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Abstract. Fires and the aerosols that they emit impact air

quality, health, and climate, but the abundance and prop-

erties of carbonaceous aerosol (both black carbon and or-

ganic carbon) from biomass burning (BB) remain uncer-

tain and poorly constrained. We aim to explore the uncer-

tainties associated with fire emissions and their air qual-

ity and radiative impacts from underlying dry matter con-

sumed and emissions factors. To investigate this, we com-

pare model simulations from a global chemical transport

model, GEOS-Chem, driven by a variety of fire emission

inventories with surface and airborne observations of black

carbon (BC) and organic aerosol (OA) concentrations and

satellite-derived aerosol optical depth (AOD). We focus on

two fire-detection-based and/or burned-area-based (FD-BA)

inventories using burned area and active fire counts, re-

spectively, i.e., the Global Fire Emissions Database ver-

sion 4 (GFED4s) with small fires and the Fire INventory

from NCAR version 1.5 (FINN1.5), and two fire radiative

power (FRP)-based approaches, i.e., the Quick Fire Emission

Dataset version 2.4 (QFED2.4) and the Global Fire Assimila-

tion System version 1.2 (GFAS1.2). We show that, across the

inventories, emissions of BB aerosol (BBA) differ by a factor

of 4 to 7 over North America and that dry matter differences,

not emissions factors, drive this spread. We find that simula-

tions driven by QFED2.4 generally overestimate BC and, to a

lesser extent, OA concentrations observations from two fire-

influenced aircraft campaigns in North America (ARCTAS

and DC3) and from the Interagency Monitoring of Protected

Visual Environments (IMPROVE) network, while simula-

tions driven by FINN1.5 substantially underestimate concen-

trations. The GFED4s and GFAS1.2-driven simulations pro-

vide the best agreement with OA and BC mass concentra-

tions at the surface (IMPROVE), BC observed aloft (DC3

and ARCTAS), and AOD observed by MODIS over North

America. We also show that a sensitivity simulation includ-

ing an enhanced source of secondary organic aerosol (SOA)

from fires, based on the NOAA Fire Lab 2016 experiments,

produces substantial additional OA; however, the spread in

the primary emissions estimates implies that this magnitude

of SOA can be neither confirmed nor ruled out when compar-

ing the simulations against the observations explored here.

Given the substantial uncertainty in fire emissions, as repre-
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sented by these four emission inventories, we find a sizeable

range in 2012 annual BBA PM2.5 population-weighted expo-

sure over Canada and the contiguous US (0.5 to 1.6 µg m−3).

We also show that the range in the estimated global direct

radiative effect of carbonaceous aerosol from fires (−0.11 to

−0.048 W m−2) is large and comparable to the direct radia-

tive forcing of OA (−0.09 W m−2) estimated in the Fifth As-

sessment Report (AR5) of the Intergovernmental Panel on

Climate Change (IPCC). Our analysis suggests that fire emis-

sions uncertainty challenges our ability to accurately charac-

terize the impact of smoke on air quality and climate.

1 Introduction

Biomass burning (BB), which includes wildfires in addition

to agricultural and other prescribed burning, emits a variety

of trace gases and aerosols, including carbon dioxide, oxides

of nitrogen, volatile organic compounds (VOCs), and partic-

ulate matter (PM) (Akagi et al., 2011), with large associated

air quality and climate impacts. Particulate matter from fires

(or smoke) is dominated by carbonaceous aerosol (black car-

bon, BC, and organic aerosol, OA) (Akagi et al., 2011; Bond

et al., 2013). As these emissions are transported through the

atmosphere, they deteriorate air quality in a variety of ways.

Because of their small size and associated ability to lodge

deeply in lungs, aerosols can have significant health impacts

(respiratory infections, asthma, and lung cancer) and increase

cardiovascular disease (e.g., Pope III and Dockery, 2006;

Brook et al., 2010), especially the high levels of PM from

fire events (Liu et al., 2015; Reid et al., 2016; Williamson

et al., 2016). Deep penetration of the lungs and most acute

health impacts are generally associated with the fine PM (un-

der 2.5 µm) fraction of PM. Biomass burning aerosol (BBA)

can also impact the climate system via absorbing and scat-

tering radiation (Bond et al., 2013). In an era of increasing

wildfire activity in the western US (Westerling et al., 2006;

Westerling, 2016), there is a pressing need to understand how

smoke from fires impacts air quality and alters atmospheric

radiation.

