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One approach to experimental science involves creating hypotheses, then testing them

by varying one or more independent variables, and assessing the effects of this variation

on the processes of interest. We use this strategy to compare the intellectual status

and available evidence for two models or views of mechanisms of transmembrane

drug transport into intact biological cells. One (BDII) asserts that lipoidal phospholipid

Bilayer Diffusion Is Important, while a second (PBIN) proposes that in normal intact cells

Phospholipid Bilayer diffusion Is Negligible (i.e., may be neglected quantitatively), because

evolution selected against it, and with transmembrane drug transport being effected by

genetically encoded proteinaceous carriers or pores, whose “natural” biological roles, and

substrates are based in intermediary metabolism. Despite a recent review elsewhere,

we can find no evidence able to support BDII as we can find no experiments in intact

cells in which phospholipid bilayer diffusion was either varied independently or measured

directly (although there are many papers where it was inferred by seeing a covariation

of other dependent variables). By contrast, we find an abundance of evidence showing

cases in which changes in the activities of named and genetically identified transporters

led to measurable changes in the rate or extent of drug uptake. PBIN also has considerable

predictive power, and accounts readily for the large differences in drug uptake between

tissues, cells and species, in accounting for the metabolite-likeness of marketed drugs,

in pharmacogenomics, and in providing a straightforward explanation for the late-stage

appearance of toxicity and of lack of efficacy during drug discovery programmes despite

macroscopically adequate pharmacokinetics. Consequently, the view that Phospholipid

Bilayer diffusion Is Negligible (PBIN) provides a starting hypothesis for assessing cellular

drug uptake that is much better supported by the available evidence, and is both more

productive and more predictive.
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INTRODUCTION

“The overthrow of the phlogiston theory involved the develop-
ment of a superior conceptual theme” (Conant, 1950).

As part of an ongoing discussion of the importance of trans-
porters in drug distribution that we (Dobson and Kell, 2008;
Dobson et al., 2009a,b; Kell and Dobson, 2009; Kell et al., 2011,
2013; Lanthaler et al., 2011; Kell, 2013; Kell and Goodacre, 2014)
and others (e.g., Sai and Tsuji, 2004; Shitara et al., 2006; Anderson
and Thwaites, 2010; Franke et al., 2010; Giacomini et al., 2010,
2013; Lai et al., 2010; Burckhardt and Burckhardt, 2011; Fromm
and Kim, 2011; König, 2011; Mruk et al., 2011; Nies et al., 2011;
Thompson, 2011; Tirona, 2011; Zolk and Fromm, 2011; Degorter
et al., 2012; Mandery et al., 2012; Riedmaier et al., 2012; Sprowl
et al., 2012; Chu et al., 2013b; Estudante et al., 2013; Giacomini

and Huang, 2013; Hagenbuch and Stieger, 2013; König et al.,
2013; Schlessinger et al., 2013a,b; Tamai and Nakanishi, 2013; Lai
and Hsiao, 2014; Sprowl and Sparreboom, 2014) have been high-
lighting, Smith and colleagues recently published a review (Smith
et al., 2014) that claims that the hypothesis that drugs are usually
transported into cells via protein carriers is “not a sound scientific
principle and lacks experimental evidence.” Smith et al. (2014) set
out their arguments in considerable detail, and this allows us, in
the present publication, to present a contrary view and rehearse
the core arguments that pertain to the mechanism(s) of drug and
xenobiotic transport across biological membranes.

First, we might usefully establish (or, more accurately, restate)
what our views are. The abstract of the Smith article (Smith et al.,
2014) (“Recently, it has been proposed that drug permeation is
essentially carrier-mediated only and that passive lipoidal diffu-
sion is negligible”) recognizes that we imply a dominant role for
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transporter-mediated uptake of drugs into cells (note the titles of
Dobson and Kell, 2008; Dobson et al., 2009a; Kell and Dobson,
2009; Kell et al., 2011, 2013). We do not assert that carrier-
mediated transport is the only means by which drugs and other
xenobiotics gain access to cells, nor do we seek to invalidate pas-
sive lipoidal diffusion as an alternate mechanism. Thus, we start
by explaining, from a Popperian standpoint, why we do not seek
to “invalidate” bilayer lipoidal diffusion. Figure 1 provides an
overview of this article in the form of a mind map (Buzan, 2002).

SCIENTIFIC PRINCIPLES

A well-known scientific principle is that of hypothesis-driven or
hypothetico-deductive science and scientific reasoning. It is due
in its most widely recognized form to Karl Popper [see (Medawar,
1982; Popper, 1992; Chalmers, 1999), and for its iterative contrast
with data-driven approaches see (Kell and Oliver, 2004; Franklin,
2005; Kell, 2006, 2012; Elliott, 2012)]. In this view (as it is applied
to experimental science), one produces a hypothesis that allows
one to vary something as an independent variable (properly, a
parameter), and predicts the observable effects (data) to which
one’s hypothesis would lead, within a deductive framework. The
data observed are then consistent or otherwise with those pre-
dicted on the basis of the hypothesis. In the Popperian view,
then, hypotheses are there to be refuted but cannot be “proven.”
So, while we consider that bilayer lipoidal diffusion is normally

probably negligible (i.e., may be neglected in quantitative terms)
in intact biological cells, at no time have we tried to “invalidate”
passive lipoidal diffusion across real and intact biological mem-
branes, because we have neither tried to measure it directly nor
to vary it as an independent variable. Neither, so far as we can
tell, has anyone else. Thus, we merely point out that there is no
actual evidence for it occurring in normal biomembranes; what
there are (in abundance) are data sets of e.g., drugs appearing in
cells when added externally, and we note that people choose to
interpret this as evidence somehow supporting bilayer diffusion,
but that is not at all the same thing (Ioannidis, 2005; Broadhurst
and Kell, 2006) and, in fact, direct experimentation suggests quite
the opposite.

So, to be clear: our views are that we find no serious evi-

dence for bilayer lipoidal diffusion of drugs into cells. A major
reason for our thinking comes from the fact there are so many
cases (that we discuss below) in which drugs or other natural
and xenobiotic molecules simply do not seem to enter or exit
from cells, at least without identifiable transporters being present.
This implies that the “background” rate of transport (from the
exterior all the way into the aqueous cytoplasm) through any
bilayer, as assumed to be present in all mammalian cells, must
be negligible. We also consider it likely that evolution long ago
selected against cells that might not be osmotically active if they
became permeable to all kinds of small molecules. By contrast, we

FIGURE 1 | A “mind map” (Buzan, 2002) summarizing the structure and contents of this paper. To follow this, start at the top and read clockwise.
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find much evidence (almost wherever we look) for the presence
of carrier-mediated transport (whatever interpretations may be
put on the data in any specific papers, whether by their original
authors or by commentators), because such molecules allow for
controlled permeability, and transporter activities can be and are
varied experimentally as independent variables with predictable

and measurable effects. Figure 2 re-plots data from a competition
experiment (Lanthaler et al., 2011) in which we compared the
ability of baker’s yeast strains carrying single-gene deletants to
display resistance to a toxic concentration of a drug (in this case
diphenyleneiodonium, DPI), the idea being that a strain lacking
a non-essential transporter for the drug would display resis-
tance. We would also stress that this experiment can only work
effectively to discriminate between the different mutant strains
when any background Phospholipid Bilayer diffusion Is Negligible
(PBIN). If there was a significant transporter-independent back-
ground rate, all strains would be selected (or otherwise) to vir-
tually the same extent. Figure 2A highlights one transporter that
displays a significant extent of such resistance (as the nrt1 dele-
tant). NRT1 encodes a nicotinamide riboside transporter, which
led us to hypothesize (i) that such a deletant would display resis-
tance to DPI when cultured axenically, and (ii) that nicotinic acid
would be able to compete with the DPI and effect phenotypic
resistance. Figure 2B shows that both predictions are entirely
fulfilled.

A related aspect of the hypothesis-driven approach, and note
that we do also recognize the great (and perhaps greater) value of
data-driven approaches (Kell and Oliver, 2004), is the view that a
good theory or hypothesis has predictive power both for existing
data and for other experiments not yet done. We give examples
later.

RE-STATEMENT OF OUR VIEW

Our view for the transport of xenobiotic molecules (that include
drugs) into intact cells might better be referred to as being that,
in normal intact cells, drug molecules do not mysteriously float
across any untrammeled bilayer portions of membranes that may
exist, and thus that PBIN. This does not therefore have anything
to say about endocytosis, paracellular transport or other modes
of drug passage within tissues. Various corollaries or contingent

and testable hypotheses follow from this (and see later), however—
for instance that in many cases one ought to be able to find
the transporters, that the permeability to drugs of intact biolog-
ical membranes that lack any suitable transporters is negligible,
and that transporter-mediation can easily account for the very
heterogeneous distributions of drugs between different cells, tis-
sues, individuals, or species. The PBIN hypothesis has the benefit
of being simple (as per Occam’s razor Westerhoff et al., 2009)
and has high explanatory power for phenomena that we think
are otherwise hard to explain on an alternative hypothesis that
phospholipid Bilayer Diffusion Is Important (BDII). The Occam’s
razor argument means that if we can explain available data in
terms of transporters (PBIN vs. BDII) without any need to invoke
bilayer diffusion, then PBIN is a preferable hypothesis, that like all
good hypotheses can also be tested with well-designed (i.e., gen-
uinely discriminating) experiments and, in principle, refuted in
particular cases.

FIGURE 2 | Variation of transporter expression in the yeast gene

knockout collection, as an independent variable, leads to measurable

changes in the selection of different strains when exposed to toxic

concentrations of a drug (here diphenyleneiodonium chloride, DPI),

shown in Figure (A). The experiment is replotted and reannotated from

Lanthaler et al. (2011). (A) the strains are competed in a fermentor that

either does or does not contain diphenyleneiodonium, each strain being

an independent variable, and their effective selection plotted as the mean

amount of each strain (on the ordinate) remaining relative to the mean

amount of each strain in the controls (on the abscissa), both being

dependent variables. The data imply that resistance to the drug is

conferred when the nrt1 transporter is knocked out, and that this is the

ones to test directly for transporter activity. The two red lines show the

range in which 98% of deletant lie in duplicate control experiments,

thereby giving an indication of the experimental noise. (B). Assessment

via maximal growth rate of the resistance of wild type (YDL 227c) and

nrt1 deletant strains to different amounts of DPI and its protection by

10 µM nicotinic acid (NA). The structures of DPI and NA are also shown

(NA was used as nicotinamide riboside was unavailable). For further

information, see Lanthaler et al. (2011).

TERMINOLOGY

Let us also restate and clarify the confused terminology that dogs
this field: (i) “active” transport means uptake or indeed efflux
(usually—and in this context more or less inevitably—via one or
more transporters) that is concentrative in nature (and necessar-
ily driven by an “external” energy source); (ii) “passive” transport
simply means transport that is not concentrative in nature, i.e.,
it is equilibrative of transmembrane thermodynamic activities.
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Often, the latter is assumed to mean via lipoidal diffusion, but in
general (in the field of biological transmembrane transport) no
mechanism is implied by the term, and it is best if one always
states what (if any) mechanism is implied. If we state “bilayer
lipoidal” that is what we mean, but if we do not state a mechanism
we leave it open. Passive transport through transporters is also
equilibrative (of thermodynamic activities, related to free concen-
trations) and is normally (and correctly and usefully) referred to
as “facilitated diffusion.”

