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Abstract. This study provides a comprehensive assessment

of state-of-the-art evolutionary multiobjective optimization

(EMO) tools’ relative effectiveness in calibrating hydrologic

models. The relative computational efficiency, accuracy, and

ease-of-use of the following EMO algorithms are tested: Ep-

silon Dominance Nondominated Sorted Genetic Algorithm-

II (ε-NSGAII), the Multiobjective Shuffled Complex Evolu-

tion Metropolis algorithm (MOSCEM-UA), and the Strength

Pareto Evolutionary Algorithm 2 (SPEA2). This study uses

three test cases to compare the algorithms’ performances: (1)

a standardized test function suite from the computer science

literature, (2) a benchmark hydrologic calibration test case

for the Leaf River near Collins, Mississippi, and (3) a compu-

tationally intensive integrated surface-subsurface model ap-

plication in the Shale Hills watershed in Pennsylvania. One

challenge and contribution of this work is the development of

a methodology for comprehensively comparing EMO algo-

rithms that have different search operators and randomization

techniques. Overall, SPEA2 attained competitive to superior

results for most of the problems tested in this study. The pri-

mary strengths of the SPEA2 algorithm lie in its search re-

liability and its diversity preservation operator. The biggest

challenge in maximizing the performance of SPEA2 lies in

specifying an effective archive size without a priori knowl-

edge of the Pareto set. In practice, this would require signif-

icant trial-and-error analysis, which is problematic for more

complex, computationally intensive calibration applications.

ε-NSGAII appears to be superior to MOSCEM-UA and com-

petitive with SPEA2 for hydrologic model calibration. ε-

NSGAII’s primary strength lies in its ease-of-use due to its

dynamic population sizing and archiving which lead to rapid

convergence to very high quality solutions with minimal user

input. MOSCEM-UA is best suited for hydrologic model cal-

ibration applications that have small parameter sets and small
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model evaluation times. In general, it would be expected that

MOSCEM-UA’s performance would be met or exceeded by

either SPEA2 or ε-NSGAII.

1 Introduction

The hydrological behavior of a watershed can be conceptual-

ized as a collection of spatially distributed and highly interre-

lated water, energy and vegetation processes. Any computer-

based model of watershed behavior must, therefore, imple-

ment this conceptualization using appropriately coupled sys-

tems of parametric mathematical functions; with parameters

allowing for the ability to adapt the model to different (but

conceptually similar) watersheds. These parameterizations

can be of varying complexity, but are, by definition, much

simpler than nature itself. Model parameters therefore of-

ten become effective parameters that are related to, but not

identical with measurable watershed characteristics and have

to be estimated by calibrating the model to observed water-

shed behavior (e.g. streamflow) to account for this discrep-

ancy. Traditional manual calibration methods use trial-and-

error based analyses, which are time consuming and difficult

to implement for multiple performance objectives (e.g., cap-

turing high flow, average flow, and low flow simultaneously).

There is a large body of recent water resources literature an-

alyzing alternative tools and strategies for automatic calibra-

tion using simulation-optimization frameworks (Duan et al.,

1992; Gan and Biftu, 1996; Yapo et al., 1996, 1998; Kuczera,

1997; Gupta et al., 1998; Boyle et al., 2000; Madsen, 2000;

Madsen et al., 2002). Early studies (Duan et al., 1992) have

highlighted that in the context of optimization, the calibration

problem is ill-posed, often highly nonlinear, non-convex, and

multimodal (i.e., numerous local optima exist). These prob-

lem properties have motivated several prior studies to use

heuristic-based optimization, and in particular evolutionary

algorithms because they have been shown to work well on
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nonlinear, nonconvex, and multimodal problems (Goldberg,

1989; Duan et al., 1992; Schwefel, 1995).

Advances in computational capabilities have led to more

complex hydrologic models often predicting multiple hy-

drologic fluxes simultaneously (e.g. surface and subsurface

flows, energy). In addition, the use of an identification frame-

work based on a single objective function is based on the er-

roneous assumption that all the available information regard-

ing one hydrologic variable can be summarized (in a recov-

erable form) using a single aggregate measure of model per-

formance, leading unavoidably to the loss of information and

therefore poor discriminative power (Wagener and Gupta,

2005). These issues have led to an increasing interest in

multi-objective optimization frameworks. The growing body

of research in the area of multiobjective calibration (Gupta

et al., 1998; Boyle et al., 2000; Madsen, 2000, 2003; Seib-

ert, 2000; Wagener et al., 2001; Madsen et al., 2002; Vrugt

et al., 2003a) has shown that the multiobjective approach is

practical, relatively simple to implement, and can provide in-

sights into parameter uncertainty as well as the limitations

of a model (Gupta et al., 1998). Although a majority of

prior studies have focused on conceptual rainfall-runoff ap-

plications, there are an increasing number of recent studies

focusing on developing multiobjective calibration strategies

for distributed hydrologic models (Madsen, 2003; Ajami et

al., 2004; Muleta and Nicklow, 2005a, b; Vrugt et al., 2005).

Calibrating a distributed hydrologic model remains a chal-

lenging problem because distributed hydrologic models have

more complex structures and significantly larger parameter

sets that must be specified. Moreover, distributed models are

computationally expensive, causing automatic calibration to

be subject to severe computational time constraints.

There is also a hidden cost in using evolutionary algo-

rithms for hydrologic model calibration that has not been

well addressed in the water resources literature. For in-

creasingly complex models with larger parameter sets a sin-

gle evolutionary multiobjective optimization (EMO) algo-

rithm trial run may take several days or longer. Users must

carefully consider how EMO algorithms’ search parameters

(i.e., population size, run length, random seed, etc.) impact

their performance. Moreover, all of the algorithms perform

stochastic searches that can attain significantly different re-

sults depending on the seeds specified in their random num-

ber generators. When a single EMO trial run takes several

days, trial-and-error analysis of the performance impacts of

EMO algorithm parameters or running the algorithm for a

distribution of random trials can take weeks, months, or even

years of computation. The increasing size and complexity of

calibration problems being considered within the water re-

sources literature necessitate rapid and reliable search.

The purpose of this study is to comprehensively as-

sess the efficiency, effectiveness, reliability, and ease-of-

use of current EMO tools for hydrologic model calibra-

tion. The following EMO algorithms are tested: Epsilon

Dominance Nondominated Sorted Genetic Algorithm-II (ε-

NSGAII) (Kollat and Reed, 2005b), the Multiobjective Shuf-

fled Complex Evolution Metropolis algorithm (MOSCEM-

UA) (Vrugt et al., 2003a), and the Strength Pareto Evo-

lutionary Algorithm 2 (SPEA2) (Zitzler et al., 2001). ε-

NSGAII is a new algorithm developed by Kollat and Reed

(2005a) that has been shown to be capable of attaining su-

perior performance relative to other state-of-the-art EMO

algorithms, including SPEA2 and ε-NSGAII’s parent algo-

rithm NSGAII developed by Deb et al. (2002). The perfor-

mance of ε-NSGAII is being tested relative to MOSCEM-

UA and SPEA2 because these algorithms provide perfor-

mance benchmarks within the fields of water resources and

computer science, respectively. This study contributes a

rigorous statistical assessment of the performances of these

three evolutionary multiobjective algorithms using a formal

metrics-based methodology.

This study bridges multiobjective calibration hydrologic

research where MOSCEM-UA (Vrugt et al., 2003a, b) rep-

resents a benchmark algorithm and EMO research where

SPEA2 (Coello Coello et al., 2002) is a benchmark algo-

rithm. Three test cases are used to compare the algorithms’

performances. The first test case is composed of a standard-

ized suite of computer science test problems (Zitzler et al.,

2000; Deb, 2001; Coello Coello et al., 2002) that are used

to validate the algorithms’ abilities to perform global search

effectively, efficiently, and reliably for a broad range of prob-

lem types. This is the first study to test MOSCEM-UA on

this suite of problems. The second test case is a benchmark

hydrologic calibration problem in which the Sacramento soil

moisture accounting model (SAC-SMA) is calibrated for the

Leaf River watershed located close to Collins, Mississippi.

The Leaf River case study has been used in the develop-

ment of both single and multi-objective calibration tools and

specifically MOSCEM-UA (Duan et al., 1992; Yapo et al.,

1998; Boyle et al., 2000; Wagener et al., 2001; Vrugt et al.,

2003a, b). The third test case assesses the algorithms’ per-

formances for a computationally intensive integrated hydro-

logic model calibration application for the Shale Hills water-

shed located in the Susquehanna River Basin in north cen-

tral Pennsylvania. The Shale Hills test case demonstrates

the computational challenges posed by the paradigmatic shift

in environmental and water resources simulation tools to-

wards highly nonlinear physical models that seek to holisti-

cally simulate the water cycle. A challenge and contribution

of this work is the development of a methodology for com-

prehensively comparing EMO algorithms that have different

search operators and randomization techniques.