Globally, BB is responsible for roughly 30 % of BC and

nearly 90 % of primary OA emissions (POA), contributing

an estimated 34 Tg yr−1 of aerosol to the atmosphere annu-

ally (Bond et al., 2013). In addition, fires may be an im-

portant source of secondary organic aerosol (SOA), which

form from the oxidative aging of gas-phase organics emitted

during combustion. Our current understanding of SOA for-

mation is incomplete. Recent studies demonstrate that there

is no clear consensus on the magnitude of SOA from fires,

with estimates that range from virtually none to 95 Tg yr−1

(Shrivastava et al., 2017; Vakkari et al., 2018). Much of this

spread comes from diverging results from field versus labo-

ratory studies: the majority of field studies have reported no

secondary aerosol formation (above dilution-corrected POA

concentrations; Hodshire et al., 2019) or even a decrease

in OA (May et al., 2014, 2015; Liu et al., 2016; Akagi et

al., 2012; Jolleys et al., 2012; Forrister et al., 2015; Collier

et al., 2016; Garofalo et al., 2019), while a few field stud-

ies observed significant SOA formation from biomass burn-

ing emissions (Yokelson et al., 2009; Vakkari et al., 2014,

2018). Laboratory studies, on the contrary, almost always re-

port substantial SOA formation from fires (Grieshop et al.,

2009; Hennigan et al., 2011; Ortega et al., 2013; Tkacik et

al., 2017; Lim et al., 2019). The reasons for the discrepancy

across studies are not understood (Shrivastava et al., 2017;

Hodshire et al., 2019) and should be the focus of further re-

search.

Biomass burning aerosols (BC, POA, and SOA) can have

major impacts on radiation. Black carbon has a strong warm-

ing or positive direct radiative effect (DRE) (instantaneous

radiative impact), both globally and regionally, and some

studies suggest its warming direct radiative forcing (DRF)

(the change in DRE from the pre-industrial period to the

present day, not including climate feedbacks) (Heald et al.,

2014) is second only to CO2 (Bond et al., 2013). Black car-

bon from BB and gas flares also lowers the snow and ice

albedo in the Arctic, leading to additional warming (Stohl et

al., 2013). Organic aerosol, because it scatters radiation, has

a negative or cooling DRE (Bond et al., 2013). It is there-

fore the sum of the warming from absorption and the cool-

ing from scattering that dictates the climate effect of BBA,

leading to uncertainty in even the sign of the net radiative

effect of fires. Previous estimates of BBA DRE range from

−0.01 to 0.13 W m−2 (Rap et al., 2013; Ward et al., 2012).

Furthermore, when quantifying BBA impacts on radiation,

differentiating anthropogenic and natural fires is central to

quantifying the climate forcing or the DRF of fires, which

reflects human influence (e.g., via ignition, suppression, or

changes in fuel availability). The uncertainty in fire radiative

impacts has not been assessed in detail.

North America, in particular the western US, is one of the

few regions in the world where more intense and frequent

wildfires have been directly tied to climate change impacts

(e.g., hotter temperatures and less snowpack) (Wehner et al.,

2017; Abatzogolou and Williams, 2016). In addition to cli-

mate change, historical fire suppression efforts in the US

have led to increased fuel loads for fires (Marlon et al., 2012).

Consequently, BBA emissions in this region are likely to in-

crease in future decades (Yue et al., 2013). Boreal forest fires

are already responsible for only 2.5 % of global burned area

but 9 % of global BBA emissions (van der Werf et al., 2017).

Biomass burning in Alaska has also accelerated in the last

decade through increases in both burned area and fire fre-

quency leading to increases in carbon loss associated with

late-season burning (Turetsky et al., 2011). Both relative and

total impacts of BB on air quality and climate forcing are ex-

pected to increase as controls continue to reduce fossil fuel

emissions and a changing climate potentially leads to more

fires (Fuzzi et al., 2015; Val Martin et al., 2015). It is there-
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fore becoming increasingly important to have models and

emission inventories that can accurately characterize the im-

pact that current and future fires and their emitted aerosols

have on the environment, climate, and human health. Sev-

eral recent laboratory studies (e.g., Jolleys et al., 2014; Levin

et al., 2010; McMeeking et al., 2009), including the recent

NOAA Fire Lab 2016 experiments in Missoula, MT (e.g.,

Koss et al., 2018; Selimovic et al., 2018; Jen et al., 2019),

have explored the BB of North American fuels, providing

key constraints on smoke emissions, aging, and properties.