ABSENCE OF EVIDENCE IS NOT EVIDENCE OF ABSENCE: IF

YOU DO NOT KNOW ABOUT A DRUG TRANSPORTER, IT

DOES NOT MEAN THAT IT IS NOT THERE AND ACTIVE

A typical device used by those claiming “evidence” for the BDII
hypothesis is to find a system and substrate in which there is
uptake that is at least partially through a known transporter, to
inhibit that transporter, and then simply to state that the rest of
the uptake is therefore by lipoidal diffusion. This is, rather obvi-
ously, an inadequate and illogical interpretation since, in most
cases, where one transporter is known so are a number of oth-
ers [e.g., (Kell et al., 2011, 2013; Lanthaler et al., 2011; Sprowl
and Sparreboom, 2014), and the same is true for ligands generally
(Kell et al., 2013)]. At all events, it is clearly illogical to consider
that this constitutes any kind of evidence for BDII when one
knows nothing about the other transporters that may be active
in the same tissues on the substrate of interest (Kell et al., 2011,
2013).

Quoting from a recent example Smith et al. (2014): “Additional
recent (sic) data (Xu et al., 1998) from fluorine NMR studies
on uptake of modified nucleosides (L-FMAU) into erythrocytes
(biological systems that include transporters) provide clear indi-
cation (sic) of two different mechanism (sic) governing uptake
of L-FMAU in erythrocytes: facilitated transport via nucleoside
transporter and non-facilitated diffusion.” In fact, they do not.
What Xu et al. (1998) actually showed was that some of the uptake
of the nucleoside was inhibited by an inosine analog, consid-
ered to be an inhibitor of “the” nucleoside transporter, but the
rest of the uptake was not affected either by thiol reagents or by
uracil (a substrate for a nucleobase—rather than nucleoside—
transporter). They did not actually measure lipoidal diffusion—
they simply assumed it on the basis that they were not aware of
any other transporters, so there is not even the possibility of a
“clear indication.” However, in the 16 years since that publication,
what we do have clear evidence for is that there are at least seven

major transporters for nucleosides in humans (He et al., 2009;
Hediger et al., 2013) (http://slc.bioparadigms.org/) [viz. concen-
trative nucleoside transporters CNT1-3 of the SLC (Schlessinger
et al., 2013b) 28 family (Gray et al., 2004; Young et al., 2013)
and equilibrative nucleoside transporters ENT1-4 of the SLC29
family (Baldwin et al., 2004; Young et al., 2013)], albeit some
nucleobases will also use these transporters (Quashie et al., 2008,
2010). Of the SLC29 family, mainly ENT1 seems to be expressed
in erythrocytes (Endres et al., 2009a,b), but there are indications
that other transporters contribute to the very active nucleoside
uptake into erythrocytes (Löffler et al., 2007); the expression
levels in erythrocytes of the other SLC29 family members and
of the widely expressed CNT1-3 are apparently unknown. All

nucleoside transporters (including those of the CNT family) are
expressed, often quite strongly, in lymphocytes (Conklin et al.,
2012), however. There are also some 31 nucleotide-sugar trans-
porters (members of the SLC35 family; Ishida and Kawakita,
2004; Song, 2013) whose expression levels and specificities in
erythrocytes are not known, and other transporters may also be
involved (Trigueros-Motos et al., 2012). In conclusion, it is not
appropriate to claim “evidence” for a process (lipoidal diffusion)
when one is not in fact measuring it, but simply assuming or
inferring it (while ignoring many other possible mechanisms).

CORRELATION OF PARTICULAR ACTIVITIES WITH ANY

OTHER ACTIVITIES OR WITH BIOPHYSICAL PROPERTIES IS

NOT CAUSATION AND CANNOT EXPLAIN MECHANISMS

Many papers used to construct arguments as to the mechanisms
of transmembrane drug transport show correlations between
various things and take them as evidence for mechanisms (par-
ticularly BDII). We have pointed out many times that these kinds
of correlations show nothing except that they exist in the systems
stated. An attempt to indicate causation requires that something
is varied (and usually plotted on the abscissa) as an indepen-

dent variable. Note that dependent variables cannot be stated as
causes; only independent variables or parameters play these roles
(Kell and Westerhoff, 1986). Many of the correlations given (e.g.,
Smith et al., 2014) (and they always seem to be given in log.-
log. space) have points that are two orders of magnitude apart
in one axis. Even if the correlations were valid, they still would
not tell us about mechanisms (Kenny et al., 2014); this requires
other kinds of experiments. Thus, there are also excellent cor-
relations between the anaesthetic potency of various molecules
and their lipophilicity, but equally good correlations exist for the
same molecules between lipophilicity and the ability to inhibit
luciferase, a soluble enzyme (that is not considered to be involved

FIGURE 3 | Transport reactions may be discriminated both by whether

they are equilibrative or concentrative in nature (a thermodynamic

property) and whether they involve solely any phospholipid bilayer

that may be present or instead rely on specific transporters (a

mechanistic assessment). It is important not to confuse the two.
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in mammalian anesthesia as it is not in fact present in mammals)
(Franks and Lieb, 1984).

It is also important to recognize that thermodynamics (and
any other state variables) cannot tell you about mechanism either.
The “pH-partition theory” (Hogben et al., 1959), of which much
is made (e.g., Smith et al., 2014), simply tells one that protonable
molecules that can exist at a certain pH in both ionized and non-
ionized forms, and that are mainly permeable in the uncharged
form, will distribute themselves according to any existing trans-
membrane pH gradients. This is extremely well-known (and not a
recent observation), and such distributions have indeed long been
used to estimate such pH gradients (Waddell and Butler, 1959),
including by us (Kell et al., 1978a,b; Sorgato et al., 1978). Osmotic
swelling methods may also be used to estimate the nature (but
not the pathway or mechanism) of the most strongly permeat-
ing species (Kell et al., 1981). However, again, it is important to
recognize that while the absence of a concentration gradient may
indicate “the passive diffusion nature of (a transport) process,”
the absence of such a gradient does not permit one to conclude
whether the transport is through a bilayer by lipoidal diffusion
or is carrier-mediated. Thermodynamics can speak to whether a
process is passive in nature (i.e., not energy coupled) but not to
its molecular mechanism. These two aspects form the orthogonal
axes of a “Boston matrix” (Figure 3).

Smith et al. (2014) also repeat claims that a correlation
between drug uptake rates of MDCK and Caco-2 cells shows
that there must be lipoidal diffusion. This claim is, at best, ques-
tionable, when a large fraction of the drugs in the study cited
(Irvine et al., 1999) have known transporters (that we have listed
previously, Kell et al., 2011).

CORRELATION OF DRUG UPTAKE INTO ERYTHROCYTES WITH LOG P

According to Smith et al. (2014), their “Figure 4 shows that the
uptake of drugs into human red blood cells significantly corre-
lates with log P.” We reproduce their Figure 4 as our Figure 4A

below. The ordinate data are in fact taken from a review by
Hinderling (1997) and an earlier monograph. What is plotted on
the ordinate, however, is not the uptake (or partitioning) but (for
whatever reason) the logarithm of the uptake/partitioning. When
we plot erythrocyte uptake against the ability to partition (and not
its logarithm) into octanol (Figure 4B), we find that there is, in
fact, little correlation. This is unsurprising given that the slope of
Figure 4 in Smith et al. (2014) in log-log space is just 0.22 and that
some pairs of data points are more than two orders of magnitude
away from others with a similar ordinate or abscissa value. We
would repeat our advice (Kell et al., 2011) against putting one’s
faith in log-log plots when their slope is far from unity. Other
examples of a lack of correlation of uptake with log P/log D are
given below. [Phenomena that do correlate with log P, however,
include protein binding (Hughes et al., 2008), drug promiscu-
ity (Azzaoui et al., 2007; Leeson and Springthorpe, 2007; Hann,
2011; Kell et al., 2013) and toxicity (Hughes et al., 2008; Hann,
2011)].

INADEQUATE CROSS-VALIDATION OF PREDICTIVE MODELS

According to Smith et al. (2014) “The CNS represents an impor-
tant vascular/cellular barrier that is accessed in most cases by

FIGURE 4 | Relationships between uptake of drugs into erythrocyte

and their log P, (A) as redrawn from the plot in Figure 4 of Smith et al.

(2014), along with their best-fit straight line (logKe/p,u = −0.013 +

0.22 log Poct ), r2
= 0.59, and (B) the same data plotted with the

ordinate encoded linearly, using the same colored symbols as in

Figure 4A. We do not try to fit a straight line through the left-hand 32 drugs

and the right-hand 6 drugs.

lipoidal diffusion and is amenable to quantitative structure-
permeation relations (Ooms et al., 2002).” Apart from the fact
that this is again merely a self-defining assertion (and, see below,
because there is little or no paracellular transport, the blood-brain
barrier (BBB) arguably represents a system that is in fact hard

to explain in this way), the paper cited (Ooms et al., 2002) is a
very poor example of statistical modeling. A four-latent-variable
partial least squares model (effectively a form of correlation) is
formed based on (variously) 79–83 objects (compounds) (four
inconvenient “outliers” were removed. . . ; Ooms et al., 2002) and
31–72 variables (descriptors), using a version of leave-one-out
cross validation. Even with this, the correlation coefficient r2 in

log-log space between experimental and predicted values of BBB
permeation is only 0.68–0.76 (the slope is not given in the paper),
and the q2 values are just 0.5–0.65. However, this approach to
QSAR/QSPR has since been questioned seriously (e.g., Golbraikh
and Tropsha, 2002; Cronin and Schultz, 2003; Eriksson et al.,
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2003; Golbraikh et al., 2003; Tropsha et al., 2003; Broadhurst and
Kell, 2006; Tropsha, 2010), and was before (Kell and Sonnleitner,
1995), as the failure to use any kind of external validation set (and
the paper cited Ooms et al., 2002 did not) makes it extremely
prone to over-fitting.

INTELLECTUAL CHALLENGES AROUND BILAYER LIPOIDAL

PERMEABILITY vs. CARRIER-MEDIATED DRUG TRANSPORT

Smith et al. (2014) raise 15 points that we have made in earlier
papers, and offer alternative views. We rehearse these now, since
they cover the space of the subject matter quite effectively. The
overall aim is (presumably) to find good experiments that will
allow us to differentiate between lipoidal diffusion and carrier-
mediated transport of different xenobiotics across the membranes
of real biological cells, and, where relevant, we shall seek to
suggest some based on the 15 points. Later, we suggest others
that we think are rather better. In the following, it should be
noted that “statements” and “responses” come verbatim from
Smith et al. (2014), the former are that review’s summary of
our position and the latter represent its rebuttal of our position;
“counters” represent this review’s answers to the points made in
those rebuttals.

1. Statement: “Lipophilic cations are charged and cannot
cross membranes owing to Born charging. Response: Drug
molecule ions are in equilibrium with neutral non-ionized
drug molecules, which have much higher lipophilicity and
much higher passive diffusion permeation rate. According to
the pH-partition theory, permeation rate varies with solu-
tion pH and a compound’s pKa such that an increasing ratio
of non-ionized/ionized forms correlates with increasing per-
meation rate.” Counter: Smith et al. (2014) seem to miss
what we indicated is meant by a lipophilic cation in this
context. A typical example given (Dobson and Kell, 2008) is
that of the dibenzyldimethylamonium lipophilic cation, that
enters yeast via a thiamine transporter (Barts et al., 1980).
Lipophilic cations of this type contain quaternary nitrogen
atoms with no protons bound directly to the nitrogen; in
other words, at any biologically relevant pH, they are always
cationic, and they are not “in equilibrium with neutral non-
ionized drug molecules.” The same is true for other lipophilic
cations of this type, including those we have used—such as
butyltriphenylphosphonium (Mccarthy et al., 1981).