2 Multiobjective optimization: terms and tools

2.1 Multiobjective optimization terminology

There is a growing body of water resources literature (Horn

and Nafpliotis, 1993; Ritzel et al., 1994; Cieniawski et al.,
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1995; Halhal et al., 1997; Loughlin et al., 2000; Reed et

al., 2001; Erickson et al., 2002; Reed and Minsker, 2004)

demonstrating the importance of multiobjective problems

(MOPs) and evolutionary multiobjective solution tools. A

key characteristic of MOPs is that optimization cannot con-

sider a single objective because performance in other objec-

tives may suffer. Optimality in the context of multiobjective

global optimization was originally defined by and named af-

ter Vilfredo Pareto (Pareto, 1896). A solution X∗ is clas-

sified as Pareto optimal when there is no feasible solution

X that will improve some objective values without degrad-

ing performance in at least one other objective. More for-

mally, solution X∗∈� is Pareto optimal if for each X∈� and

I={1, 2, ..., n}, either

fi(X) ≥ fi(X
∗) (∀i ∈ I ) (1)

or, there is at least one i ∈ I so that

fi(X
∗) < fi(X) (2)

where I is a set of integers that range from one to the num-

ber of total objectives n, X and X∗ are vectors of decision

variables, � is the decision space, and fi is the value of a

specific objective function. The definition here is based on

the assumption that the optimization problem is formulated

to minimize all objective values.

Equations (1) and (2) state that a Pareto optimal solution

X∗ has at least one smaller (better) objective value compared

to any other feasible solution X in the decision space while

performing as well or worse than X in all remaining objec-

tives. As the name implies, Pareto set is the set of Pareto

optimal solutions. The Pareto front (PF ∗) is the mapping of

Pareto optimal set from the decision space to the objective

space. In other words, the Pareto front is composed of a set

of objective vectors which are not dominated by any other

objective vectors in the objective space.

2.2 Evolution-based multiobjective search

Schaffer (1984) developed one of the first EMO algorithms

termed the vector evaluated genetic algorithm (VEGA),

which was designed to search decision spaces for the opti-

mal tradeoffs among a vector of objectives. Subsequent in-

novations in EMO have resulted in a rapidly growing field

with a variety of solution methods that have been used suc-

cessfully in a wide range of applications (for a detailed re-

view see Coello Coello et al., 2002). This study contributes

the first comprehensive comparative analysis of these al-

gorithms’ strengths and weaknesses in the context of hy-

drologic model calibration. The next sections give a brief

overview of each tested algorithm as well as a discussion of

their similarities and differences. For detailed descriptions,

readers should reference the algorithms’ original published

descriptions (Zitzler et al., 2001; Vrugt et al., 2003a, b; Kol-

lat and Reed, 2005b).

2.2.1 Epsilon Dominance NSGAII (ε-NSGAII)

The ε-NSGAII exploits ε-dominance archiving (Laumanns

et al., 2002; Deb et al., 2003) in combination with automatic

parameterization (Reed et al., 2003) for the NSGA-II (Deb

et al., 2002) to accomplish the following: (1) enhance the

algorithm’s ability to maintain diverse solutions, (2) auto-

matically adapt population size commensurate with problem

difficulty, and (3) allow users to sufficiently capture trade-

offs using a minimum number of design evaluations. A suf-

ficiently quantified trade-off can be defined as a subset of

Pareto optimal solutions that provide an adequate representa-

tion of the Pareto frontier that can be used to inform decision

making. Kollat and Reed (2005b) performed a comprehen-

sive comparison of the NSGA-II, SPEA2, and their proposed

ε-NSGAII on a 4-objective groundwater monitoring applica-

tion, where the ε-NSGAII was easier to use, more reliable,

and provided more diverse representations of tradeoffs.

As an extension to NSGA-II (Deb et al., 2002), ε-NSGAII

adds the concepts of ε-dominance (Laumanns et al., 2002),

adaptive population sizing, and a self termination scheme

to reduce the need for parameter specification (Reed et al.,

2003). The values of ε, specified by the users represent the

publishable precision or error tolerances for each objective.

A high precision approximation of the Pareto optimal set can

be captured by specifying very small precision tolerances ε.

The goal of employing ε-dominance is to enhance the cover-

age of nondominated solutions along the full extent of an ap-

plication’s tradeoffs, or in other words, to maintain the diver-

sity of solutions. ε-NSGAII is binary coded and real coded.

In this application, the real coded version of the ε-NSGAII

proposed by Kollat and Reed (2005b) is employed. The ε-

NSGAII uses a series of “connected runs” where small pop-

ulations are exploited to pre-condition the search with suc-

cessively adapted population sizes. Pre-conditioning occurs

by injecting current solutions within the epsilon-dominance

archive into the initial generations of larger population runs.

This scheme bounds the maximum size of the population to

four times the number of solutions that exist at the user spec-

ified ε resolution. Theoretically, this approach allows popu-

lation sizes to increase or decrease, and in the limit when the

epsilon dominance archive size stabilizes, the ε-NSGAII’s

“connected runs” are equivalent to time continuation (Gold-

berg, 2002). (i.e., injecting random solutions when search

progress slows down). For more details about ε-dominance

or the ε-NSGAII, please refer to the following studies (Lau-

manns et al., 2002; Kollat and Reed, 2005a, b).

There are 4 major parameters that need to be specified for

ε-NSGAII (1) the probability of mating, (2) the probability

of mutation, (3) the maximum run time, and (4) the initial

population size. The mating and mutation operators and pa-

rameters are discussed in more detail in Sect. 2.2.4. The max-

imum run time is defined as the upper limit on the time the

user is willing to invest in search. Although epsilons must be

specified for every objective, these values are defined by the
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properties of the application not the evolutionary algorithm.

In any optimization application, it is recommended that the

user specify the publishable precision or error tolerances for

their objectives to avoid wasting computational resources on

unjustifiably precise results.

2.2.2 The Strength Pareto Evolutionary Algorithm 2

(SPEA2)

SPEA2 represents an improvement from the original

Strength Pareto Evolutionary Algorithm (Zitzler and Thiele,

1999; Zitzler et al., 2001). SPEA2 overcomes limitations of

the original version of the algorithm by using an improved

fitness assignment, bounded archiving, and a comprehensive

assessment of diversity using k-means clustering. SPEA2 re-

quires users to specify the upper bound on the number of

nondominated solutions that are archived. If the number of

non-dominated solutions found by the algorithm is less than

the user-specified bound then they are copied to the archive

and the best dominated individuals from the previous gen-

eration are used to fill up the archive. If the size of non-

dominated set is larger than the archive size, a k-means clus-

tering algorithm comprehensively assesses the distances be-

tween archive members. A truncation scheme promotes di-

versity by iteratively removing the individual that has the

minimum distance from its neighbouring solutions. The

archive update strategy in SPEA2 helps to preserve boundary

(outer) solutions and guide the search using solution density

information. SPEA2 has 5 primary parameters that control

the algorithm’s performance: (1) population size, (2) archive

size, (3) the probability of mating, (4) the probability of mu-

tation, and (5) the maximum run time. For a more detailed

description, see the work of Zitzler et al. (Zitzler and Thiele,

1999; Zitzler et al., 2001)

2.2.3 Multiobjective Shuffled Complex Evolution

Metropolis (MOSCEM-UA)

MOSCEM-UA was developed by Vrugt et al. (2003a). The

algorithm combines a Markov Chain Monte Carlo sampler

with the Shuffle Complex Evolutionary algorithm (SCE-UA)

algorithm (Duan et al., 1992), while seeking Pareto opti-

mal solutions using an improved fitness assignment approach

based on the original SPEA (Zitzler and Thiele, 1999). It

modifies the fitness assignment strategy of SPEA to over-

come the drawback that individuals dominated by the same

archive members are assigned the same fitness values (Zit-

zler et al., 2001; Vrugt et al., 2003a). MOSCEM-UA com-

bines the complex shuffling of the SCE-UA (Duan et al.,

1992, 1993) with the probabilistic covariance-annealing pro-

cess of the Shuffle Complex Evolution Metropolis-UA algo-

rithm (Vrugt et al., 2003b). Firstly, a uniformly distributed

initial population is divided into complexes within which par-

allel sequences are created after sorting the population based

on fitness values. Secondly, the sequences are evolved iter-

atively toward a multivariate normally distributed set of so-

lutions. The moments (mean and covariance matrix) of the

multivariate distribution change dynamically because they

are calculated using the information from the current evo-

lution stage of sequences and associated complexes. Finally,

the complexes are reshuffled before the next sequence of evo-

lution. For a detailed introduction to the algorithm, please

refer to the research of Vrugt et al. (2003a, b).