Because BBA emissions cannot routinely be measured di-

rectly, a variety of global fire emission inventories have been

developed over the last decade(s) based on satellite observa-

tions. These inventories use different empirical approaches

and underlying data to represent gas and aerosol emis-

sions from fires – each with inherent uncertainties. Aerosol

emissions from these inventories often vary by large fac-

tors depending on the region, do not agree spatially, and

sometimes do not reflect observations of concentrations and

aerosol optical depth (AOD) well either when integrated into

a model (Reddington et al., 2016, 2019; Petrenko et al.,

2012). In this analysis, we focus on four commonly used

but theoretically distinct inventories: the Global Fire Emis-

sions Database version 4 (GFED4s) (van der Werf et al.,

2017) with small fires, the Fire INventory from NCAR ver-

sion 1.5 (FINN1.5) (Wiedinmyer et al., 2011), the Quick Fire

Emissions Database version 2.4 (QFED2.4) (Darmenov and

da Silva, 2013), and the Global Fire Assimilation System

version 1.2 (GFAS1.2) (Kaiser et al., 2012). The two main

approaches are a fire detection and/or burned area (FD-BA)

method that relies upon burned area, which GFED4s uses;

active fire counts, which FINN1.5 uses; or the fire radiative

power (FRP) approach, which relies upon fire radiative en-

ergy observations, an approach which both QFED2.4 and

GFAS1.2 use. Comparisons among these different types of

inventories suggest that there is significant variability in the

amount of dry matter burned associated with an individual

active fire detection, which is one explanation for why FD-

BA and FRP inventories do not align (van der Werf et al.,

2017, and references therein). Studies using AOD to inter-

rogate BB emission inventories give varied results but sug-

gest that FD-BA BBA estimates are roughly a factor of 3

too low in large BB regions (e.g., boreal North America,

South America, southern Africa, and equatorial Asia) and

globally (Johnston et al., 2012; Kaiser et al., 2012; Petrenko

et al., 2012; Tosca et al., 2013). In this study we will refer

to the spread across these inventories as the “uncertainty” in

emissions; however, we note that additional factors, not rep-

resented by any of these inventories, may increase the true

uncertainty in the estimated emissions.

Here we use the GEOS-Chem chemical transport model

and a suite of fire emission inventories to investigate the

emissions uncertainties associated with impacts of BBA on

air quality and radiation. We explore the interannual and ge-

ographic variability of fire emissions and dry matter (DM)

consumed from 2004 to 2016 across inventories and discuss

how the uncertainty in emissions carries forward to concen-

trations, exposure, aerosol optical depth (AOD), and DRE

with a focus on 2012–2014. We also explore the impact of a

new model parameterization for SOA from fires.

2 Model and observations descriptions

2.1 The GEOS-Chem model

We use GEOS-Chem (http://acmg.seas.harvard.edu/geos/,

last access: 22 June 2018), a global chemical transport

model, coupled with the rapid radiative transfer model for

global circulation models (RRTMG, Iacono et al., 2008),

a configuration known as GC-RT (Heald et al., 2014),

to explore the air quality and climate impacts of BBA.

GEOS-Chem is driven by assimilated meteorology from the

Modern-Era Retrospective analysis for Research and Appli-

cations, Version 2 (MERRA-2), at the NASA Global Model-

ing and Assimilation Office (GMAO). We run version 12.0.0

of GEOS-Chem (https://doi.org/10.5281/zenodo.1343547)

with a horizontal resolution of 2◦×2.5◦ and 47 vertical lev-

els with a chemical time step of 20 min and a transport time

step of 10 min and with 6-month spin-up simulations prior

to the time periods of interest, i.e., 2012–2014 and June–

July 2008. We also perform nested simulations over North

America at 0.5◦×0.625◦ (with boundary conditions from the

global simulation) for comparison against observations (IM-

PROVE and aircraft campaigns; see Sect. 2.3) with transport

and chemistry time steps of 5 and 10 min, respectively.

GEOS-Chem employs SO2−

4 –NO−

3 –NH+

4 thermodynam-

ics (Fountoukis and Nenes, 2007) coupled to an ozone–

VOC–NOx–oxidant chemical mechanism (Mao et al., 2013;

Travis et al., 2016; Miller et al., 2017) with integrated Cl-

Br-I chemistry (Sherwen et al., 2016). The model includes

schemes for fine and coarse sea salt aerosols (Jaeglé et al.,

2011) and mineral dust in four size bins (Fairlie et al., 2007;

Ridley et al., 2012). The standard simulation of BC in GEOS-

Chem is described in Park et al. (2003). We update this simu-

lation per Wang et al. (2014) as follows: we update the initial

hydrophilic fraction from BB to 70 % based on field obser-

vations (Wang et al. (2014) and references therein). Fossil

BC is aged from hydrophobic to hydrophilic using the Liu et

al. (2011) BC aging scheme with dynamic [OH] and [SO2]

per Wang et al. (2014), and biofuel and biomass BC is aged

with an e-folding time of 4 h. For hydrophilic BC, we use an

absorption enhancement from coating of BC of 1.1 for fossil

BC and 1.5 for biofuel and biomass BC. We also update the

BC properties for optical calculations per Wang et al. (2014).

