analysis consistent with power balance 
considerations. Then, we have considered the variation of this effect on the size, constitutive 
parameters and losses in the particles, and we have discussed how the interpretation of the 
recent experimental attempts by Mehta et al. to verify these effects reported in Ref. 14 may be 
questionable. However, we have also discussed how it is indeed possible to conceive a non-
zero scattering pattern with a sharp minimum in the forward direction for sufficiently small 
magnetodielectric particles, possibly verifiable at microwave or far-infrared regime, where 
magnetic particles are naturally available. Finally, we have related these effects to the recent 
interest in cloaking applications using metamaterials, and in particular to cloaked sensors and 
absorbing particles. These findings may be particularly useful for the physical understanding 
of some of the anomalous scattering properties associated with cloaking and transparency 
effects, which have been recently discussed in the literature. 
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