Based on the findings of Vrugt et al. (2003a) and our own

analysis, MOSCEM-UA’s performance is most sensitive to

three parameters: (1) population size, (2) run length, and (3)

the number of complexes/sequences. All of the remaining

parameters (i.e., reshuffling and scaling) were set to the de-

fault values in a C source version of the algorithm we re-

ceived from Vrugt in June 2004. Readers should also note

that while MOSCEM-UA and SCE-UA use some of the same

underlying search operators, their algorithmic structures and

implementations are very different. The analysis and con-

clusions of this study apply only to the MOSCEM-UA algo-

rithm.

2.2.4 Similarities and differences between the algorithms

ε-NSGAII, SPEA2, and MOSCEM-UA all seek the Pareto

optimal set instead of a single solution. Although these algo-

rithms employ different methodologies, ultimately they all

seek to balance rapid convergence to the Pareto front with

maintaining a diverse set of solutions along the full extent of

an application’s tradeoffs. Diversity preservation is also im-

portant for limiting premature-convergence to poor approx-

imations of the true Pareto set. The primary factors con-

trolling diversity are population sizing, fitness assignment

schemes that account for both Pareto dominance and diver-

sity, and variational operators for generating new solutions in

unexplored regions of a problem space.

A key characteristic of ε-NSGAII is the algorithm’s ability

to adapt population size commensurate to problem difficulty

and promote diversity using “time continuation” (i.e., inject-

ing random solutions when search progress slows). Both

SPEA2 and MOSCEM-UA are impacted by population size,

but currently trial-and-error analysis is necessary to deter-

mine an appropriate search population size. With respect

to the fitness assignment, these three algorithms all use the

Pareto dominance concept. Both MOSCEM-UA and SPEA2

use the fitness assignment method based on the original fit-

ness assignment approach employed in SPEA. MOSCEM-

UA improves the original method by adding Pareto rank

when assigning fitness values to dominated individuals in the

population. SPEA2 considers both dominated and nondom-

inated individuals as well as their density information when

applying fitness assignment. The density function is used to

differentiate individuals with the same raw fitness values by

calculating the distance from current point being considered

to a predefined nearest point (Zitzler et al., 2001). ε-NSGAII
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Table 1. Suite of test functions.

Names of Number of Decision Variables Main Features of the Pareto

Test Functions and Parameter Ranges optimal front

T1 m=30; [0, 1] Convex

T2 m=30; [0, 1] Non-Convex counterpart to T1

T3 m=30; [0, 1] Discreteness: Multiple non-contiguous

convex parts

T4 m=10; [0, 1] for the first variable, Multimodality: 219 local fronts

[−5, 5] for others

T6 m=10; [0, 1] Solutions are non-uniformly distributed;

Solution density is lowest near the

front and highest away from the front

adopts the ε-dominance grid based approach for fitness as-

signment and diversity preservation (Laumanns et al., 2002).

Regarding the whole evolution process, MOSCEM-UA is

significantly different from SPEA2 and ε-NSGAII although

all of them randomly initialize their search populations. As

discussed above, MOSCEM-UA uses the complex shuffling

method and the Metropolis-Hastings algorithm to conduct

search. Offspring are generated using a multivariate normal

distribution developed utilizing information from the current

draw of the parallel sequence within a complex. The accep-

tance of a new generated candidate solution is decided ac-

cording to the scaled ratio of candidate solution’s fitness to

current draw’s fitness of the sequence. Complex shuffling

helps communication between different complexes and pro-

motes solution diversity.

Comparatively, SPEA2 and ε-NSGAII adopt the tradi-

tional evolutionary operators (e.g. selection, crossover and

mutation) in searching. They both use binary tournament

selection, simulated binary crossover (SBX), and polyno-

mial mutation. And both of them maintain external archives

which store the best solutions found from the random initial

generation to final termination generation. However, these

two algorithms are different in many aspects. After popu-

lation initialization, SPEA2 assigns fitness to each individ-

ual in the population and the archive. Nondominated sort-

ing is conducted on all these individuals and then the non-

dominated solutions are copied to the archive of next gener-

ation. Because the archive is fixed in size, either a truncation

scheme must be implemented or the best dominated solutions

must be used to fill up the archive. Then binary tournament

selection with replacement is applied to select individuals for

a mating pool. The new population in SPEA2’s next genera-

tion is created by applying crossover and mutation operators

to the mating pool. The process is repeated until a user spec-

ified termination criterion is met.

ε-NSGAII initiates the search with an arbitrarily small

number of individuals (e.g., 10-individuals). Binary tourna-

ment selection, SBX crossover, and mutation operators are

implemented to generate the first child population. Pareto

ranks are assigned to the individuals from the parent and chil-

dren populations. Solutions are selected preferentially based

on their non-domination rank. Crowding distances (i.e., Eu-

clidean norms for measuring distance from neighbour solu-

tions in objective space) are used to distinguish between the

individuals with the same non-domination rank (i.e., larger

crowding distances are picked preferentially to promote di-

versity). At the end of each generation, the external archive

is updated with the ε-non-dominated solutions. The archive

size and population size change dynamically based on the to-

tal number of ε non-dominated solutions stored. In this study,

a single termination criterion based on the maximum num-

ber of function evaluations was used for all of the algorithms

(i.e., they all had identical numbers of function evaluations)

to ensure a fair comparison.

3 Case studies

3.1 Case study 1: the test function suite

The first test case is composed of a standardized suite of com-

puter science test problems (Zitzler et al., 2000; Deb, 2001;

Coello Coello et al., 2002) that are used to validate the al-

gorithms’ abilities to perform global search effectively, ef-

ficiently, and reliably for a broad range of problem types.

This is the first study to test MOSCEM-UA on this suite of

problems. The test function suite has been developed col-

laboratively by the EMO community (Coello Coello et al.,

2002; Deb et al., 2002) as standardized performance tests

where new algorithms must meet or exceed the performance

of current benchmark algorithms such as SPEA2.

Since these test functions have been used very broadly in

the EMO literature (Zitzler et al., 2000; Deb, 2001; Coello

Coello et al., 2002; Kollat and Reed, 2005a), their detailed

formulations will not be presented here. Table 1 provides

an overview of the number of decision variables used, their

ranges, and the problems’ characteristics. The test functions
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are labeled T1, T2, T3, T4, and T6 following the naming con-

vention of Zitzler et al. (2000). All of the test functions have

been implemented in the standard forms used in the EMO

literature. Generally, T1 and T2 are considered relatively

straightforward convex and non-convex test problems. T3

tests algorithms’ abilities to find discontinuous convex sets

of solutions. T4 and T6 are the most challenging of the test

functions requiring algorithms to overcome large numbers of

local fronts and non-uniformly distributed solution spaces,

respectively.

3.2 Case study 2: Leaf River watershed

The Leaf River SAC-SMA test case represents a benchmark

problem within the water resources literature that has been

used extensively for developing tools and strategies for im-

proving hydrologic model calibration (Duan et al., 1992;

Yapo et al., 1998; Boyle et al., 2000; Wagener et al., 2001;

Vrugt et al., 2003a, b). Readers interested in the full de-

tails of the Leaf River case study’s dataset should reference

earlier works (e.g., Sorooshian et al., 1993). The Leaf River

case study used in this paper has been developed based on the

original studies used to develop and demonstrate MOSCEM-

UA (Vrugt et al., 2003a, b). The Sacramento Soil Moisture

Accounting model is a 16 parameter lumped conceptual wa-

tershed model used for operational river forecasting by the

National Weather Service throughout the US (see Burnash,

1995, for more details on the model). All three algorithms

searched the same 13 SAC-SMA parameters (3 parameters

are commonly fixed a priori) and parameter ranges as were

specified by Vrugt et al. (2003a). The algorithms were tested

on their ability to quantify a 2-objective tradeoff based on a

root-mean square error (RMSE) problem formulation. The

first objective was formulated using a Box-Cox transforma-

tion of the hydrograph (z=[(y+1)λ−1]/λ where λ=0.3) as

recommended by Misirli et al. (2003) to reduce the impacts

of heteroscedasticity in the RMSE calculations (also increas-

ing the influence of low flow periods). The second objective

was the non-transformed RMSE objective, which is largely

dominated by peak flow prediction errors due to the use of

squared residuals. The best known approximation set gener-

ated for this problem is discussed in more detail in the results

of this study (see Fig. 5a).