The standard primary organic aerosol (POA) simulation

emits 50 % of POA as hydrophilic and ages hydrophobic

POA to hydrophilic POA with an atmospheric lifetime of

1.15 d (Chin et al., 2002; Cooke et al., 1999). We use an or-

ganic matter (OM) to OC ratio of 1.4 for hydrophobic OC
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and 2.1 for hydrophilic. The baseline model formation of

SOA from BB follows the simple scheme implemented by

Kim et al. (2015) based on field results from six large cam-

paigns summarized by Cubison et al. (2011). This emits

0.013 g SOA precursor (SOAP) per g CO emitted, which then

forms nonvolatile SOA on a fixed timescale of 1 d. SOAP

is not lost by dry or wet deposition. Recent laboratory re-

sults from the NOAA Fire Lab 2016 campaign suggest much

greater SOA formation from the burning of North American

fuels (Lim et al., 2019); however, we note that, as previously

discussed, uncertainties surrounding this source of SOA re-

main large. Based on this study, we perform a sensitivity

analysis for a new parameterization for SOA production from

fires, where SOAP is estimated as POA fire emissions scaled

by a factor of 2.48. We note that this is 13 times larger than

the field-based estimate of Cubison et al. (2011), which com-

bines the effects of POA evaporation and SOA formation (see

Sect. 5 for further details).

Anthropogenic emissions (including fossil and biofuel

sources) of both BC and POA follow the CEDS global in-

ventory (Hoesly et al., 2018) with regional inventories used

when available, including NEI2011v1 over the US (Envi-

ronmental Protection Agency National Emissions Inventory,

2015), APEI over Canada, and DICE-Africa over Africa

(Marais and Wiedinmyer, 2016). Trash burning emissions

are from Wiedinmyer et al. (2014). Aircraft emissions are

from the AEIC inventory (Stettler et al., 2011; Simone

et al., 2013). Global annual anthropogenic emissions are

4.5 Tg yr−1 of BC and 8.7 Tg yr−1 of POA in 2012. Biogenic

emissions are calculated online from the MEGANv2.1 emis-

sions framework (Guenther et al., 2012).

Fire emission inventories (GFED4s, FINN1.5, QFED2.4,

and GFAS1.2) are specified on a daily timescale, the fre-

quency at which all four inventories were available. The stan-

dard version of GEOS-Chem, which we use, emits all fire

emissions from the surface into the boundary layer. Diurnal-

scale factors from the Western Regional Air Partnership

(WRAP, 2005) were applied to all inventories per Kim et

al. (2015). Additional information on each fire inventory is

provided in Sect. 2.2.

We quantify simulated AOD at 550 nm, assuming that

aerosols are externally mixed with a fixed lognormal size dis-

tribution for each species and that AOD is a function of rela-

tive humidity to account for hygroscopic growth, which also

varies by species (Martin et al., 2003). Aerosol optical prop-

erties are from the Global Aerosol Data Set (GADS) database

(Koepke et al., 1997) with updates from Drury et al. (2010)

and Wang et al. (2014). RRTMG calculates both longwave

and shortwave atmospheric radiative fluxes. When coupled to

GEOS-Chem, this calculation is performed every 3 h. Long-

wave and shortwave DRE at the top of the atmosphere are

summed and reported as total DRE.

2.2 Description of fire emission inventories

Here we describe the differences and similarities of the four

fire emission inventories investigated in this study: two FD-

BA approaches (GFED4s and FINN1.5) and two FRP-based

approaches (QFED2.4 and GFAS1.2). GFED4s is the most

widely used of fire emission inventories (other inventories

are sometimes scaled to it) and it employs a FD-BA approach

based on the Moderate Resolution Imaging Spectroradiome-

ter (MODIS)-observed burned area complemented by the

Carnegie–Ames–Stanford Approach (CASA) biogeochemi-

cal model. CASA provides estimated biomass factors (i.e.,

combustion completeness and fuel load) in a variety of car-

bon pools (e.g., leaves, grasses, litter), depending on pool-

specific and environmental conditions, which are combined

with emission factors (EFs) and MODIS burned area to pro-

duce emissions (van der Werf et al., 2017). GFED4s therefore

estimates emissions as follows:

Ms = A × ρ × γ × EFs, (1)

where Ms is the mass of the species of interest (g), A is

burned area (m2), γ is combustion completeness (%), ρ is

fuel load (kg DM m−2), and EFs is the species-specific emis-

sion factor (g species per kg DM).