2. Statement: “The mass ratio of protein:lipid in vivo (1/1 to
3/1) affects the transport properties of lipids. Artificial mem-
branes do not model biological membranes, owing to the
high protein content in vivo. Response: These ratios include
the cytoplasmic and exoplasmic portions of membrane pro-
tein mass, not just the relevant transmembrane fraction. The
lipid:protein molar ratio is estimated as 40:1, making lipid
an important portion of the membrane exposed to drug
molecules. A further refined consideration would take into
account the relative cross-sectional area at the membrane
surface of the 40 phospholipid molecules to one typical pro-
tein. The lipid surface area would still be significantly greater
than that of the transporter protein.” Counter: The surface
area per se is not the question. What matters is the extent

to which the presence of high amounts of protein in a cell
membrane (Dupuy and Engelman, 2008), often binding spe-
cific lipids (Laganowsky et al., 2014) (including cholesterol;
Song et al., 2014) and certainly altering their organization
(Mitra et al., 2004; Engelman, 2005; Mclaughlin and Murray,
2005; Beswick et al., 2011; Coskun and Simons, 2011; Kusumi
et al., 2011; Lee, 2011a,b; Domański et al., 2012; Koldsø and
Sansom, 2012; Magalon et al., 2012; Mueller et al., 2012;
Smith, 2012; Goose and Sansom, 2013; Javanainen et al.,
2013; Van Der Cruijsen et al., 2013) (and vice versa; Li et al.,
2012; Denning and Beckstein, 2013), alters any ability of drug
molecules to cross via the lipoidal bilayer part of the mem-
branes in which these proteins exist. This means that any
direct change of lipids will also have the potential likelihood
of affecting transporters, so is not of itself a discriminating
experiment if transporter activities are not measured. We see
an important role for molecular dynamics simulation studies
here [see e.g., those of Sansom and colleagues (Stansfeld and
Sansom, 2011; Stansfeld et al., 2013), of Tajkhorshid and col-
leages (Khalili-Araghi et al., 2009; Wang et al., 2010b; Enkavi
et al., 2013; Moradi and Tajkhorshid, 2013; Shaikh et al.,
2013; Han et al., 2014; Mishra et al., 2014), and of others
(e.g., Gedeon et al., 2010; Skovstrup et al., 2012; Denning
and Beckstein, 2013; Koldsø et al., 2013; Schlessinger et al.,
2013b)], and note that even CO2 can traverse membranes via
the central pore in aquaporin (Wang et al., 2010b; Kaldenhoff
et al., 2014; Li et al., 2014). It is here worth reminding
readers of what membranes actually look like (in cartoon
form) (Engelman, 2005), of the size of phospholipid head
groups relative to the size of a drug such as atorvastatin
(Figures 5A,B), and of the consequent unlikelihood of a drug
floating unaided swiftly through a phospholipid bilayer in a
real biomembrane.

3. Statement: “Correlations of drug uptake with log P and
Caco-2 permeation can be weak. Response: For drugs per-
meating predominantly by passive lipoidal diffusion, the
apparent Caco-2 permeability coefficient, Papp, can be (and
often is) affected by the aqueous boundary layer, filter, para-
cellular, and lipoidal (transcellular) permeability, as well as
the solution pH, as illustrated by the examples in Figure 5 of
Smith et al. (2014). log P cannot be directly compared to log
Papp. The Caco-2 intrinsic permeability, log P0, is the ratio-
nal term to compare to log P. P0 is easy to deduce from Papp,
but this is seldom done, which often leads to “weak” correla-
tion, as “apple seeds are compared to whole watermelons.”
Caco-2 cells from 10 different laboratories were compared
in terms of transporter mRNA levels of 72 drug and nutri-
ent transporters, and 17 other targets. It was concluded that
“Caco-2 cells from different laboratories produce different
results even when using standard protocols for transport
studies. The differences may be due to transporter expres-
sion as shown for e.g., PepT1 and MDR1 which in turn is
determined by the culture conditions. Although the majority
of the laboratories used similar culture conditions, absolute
expression of genes was variable indicating that even small
differences in culture conditions have a significant impact
on gene expression, although the overall expression patterns
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FIGURE 5 | A typical biomembrane drawn roughly to scale, indicating

the typical protein:lipid mass ratio and the possible means by which a

small molecule drug (atorvastatin, also drawn to scale) might cross,

including (A) bilayer lipoidal diffusion through bilayer areas nominally

unaffected by the presence of proteins, or (B) by hitchhiking a lift on

transporters (Schlessinger et al., 2013b) normally present for the

purposes of intermediary metabolism. At issue is the question of

whether there is any untrammeled bilayer that might let the atorvastatin

leak across, and whether biophysical properties such as log D or log P can

account for this. Typically atorvastatin is in fact transported by a bile acid

transporter known as OATP1B1 (SLCO or SLC21 family) (e.g., Hagenbuch

and Stieger, 2013; Higgins et al., 2014).

were similar.” Therefore, it is not astonishing that results
of Caco-2 cell based permeabilities, when correlated with
octanol log P/D values, sometimes show differences in corre-
lations. This is mainly due to the origin and composition of
the analyzed data set [ratio actively vs. passively (lipoidal dif-
fusion) transported compounds] and use of partition coeffi-
cients (log P) or pH-dependent distribution coefficients (log
D). Interestingly, correlations of transport studies performed
with different cell lines (e.g., Caco-2/MDCK) commonly
used in absorption prediction, with presumably different
transporter expression levels, often give excellent correla-
tions, further supporting the coexistence of active and passive
transport in biological systems.” Counter: So many differ-
ent things are confused here that it is hard to know what
point is actually being made. First, there is the self-defining
prophecy (or circular argument) that starts by asserting “for
drugs permeating predominantly by passive lipoidal diffu-
sion” when this is what we are trying to assess! Then the fact
that there is experimental (inter-laboratory) noise in Caco-
2 cell measurements is used simultaneously to argue both
that it is unsurprising that differences are found, but also

that one finds similarities. Finally, there is then a complete
jump in logic (“further supporting the coexistence of active
and passive transport in biological systems”) that relates
concentrative uptake (active) to correlations found in two
different cell lines that each express hundreds of transporters

(Anderle et al., 2004; Landowski et al., 2004; Pshezhetsky
et al., 2007; Ahlin et al., 2009; Chen et al., 2010; Volpe, 2011)
(and the human genome encodes more; Hediger et al., 2013;
Schlessinger et al., 2013b; Viereck et al., 2014). To reiterate:
such correlations, if found, can occur regardless of mecha-
nism. When found, and when transport is equilibrative rather
than active, they have nothing at all to say about mechanism
(whether passive lipoidal or facilitated diffusion, or both,
or neither). When they are not found (and there are many
examples), one mechanism that can underpin this is carrier-
mediated active transport that may occur in some cases but
not others depending on the presence of relevant transporters
and suitable thermodynamic gradients providing a source of
free energy.

4. Statement: “Transport across model artificial membranes is
stated to occur via pore defects or dissolution in the lipid
mixture that are not seen in vivo. Response: The stud-
ies cited are computational simulations (so-called molecular
dynamics) of Na+ and Cl− ion (non-drug-like) transport
under unusual conditions. No convincing experimental evi-
dence for the relevance of pores has been reported. Other
experiments indicate the unimportance of pores. Membrane
resistance excluding pore diffusion is usually determined
by conductivity measurements. Otherwise function of, e.g.,
ion channels could not be determined.” Counter: molecu-
lar dynamics (and other) simulations are a highly impor-
tant part of science (and engineering), and these and other
computational analyses will become increasingly so (Hey
et al., 2009), not least in systems biology (Kell and Knowles,
2006; Herrgård et al., 2008; Thiele et al., 2013). The non-
zero conductivity of e.g., black lipid membranes (Jain, 1972;
Tien, 1974; Tien and Ottova-Leitmannova, 2003) can only

be due to aqueous pores because the Born charging energy
is so large that it is inconceivable that Na+ and Cl− ions
pass through a membrane dielectric with a permittivity of
∼2–4 (Parsegian, 1969; Bordi et al., 1999). As stated pre-
viously Kell et al. (2013), it is possible to make artificial
membranes with negligible conductivity [e.g., for biosen-
sors (Aojula et al., 2002), for nanopore sequencing (Bayley,
2006; Stoddart et al., 2009; Rincon-Restrepo et al., 2011), or
with Gigaseal patches (Sakmann and Neher, 1984; Neher and
Sakmann, 1992)], but this does not mean that experimenters
normally do so (and they do not, including ourselves as in
a study of liposomal transmembrane proton transport; Kell
and Morris, 1980). Moreover, artificial membranes are not
biomembranes, which is what we wish to know about.

5. Statement: “A dominant role for carrier-mediated transport
(and against passive diffusion) is inferred from the hun-
dreds of publications on drug transporters. Response: A large
number of papers have been published in recent years on
transporters. These result from the recent intense research
on transporters. However, it is a logical fallacy and a sleight
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of hand to state that this is evidence of the rate and extent
of dominance of carrier-mediated permeation over passive
lipoidal diffusion. (An analogy would be to state that news-
papers contain a predominance of articles about bad events
(e.g., fires, wars, violence, accidents), therefore, bad events
dominate good events in the world.) Thus, the large num-
ber of citations of publications on transporter research is
misleading, because the research they report or review was
not undertaken nor concluded by the publication authors as
evidence that supports CMOC, as is implied (“There is con-
siderable and increasing evidence that drugs get into cells
more or less solely by hitchhiking on carriers normally used
for the transport of nutrients and intermediary metabolites).”
Counter: Most science involves interactions between two
important elements, viz. observable data and inferential cau-
sation (Kell and Oliver, 2004). One cannot avoid context in
discussions of mechanisms. If one observes that the grass is
wet that represents an observation or a dataset. However, one
cannot infer mechanism simply from an observation (e.g., it
was raining vs. someone used a hose to water the garden).
The job of the inferential scientist is to take all available data
and generalize to the explanation that best accounts for them.
This is what we do. Reviews summarizing hundreds of papers
can do this in a way that authors of individual papers usually
would not. We expect to take most data at face value (albeit
some will be wrong), and have a hypothesis that (essen-
tially) says that drugs entering cells always use one or more
transporters; (the abundant) data showing the existence of
transporters for particular drugs are entirely consistent with
that hypothesis (and with PBIN), but have nothing to say
about BDII unless bilayer diffusion is actually being mea-

sured directly (which it is not, in contrast to “good” or “bad”
events in the above newspaper analogy, which are) or varied
independently (which it is not).