A 65-day warm-up period was used based on the method-

ological recommendations of Vrugt et al. (2003a). A two-

year calibration period was used from 1 October 1952 to 30

September 1954. The calibration period was shortened for

this study to control the computational demands posed by

rigorously assessing the EMO algorithms. A total of 150

EMO algorithm trial runs were used to characterize the al-

gorithms (i.e., 50 trials per algorithm). Each EMO algo-

rithm trial run utilized 100 000 SAC-SMA model evalua-

tions, yielding a total of 15 000 000 SAC-SMA model evalu-

ations used in our Leaf River case study analysis. Reducing

the calibration period improved the computational tractabil-

ity of our analysis. The focus of this study is on assessing the

performances of the three EMO algorithms that are captured

in the 2 year calibration period. In actual operational use of

the SAC-SMA for the Leaf River 8 to 10 year calibration pe-

riods are used to account for climatic variation between years

(Boyle et al., 2000).

3.3 Case study 3: Shale Hills watershed

The Shale Hills experimental watershed was established in

1961 and is located in the north of Huntington County, Penn-

sylvania. It is located within the Valley and Ridge province

of the Susquehanna River Basin in north central Pennsylva-

nia. The data used in this study was supplied by a compre-

hensive hydrologic experiment conducted in 1970 on a 19.8

acre sub-watershed of the Shale Hill experimental site. The

experiment was led by Jim Lynch of the Pennsylvania State

University’s Forestry group with the purpose of exploring the

physical mechanisms of the formation of stream-flow at the

upland forested catchment and to evaluate the impacts of an-

tecedent soil moisture on both the volume and timing of the

runoff (see Duffy, 1996). The experiment was composed

of an extensive below canopy irrigation network for simu-

lating rainfall events as well as a comprehensive piezometer

network, 40 soil moisture neutron access tubes and 4 weirs

for measuring flow in the ephemeral channel. Parameteriza-

tion of the integrated surface-subsurface model for the Shale

Hills was also supported by more recent site investigations,

where Lin et al. (2005) extensively characterized the soil and

groundwater properties of the site using in-situ observations

and ground penetrating radar investigations.

3.3.1 Integrated surface-subsurface model description

The hydrologic model being calibrated in this study is a semi-

distributed version of the integrated hydrologic model being

developed by Duffy et al. (1996, 2004), Qu (2004). This

model integrates watershed processes within the terrestrial

hydrologic cycle over a wide range of time scales. It couples

surface, subsurface and channel states within the hillslope

and watershed. The model strategy is to transform partial

differential equations (PDEs) to ordinary differential equa-

tions (ODEs), using the semi-discrete finite volume method

(SD FVM) (Duffy, 2004). Specifically, the spatial domain

is decomposed into different zones (response units). Differ-

ent ODEs are created to simulate different hydrologic pro-

cesses within each zone. The ODE system within each zone

is termed a “Model Kernel”. An overall ODE system is

created by combining all of the model kernels. The ODE

system is solved using an implicit Runge-Kutta ODE solver

(RADAU IIA) of order 5 (Hairer and Wanner, 1996). As

noted by Duffy (1996, 2004), by taking advantage of the fi-

nite volume method, the model strategy has the capability of

capturing the “dynamics” in different processes while main-

taining the water balance (Qu, 2004). The model also has the
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Fig. 1. Domain decomposition of the Shale Hills test case.

flexibility of easily adding/eliminating (switching on/off) the

key hydrologic processes for a system.

As discussed above, the water budget is computed using a

global model kernel composed of ODEs representing each of

the watershed zones or river sections. The number of ODEs

increases linearly with the number of decomposed spatial

zones within the watershed. In the Shale Hills application,

the watershed is decomposed into 7 zones and 4 river sections

connected to each other between the zones. The decomposed

domain and the topology of the zones and the river sections

are shown in Fig. 1. The domain decomposition results in 32

ODEs solved implicitly using a solver that has been proven to

be highly effective for ODE systems (Guglielmi and Hairer,

2001). The model simulation time is substantial for this study

given that the EMO algorithms will have to evaluate thou-

sands of simulations while automatically calibrating model

parameters. On a Pentium 4 Linux workstation with a 3 gi-

gahertz processor and 2 gigabytes of RAM, a one month sim-

ulation of Shale Hills using a 1 h output time interval requires

120 s of computing time. If 5000 model evaluations are used

to optimize model parameters, then a single EMO run will

take almost 7 days. This study highlights how trial-and-error

analysis of EMO algorithm performance can have a tremen-

dous cost in both user and computational time.

3.3.2 Problem formulation

Multiobjective calibration uses multiple performance mea-

sures to improve model predictions of distinctly different

responses within a watershed’s hydrograph simultaneously

(e.g., high flow, low flow, average flow). For the Shale

Hills case study, the calibration objectives were formulated

to generate alternative model parameter groups that cap-

ture high flow, average flow, and low flow conditions for

the Shale Hills test case using the three search objectives

given in Eqs. (3)–(5). The problem formulations used in

this study build on prior research using RMSE and the het-

eroscedastic maximum likelihood estimator (HMLE) mea-

sures (Sorooshian and Dracup, 1980; Yapo et al., 1996, 1998;

Gupta et al., 1998; Boyle et al., 2000; Madsen, 2003; Ajami

et al., 2004).
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Fig. 2. Illustration of the Shale Hills calibration period where a

100 h warm up period was used. High flow and low flow classifica-

tions were made based on the points of inflection within the hydro-

graph.
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Low flow RMSE : f3(θ) =


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(5)

where Qobs,i is the observed discharge at time i; Qsim,i(θ)

is the simulated discharge; N is the total number of time

steps in the calibration period; Mp is the number of peak flow

events; Ml is the number of low flow events; nj is the num-

ber of time steps in peak/low flow event number j ; w1, w2

and w3 are the weighting coefficients; θ is the set of model

parameters to be calibrated.

In this study, the weighting coefficients for high flow and

low flow are adapted forms of the HMLE statistics (Yapo et

al., 1996). The weights for high flow errors are set to the

square of the observed discharges to emphasize peak dis-

charge values. The weights for low flow are set to give

prominence to low flow impacts on the estimation errors. The

weighting coefficient for average flow is set to 1 and thus the

error metric for average flow is the standard RMSE statis-

tic. Equation (6) provides the weighting coefficients used to

differentiate different hydrologic responses.

w1 = 1 w2 = Q2
obs

w3 =

(

1

Q2
obs

)1/

Ml
∑

j=1

nj

(6)

Preliminary sensitivity analysis showed that the model was

very sensitive to the initial surface storage, but the impacts
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of the initial surface storage were attenuated within the first

100 h. Figure 2 illustrates the Shale Hills calibration period

including a 100 h warm up period to reduce the impacts of

the initial conditions. High flow and low flow classifications

were made based on points of inflection within the hydro-

graph. Table 2 overviews the parameters being calibrated for

the Shale Hills case study. For overland flow, the conver-

gence time scale of a hill slope η cannot be estimated analyt-

ically so the parameter was selected for calibration. The sat-

urated soil hydraulic conductivity Ks is calibrated as well as

the empirical constants (α, β) in the van Genuchten soil func-

tions. In our preliminary sensitivity analysis, Manning’s co-

efficient (n) and the saturated hydraulic conductivity of river

reaches were identified to significantly impact river routing

and groundwater-stream interactions. Both of these parame-

ters are calibrated. In the Shale Hills case study, a total of 36

parameters are being calibrated (7 spatial zones * 4 parame-

ters + 4 river sections * 2 parameters). The parameter ranges

were specified based on both field surveys (Qu, 2004; Lin

et al., 2005) and recommendations from literature (Carsel,

1988; Dingman, 2002).

4 Description of the computational experiment

4.1 Algorithm configurations and parameterizations

In an effort to ensure a fair comparison between ε-NSGAII

and each of the other algorithms, significant effort has been

focused on seeking optimal configurations and parameteri-

zations for SPEA2 and MOSCEM-UA using trial-and-error

analysis and prior literature. The broadest analysis of the

impacts of alternative algorithm configurations was done for

the test function suite, since this test case has the small-

est computational demands. The algorithms were allotted

15 000 function evaluations for each trial run when solv-

ing each problem within the test function suite based on the

recommendations and results of prior studies (Zitzler et al.,

2001; Kollat and Reed, 2005a). For each problem in the test

function suite a total of 350 trial runs were performed (i.e.,

1 configuration for ε-NSGAII tested for 50 random seeds,

4 MOSCEM-UA configurations tested for 50 random seeds

each yielding 200 trial runs, and 2 SPEA2 configurations

tested for 50 random seeds each yielding 100 trial runs).

Since ε-NSGAII and SPEA2 use the same mating and

mutation operators, the algorithms’ probabilities of mating

where set equal 1.0 and their probabilities of mutation were

set equal to 1/L where L is the number of decision vari-

ables as has been recommended extensively in the literature

(Zitzler et al., 2000, 2001; Deb, 2001; Coello Coello et al.,

2002). ε-NSGAII utilized an initial population size of 10

individuals. For the test function suite SPEA2’s two con-

figurations both used an archive size of 100 based on prior

studies (Zitzler et al., 2000, 2001; Deb, 2001; Coello Coello

et al., 2002) and two different population sizes (N=100) and

(N=250). MOSCEM-UA’s configurations tested the impacts

of increasing population sizes N and increasing the numbers

of complexes C: (N=100, C=2), (N=250, C=2), (N=250,

C=5) and (N=1000, C=5). The largest population size and

number of complexes tested for MOSCEM-UA were based

on a personal communication with Jasper Vrugt, the algo-

rithm’s creator.