The fourth and most recent version of GFED (GFED4s)

provides emissions at a 0.25◦ resolution from 1997 in near

real time, and boosts emissions to include small fires (Ran-

derson et al., 2012). Burned area estimates from 2000 on-

wards are from the MODIS MCD64A1 500m burned area

maps, aggregated at 0.25◦ resolution and a monthly time step

(Giglio et al., 2013). Because of measurement limitations,

EFs, in general, are very uncertain (see Sect. 3), but GFED4s

employs a recent compilation of EFs (Akagi et al., 2011)

with some updates, such as for the temperate forest biome.

GFED4s emissions are available monthly with scalars also

available to distribute emissions over daily or 3 h intervals.

These scalars are only available from 2003 onwards.

FINN1.5 follows the same FD-BA approach as GFED4s

but with some differences, including burned area being esti-

mated from active fire detection identified with the MODIS

Thermal Anomalies Product (Giglio et al., 2006), EFs being

based on the 2015 updates from Akagi et al. (2011) (http:

//bai.acom.ucar.edu/Data/fire/, last access: 1 February 2018),

and different land cover maps being used. FINN1.5 emis-

sions uncertainty comes from the use of fire hot spots, as-

sumed area burned (each fire hot spot is equivalent to 1 km2

burned area, except grasslands, which are 0.75 km2), land

cover maps, biomass consumption estimates, and EFs (Wied-

inmyer et al., 2011). The original emission estimates are

available at 1 km2 spatial resolution from 2002 to 2016 at

both daily and monthly mean temporal resolution. Within

the GEOS-Chem model, FINN1.5 input files are available at

0.25◦, CO2 emissions are produced with FINN1.5, and other

emitted species are scaled based on emission factors and land

cover type.
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QFED2.4 and GFAS1.2 employ an FRP-based method,

which estimates emissions using satellite observations of fire

radiative power (FRP), relying upon the following theoretical

approach:

Ms = α × EFs × FRE = α × EFs ×

t2∫

t1

FRP(t)dt, (2)

where α is the emission coefficient (kg DM J−1), EFs is the

species-specific emission factor (g species per kg DM), and

thermal radiation (FRE; joules) is fire radiative energy or the

integral of fire radiative power (FRP in J s−1) over time.

This FRP-based approach takes advantage of an empiri-

cally derived linear relationship between the energy released

as thermal radiation (FRE) and the mass of fuel or DM con-

sumed during combustion (Wooster, 2002; Wooster et al.,

2005; Ichoku and Kaufman, 2005). This basic relationship

is supported by the fact that the energy released by burning

the same amount of a fuel is similar regardless of vegeta-

tion type (Wooster et al., 2005). The energy from combustion

processes not transferred into the environment (through con-

ductive, evaporative, and convective processes) is released as

infrared radiation, which is then assumed to be proportional

to the total energy produced during combustion. One can

then relate the amount of fuel burned with the time-integrated

FRE using an emission coefficient (α). In laboratory studies,

the coefficient appears to be universal, i.e., independent of

fuel type (Wooster et al., 2005). For satellite-observed FRE,

however, different values are associated with different broad

classes of fire types (Kaiser et al., 2012).

QFED2.4 uses the MODIS Active Fire Level 2 product

(MOD14 and MYD14) and the MODIS Geolocation prod-

uct (MOD03 and MYD03) for FRP and the location of fires.

A linear regression between the QFED2.4 dataset, starting

with an emission coefficient (α0) from Kaiser et al. (2009),

and version 2 of GFED was used to calculate the α used in

QFED2.4. The location of the fire in addition to a vegetation

land type mask was used to assign the FRP to a QFED2.4

vegetation type, which was based on an aggregated version of

the International Geosphere–Biosphere Programme (IGBP)

vegetation mask using four basic classes: tropical forest, ex-

tratropical forest, savanna, and grassland. GFAS1.2 also uses

the MOD14 fire product. GFAS1.2 utilizes land cover maps

based on the dominant vegetation type from GFED3 and

additional organic soil and peat maps (Kaiser et al., 2012).

GFAS1.2 also derives conversion factors linking FRP and

the GFEDv3.1 dry matter combustion rates based on linear

regressions between the two.