6. Statement: “Selected small molecules, urea and glycerol,
which cross BLM (bilayer or “black lipid” membranes), per-
meate to some extent in vivo via transporters, except in yeast
because glycerol is an osmolyte. Response: Urea and glyc-
erol are more hydrophilic than typical drugs that permeate
membranes, thus, they are not good models of permeants
on which to support theories.” Counter: our PBIN hypoth-
esis is entirely general, including for both natural molecules
and xenobiotics, and states that there should be transporters
even for small molecules (whatever their lipophilicity, and
regardless of whether the FDA has approved or not their
use as drugs—there is nothing special about drugs per se)
and that bilayer lipoidal transport is probably negligible. The
observable data are consistent with this. PBIN provides a

ready explanation for the lack of membrane permeability of

molecules for which the membrane lacks transporters. This is
also true for the BBB, and other tissue and species differences
in membrane permeability (see below).

7. Statement: “In liposomes the rate of transfer of non-
electrolytes depends on MW rather than log P. Response:
Liposomes correlate well with the permeation behaviors
usually observed in artificial and biological membranes.
Molecular weight is partly correlated with lipophilicity

and hydrogen-bonding capacity, and as molecular weight
increases in drugs normally so does hydrogen bonding.
Molecular weight is therefore a hybrid term expected to show
a relationship to lipoidal membrane permeation.” Counter:

In fact, MW and log P are rather weakly correlated anyway
(e.g., Hughes et al., 2008) and we have no specific preference
for either in the absence of an objective function. What we
need to be provided with are some predictive hypotheses (see
below).

8. Statement: “In vitro models of diffusion rates across mem-
branes are not based on large sample numbers and vali-
dated with compounds not used in the method development.
Response: This is out of date information.” Counter: It is odd
merely to refer to this as “out of date information” without
providing any evidence, but this could be settled by provid-
ing the examples in real biomembranes in which all the other
relevant transporter-mediated fluxes are removed by deleting
the transporter genes (or by any other means).

9. Statement: “The flux across in vitro PAMPA membranes
can be poor even when human absorption is good (e.g.,
cephalexin, tiacrilast). Response: This is out of date infor-
mation and also is misleading. PAMPA membranes serve to
model passive diffusion, whereas cephalexin and a number of
other molecules are carrier-mediation transported, as exten-
sively compiled. The present authors claim that passive and
active transport processes coexist. PAMPA has been described
to only account for passive membrane permeation processes.
Therefore, it is not astonishing that actively transported com-
pounds like, e.g., cephalexin cannot be correctly predicted
regarding human absorption by methods exclusively focusing
on passive transport.” Counter: Leaving aside the thermo-
dynamic confusion of “active” and “passive,” we agree that
there are many cases for which PAMPA is a poor predictor
of the permeability across biological membranes; such cases
provide good examples in which passive lipoidal diffusion
is not sensibly invoked as a mechanism of xenobiotic trans-
port. (For readers who do not know, PAMPA membranes are
various artificial more-or-less hydrophobic barriers that have
been used to model transport.) Certainly some molecules can
cross protein-free PAMPA membranes very effectively, but
this does not tell us about how this relates mechanistically to
transport through biological membranes, in which our inter-
ests lie. If PAMPA correlates with some calculations based
e.g., on log D or other variables, then one could of course
use the latter alone to calculate PAMPA behavior if one is
interested in it.

10. Statement: “Activities of anesthetics were previously thought
to be controlled by passive diffusion and correlated to log P,
but are now thought to be protein-binding related. Response:
There is common agreement that drug molecules and anes-
thetics might interact with proteins, but this is misleading in
the context of the discussion, which is around drug trans-
port and not mechanism of action. A recent publication on
anesthetics has summarized thus: ‘The molecular mecha-
nism of general anesthesia is still a controversial issue. Direct
effect by linking of anesthetics to proteins and indirect action
on the lipid membrane properties are the two hypotheses
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in conflict’.” Counter: this is an example of highly selec-
tive reporting; the paper cited is not even about biological
membranes, and the apodosis of the title of the paper (“look-
ing for a lipid-mediated mechanism of anesthesia”) implies
an agenda that seeks to pre-judge the answer. We have dis-
cussed the extensive literature of general anesthetics many
times (Dobson and Kell, 2008; Dobson et al., 2009a,b; Kell
and Dobson, 2009; Kell et al., 2011, 2013; Kell, 2013; Kell
and Goodacre, 2014), and the available data show clearly the
involvement of a variety of proteins such as GABAA recep-
tors (Mihic et al., 1997; Jurd et al., 2003; Bonin and Orser,
2008), potassium channels (Patel et al., 1999; Thompson and
Wafford, 2001; Franks and Honoré, 2004; Gruss et al., 2004;
Heurteaux et al., 2004; Grasshoff et al., 2006; Andres-Enguix
et al., 2007; Bertaccini and Trudell, 2012), glycine recep-
tors (Mihic et al., 1997; Lobo and Harris, 2005; Dickinson
et al., 2007; Bertaccini et al., 2010), and NMDA receptors
(Sanders et al., 2003; Dickinson et al., 2007; Dickinson and
Franks, 2010). The sites of interaction of general anesthet-
ics with a number of their target membrane proteins are
now known with molecular resolution, including their vari-
ation in mutant forms of the same proteins (that correlate
with changes in anesthetics potency—see e.g., Nury et al.,
2011; Stansfeld and Sansom, 2011). Such evidence makes
clear precisely what the protein targets of general anesthet-
ics are. We invoke the story of the changes over time in our
understanding of the mechanisms of narcosis (general anes-
thesia) because the whole discussion is precisely about the
mechanism of action (i.e., transport) of drugs crossing mem-
branes, and because this purportedly (according to Smith
et al. (2014) and others) occurs passively through bilayers
according to their lipophilicity, just as was once believed
for general anesthetics. The analogy is both appropriate and
clear-cut, and the change in understanding over time is likely
to be of a similar nature.

11. Statement: “Many molecules (e.g., ethanol) have relatively
specific receptors, so they may have similar protein binding
(unidentified) that effects membrane permeation. Response:
This is an assumption and generalization awaiting to be
proven by experimental data, but which currently does not
rule out transport by passive (lipoidal diffusion) mecha-
nism.” Counter: As explained, the Popperian view does not
allow one to rule out anything for which a specific mecha-
nistic hypothesis has not been given, nor to “prove” it, and
the bilayer lipoidal diffusion hypothesis for intact biomem-
branes is not set down in a properly testable way. By contrast,
PBIN states that binding proteins and transporters will be
found for all kinds of molecules. Another recently discovered
binding protein for ethanol [additional to GABAA recep-
tor subtypes (Wallner et al., 2003, 2006; Nutt et al., 2007;
Olsen et al., 2007; Santhakumar et al., 2007; Bonin and Orser,
2008; Lobo and Harris, 2008; Mody, 2008; Meera et al., 2010;
Johnson et al., 2012) and many others where the binding
site is known to atomic resolution (Howard et al., 2011b)]
is GLIC, a prokaryotic member of the pentameric ligand-
gated ion channel (pLGIC) family (Stansfeld and Sansom,
2011; Howard et al., 2011a, 2014). Other recent papers on

ethanol-binding proteins include ones on Munc13-1 (Das
et al., 2013) and alcR (Sakvarelidze et al., 2007) (which was
discovered in 1985; Doy et al., 1985), so ethanol receptors
are not “unidentified.” The final identification of e.g., yeast
ethanol transporters is not yet certain, but assessing the con-
tributions of such membrane proteins to solvent tolerance
is one experimental approach to detecting them (Kieboom
et al., 1998a). While other mechanisms are also possible
(Dikicioglu et al., 2014), the ABC transporter (Sá-Correia
et al., 2009) Pdr18 (Teixeira et al., 2012) and the glyceroaqua-
porin Fps1 (Teixeira et al., 2009) have properties consistent
with such a role as ethanol transporters in yeast, a fact of con-
siderable biotechnological relevance (Dunlop et al., 2011).
In the context of biofuels production (and ethanol is a bio-
fuel), and based on similar strategies of toxicity resistance to
the one that we exploited earlier (Lanthaler et al., 2011), we
now also know them for a variety of other rather lipophilic
substances such as alkanes (Tsukagoshi and Aono, 2000;
Fernandes et al., 2003; Ankarloo et al., 2010; Chen et al.,
2013; Doshi et al., 2013; Foo and Leong, 2013; Ling et al.,
2013; Nishida et al., 2013), arenes (Kieboom et al., 1998b),
terpenoids (Jasiński et al., 2001; Yazaki, 2006; Foo and Leong,
2013), long-chain fatty acids (Wu et al., 2006a,b; Khnykin
et al., 2011; Lin and Khnykin, 2014; Villalba and Alvarez,
2014), short-chain fatty acids (Gimenez et al., 2003; Islam
et al., 2008; Moschen et al., 2012; Sá-Pessoa et al., 2013), etc.
These are all substances for which bilayer lipoidal diffusion
was “once widely assumed” (and presumably still is in some
quarters). Ethanolamine transporters are well-established in
certain salmonellae (Stojiljkovic et al., 1995; Penrod et al.,
2004).

12. Statement: “Carrier-mediated drug uptake is observed where
it has been studied. (Presumably this circumstantially indi-
cates that transporters will be found for all drugs.) Response:
Carrier-mediated drug uptake may be observed, but it may
not account for 100% of the transport. In Michaelis-Menten
analysis, the non-saturable term usually is related to the pas-
sive diffusion contribution.” Counter: reiterating the fact that
something (the transport via carriers you do not know about)
does not exist because you have not found it is illogical.
See the section about absence of evidence not being evi-
dence of absence. By contrast, PBIN is testable because we
make specific predictions about drug transporters and the
effects of removing them (by deleting their cognate genes)
or increasing their activities (and, yes, we consider it likely
that transporters will be found for all drugs). Saturability
is not a useful criterion. One would hardly deny the exis-
tence of aquaporins because of the fact that they may
not be observably saturable in the experimentally testable
range.

13. Statement: “Drugs can concentrate in specific tissues beyond
the stoichiometry of internal binding sites. This phenomenon
absolutely requires an active uptake process. Response: This
can be due to pH gradients between intracellular and extra-
cellular compartments as described for, e.g., basic amines
and safety relevant lysosome accumulation (phospholipido-
sis).” Counter: agreed, see above; this is well-known (and a
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pH gradient can provide a thermodynamic drive that could
cause transport to be active, i.e., concentrative, whatever the
mechanism of transmembrane transfer). The same general
idea is true (in principle) for charged molecules or those
whose transport is ion-coupled accumulating (or not; Kell,
1992) in compartments where there is a membrane poten-
tial difference relative to elsewhere. These are thermodynamic
statements, not mechanistic ones.