ε-NSGAII utilized the same configuration as was used for

the test function suite on the Leaf River and Shale Hills case

studies in an effort to test the algorithms’ robustness in the

absence of trial-and-error analysis. Based on the SPEA2’s

performance on the test function suite and trial-and-error

analysis the algorithm’s population size was set equal to 100

for both the Leaf River and Shale Hills test cases. The key

challenge in maximizing the performance of SPEA2 lies in

specifying an effective archive size without a priori knowl-

edge of the Pareto set. SPEA2’s performance is very sensi-

tive to archive size. Trial-and-error analysis revealed that if

the algorithm’s archive is too small then its overall perfor-

mance suffered. Moreover, setting the SPEA2 archive to be

very large also reduced the algorithm’s search effectiveness

because its diversity enhancing clustering operator is under

utilized. For the Leaf River and Shale Hills case studies,

SPEA2’s performance was maximized by setting the archive

size equal to 500 and 100, respectively, based on the aver-

age archive sizes attained by the ε-NSGAII. Note ε-NSGAII

automatically sizes its archive based on the number of ε-

nondominated solutions that have been found.

For the Leaf River case study, MOSCEM-UA utilized a

population size of 500 individuals and 10 complexes as was

used by Vrugt et al. (2003a) in the original development and

demonstration of the algorithm. As will be discussed in the

results presented in Sect. 5 increasing the population size

and number of complexes used by MOSCEM-UA has a very

large impact on the algorithm’s solution time, which signifi-

cantly impacted our analysis of the Shale Hills test case. For

the Shale Hills case study, MOSCEM-UA was tested for a

population size of 250 with 2 or 5 complexes to ensure that

a single run would complete in 7 days based on the maxi-

mum run times allotted for the LION-XO computing clus-

ter. The computational constraints limiting our ability to use

larger population sizes and more complexes in the Shale Hills

trial runs for MOSCEM-UA are discussed in greater detail in

Sect. 5.

4.2 Performance metrics

The performances of all of the EMO algorithms tested in this

study were assessed using metrics designed to answer two

questions: (1) how good are the approximation sets found

by the EMO algorithms? and (2) which of the solution sets

are better than the others? Deb and Jain (2002), stress that

EMO performance assessments must account for two sepa-

rate and often conflicting approximation set properties: (1)

convergence – the distance from the reference set of opti-
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Table 2. Parameters being optimized in the Shale Hills case study.

Parameters Description Units Min. Max. Kernel

Ks Saturated hydraulic conductivity m/h 0.000035 0.15 Zone

η Surface time scale 1/h 0.08 1 Zone

α Empirical constant 1/m 0 7 Zone

β Empirical constant 1.1 2 Zone

n Manning’s coefficient 0.02 0.08 River Section

Ksr Saturated hydraulic conductivity m/h 0.000035 0.3 River Section

of river section

mal solutions, and (2) diversity – how well the evolved set

of solutions represents the full extent of the tradeoffs that ex-

ist between an application’s objectives. Performance metrics

that measure these properties are termed unary indicators be-

cause their values are calculated using one solution set and

they reveal specific aspects of solution quality (Zitzler et al.,

2003).

Two unary metrics, the ε-indicator (Zitzler et al., 2003)

and the hypervolume indicator (Zitzler and Thiele, 1999)

were selected to assess the performances of the algorithms.

The unary ε-indicator measures how well the algorithms con-

verge to the true Pareto set or the best known approximation

to the Pareto set. The unary ε-indicator represents the small-

est distance that an approximation set must be translated to

dominate the reference set, so smaller indicator values are

preferred. For example, in Fig. 3, the approximation set has

to be translated a distance of ε so that it dominates the refer-

ence set. The unary hypervolume metric measures how well

the algorithms performed in identifying solutions along the

full extent of the Pareto surface or its best known approxima-

tion (i.e., solution diversity). The unary hypervolume metric

was computed as the difference between the volume of the

objective space dominated by the true Pareto set and volume

of the objective space dominated by the approximation set.

For example, the blue shaded area in Fig. 3 represents the

hypvervolume metric of the approximation set. Ideally, the

hypervolume metric should be equal to zero. For more de-

tails about the descriptions and usages of these metrics, see

Zitzler and Thiele (1999); Zitzler et al. (2003); Kollat and

Reed (2005b).

In addition to the unary metrics discussed above, perfor-

mance was also assessed using the binary metric. The binary

metric was implemented by combining the unary ε-indicator

metric with an interpretation function. Zitzler et al. (2003)

formulated the interpretation function to directly compare

two approximation solution sets and conclude which set is

better or if they are incomparable. The term “binary” refers

to the metric’s emphasis on comparing the quality of two ap-

proximation sets. The ε-indicator and the interpretation func-

Fig. 3. (a) Example illustration of the ε-indicator metric. (b) Ex-

ample illustration of the hypervolume metric. The shaded area with

blue color represents the hypervolume value. Adapted from (Fon-

seca et al., 2005).

tion are formulated as shown in Eqs. (7) and (8) separately:

Iε(A, B) = max
f2∈B

min
f1∈A

max
1≤i≤n

f 1
i

f 2
i

(7)

F = (Iε(A, B) ≤ 1 ∧ Iε(B, A) > 1) (8)

Where f1={f 1
1 , f 1

2 , ..., f 1
n }∈A and f2={f 2

1 , f 2
2 , ..., f 2

n }∈B

are objective vectors; A and B are two approximation sets; F

is an interpretation function. If A is not better than B and B

is not better than A, then the sets are incomparable. When F

is true, it indicates that A is better than B. Similarly, chang-

ing the order of A and B, the decision about whether B is

better than A can be made.

The binary ε-indicator metric provides a direct way of

ranking the quality of approximation sets generated using

different initial random populations and/or different algo-

rithm configurations. The results of each trial run are com-

pared to the results of all other trial runs in the comparison

pool. Each trial run is given a rank according to the number

of trial runs that exceed its performance in terms of the binary

ε-indicator metric. The best trial runs are assigned a rank of

one, while a rank of two is assigned to the trial runs that have

the second best results. The process is repeated until every

trial run is assigned a rank. The trial runs in the same rank

www.hydrol-earth-syst-sci.net/10/289/2006/ Hydrol. Earth Syst. Sci., 10, 289–307, 2006



298 P. Reed et al.: Effective multiobjective hydrologic model calibration

0

1.5

3

0

2

4

0

1.5

3

0

60

120

0 3.75 7.5 11.25 15
0

4

8

0 3.75 7.5 11.25 15 0 3.75 7.5 11.25 15

-NSGAII SPEA2 MOSCEM-UA

Function Evaluations (            )

-I
n
d
ic

at
o
r

 310×

 

ε
 ε

1T

2T

3T

4T

6T

Fig. 4. Dynamic performance plot for the unary ε-indicator dis-

tance metric versus total design evaluations for the best perform-

ing configurations of the ε-NSGAII, SPEA2, and MOSCEM. Mean

performance is indicated by a solid line, the standard deviation by

a dashed line, and the range of performance by the shaded region.

The plots were generated using 50 trials for each algorithm.

are incomparable to one another. In this study, the binary ε-

indicator ranking results are presented in terms of the ratio of

trial runs that attain top ranks (i.e., ranks of 1 or 2).

5 Results

5.1 Optimization results for case study 1: test function

suite

As described in Sect. 4.2, the binary ε-indicator metric pro-

vides performance rankings for alternative algorithm con-

figurations and cross-algorithm performance. For each test

problem a total of 350 trial runs were performed (i.e., 1

configuration for ε-NSGAII tested for 50 random seeds, 4

MOSCEM-UA configurations yielding 200 random seed tri-

als, and 2 SPEA2 configurations yielding 100 random seed

trials). After ranking the trial runs, we present the ratio of

the number of top ranking runs out of the 50 trials used to

test each of the algorithms’ configurations (see Table 3).

The best configurations for SPEA2 and MOSCEM-UA are

(N=100) and (N=1000, C=5), respectively. The ε-NSGAII

has the best overall binary ε-indicator metric rankings for the

test function suite.

The unary hypervolume and ε-indicator metrics measure

solution diversity and algorithm convergence to the true

Pareto fronts, respectively. These unary metrics provide a

more detailed understanding of the dynamic performances

of the algorithms in terms of efficiency, effectiveness, and

reliability. The means and standard deviations of the final

optimization results for the best configurations (ε-NSGAII

has only one configuration) are summarized in Table 4.