QFED2.4 and GFAS1.2 utilize EFs from Andreae and

Merlet (2001). An update to this EF compilation is now avail-

able (Andreae, 2019) but is not yet used in these invento-

ries. QFED2.4 scales its aerosol emissions to better repre-

sent MODIS-observed AOD using biome-dependent strength

factors. It should be noted that these enhancement factors

were based on the GEOS model and depend on the under-

lying model configuration, i.e., most importantly, the single

assumed OM : OC ratio of 1.4 but also the specific anthro-

pogenic emissions and the radiative properties of aerosols

in the model. Thus, these enhancement factors that scale to

AOD could differ substantially in a model that treats these

factors differently. To our knowledge, these differences have

not been accounted for in previous model studies that have

used QFED (e.g., Kim et al., 2015; Marais et al., 2016; Lu

et al., 2015; Saide et al., 2015; Zhang et al., 2014). We

make no effort to re-derive the biome-specific enhancement

factors for GEOS-Chem. In an effort to ensure that global

totals of emitted BC and OA are consistent with those re-

ported by QFED2.4, we scale down emissions by a uniform

factor of 0.69 (1.4 divided by the average OM : OC ratio

in GEOS-Chem in 2012). QFEDv2.4 provides daily mean

emissions and is available at 0.1◦ resolution from 2003 to

2016. GFAS1.2 provides daily mean emissions and is avail-

able from 2003 to 2019 at 0.1◦ resolution.

Some advantages of QFED2.4, GFAS1.2, and other FRP-

based inventories are that the uncertain factors used in FD-

BA inventories to convert burned area to DM consumed

(fuel load and combustion completeness) can be bypassed,

and that FRP observations are more sensitive to small fires

than burned area observations (MODIS has detection limits

of ∼ 5 MW and 50 m2, respectively). However, FRP-based

approaches face significant challenges associated with the

sparse temporal coverage of the underlying polar-orbiting

MODIS observations of FRP. The daytime overpass of Terra

and Aqua (10:30 and 13:30 LT, respectively), generally miss

the period of peak fire activity in the western US and Canada.

In addition, active fire observations (both active fire counts

and FRP) can only detect fires during the burning phase,

while the accumulated burned area can be detected for an

extended period of time after the burning phase. FRP-based

emission estimates therefore contain errors due to assump-

tions of undetectable fire activity under cloud cover and be-

tween satellite overpasses (for low Earth orbiting instruments

like MODIS). Smouldering and peat fires are difficult to

quantify with both methods: FRP-based approaches suffer

from weak thermal signatures and uncertain emission coef-

ficients (Darmenov and da Silva, 2013), and FD-BA-based

approaches suffer from missing information on burn depth

and thus combustion completeness.

2.3 In situ observations

The ARCTAS (Arctic Research of the Composition of the

Troposphere from Aircraft and Satellites) summer airborne

campaign surveyed large swaths of the Arctic with an empha-

sis on probing forest fire smoke plumes using the NASA DC-

8 aircraft from 18 June to 13 July 2008 (Jacob et al., 2010)

(see Fig. 1 for flight tracks). Black carbon mass concentra-

tions were measured with a single-particle soot photometer

(SP-2, Schwarz et al., 2008). For ARCTAS, the SP-2 detec-
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Figure 1. Flight tracks of the ARCTAS and DC3 aircraft cam-

paigns. The red box indicates the boreal region of the ARCTAS

flights used here.

tion range for particle diameter is 80–860 nm, and the uncer-

tainty is estimated to be 10 % (Kondo et al., 2011). Organic

aerosol was measured using a high-resolution time-of-flight

aerosol mass spectrometer (CU-Boulder Aerodyne HR-ToF-

AMS, DeCarlo et al., 2006; Canagaratna et al., 2007; Cu-

bison et al., 2011) with a 2σ estimated uncertainty of 38 %

for OA (Bahreini et al., 2009) and a size detection limit ex-

tending down to 35nm vacuum aerodynamic (about 25 nm

geometric diameter for typical BBOA densities) (DeCarlo et

al., 2006, 2008). Concentration detection limits for OA for

1 min data are ∼ 0.16 µg m−3 (DeCarlo et al., 2006; Dunlea

et al., 2009), several orders of magnitude lower than typi-

cal field BBOA concentrations (>=10 µg m−3). The model

structural and emission uncertainties for fire OA likely far

outweigh measurement uncertainties and thus these measure-

ment uncertainties are not germane to the analysis presented

here. Acetonitrile, a useful tracer for BB, was measured us-

ing a proton transfer reaction mass spectrometer (PTR-MS,

Hansel et al., 1995; Wisthaler et al., 2002) and used as a filter

to help isolate BB influence.