14. Statement: “Biophysical forces in drug-lipid membrane
interactions (e.g., lipophilicity, hydrogen bonding) are no dif-
ferent from drug-protein interaction. Thus, physicochemical
properties and the rule of 5 need not be evidence of passive
diffusion. Response: Of course biophysical forces apply to
both transporters and bilayers. However, the physical prop-
erty differences between the rate limiting barriers for a partic-
ular drug in carriers and bilayers can dictate the predominant
route of transport. A second argument is that ligand-protein
recognition is dominated by highly selective stereoelectronic
features far more than by global (molecular) physicochemical
properties.” Counter: One potential approach to discrimi-
nating bilayer lipoidal diffusion from transport via proteins
with similar biophysical characteristics is to compare their
biophysical characteristics and make and test some specific
predictions. The effects are likely to be subtle, but may be
measurable. We invite the proponents of BDII to do this,
if they can work out a means for actually measuring (as
opposed to assuming) bilayer lipoidal diffusion in real biolog-
ical membranes. However, arguments based on the substrate
specificity of enzymes, when you do not even know them, are
utterly pointless. We have tried to explain several times (e.g.,
Kell et al., 2011, 2013) the extremely well-known fact that
some enzymes are highly promiscuous (and see e.g., O’brien
and Herschlag, 1999; Hopkins et al., 2006; Ma and Lu, 2008;
Nobeli et al., 2009; Carbonell and Faulon, 2010; Khersonsky
and Tawfik, 2010; Gatti-Lafranconi and Hollfelder, 2013). If
an enzyme uses a great many substrates it is not very likely
that it will be very discriminative of e.g., stereoisomers of the
same molecule [although some transporters are stereoselec-
tive (Zhou et al., 2014), e.g., those for propranolol (Wang
et al., 2010a; Zheng et al., 2013)]. By contrast, the activity
of many promiscuous enzymes (e.g., the cytochromes P450,
e.g., O’reilly et al., 2011, 2013; Munro et al., 2013) can be
related (up to a cut-off) to the lipophilicity of the substrate.
This is very simply explained in terms of the possession of a
hydrophobic substrate pocket.

15. Statement: “The notion of passive lipoidal permeation is
traced back to artificial membrane systems, which are not
successful predictors of membrane permeation. Response:
On the contrary, artificial membrane models have been suc-
cessful predictors of passive lipoidal permeation.” Counter:

although not especially relevant, the notion of passive lipoidal
permeation is in fact traced back to long before the inven-
tion of model membrane systems, or even our knowledge
(Gorter and Grendel, 1925) of the bilayer thickness of bio-
logical membranes; Smith and colleagues do in fact cite the
work of Overton in 1899 that initiated it (Overton, 1899). We
have dealt with correlations enough.

TESTABLE HYPOTHESES: EXPERIMENTS THAT MAY BE

USEFUL FOR DISCRIMINATING PBIN AND BDII

The importance of transporters to the uptake of existing clinical
drugs is a backward-looking enterprise, but we have previously
given a variety of examples of drugs, such as the (Lipinski-
compliant; Lipinski et al., 1997; Lipinski, 2004) nucleoside anti-
pancreatic cancer drug gemcitabine, that clearly are efficacious
only when transported by relevant transporters (e.g., Mackey
et al., 1998, 1999; Rauchwerger et al., 2000; Huang and Sadée,
2003; Mangravite et al., 2003; Huang et al., 2004; Spratlin et al.,
2004; Giovannetti et al., 2006; King et al., 2006; Marcé et al.,
2006; Mori et al., 2007; Nakano et al., 2007; Oguri et al., 2007;
Molina-Arcas et al., 2008; Andersson et al., 2009; Farrell et al.,
2009; Maréchal et al., 2009, 2012; Hagmann et al., 2010; Molina-
Arcas and Pastor-Anglada, 2010; Bhutia et al., 2011; Komori et al.,
2011; Parkinson et al., 2011; Santini et al., 2011; Wang et al.,
2011; Borbath et al., 2012; Damaraju et al., 2012, 2014; Gesto
et al., 2012; Murata et al., 2012; Ansari et al., 2013; Jordheim and
Dumontet, 2013; Nakagawa et al., 2013; Skrypek et al., 2013; Xiao
et al., 2013; De Sousa Cavalcante and Monteiro, 2014; Lee et al.,
2014; Nordh et al., 2014; Tong et al., 2014). We do not know of any
evidence that gemcitabine (or any other nucleoside) exhibits any

significant bilayer lipoidal diffusion across intact cellular mem-
branes, although the question of whether a molecule is “thought
to permeate mainly by passive lipoidal diffusion” does of course
depend on who is doing the thinking.

We stress that our analyses are based on all kinds of
molecules, whether the FDA has approved them as drugs or not.
Consequently, we shall use as examples clinical drug candidates
and other xenobiotics, as well as marketed drugs.

TESTING THE PBIN VIEW

Smith et al. (2014) made some suggestions as to how the PBIN
view may be tested. Rather than quoting them verbatim, we
summarize the relevant topics.

IDENTIFYING RELEVANT TRANSPORTERS

This is very important, and websites such as Transportal
(Morrissey et al., 2012) http://bts.ucsf.edu/fdatransportal/,
DrugBank (Law et al., 2014) http://www.drugbank.ca/ and
others reviewed in Viereck et al. (2014) contain literally hundreds
of examples in which known drugs use known transporters,
complete with quantitative data, sometimes for genetic variants
that change activity or expression. While the BDII view merely
assumes lipoidal transport and varies nothing systematically to try
to assess it, PBIN makes specific predictions via causing variation
in the activities of specified transporters, and the starting point is
that one should find out which they are.

To this end, we would cite the work of Brummelkamp, Superti-
Furga and colleagues, who have developed a near-haploid mam-
malian cell line (Carette et al., 2009, 2011; Bürckstümmer et al.,
2013) along with a suitable retrovirus (actually a gene trap (GT)
retrovirus) that can insert into more-or-less any gene, thereby
inactivating it. In a manner similar to that which we used in
yeast (Lanthaler et al., 2011), they have been studying the effi-
cacy of an anticancer drug, sepantronium bromide (also known
as YM155, see e.g., Giaccone et al., 2009; Nakahara et al., 2011;
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Aoyama et al., 2013; Murakami et al., 2013), in various cell lines.
They find (Winter et al., 2014) (and cf. Minematsu et al., 2009,
2010) that the uptake of this drug, and thus its ability to kill mam-
malian cells, essentially depends entirely (and quantitatively) on
the expression of a single, specific transporter, viz SLC35F2 (see
Ishida and Kawakita, 2004; Song, 2013). They find precisely no

evidence for any lipoidal diffusion (nor of efflux transporters).
This general method can only really “work” (i.e., serve to illu-
minate the transporters effecting significant fluxes of cytotoxic
or other drugs) if the “non-specific” background rate (e.g., via
bilayer lipoidal transport) is negligible, and will clearly be of
very great utility in discovering precisely which drugs use which
transporters (Bassik and Kampmann, 2011; Reiling et al., 2011;
Bürckstümmer et al., 2013).

In a similar vein, cloned or recombinant transporters are a very
useful strategy (and one widely used, e.g., Mackey et al., 1999;
Srimaroeng et al., 2008; Giacomini et al., 2010; Brouwer et al.,
2013; Winter et al., 2014) but, as mentioned above, saturability,
the availability of inhibitors or the extent of promiscuity or oth-
erwise are not at all discriminatory (Kell et al., 2011). Much better

criteria relate to varying the activities or expression levels genet-
ically (e.g., by cloning transporters—independent variable) and
then seeing the consequent effects of their expression levels (here
an independent variable) on drug transport (dependent variable).
QConCats (e.g., Pratt et al., 2006; Rivers et al., 2007; Brownridge
et al., 2011; Carroll et al., 2011; Achour et al., 2014; Chen and
Turko, 2014) provide an important (Harwood et al., 2013) and
absolute means of measuring expression levels of target proteins,
including transporters (Russell et al., 2013), while other abso-
lute approaches to transporter quantification are also emerging
(Ohtsuki et al., 2011, 2013; Uchida et al., 2011b, 2013; Obuchi
et al., 2013; Qiu et al., 2014).

In a similar vein, the pH-dependence of uptake and pH-
partition theories are both very hard to interpret and essentially
irrelevant to the question of mechanism; the latter depends solely
upon which species happens to be most permeable (and they are
not always those expected; Mazák and Noszál, 2014).

VARYING TRANSPORTER EXPRESSION IN ESTABLISHED CELL LINES

Worthwhile experiments on this will be doable using genetic
knockouts, gene traps, or siRNA, etc. Fortunately we know many
of the relevant transporters from genome sequencing, and the
expression of hundreds of proteins in the membranes of MDCK
(Chen et al., 2010) and Caco-2 (Anderle et al., 2004; Landowski
et al., 2004; Pshezhetsky et al., 2007; Ahlin et al., 2009) cells are
known from transcriptome and proteome studies. The example
of SLC35F2 is very pertinent—the recognition of its activity in
transporting sepantronium is new (Winter et al., 2014) but the
transporter (albeit not its natural substrate) was known (Ishida
and Kawakita, 2004; Song, 2013). Thus, we can now predict that
the transport of sepantronium into Caco-2 or MDCK will depend
upon the activity of a transporter that will likely be the same as or
homologous to SLC35F2.

VARYING LIPOIDAL DIFFUSION AS AN INDEPENDENT VARIABLE

For those who believe that BDII, the hypothetico-deductive
approach requires that one varies it as an independent variable

and/or measures it as a dependent variable. Since we believe
that passive lipoidal bilayer diffusion in real biomembranes is
initially negligible, and give many examples, it is not obvious
how we could slow it down! However, we would stress that
broad changes such as e.g., temperature will affect both lipids
and transporters and are not suitably discriminatory (especially
if transporter fluxes are not measured). Neither is changing lipid
composition alone discriminatory, since (see above) changes in
lipids can have profound effects on the activities of membrane
proteins, including transporters. So, to be discriminatory it is
necessary to measure any such effects on known and relevant
transporters as a control. We have also explained many times that
only tests in real membranes can tell us what is happening in real
membranes, and that there is no “observed passive lipoidal per-
meation of biological membranes,” only an inferencing of it. It is
also important to make well-defined comparisons with a given
species and cell type or line. Species differences (see below) can
be enormous, let alone differences between real biological mem-
branes and model membranes lacking proteins. Adding small
amounts of lipids that can be made to crosslink to each other
but not to proteins (nor to bind to them) may or may not be
informative.

WE PROPOSE SOME CANDIDATE DISCRIMINATING

EXPERIMENTS THAT ADHERENTS OF THE BDII THEORY AND

OTHERS MIGHT CARE TO PERFORM OR ASSESS

According to our reading, the BDII view allows all kinds of xeno-
biotics to cross biomembranes, by diffusing through whatever
phospholipid bilayer portions that they may contain, thereby
equilibrating their internal and external concentrations according
to whatever thermodynamic forces may be operating, regardless
of cell, tissue, individual, or species. A considerable number of
corollaries follow from this BDII view. We think that the exist-
ing data do not follow those corollaries, at least without adding
ad hoc and extra hypotheses to make special cases. However, it
will be important to be clear as to precisely what the adherents of
the BDII theory claim to be true in a testable manner, so we can
evaluate whether the data are or are not consistent with these pre-
dictions. We make some suggestions as to where discriminatory
experiments are likely to serve.

WHAT IS THE PREDICTED RELATIONSHIP FOR THE BDII THEORY

BETWEEN LOG D AND FLUXES ACROSS REAL BIOMEMBRANES?

According to Smith et al. (2014), “Passive lipoidal permeability is
correlated positively with lipophilicity (e.g., as expressed by the
log of the octanol-water partition, log P, or the apparent value at
a given pH, often 7.4, log D).” Such a statement requires that we
have a precise prediction as to the form of this relationship over a
stated range of values of log P and log D (and state which variant
of log P is used if it is calculated, and with which software so that
this may be reproduced).