Recall that the unary ε-indicator represents the smallest

distance that an approximation set must be translated to dom-

inate the reference set so smaller indicator values are pre-

ferred. Likewise, the unary hypervolume metric is the differ-

ence between the volume of the objective space dominated

by the true Pareto set and volume of the objective space dom-

inated by the approximation set. Ideally, the hypervolume

metric should be equal to zero.

In Table 4, the ε-NSGAII has the best overall average per-

formance in both metrics for the test functions. In addition,

the relatively small standard deviations reveal that ε-NSGAII

is reliable in solving the test functions. SPEA2 is also effec-

tive and reliable in solving the test functions. Both ε-NSGAII

and SPEA2 are superior to MOSCEM-UA. Figure 4 illus-

trates the variability in the algorithms’ performances by pre-

senting runtime results for the ε-indicator distance metric.

The plots show the results of all 50 random seed trials with

the mean performance indicated by a solid line, the stan-

dard deviation by a dashed line, and the range of random

seed performance indicated by the shaded region. Visualiz-

ing the results in this manner allows for comparison between

the dynamics and reliability (i.e., larger shaded regions indi-

cate lower random seed reliability) of each algorithm.

Figure 4 confirms that ε-NSGAII was both the most ef-

ficient and effective of the algorithms attaining very close

approximations of the true Pareto sets in under 2500 evalua-

tions. SPEA2 typically requires 7500 evaluations to attain

equivalent metric values relative to ε-NSGAII. MOSCEM

is the least reliable and efficient of the algorithms for the

test function suite, failing to attain competitive results in

15 000 evaluations. Dynamic plots of the hypervolume met-

ric showed very similar results to the runtime unary ε-

indicator results shown in Fig. 4. The most significant per-

formance differences between the algorithms resulted for the

multi-modal T4 problem. The performance rankings in Ta-

ble 3 show that MOSCEM-UA generally failed to converge

to the Pareto front for T4. SPEA2’s dynamic search results

for T4 (see Fig. 4) are much better than MOSCEM-UA but

its final solution set is still far away from the Pareto front

as evidenced by its poor ranking results in Table 3. Only ε-

NSGAII successfully converges to the true Pareto front for

T4 with high reliability. In terms of elapsed computational

time, the ε-NSGAII is an order of magnitude faster than that

of SPEA2, and the elapsed computational time of SPEA2

is an order of magnitude faster than MOSCEM-UA. For ex-

ample, in solving T1, the average computational times re-

quired by ε-NSGAII, SPEA2 and MOSCEM-UA are 1.90 s,

21.75 s, and 397.42 s, respectively. Note this difference in

computational efficiency had dramatic impacts on the com-
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Table 3. Test function results for the ratios of top trial runs for each configuration of the algorithms based on the binary ε-indicator metric

ranking. The values highlighted by bold font are the best values among the configurations within a specific algorithm, the values indicated

by bold font with underscore are the best values across algorithms.

MOEA Configurations
Top Ranking Ratios

T1 T2 T3 T4 T6

ε-NSGAII (N=10) 50/50 50/50 50/50 50/50 50/50

SPEA2
(N=100) 50/50 9/50 50/50 1/50 47/50

(N=250) 50/50 6/50 45/50 0/50 27/50

MOSCEM-UA

(N=100, C=2) 0/50 0/50 0/50 0/50 6/50

(N=250, C=2) 1/50 0/50 0/50 0/50 12/50

(N=250, C=5) 0/50 0/50 0/50 0/50 14/50

(N=1000, C=5) 11/50 0/50 0/50 0/50 20/50

Table 4. Averages and standard deviations of the unary metrics for each algorithm’s best configuration. AVG stands for mean, STD stands

for standard deviation, and bolded entries highlight the best value attained.

MOEA
Hypervolume ε-Indicator Time (s)

AVG STD AVG STD AVG STD

ε-NSGAII 1.43E-4 7.50E-5 4.12E-3 2.02E-3 1.90E+0 1.22E+0

T1 SPEA2 1.31E-2 2.12E-3 1.61E-2 2.40E-3 2.18E+1 8.40E-1

MOSCEM-UA 6.69E-1 4.73E-1 3.62E-1 1.97E-1 3.97E+2 1.66E+2

ε-NSGAII 2.91E-4 1.58E-3 9.85E-3 2.22E-2 1.14E+0 8.60E-1

T2 SPEA2 5.30E-1 1.63E-1 5.30E-1 4.95E-1 1.13E+1 7.90E-1

MOSCEM-UA 5.11E-1 2.22E-1 4.60E-1 1.81E-1 2.96E+2 1.85E+1

ε-NSGAII 3.78E-2 5.52E-2 1.71E-1 2.10E-1 1.70E+0 1.18E+0

T3 SPEA2 2.61E-2 9.60E-3 3.08E-2 2.28E-2 2.12E+1 6.00E-1

MOSCEM-UA 1.08E0 4.31E-1 7.51E-1 3.49E-1 3.07E+2 2.21E+1

ε-NSGAII 1.73E-2 4.23E-2 2.33E-2 4.83E-2 2.34E+0 1.61E+0

T4 SPEA2 1.65E+0 6.06E-1 1.93E+0 6.59E-1 2.34E+1 6.40E-1

MOSCEM-UA 5.10E+1 6.69E+0 4.94E+1 7.29E+0 7.33E+2 8.96E+1

ε-NSGAII 1.51E-2 1.57E-3 2.81E-1 1.68E-4 1.42E+0 7.90E-1

T6 SPEA2 4.23E-2 4.42E-3 2.81E-1 0.00E+0 2.62E+1 2.90E+0

MOSCEM-UA 1.48E+0 1.07E+0 7.84E-1 3.39E-1 5.52E+2 1.67E+2

putational times required for our test function analysis, where

several days were required for MOSCEM-UA, several hours

for SPEA2, and several minutes for ε-NSGAII.

Averaged performance metrics are meaningful only in

cases when the EMO algorithms’ metric distributions are sig-

nificantly different from one another. In this study, the Mann-

Whitney test (Conover, 1999) was used to validate that the

algorithms attained statistically significant performance dif-

ferences. The null hypothesis for the tests assumed that met-

ric distributions for any two algorithms are the same. The

Mann-Whitney test showed a greater than 99% confidence

that performance metric scores for the ε-NSGAII are sig-

nificantly different from those of MOSCEM-UA for all of

the test functions. When comparing SPEA2 and MOSCEM-

UA it was found that the algorithms’ performance differences

on T2 are not statistically significant. On all of the remain-

ing test functions SPEA2’s superior performance relative to

MOSCEM-UA was validated at greater than a 99% confi-

dence level. The ε-NSGAII’s performance was statistically

superior to SPEA2 at the 99% confidence level for all of the

test functions except for T3. ε-NSGAII and SPEA2 did not

attain a statistically meaningful performance difference on

T3.

5.2 Optimization results for case study 2: leaf river water-

shed

The performance metrics utilized in this study require a refer-

ence Pareto set or the best known approximation to the Pareto

optimal set. The best known approximation set was gener-
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Fig. 5. (a) Reference set generated for the Leaf River test case

where RMSE(T) are the errors for the Box-Cox transform of the

hydrograph and RMSE(R) are the errors for the raw hydrograph.

The figure also shows a false front that often trapped the algorithms.

(b) The percentage of the reference set contributed by ε-NSGAII,

SPEA2, and MOSCEM-UA.

Table 5. Leaf River case study’s ratios of top trial runs for each con-

figuration of the algorithms based on the binary ε-indicator metric

ranking. The best performing algorithm is highlighted in bold.

MOEA Configurations Top Ranking Ratios

ε-NSGAII (N=10) 23/50

SPEA2 (N=100) 42/50

MOSCEM-UA (N=500, C=10) 13/50

ated by collecting all of the nondominated solutions gener-

ated from the 150 trial runs used for this case study (i.e., 50

trial runs per algorithm). Figure 5 shows the solutions con-

tributed by each algorithm for the 2-objective tradeoff be-

tween the Box-Cox transformed RMSE metric and the stan-

dard RMSE metric.

ε-NSGAII found 58% of the reference set and the re-

maining 42% of the reference set was generated by SPEA2.

MOSCEM-UA was unable to contribute to the best solutions

that compose the reference set. Table 5 shows that SPEA2

was able to attain the best binary ε-indicator metric rankings

followed by ε-NSGAII and lastly MOSCEM-UA.

Table 6 shows that SPEA2 had the best average per-

formance in terms of both the ε-indicator and hypervol-

ume unary metrics. The Mann-Whitney test validated that

SPEA2’s results were different from both MOSCEM-UA and

ε-NSGAII at the 99% confidence level.