Observations from the Deep Convective Clouds and

Chemistry (DC3) campaign are also included in our anal-

yses. DC3 focused on thunderstorms and their impact on

the chemical composition of the troposphere and also doc-

umented BB plumes and their interactions with deep convec-

tion in the southern Great Plains, the Colorado Front Range,

and the southeastern US. Flights occurred from 18 May to

22 June 2012 (Barth et al., 2015) (Fig. 1). As in ARCTAS,

BC was measured using the SP-2 and OA was measured us-

ing an HR-ToF-AMS. The detection range for BC mass from

the SP-2 corresponds to 90–550 nm volume equivalent di-

ameter, assuming 1.8 g cm−3 density, with ±30 % total un-

certainty in the accumulation mode BC mass mixing ratio

(Schwarz et al., 2013). Acetonitrile was again measured us-

ing a PTR-MS (Hansel et al., 1995; Wisthaler et al., 2002).

For comparison with airborne measurements, the model was

sampled to the nearest grid box both temporally and spatially

to each flight track using 1 min aircraft data. We then average

both the model and the observations to the model grid box.

As the spatial and temporal coverage of aircraft campaigns

is limited, we also include surface observations from 168

sites in the contiguous United States (CONUS) that are part

of the IMPROVE aerosol network (Interagency Monitoring

of Protected Visual Environments, http://vista.cira.colostate.

edu/improve/, last access: 19 June 2018) from 2012 and com-

pare against 24 h averaged model results. Black carbon and

OC are measured using a PM2.5 size-selective filter-based

thermal method in this network (Chow et al., 2007). We use

a conversion factor of 1.8 from OC to OA mass (Malm and

Hand, 2007), which is the average of fresh and more aged OA

in the model, to represent average surface conditions (note

that the same OM : OC is applied to the model simulation

when compared against IMPROVE).

2.4 MODIS AOD observations

Aerosol optical depth (AOD), the column total aerosol ex-

tinction, is directly proportional to the total mass concentra-

tion of aerosol in an atmospheric column (Levy et al., 2007,

2010) and is commonly measured by satellites. AOD mea-

surements capture all aerosol contributions and therefore do

not provide a unique quantitative constraint on BBA, but they

can be a used to understand spatial and interannual BB pat-

terns.

We use the MODIS collection 6 level 3 daily product

of satellite AOD retrievals at 550 nm and 10 km resolution

(Levy et al., 2013; Sayer et al., 2014) from the Aqua plat-

form and re-grid MODIS AOD from 1◦×1◦ to the model grid

of 2◦×2.5◦ for further comparison with GEOS-Chem AOD.

AOD retrievals from Aqua are used because the crossover

time of Aqua (early afternoon) typically coincides with peak

burning activity and a well-mixed boundary layer. We use

a merged AOD product (Dark Target–Deep Blue Combined

Mean) from the collection 6 MODIS data that combines

ocean and vegetated land surface retrievals (Dark Target)

and bright land surface retrievals (Deep Blue) to maxi-

mize coverage. Retrieved AOD (τ ) is estimated to be accu-

rate to ±0.03 ± 0.05τ over the ocean (Remer et al., 2005),

±0.05 ± 0.15τ over dark land surfaces (Levy et al., 2010),

and ±0.05 ± 0.20τ over bright surfaces (Hsu et al., 2006;

Sayer et al., 2013). The model was sampled at the satellite

overpass time (13:30 LT). In addition, we filter out AOD val-

ues from both MODIS and the model for which the cloud

fraction from MODIS is greater than 80 % to eliminate po-

tential cloud contamination.

3 Underlying emissions and dry matter uncertainty

Figure 2 demonstrates the large differences in total an-

nual BBA emissions estimated by the four different fire
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Figure 2. Boxplot summaries of each inventory’s total annual emissions of BC, OC, and CO globally and for boreal North America and

CONUS from 2004 to 2016. Diamonds indicate means. The horizontal bar is the median. The box shows the 25th to the 75th percentile, and

the whiskers show 1.5 times the interquartile range. Points outside 1.5 times the interquartile range are shown as dots. GFED4s emissions

are in red, FINN1.5 emissions are in orange, QFED2.4 emissions are in light blue, and GFAS1.2 emissions are in dark blue.

emission inventories from 2004 to 2016 for boreal North

America (BONA, i.e., Canada and Alaska), the contigu-

ous US (CONUS), and the globe. Emission totals over other

large BB regions that are not the focus of this study (Ama-

zon, Africa, and Asia) are shown in Fig. S1 in the Sup-

plement. We focus on BC and OC (note that inventories

provide OC and not OA) emissions in our analysis but

also provide a summary of CO for context, which gener-

ally follows the trends observed for OC (as does NOx , not

shown). Globally, emissions of BC and OC are highest in

QFED2.4 (3.1 and 28.3 Tg yr−1, respectively), but emissions

are also most variable in this inventory (i.e., more variability

from 2004 to 2016, as evidenced by the wider range between

the 25th and 75th percentiles) (Fig. 2). Average global an-

nual emissions are smallest in GFED4s for BC, and for OC

and CO FINN1.5 emissions are smallest – though they are

very similar to GFED4s for OC and similar to QFED for CO.