While it is not obvious which actual measurements (as opposed
to assumptions) of passive lipoidal permeability in biological
membranes are being claimed (and we know of none), the above
statement would also predict that if lipoidal bilayer permeability
of drugs were a dominant means of drug uptake there should
thus be a good correlation between cellular uptake and log P.
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This is a very important and testable prediction. Our very first
review (Dobson and Kell, 2008) displayed a typical example taken
from a paper by Corti et al. (2006), showing that there is not,
and we would like to stress that this paper was not specifically
selected—it just happened to be the first paper we looked
at for this question. We here discuss another, rather famous,
dataset. The Biopharmaceutics Classification System (BCS),
based on the work of Amidon and colleagues (e.g., Amidon
et al., 1995; Dahan et al., 2009; Chen et al., 2011), was developed
to indicate a “bioequivalence,” and divides drugs into four
classes based on their solubility and presumed (human jejunal)
permeability, with “class 1” drugs that display high solubility and
permeability deemed favorable and a waiver given http://www.
fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsand
Tobacco/CDER/ucm128219.htm (and see Lennernäs et al., 2014).
The experimental jejunal permeability is not always available,
and so it is estimated based on a “correlation” between the
permeability of a drug’s neutral form and c log P determined for
a small number of drugs. The data for 27 or 29 such drugs vs.
“estimated log P” and c log P are re-plotted from Table 4 and
Figures 5, 6 of Kasim et al. (2004) (who very helpfully provided
data in both tabular and graphical forms) in our Figure 6. We
note there the extremely modest extent of the correlation between
the experimental permeability and either the “estimated log P”
or c log P. We also note that six of the eight “false negative” drugs
(D-glucose, L-leucine, L-Dopa, L-phenylalanine, cephalexin, and
valacyclovir) that were predicted to have low permeability but
in fact had high permeability were recognized by the original
authors as having transporters (Kasim et al., 2004). It is not clear
whether it was assumed that the other drugs in Table 4 of Kasim
et al. (2004) crossed passively by lipoidal bilayer diffusion (as
opposed to facilitated diffusion through a transporter, that is also
passive, Figure 3). At all events, whether it was so assumed or
not, we can find evidence for interactions with transporters for
each of the other drugs except for antipyrine, carbamazepine,
and terbutaline. These are: α-methyldopa (Uchino et al., 2002),
amoxicillin (Li et al., 2006; Sala-Rabanal et al., 2006; Fujiwara
et al., 2011, 2012), atenolol (Kato et al., 2009), cimetidine (Collett
et al., 1999; Burckhardt et al., 2003; Motohashi et al., 2004;
Pavek et al., 2005; Matsushima et al., 2009; Tsuda et al., 2009),
creatinine (Schömig et al., 2006; Chen et al., 2009; Zhou et al.,
2009; Hosoya and Tachikawa, 2011; Tachikawa and Hosoya,
2011; Torres et al., 2011), desipramine (Wu et al., 2000; Haenisch
et al., 2012), enalapril (Pang et al., 1998), enalaprilat (Ishizuka
et al., 1998), fluvastatin (Varma et al., 2011; Sharma et al.,
2012), furosemide (Uwai et al., 2000a; Eraly et al., 2006; Vallon
et al., 2008), hydrochlorothiazide (Race et al., 1999; Uwai et al.,
2000a; Hasannejad et al., 2004; Han et al., 2011), ketoprofen
(Khamdang et al., 2002; Morita et al., 2005), Lisinopril (Knütter
et al., 2008), losartan (Edwards et al., 1999; Race et al., 1999;
Knütter et al., 2009; Sato et al., 2010), metoprolol (Dudley et al.,
2000), naproxen (Apiwattanakul et al., 1999; Mulato et al., 2000;
Khamdang et al., 2002; El-Sheikh et al., 2007), piroxicam (Jung
et al., 2001; Khamdang et al., 2002), propranolol (Dudley et al.,
2000; Wang et al., 2010a; Kubo et al., 2013b; Zheng et al., 2013),
ranitidine (Collett et al., 1999; Müller et al., 2005; Ming et al.,
2009), and verapamil (Döppenschmitt et al., 1999; Kubo et al.,

FIGURE 6 | Relationship between measured human jejunal

permeability and log P. The abscissa is either based on (A) an estimated

log P or (B) a calculated log P (c log P). Data are re-plotted from Table 4 and

Figures 4, 5 of Kasim et al. (2004). In (A) data are not available for losartan

and ranitidine, and there are 8 false negatives shown in red. Metoprolol is a

“reference compound” (Kasim et al., 2004; Incecayir et al., 2013; Zur et al.,

2014) and is shown in yellow. In (B) there are also two false positives. The

lines shown are the lines of best fit; in (A) the correlation coefficient is 0.12

while in (B) the correlation coefficient is 0.18.

2013a). We have also plotted (Figure 7) data from the Oral Drugs
in the Core WHO Essential Medicines List (Table 2 of Kasim
et al., 2004). These show the essential lack of a major relationship
between solubility and c log P (and neither is well-correlated with
bioavailability; Sutherland et al., 2012). A more recent predictive
modeling study (Ghosh et al., 2014), in which the word “trans-
porter” does not appear once, developed a theoretical framework
for “passive permeability” and applied it to nine substances; these
are, with some references indicating that they each have known
transporter interactions, as follows: testosterone (Hamada et al.,
2008; Sharifi et al., 2008), warfarin (Marchetti et al., 2007),
dexamethasone (Polli et al., 2001; Schwab et al., 2003; Uchida
et al., 2011a), raffinose (Tyx et al., 2011), metoprolol (Dudley
et al., 2000), propranolol (Wang et al., 2010a; Zheng et al., 2013),
verapamil (Döppenschmitt et al., 1999; Kubo et al., 2013a),
ibuprofen (Uwai et al., 2000b) and (the lipophilic cation) crystal
violet (Burse et al., 2004a,b).
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FIGURE 7 | Relative lack of relationship between the aqueous

solubility of a drug and c log P for various drugs, marked by their BCS

classes. We used pdfx (Constantin et al., 2013; http://pdfx.cs.man.ac.uk) to

extract the data from Table 2 of Kasim et al. (2004). BCS class is encoded in

the color of the symbols: 1, green; 2, blue; 3, red; 4, yellow.

According to the Biopharmaceutics Drug Disposition
Classification System (BDDCS) (Benet et al., 2008, 2011; Benet,
2010), which bears at least some similarities to the BCS, the
disposition of drugs represented in its class 1 (high permeability
and high metabolism) category is considered to be completely
unaffected by the presence of transporters in the gut and liver.
At least two interpretations of this are possible (Estudante et al.,
2013): (i) there are no transporters interacting with these drugs
and all the transport is by lipoidal diffusion, or (ii) there are so

many high-flux transporters that they simply do not provide a
barrier to uptake. A surrogate for cellular uptake and metabolism
in the BDDCS system is the extent to which drugs are excreted
unchanged in the urine (low extent unchanged implying high
metabolism, hence cellular uptake), and we have redrawn
(Figure 8) plots of this against both measured and calculated
log P values for 350 of the 351 BDDCS class 1 drugs tabulated
(rather than being visualized) in Benet et al. (2011). It is obvious
that the amount of drug excreted unchanged in the urine (and
thus presumably its cellular permeability) can take almost any
value whatever the value of log P, over an extremely wide range of
values of log P. We have not chosen to fit a statistical line to either
of these figures. Thus, we also suggest that it is useful if data
that are supposed to support claims are made available in both
tabular and graphical form, the latter with linear coordinates on
both axes.

WHICH METABOLITES ARE SUPPOSED NOT TO HAVE TRANSPORTERS?

Supporters of BDII regularly make claims about molecules that
are supposed to be transported by bilayer diffusion, without
telling readers which molecules they are. However, many of
those that are stated to use bilayer lipoidal diffusion do in fact
have known transporters, which thus makes any discrimination
impossible. Presumably supporters of BDII have some ideas about
biological systems and/or drugs for which they consider that
there is no transporter acting on the molecule in question. It

FIGURE 8 | The percentage of particular drug doses excreted in the

urine for 350 of 351 “class 1” BDDCS drugs (Benet et al., 2011; one

drug was excluded as it was too water soluble to measure) as a

function of (A) the measured and (B) the calculated log P (c log P)

(calculated using the RDKit software Landrum et al., 2011 and KNIME,

Berthold et al., 2007; Mazanetz et al., 2012). Ordinate data are taken

from Table 1 of Benet et al. (2011).

would be helpful if those who believe that BDII were to pro-
vide a reasonably extensive list of molecules (including marketed
drugs) that (on whatever stated criteria) are supposed to be trans-
ported solely via bilayer diffusion so that those who expect to find
suitable transporters can seek them. Note the evidence we gave
above for transporters for quite lipophilic molecules, including
alkanes.

We also note that there is much available online data and
evidence of drugs that have known transporters, for instance at
Transportal (Morrissey et al., 2012) and DrugBank (Law et al.,
2014).

CRITERIA THAT MIGHT REASONABLY BE REQUIRED TO INDICATE THAT

A DRUG IS A SUBSTRATE FOR A PARTICULAR TRANSPORTER?

Smith et al. (2014) bring up for discussion whether the identifica-
tion of some drug transporters was conducted with due “rigor
and precision,” but the nature of their objection is unclear. In
microbiology, it is common to use Koch’s postulates (see Kell
et al., 1998) to argue that microbe X is the “cause” of disease Y.
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In a similar vein in molecular genetics, one usually takes it that
to claim that gene (product) X is causative (at least in part) of
phenotype Y, the removal or change in activity of gene (prod-
uct) X as an independent variable should have predictable effects
on phenotype Y. If we claim that transporter X transports drug
Y (and it may also be annotated as being a transporter of nat-
ural metabolite Z) the conventional “rigor and precision” is to
vary (including to zero) the activity of gene product X, whether
by genetic means or otherwise, and observe the effects on (the
transport of) Y. If it is considered from known arguments that
metabolite Z is also a substrate (or inhibitor) of transporter X
then the prediction is that adding Z will decrease the (contri-
bution of transporter X to the) uptake of drug Y, according
to standard enzyme kinetic mechanisms (Keleti, 1986; Cornish-
Bowden, 1995; Fersht, 1999). This is precisely what was done in
papers such as (Lanthaler et al., 2011; Winter et al., 2014). It
would be valuable if supporters of BDII would provide any argu-
ments that state that these are not seen as proper criteria for
claiming, or at least contributing substantially to a claim, that a
particular drug is transported by a particular, genetically identi-
fied, transporter, as well as any criteria that can be applied with
the same logic or rigor to the assessment of phospholipid bilayer
uptake.

Overall, these kinds of rigorous, genetically modulated
changes leading to predictable outcomes contrast entirely with
statements that observable phenomena are caused by bilayer dif-
fusion when there has been no attempt to modulate that as an

independent variable nor to measure it directly. As stated above,
however, we note that changing lipids per se, without knowing
about their contingent effects on transporter proteins at the same
time (see references on protein-lipid interactions, above), is not a
suitably discriminatory experiment.

HOW DOES BDII ACCOUNT FOR THE “BLOOD-BRAIN BARRIER” (AND

OTHER SUCH “BARRIERS” WITHIN AN ORGANISM), WITHOUT

INVOKING EFFLUX TRANSPORT REACTIONS THAT HAVE NOT BEEN

MEASURED?