The results of Table 6 demonstrate that average perfor-

mance metrics can be misleading without statistical testing.

Although MOSCEM-UA has superior mean hypervolume

and ε-indicator distance values relative to ε-NSGAII, per-

formance differences between the algorithms were not sta-

tistically significant (i.e., the null hypothesis in the Mann-

Whitney test could not be rejected). In fact, all three algo-

rithms had significant ranges of performance for this test case

because of the presence of a large false front (i.e., the locally

nondominated front shown in Fig. 5) that caused some of

the algorithms’ runs to miss the best known front. Figure 6

illustrates the variability in the algorithms’ performances by

presenting runtime results for the ε-indicator distance metric.

Figure 6 verifies that SPEA2 has the best mean perfor-

mance over the full duration of the run. The figure also shows

that SPEA2 was slightly more reliable relative to ε-NSGAII

and MOSCEM-UA. Dynamic plots for hypervolume showed

similar runtime distributions for the three algorithms. Fig-

ure 7 illustrates dynamic results for the best trial runs for each

of the algorithms. The best trial runs were selected based on

the algorithms’ best unary metrics scores.

The plot shows that ε-NSGAII is able to attain superior hy-

pervolume (diversity) and ε-indicator distance (convergence)

metrics in less than 5000 model evaluations. SPEA2 and

MOSCEM-UA required between 12 000 and 25 000 model

evaluations to attain equivalent performance metric values.

Overall SPEA2 had superior performance for this test case

while MOSCEM-UA and ε-NSGAII had comparable perfor-

mances.

5.3 Optimization results for case study 3: Shale Hills wa-

tershed

For the Shale Hills test case, MOSCEM-UA’s parameters

were challenging to set given the computational expense of

the integrated hydrologic model. As discussed in Sect. 3.3.1,

the Shale Hills test case poses a tremendous computational

challenge where a single algorithm trial run requires approx-

imately a week of computation. Given the magnitude of

simulation evaluation times, the computational time spent in

algorithmic search for both ε-NSGAII and SPEA2 is neg-

ligible. Unfortunately, MOSCEM-UA’s algorithmic time is

not negligible for increasing population sizes and increasing

numbers of complexes because the algorithm utilizes a ma-

trix inversion as part of its stochastic search operators. The

severity of MOSCEM-UA’s algorithmic inefficiency is high-

lighted in the test function analysis where ε-NSGAII was

able to solve the test function suite for 50 random seeds in

times on the order of minutes, MOSCEM-UA required days

for population sizes greater than 250. For the Shale Hills

case study, MOSCEM-UA was tested for a population size

of 250 with 2 or 5 complexes because increasing these pa-

rameters caused a single run to exceed the 7 day maximum

run times allotted for the LION-XO computing cluster. The

severe computational demands of this test case required that

we assess the algorithms using 15 random seed trials. If the

60 trial runs (i.e., 4 algorithm configurations * 15 random

seed trials) were run on a single Pentium 4 Linux worksta-

tion with a 3 gigahertz processor and 2 gigabytes of RAM

this test case would have required approximately 420 days of

continuous computation.
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Fig. 6. Leaf River test case dynamic performance results for the unary ε-indicator distance metric versus total design evaluations. Mean
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plots were generated using 50 trial runs for each algorithm.

Table 6. Leaf River case study’s results for the averages and standard deviations of the unary metrics for each algorithm configuration. AVG

stands for mean, STD stands for standard deviation, and bolded entries highlight the best value attained.

MOEA
Hypervolume ε-Indicator Time (s)

AVG STD AVG STD AVG STD

ε-NSGAII 1.11E+0 1.04E+0 5.31E-1 4.78E-1 8.29E+2 3.58E+1

SPEA2 2.96E-1 4.32E-1 1.39E-1 2.30E-1 8.33E+2 1.82E+1

MOSCEM-UA 5.49E-1 6.49E-1 3.05E-1 3.34E-1 1.24E+3 5.95E+1

Table 7. Shale Hills case study’s ratios of top trial runs for each con-

figuration of the algorithms based on the binary ε-indicator metric

ranking. The best performing algorithm is highlighted in bold.

MOEA Configurations Top Ranking Ratios

ε-NSGAII (N=10) 14/15

SPEA2 (N=100) 15/15

MOSCEM-UA
(N=250, C=2) 4/15

(N=250, C=5) 6/15

The best known approximation set was generated by col-

lecting the nondominated solutions from the 60 trial runs

used for this case study. Figure 8a shows the best known

solution set in the 3-objective solution space defined for this

test case. Figure 8b projects the solution set onto the 2-

objective planes to better illustrate the tradeoffs that exist be-

tween low, average, and peak flow calibration errors.

Figure 9 shows that ε-NSGAII found 94% of the reference

set and the remaining 6% of the reference set was generated

by SPEA2. MOSCEM did not contribute to the best solutions

that compose the reference set.

Table 7 shows that SPEA2 was able to attain slightly better

binary ε-indicator metric rankings relative to the ε-NSGAII.

As indicated by Fig. 9 and Table 7 MOSCEM had diffi-

Table 8. Shale Hills case study’s results for the averages and stan-

dard deviations of the unary metrics for each algorithm configura-

tion. AVG stands for mean, STD stands for standard deviation, and

bolded entries highlight the best value attained.

MOEA
Hypervolume ε-Indicator

AVG STD AVG STD

ε-NSGAII 2.09E+04 1.82E+04 1.18E+0 1.95E-1

SPEA2 1.63E+04 7.17E+03 1.12E+0 4.46E-2

MOSCEM-UA 4.71E+04 1.93E+04 1.38E+0 2.22E-1

cultly in generating highly ranked runs for this test case. Al-

though Table 8 shows that SPEA2 had the best average per-

formance in terms of the ε-indicator and hypervolume unary

metrics, the Mann-Whitney test showed that SPEA2’s results

were not statistically different from ε-NSGAII. Relative to

MOSCEM-UA, SPEA2 and ε-NSGAII attained superior re-

sults that were confirmed to be statistically different at the

99% confidence level.

Figures 10 and 11 show the dynamic results for the full

distribution of trials and for the best single runs for the three

algorithms, respectively. The best trial runs were selected
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based on the algorithms’ best unary metrics scores. Per-

formance metric differences between SPEA2 and ε-NSGAII

resulted from a single trial run. As shown in Table 7 a

single ε-NSGAII run failed to attain a top binary ranking,

which is reflected in the upper bound of the shaded region

in Fig. 10. This single run highly biased both the mean and

standard deviations for the unary metrics given in Table 8 for

ε-NSGAII. The Mann-Whitney test validates that the remain-

ing ε-NSGAII trial runs were not statistically different from

SPEA2. For MOSCEM-UA, Table 7 in combination with

Fig. 10 show that more than 60 percent of the algorithm’s

trial runs failed to solve this test case. Figures 9 and 11 show

that ε-NSGAII’s best runs were superior relative to the other

algorithms’ results, generating nearly all of the reference set.

As was noted for the Leaf River case study, SPEA2’s per-

formance for the Shale Hills test case is heavily impacted by

its archive size. It has been widely recognized (Coello Coello

et al., 2002) that SPEA2’s k-means clustering diversity op-

erator allows the algorithm to attain highly diverse solution

sets for high-order Pareto optimization problems (i.e., prob-

lems with 3 or more objectives). This operator is only ac-

tive in the search process if the archive is sized appropriately,

which in typical applications will require trial-and-error anal-

ysis. For this test case every trial run would require a week

of computing time. It should be noted that ε-NSGAII auto-

matically generates its archive size based on users’ precision

goals for each objective. Additionally, the algorithm starts

with a very small population size, which is automatically ad-

justed to enhance search effectiveness. The results presented

in this study are conservative tests for the ε-NSGAII because

SPEA2 and MOSCEM-UA initiate search with at least an or-

der of magnitude advantage in search population.

6 Discussion

6.1 Relative benefits and limitations of SPEA2

SPEA2 is an excellent benchmark algorithm for multiobjec-

tive hydrologic model calibration. Overall SPEA2 attained

competitive to superior results for most of the problems

tested in this study. The algorithm’s poorest performance oc-

curred on the T4 test function, which represents a severely
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difficult multimodal problem with 219 local fronts. SPEA2’s

best overall performance occurred for the Leaf River case

study where the algorithm was far more reliable relative to

both the ε-NSGAII and MOSCEM-UA. The Leaf River test

case is challenging because of its multimodality (see Fig. 5).

Our analysis showed that carefully setting the archive size

for SPEA2 for this case study enabled the algorithm to fully

exploit its k-means clustering diversity operator to spread so-

lutions across the search space and more reliably escape the

false nondominated front shown in Fig. 5. For the Shale Hills

test case, SPEA2 and ε-NSGAII had statistically equivalent

performance metrics, although SPEA2 was slightly more re-

liable. SPEA2 is generally superior in performance relative

to MOSCEM-UA.

The primary strengths of the SPEA2 algorithm lie in the al-

gorithm’s search reliability and its diversity preservation op-

erator as has been recognized in other studies. In this study,

SPEA2 showed a limited sensitivity to its population sizing

and search parameters. Other studies (Zitzler et al., 2001;

Coello Coello et al., 2002; Deb et al., 2003) have shown that

SPEA2’s sensitivity to population size often manifests itself

in terms of a performance threshold for very difficult prob-

lems where the algorithm fails until the population is made

sufficiently large. In this study, SPEA2’s poor performance

on test function T4 provides an example of this performance

threshold. In these cases, it is very difficult to predict how to

appropriately size SPEA2’s population. Significant trial-and-

error analysis is required. The biggest challenge in maximiz-

ing the performance of SPEA2 lies in specifying an effective

archive size without a priori knowledge of the Pareto set. In

practice, this would require significant trial-and-error analy-

sis, which is problematic for more complex, computationally

intensive calibration applications.

6.2 Relative benefits and limitations of MOSCEM-UA

MOSCEM-UA was the least competitive of the three algo-

rithms tested in this study failing to effectively solve ei-

ther the standardized test function suite or the Shale Hills

test case. MOSCEM-UA attained its best performance on

the Leaf River case study, which was used in its develop-

ment (Vrugt et al., 2003a). On the Leaf River case study,

MOSCEM-UA was inferior to SPEA2 and statistically simi-

lar to ε-NSGAII. MOSCEM-UA did not contribute to any of

the reference sets (i.e., the best overall solutions) for the two

hydrologic calibration applications. The algorithm’s Markov

Chain Monte Carlo sampler in combination with its shuffle

complex search operator does not scale well for problems

of increasing size and/or difficulty. MOSCEM-UA’s binary

ε-indicator rankings for all three test cases show that the al-

gorithm is not reliable even with significant increases in pop-

ulation size and the number of complexes.

MOSCEM-UA’s primary strength is its estimation of the

posterior parameter distributions for hydrologic model pa-

rameters (assuming the initial Gaussian assumptions made

MOSCEM-UA(0%)

-NSGAII(94%)

SPEA2(6%)

ε

Fig. 9. The percentages of the Shale Hills reference set contributed

by ε-NSGAII, SPEA2, and MOSCEM-UA.

for hydrologic parameters are acceptable to users). Addi-

tionally, the algorithm has a limited number of parameters

that need to be specified (i.e., the population size, run length,

and number of complexes). MOSCEM-UA is however, crit-

ically sensitive to these parameters. The matrix inversion

used in the algorithm’s stochastic search operators causes

MOSCEM-UA’s efficiency to dramatically reduce with in-

creases in population size and increases in the number of

complexes. The algorithm is best suited for hydrologic

model calibration applications that have small parameter sets

and small model evaluation times. In general, it would be

expected that MOSCEM-UA’s performance would be met or

exceeded by either SPEA2 or ε-NSGAII.

6.3 Relative benefits and limitations of ε-NSGAII

ε-NSGAII attained competitive to superior performance re-

sults relative to SPEA2 on the test function suite and the

Shale Hills test case. Overall, ε-NSGAII generated the ma-

jority the reference sets (i.e., best overall solutions) for both

hydrologic model calibration case studies. ε-NSGAII also

had the best single run results for both of the calibration case

studies as illustrated in Figs. 7 and 11. The algorithm’s poor-

est performance occurred on Leaf River case study, in which

its average performance was inferior to SPEA2 and statisti-

cally equivalent to MOSCEM-UA.

Although ε-NSGAII generated 58% of the reference set

for the Leaf River test, its binary ε-indicator metric rankings

(see Table 5) show that the algorithm performed less reliably

than SPEA2. This highlights the biggest limitation impacting

ε-NSGAII’s performance, which is related to its parent algo-

rithm NSGAII’s diversity operator (Deb et al., 2002). It has

been widely reported (Coello Coello et al., 2002; Deb et al.,

2003) that the original NSGAII converges very quickly, but
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Fig. 11. Dynamic performance plots showing the best performing Shale Hills trial runs for each algorithm.

its crowded tournament diversity operator can fail to promote

sufficient diversity for some problems. Although Kollat and

Reed (2005a, b) have demonstrated ε-NSGAII is statistically

superior to the original NSGAII in terms of both convergence

and diversity, ε-NSGAII can still be impacted by the limita-

tions associated with the crowded tournament operator. For

the Leaf River case study, ε-NSGAII had a reduced reliability

relative to SPEA2 because several trial runs failed to create

sufficiently diverse solutions that could escape the false local

front. As was discussed above, SPEA2’s archive was sized

carefully to maximize the effectiveness of its k-means clus-

tering diversity operator, which allowed the algorithm to es-

cape the local front. It is interesting to note that for the multi-

modal T4 test function with 219 local fronts, that ε-NSGAII’s

performance is far superior to SPEA2. In this instance, ε-

NSGAII’s was able to escape local fronts because of the ran-

dom solutions injected into the search population during the

algorithm’s dynamic changes in population size. In the limit,

when the algorithm’s ε-dominance archive size stabilizes, the

ε-NSGAII’s dynamic population sizing and random solution

injection is equivalent to a diversity enhancing search opera-

tor termed “time continuation” (Goldberg, 2002).

In this study, ε-NSGAII appears to be superior to

MOSCEM-UA and competitive with SPEA2 for hydrologic

model calibration. ε-NSGAII’s primary strength lies in its

ease-of-use due to its dynamic population sizing and archiv-

ing which lead to rapid convergence to very high qual-

ity solutions. Overall ε-NSGAII found a majority of the

best known solutions for the calibration problems using less

than 5000 model evaluations. ε-NSGAII’s dynamic pop-

ulation sizing and archive-based preconditioning of search

helps eliminate the need for trial-and-error analysis relative

to SPEA2, which is particularly important for computation-

ally intensive applications like the Shale Hills test case.
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7 Conclusions

This study provides a comprehensive assessment of state-of-

the-art evolutionary multiobjective optimization tools’ rela-

tive effectiveness in calibrating hydrologic models. Three

test cases were used to compare the algorithms’ perfor-

mances. The first test case is composed of a standardized

suite of computer science test problems, which are used to

validate the algorithms’ abilities to perform global search ef-

fectively, efficiently, and reliably for a broad range of prob-

lem types. The ε-NSGAII attained the best overall per-

formance for the test function suite followed by SPEA2.

MOSCEM-UA was not able to solve the test function suite

reliably. The second test case is a benchmark hydrologic

calibration problem in which the Sacramento soil moisture

accounting model is calibrated for the Leaf River water-

shed. SPEA2 attained statistically superior performance for

this case study in all metrics at the 99% confidence level.

MOSCEM-UA and ε-NSGAII attained results that were

competitive with one another for the Leaf River case study.

The third test case assesses the algorithms’ performances for

a computationally intensive integrated hydrologic model cal-

ibration application for the Shale Hills watershed located in

the Susquehanna River Basin in north central Pennsylvania.

For the Shale Hills test case, SPEA2 and ε-NSGAII had sta-

tistically equivalent performance metrics, although SPEA2

was slightly more reliable. MOSCEM-UA’s performance on

the Shale Hills test case was limited by the severe computa-

tional costs associated with increasing the algorithm’s popu-

lation size and number of complexes.

Overall, SPEA2 is an excellent benchmark algorithm for

multiobjective hydrologic model calibration. SPEA2 at-

tained competitive to superior results for most of the prob-

lems tested in this study. The primary strengths of the SPEA2

algorithm lie in its search reliability and its diversity preser-

vation operator. The biggest challenge in maximizing the

performance of SPEA2 lies in specifying an effective archive

size without a priori knowledge of the Pareto set. In prac-

tice, this would require significant trial-and-error analysis,

which is problematic for more complex, computationally in-

tensive calibration applications. ε-NSGAII appears to be su-

perior to MOSCEM-UA and competitive with SPEA2 for

hydrologic model calibration. ε-NSGAII’s primary strength

lies in its ease-of-use due to its dynamic population sizing

and archiving which lead to rapid convergence to very high

quality solutions with minimal user input. MOSCEM-UA

is best suited for hydrologic model calibration applications

that have small parameter sets and small model evaluation

times. In general, it would be expected that MOSCEM-UA’s

performance would be met or exceeded by either SPEA2 or

ε-NSGAII. Future hydrologic calibration studies are needed

to test emerging algorithmic innovations combining global

multiobjective methods and local search (e.g., see Solo-

matine, 1998; Solomatine, 1999; Ishibuchi and Narukawa,

2004; Krasnogor and Smith, 2005; Solomatine, 2005).
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