As is well-known, many (if not most) drugs fail to cross the
BBB (Pardridge, 2012), despite the fact that brain lipids are
not thought to differ substantively from lipids in other tissues.
Certainly paracellular routes that exist in other tissues are not
apparently available at the BBB, which helps to sharpen the
arguments. Leaving aside efflux transporters (Bagal and Bungay,
2014), PBIN has no trouble explaining this in terms of a rel-
ative lack of suitable transporters at the BBB—indeed a lack
of permeability in their absence is expected. (a) for drugs for
which efflux transporters at the BBB are not known, it would
be useful to know how proponents of the BDII theory explain
the virtually complete lack of uptake of those drugs, including
lipophilic drugs, that do not penetrate across a functioning BBB
(i.e., in the absence of its significant breakdown in states such as
stroke)?

In previous reviews (e.g., Kell et al., 2011, 2013) we have pro-
vided a large list of known influx transporters that might in fact
be exploited, as well as pointing out that no attempt to increase
lipophilicity had ever turned a drug that failed to penetrate the
BBB into one that did (Pardridge, 2007).

HOW DOES BDII ACCOUNT FOR THE DIFFERENTIAL UPTAKE INTO

DIFFERENT TISSUES WITHIN AN ORGANISM (WITHOUT INVOKING

EFFLUX TRANSPORT REACTIONS THAT HAVE NOT BEEN MEASURED)?

In a similar vein, there is a highly heterogeneous uptake of
specific drugs into different tissues, again despite the fact that
lipids are not thought to differ substantively between tissues. As
above, PBIN has no trouble explaining this in terms of a differ-
ential expression of suitable transporters in different tissues—
and again a lack of permeability in their absence is expected.
For drugs for which efflux transporters in specific tissues are
not known, how do proponents of the BDII theory explain
the virtually complete lack of uptake of those drugs, including
lipophilic drugs, by different tissues or different cells of the same
tissue?

Surprisingly few good data on this are available in the open
literature, though in some cases one can see that the variation
in concentration of a drug in different tissues (e.g., as measured
by tissue:plasma ratio) can be massive (e.g., Miraglia et al., 2010;
Oballa et al., 2011; Pagliarusco et al., 2011; Pfefferkorn et al.,
2012). Note that when these kinds of measurements are made
directly there is a highly heterogeneous distribution of drugs
between different cells in the same tissue (e.g., Khatib-Shahidi
et al., 2006; Cornett et al., 2008; Nilsson et al., 2010; Römpp
et al., 2010, 2011; Castellino et al., 2011; Marko-Varga et al.,
2011, 2012; Ait-Belkacem et al., 2012; Shahidi-Latham et al., 2012;
El-Mashtoly et al., 2014; Gessel et al., 2014). The PBIN the-
ory explains this straightforwardly in terms of the heterogeneous
distribution of transporters, which is both well-known and mea-
surable [see e.g., (http://proteinatlas.org/) (Persson et al., 2006;
Pontén et al., 2008)]. A consequence of this highly heterogeneous
distribution (Figure 9) is that one can find or predict circum-
stances in which, while the gross PK/PD of a drug’s interactions

FIGURE 9 | A set of circumstances in which two otherwise identical

organs, that take up the same total amount of a drug and may have

indistinguishable PK/PD, nevertheless display entirely different

behaviors because of the intercellular heterogeneity. Organ (A) may

display favorable efficacy and toxicity profiles, while in organ (B) shows

both a lack of efficacy (in at least part of the organ) and toxicity (in another

part). Note that the total amount of tissue is the same in (A,B). Such

phenomena may well underlie the two most common causes of attrition

(Cook et al., 2014).
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at the level of an organ may not change, the heterogeneous
distribution of a drug that might otherwise be efficacious and
non-toxic means that it is simultaneously both non-efficacious
and toxic (the two main causes of attrition in drug development;
Arrowsmith, 2011; Hann, 2011; Arrowsmith and Miller, 2013;
Cook et al., 2014).

HOW DOES BDII ACCOUNT FOR THE DIFFERENTIAL UPTAKE INTO THE

SAME TISSUES IN DIFFERENT ORGANISMS (WITHOUT INVOKING

EFFLUX TRANSPORT REACTIONS THAT HAVE NOT BEEN MEASURED)?

In a variant of the same question, there are considerable differ-
ences in uptake of specific drugs into similar tissues of different
organisms (often used as models for human pharmacokinetics
and pharmacodynamics), again despite the fact that lipid bio-
physical properties are not thought to differ substantively between
tissues of human and animal models. Again, PBIN has no trouble
explaining this in terms of a differential expression of different
transporters in different species—and a lack of permeability in
their absence is expected. For drugs for which efflux transporters
in the specific tissues of different species are not known, how do
proponents of the BDII theory explain the extremely large vari-
ability in uptake of drugs, including lipophilic drugs, that can
be observed between the same organs and tissues in different
species?

Such data are comparatively unavailable in the academic liter-
ature, and we strongly encourage their publication so that people
can see the extent of the inter-species variation of drug uptake
into particular organs or tissues, which variation can again be
considerable (e.g., Shilling et al., 2006; Shitara et al., 2006; Li et al.,
2008; Furihata et al., 2010; Chu et al., 2013a; Grime and Paine,
2013; Musther et al., 2014).

SOME FURTHER AREAS WHERE THE HYPOTHESIS OF

DOMINANT TRANSPORTER ACTIVITY (PBIN) HAS STRONG

PREDICTIVE AND EXPLANATORY POWER, BUT WHERE A

BIOPHYSICAL VIEW BASED ON BILAYER LIPOIDAL

DIFFUSION (BDII) DOES NOT

The above described a number of areas where the expectations of
BDII did not provide easy explanations of observable phenomena
(in a way that PBIN could). Another important scientific tenet
relates to the idea that theories with predictive power are to be
preferred over those that lack useful and novel predictions. Thus,
we next mention a number of areas in which the view that drugs
hitchhike on transporters as their dominant mode of transmem-
brane transport (PBIN) makes important predictions that do not
follow obviously (or even at all) from the view that most or all of
drug transport is by diffusion across lipid bilayers (BDII).

DRUG-METABOLITE LIKENESSES

Since the influx transporters that are used by pharmaceutical
drugs were not selected by natural evolution for these purposes,
nor for the benefit of the pharmaceutical industry more gen-
erally, they must be there for other reasons. The most obvious
“other reasons” are for the transport of small molecule nutri-
ents or intermediary metabolites (and, in at least some cases, the
natural substrates are indeed known), and of course the molecu-
lar targets of many drugs are proteins that interact with natural

metabolites. The recent availability of a consensus reconstruc-
tion of the human metabolic network (Swainston et al., 2013;
Thiele et al., 2013) means that it is now possible to compare “all”
known metabolites with “all” drugs. The principle of molecular
similarity (Gasteiger, 2003; Bender and Glen, 2004; Oprea, 2004;
Sheridan et al., 2004; Maldonado et al., 2006; Eckert and Bajorath,
2007) indicates that drugs, especially those that are transported,
should therefore resemble metabolites to a greater or lesser extent.
The full analysis is presented elsewhere (O’Hagan et al., 2014),
but, in line with previous indications (Feher and Schmidt, 2003;
Karakoc et al., 2006; Gupta and Aires-De-Sousa, 2007; Dobson
et al., 2009b; Khanna and Ranganathan, 2009, 2011; Peironcely
et al., 2011; Zhang et al., 2011a; Chen et al., 2012; Walters,
2012; Hamdalla et al., 2013), it seems that the chemical struc-
tures of drugs do indeed resemble natural human metabolites.
It is not obvious that BDII has anything to contribute to this,
whereas PBIN has clear and strong predictive power. In partic-
ular (O’Hagan et al., 2014), using the MACCS encoding of 166
common substructures (Durant et al., 2002), we find that 90% of
all marketed drugs have a Tanimoto similarity (Maggiora et al.,
2014) of at least 0.5 to at least one metabolite (and in most cases
to many more). “While this does not mean, of course, that a
molecule obeying (that) rule is likely to become a marketed drug
for humans, it does mean that a molecule that fails to obey the
rule is statistically most unlikely to do so” (O’Hagan et al., 2014).
This provides a useful filter for candidate drugs, as well as a major
incentive to make candidate drugs more metabolite-like.

HETEROGENEOUS DRUG DISTRIBUTION AS A CAUSE OF BOTH

UNEXPECTED TOXICITY AND LACK OF EFFICACY

Nowadays, the two most common causes of attrition in drug
development are lack of efficacy and toxicity (Hann, 2011; Cook
et al., 2014). The latter is arguably more understandable since (on
elementary statistical grounds alone) every individual is biochem-
ically very different from others (Williams, 1956). As the numbers
of recipients tested increases during drug development phases
1–3, one is more likely to find individuals that display toxicity
as a result of comparatively rare differences in genetic make-up,
lifestyle (“environment”), or Gene x Environment interactions.
Even a small amount of toxicity may thus be enough to kill off
a drug candidate during its development. The former is less easy
to understand, however, since if a drug was efficacious in early
phases why may it not be later? One possible explanation comes
from the heterogeneous distribution of drug transporters. Thus,
Figure 9 shows two otherwise identical organs that take up the
same total amount of a drug and may thus have indistinguish-
able PK/PD. In (a) the drug is distributed homogeneously, while
in (b) only ca one third of the cells take up the drug [to three
times the concentration of that in (a)], while ca two-thirds of the
cells take up none. Obviously those cells (hence the tissue) in (b)
will suffer from a lack of efficacy, even though the gross PK/PD
measured macroscopically (across the organ) appeared normal,
while the “unexpected” accumulation of drugs in other cells
might well lead to toxicity. The solution to this is to use single-
cell analyses (Davey and Kell, 1996) (and see above), because
biochemical systems are neither homogeneous nor ergodic (Kell
et al., 1991).
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MOLECULAR DYNAMICS SIMULATIONS

We noted (above) the rather dismissive attitude taken toward
computational modeling in some quarters [“The studies cited
(Leontiadou et al., 2004, 2007) are computational simulations
(so-called molecular dynamics, MD) of Na+ and Cl− ion (non-
drug-like) transport under unusual conditions” (Smith et al.,
2014)]. It is not clear what the “unusual conditions” are supposed
to be, but molecular dynamics simulations provide an approach
to many experimentally intractable problems that is extremely
well-established throughout science and engineering (see above
and e.g., Karplus and Kuriyan, 2005; Dror et al., 2012), and indeed
the 2013 Nobel Prize in Chemistry was awarded to three of its
pioneers − Martin Karplus, Michael Levitt, and Arieh Warshel.
Historically, such simulations have been somewhat limited by
the discrepancy between the required and available amounts
of computational power, but the growth in computer power,
improvements in sampling regimes and other aspects of soft-
ware (and in some cases the development of dedicated hardware,
e.g., Shaw et al., 2008; Dror et al., 2011) are opening up de novo

simulation on unprecedented timescales (e.g., in protein folding;
Lindorff-Larsen et al., 2011; Raval et al., 2012; Piana et al., 2013).
We predict that very soon it will be possible to provide accurate
simulations of phospholipid bilayer membranes that both lack
and contain proteins (and lipids) of the correct type and volume
fraction (as in Figure 4), and that these will show precisely the
molecular pathways that important drug (and other) molecules
do and do not use to cross them. We also predict that as experi-
mental systems more closely approximate real biomembranes, the
transport occurring via any lipoidal bilayer portion will become
increasingly negligible.

MASS SPECTROMETRIC IMAGING OF DRUGS AND TRANSPORTERS

As mentioned above, a great many examples now exist of the
heterogeneous distribution of drugs in and between tissues as
assessed by imaging mass spectrometry (e.g., Khatib-Shahidi
et al., 2006; Cornett et al., 2008; Nilsson et al., 2010; Römpp et al.,
2010, 2011; Castellino et al., 2011; Marko-Varga et al., 2011, 2012;
Ait-Belkacem et al., 2012; Shahidi-Latham et al., 2012; Rumiato
et al., 2013; El-Mashtoly et al., 2014; Gessel et al., 2014). We
predict that the imaging of both proteins (or signature peptides
derived therefrom) and drugs in the same locations in tissues will
continue to be a powerful strategy for assessing which drugs are
taken up by which transporters. It is not obvious that BDII can
predict any such thing such as a relationship between particular
lipids and particular transmembrane drug uptake (in an external
validation set).

ADVERSE DRUG REACTIONS

As well as their immense therapeutic benefits, pharmaceutical
drugs can have unwelcome effects on those who take them,
another huge topic usually referred to as “adverse drug reac-
tions” (ADRs). It is a massively important issue (e.g., Uetrecht,
2010), accounting for more than 5% of UK hospital admissions
(Pirmohamed et al., 2004; Davies et al., 2007; Kongkaew et al.,
2008) and even more adverse events after hospital admission
(Clavenna and Bonati, 2009; Davies et al., 2009; Miguel et al.,
2012; Smyth et al., 2012) (and these are probably underestimates;

Hazell and Shakir, 2006). Most are avoidable (Pirmohamed
et al., 2004; Smyth et al., 2012), and considerable pharma-
cogenetic, and pharmacogenomics evidence reflects the roles
of drug transporters in ADRs (Meyer, 2000; Nakamura, 2008;
Ward, 2008; Pirmohamed, 2010, 2012, 2014; Tohkin et al.,
2010; Uetrecht, 2010; Clarke and Cherrington, 2012; Daly,
2012, 2013; Giacomini et al., 2012; Wei et al., 2012; Stankov
et al., 2013; Yip et al., 2014), again reflecting their consider-
able significance relative to any bilayer lipoidal diffusion (where
again it is not obvious how BDII has anything of substance
to say).

TRANSPORTER PHARMACOGENOMICS

A further prediction that follows from the recognition of the
widespread use of transporters by drugs (but not from models
of bilayer lipoidal diffusion) is that one ought to be able to detect
these transporters via the effects of genetic mutations (i.e., poly-
morphisms) on transport activity (they may either increase or
decrease transport activity for a given substrate) (e.g., Ishikawa
et al., 2004, 2013a,b; Bosch, 2008; Errasti-Murugarren and Pastor-
Anglada, 2010; Franke et al., 2010; Lee, 2010; Nies and Schwab,
2010; Sissung et al., 2010, 2012; Aw et al., 2011; Li and Bluth,
2011; Pirmohamed, 2011, 2013, 2014; Stieger and Meier, 2011;
Yonezawa and Inui, 2011; Kiyotani et al., 2012; Lai et al., 2012;
Saadatmand et al., 2012; Wei et al., 2012; Giacomini et al.,
2013; Yiannakopoulou, 2013). One well-known example, based
on genome-wide association studies, is the effect of a particular
SNP in SLCO1B1, previously known as OATP1B1, a bile acid and
statin transporter (Hagenbuch and Meier, 2004; Hagenbuch and
Stieger, 2013), on the myopathy that can be induced by partic-
ular statins (Link et al., 2008; Becquemont, 2009; Voora et al.,
2009; Amur et al., 2010; Fahrmayr et al., 2010; Donnelly et al.,
2011; Giorgi et al., 2011; Maggo et al., 2011; Nakanishi and Tamai,
2012; Wilke et al., 2012; Carr et al., 2013; Giacomini et al., 2013;
Shitara et al., 2013; Yiannakopoulou, 2013; Ramsey et al., 2014;
Rose et al., 2014; Tsamandouras et al., 2014).

TRANSPORTER-MEDIATED DRUG-DRUG INTERACTIONS

Yet another area for which the transporter-mediated route gives
straightforward understanding and predictions (whereas the
bilayer lipoidal diffusion mechanism has little to say) is in the
area of transporter-mediated drug-drug interactions (DDI) (and
indeed food-drug interactions). An elementary consequence of
standard enzyme kinetics is that molecules using the same protein
may compete with or inhibit each other, in this case each other’s
transport. This is a simply vast topic, so (notwithstanding ear-
lier critiques of summarizing via the enormous review literature),
we here simply point out several useful and recent reviews (from
the last 3 years only) that describe in detail the many named and
genetically identified transporters that are involved in DDI (Han,
2011; Kido et al., 2011; Klatt et al., 2011; König, 2011; Maeda et al.,
2011; Marzolini et al., 2011; Müller and Fromm, 2011; Riches
et al., 2011; Shitara, 2011; Zhang et al., 2011b; Bi et al., 2012;
Elsby et al., 2012; Feng et al., 2012, 2013, 2014; Fromm, 2012;
Grandvuinet et al., 2012; Karlgren et al., 2012; Keogh, 2012; Lepist
and Ray, 2012; Nies et al., 2012; Sissung et al., 2012; Sprowl and
Sparreboom, 2012, 2014; Takanohashi et al., 2012; Varma et al.,
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2012; Yeo et al., 2012, 2013; Yoshida et al., 2012, 2013; Kis et al.,
2013; König et al., 2013; Maeda and Sugiyama, 2013; Sugiyama
and Steffansen, 2013; Tang et al., 2013; Zamek-Gliszczynski et al.,
2013; Goswami et al., 2014; Tannenbaum and Sheehan, 2014;
Vildhede et al., 2014). We are not aware of any papers that showed
such DDI based on any measured competition for transport via
the phospholipid bilayer.

TOWARD TARGETED THERAPEUTICS

Knowledge of transporters and their heterogeneous selectivities
and distributions can be used to target particular drugs to par-
ticular tissues (Dobson and Kell, 2008). Thus, “In recent years,
drug discovery researchers have also utilized knowledge about
transporter uptake to enhance drug exposure to certain tissues.
For example, liver specific transporters (OATP1B1 and 1B3)
selectively increase liver concentration of their substrates, which
minimize the exposure to peripheral tissue and reduce toxicity
(Oballa et al., 2011; Pfefferkorn et al., 2012)” (Smith et al., 2014),
though we also note that this can lead to toxicities in particular
cases, e.g., Zhang et al. (2013).

Indeed, one can devise a 2 × 2 matrix of molecular vs. tis-

sue targeting in drug development (Figure 10); however, its most
important quadrant is presently missing (see Figure 10). Thus,
the “magic bullet” is a phrase that was coined by Paul Ehrlich
(Bosch and Rosich, 2008), initially with regard to anti-infectives,
to describe a chemical that specifically inhibits a disease-causing
target. Much of modern pharmacology relies precisely upon this
principle, and many highly potent drugs have been developed
(Strebhardt and Ullrich, 2008). However, most effective drugs are,
in fact, active on multiple targets (e.g., Hopkins, 2008; Mestres and
Gregori-Puigjané, 2009; Kell et al., 2013) and there is an increas-
ing recognition (e.g., Boran and Iyengar, 2010; Metz and Hajduk,
2010; Xie et al., 2012; Jalencas and Mestres, 2013; Medina-Franco
et al., 2013; Peters, 2013; Anighoro et al., 2014) as we move toward
a network or systems pharmacology (e.g., Hopkins, 2008; Van Der

FIGURE 10 | A “Boston matrix” comparing the activities of drugs in

terms of whether their molecular and/or their tissue targets are each

either single or multiple.

Graaf and Benson, 2011; Cucurull-Sanchez et al., 2012; Rostami-
Hodjegan, 2012; Waldman and Terzic, 2012; Bai and Abernethy,
2013; Csermely et al., 2013; Jenkins and Ma’ayan, 2013; Kell and
Goodacre, 2014) that polypharmacology (one drug, multiple tar-
gets) is actually a desirable goal. While this can be achieved with
combination therapies (multiple drugs, multiple targets) (e.g.,
Borisy et al., 2003; Zimmermann et al., 2007; Lehár et al., 2008),
an advantage of polypharmacology is that the pharmacokinetics
of a single agent are considerably simpler. However, with regard
to tissue targeting, the “magic bullet” is more like a “magic blun-
derbuss” in that the drug can, in principle, bind to its targets
in whichever tissue they are found so that it is largely unselec-
tive, and this is also true for agents exhibiting polypharmacology.
This is obviously particularly undesirable for cytotoxic drugs such
as anti-cancer agents, and leads to many examples of unwanted
toxicity. By including tissue targeting as an explicit goal, much
lower amounts of active drug can be given, thereby improving
their therapeutic index massively. The starting point for achiev-
ing this is indeed the recognition that drugs enter cells more or
less solely by hitchhiking on transporters normally involved in
the transport of intermediary metabolites, rather than by diffus-
ing indiscriminately through any and every phospholipid bilayer.
A striking example comes from the work of Pfefferkorn and col-
leagues, who noted a value of 250,000 for the hepatocyte:myocyte
ratio of a particular transporter-targeted drug (Pfefferkorn et al.,
2011). It is not obvious how any view of a significant bilayer
transport occurring (as in BDII) can sensibly account for this
without ad hoc extra hypotheses, whereas the view that any “back-
ground” lipoidal bilayer transport is negligible finds it very easy
to do so.

Thus, this possibility of cell or tissue targeting is a very clear
prediction from PBIN that we consider has considerable utility
in improving the potential therapeutic windows of active drugs,
and highlights the need to develop pharmacophores for the more
important transporters (Gleeson et al., 2011). As with all the
other predictions and postdictions of PBIN, the predicted poten-
tial for selective, transporter-mediated targeting is amply fulfilled
(e.g., Friend and Pangburn, 1987; Erion, 2007; Oballa et al., 2011;
Pfefferkorn et al., 2011; Powell et al., 2011; Ramtohul et al.,
2011; Reiling et al., 2011; Brunschweiger and Hall, 2012; Lachance
et al., 2012a,b; Birsoy et al., 2013; Filipski et al., 2013; Liu, 2013;
Pfefferkorn, 2013; Stevens et al., 2013; Tu et al., 2013; Sun et al.,
2014; Tsume et al., 2014).

CONCLUDING REMARKS

There is considerable value in having an intellectual debate in
this space; “accurate understanding of drug permeation mecha-
nisms is important for drug development success” (Smith et al.,
2014). Here, rather than being entirely fundamentalist (“When
one admits that nothing is certain one must, I think, also
admit that some things are much more nearly certain than oth-
ers”; Russell, 1947), we have chosen to rehearse the common
Popperian view of science as a scientific principle that can help
to discriminate the virtues of the two competing hypotheses
that we term BDII and PBIN. In laboratory and experimental
science, this means varying parameters (often referred to as “inde-
pendent variables” or causes) and observing their effects. This
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contrasts completely with the many observations, widely cited
in support of BDII, of the mere covariation of two dependent
variables.

While we think that the case is strongly made for the far greater
utility and explanatory power of PBIN, we trust that this analysis
will help readers of this journal to draw their own conclusions and
to design better experiments to assist the modern drug discovery
process. Hopefully this will also help us overcome the problem
of what have been called the “‘unknown knowns’; these are those
things that are known but have become unknown, either because
we have never learnt them, or forgotten about them, or more
dangerously chosen to ignore” (Hann, 2011).
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