Global mean total annual BC emissions differ by roughly a

factor of 2.3 across the inventories, while mean total annual

OC emissions differ by less (a factor of ∼ 1.7). The invento-

ries show a smaller range in mean total annual CO emissions

(a factor of ∼ 1.1) from GFAS1.2 (360 Tg yr−1) to FINN1.5

(327 Tg yr−1).

The spread in BBA emissions across North America is

larger than that seen globally. In BONA, mean annual BC and

OC emissions show a factor of roughly 5 and 4 ranging, re-

spectively, from the smallest, FINN1.5 (0.02 and 0.4 Tg yr−1,

respectively), to the largest, GFAS1.2 (0.1 and 1.7 Tg yr−1,

respectively). The relative magnitudes of the four invento-

ries are consistent across species for CONUS with QFED2.4

being the largest (0.09 and 1.3 Tg yr−1, for BC and OC,

respectively), followed by GFAS1.2 (0.04 and 0.5 Tg yr−1,

for BC and OC, respectively), and then FINN1.5 (0.03 and

0.2 Tg yr−1, for BC and OC, respectively) and GFED4s

(0.01 and 0.3 Tg yr−1, for BC and OC, respectively) – where

the exception is that the mean OC emissions from GFED4s

are slightly larger than those of FINN1.5. The range of val-

ues is very similar for BC and OC in CONUS (a factor of ∼ 7
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Figure 3. Emissions factors in g species per kg DM (shown only for vegetated land) for each inventory over North America; BC is shown on

the left, and OC is shown on the right.

Table 1. Emissions factors used in each inventory. Superscripted AM is from Andreae and Merlet (2001), Ak is from Akagi et al. (2011),

An is Andreae and Rosenfeld (2008), and Mc is McMeeking et al. (2009). Note that QFED2.4 and GFAS1.2 EFs shown here for BC and OC

are entirely from Andreae and Merlet (2001). ∗ The first QFED2.4 column shows the underlying EFs (shown in the second QFED2.4 column)

multiplied by their biome-specific enhancement factor. We also adjust this factor down by the ratio of 1.4 (the OM : OC ratio used in the

GEOS model) to the average OM : OC ratio used in GEOS-Chem in 2012 (see Sect. 2.2 for details).

Emission factors across inventories and vegetation types (g species per kg dry matter)

Types BC OC

GFED4s FINN1.5 QFED2.4AM GFAS1.2AM GFED4s FINN1.5 QFED2.4AM GFAS1.2AM

Temperate forest 0.5AM 0.56An 2.52 0.56 0.56 9.6AM 7.6An 28.38∗ 9.14 9.1

Boreal forest 0.5AM 0.2Mc 2.52 0.56 0.56 9.6AM 7.8Mc 28.38∗ 9.14 9.1

Savanna, grass, shrub 0.37Ak 0.37 (SG)/ 0.86 0.48 0.46 2.62Ak 2.62 (SG)Ak/ 4.22∗ 3.40 3.2

0.5 (WS)Ak 6.6 (WS)Mc

Tropical forest 0.52Ak 0.52Ak 1.65 0.66 0.57 4.71Ak 4.71Ak 8.97∗ 5.20 4.3

Agricultural 0.75Ak 0.69AM – – 0.42 2.3Ak 3.3AM – – 4.2

for BC and ∼ 6 for OC). For CONUS, GFED4s, GFAS1.2,

and QFED2.4 show similar spatial patterns; FINN1.5 contin-

ues to show very little fire influence.

Multiple studies (e.g., Akagi et al., 2011; Alvarado et al.,

2010; Urbanski et al., 2011) have identified uncertainties in

EFs as a large source of uncertainty in BB emissions. Ta-

ble 1 confirms that there are large differences in the EFs

used in the four inventories explored here in North Amer-

ica, particularly in boreal and agricultural regions. For exam-

ple, OC boreal forest EFs range from 7.8 to 9.6 g per kg DM
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Figure 4. Boxplot summary of each inventory’s underlying total annual dry matter (DM) globally and for boreal North America and CONUS.

The conventions of this boxplot are described in Fig. 2. GFED4s DM emissions are in red, FINN1.5 emissions in orange, QFED2.4 effec-

tive DM emissions in light blue, and GFAS1.2 effective DM emissions in dark blue.

and BC ranges from 0.2 to 0.56 g per kg DM. The EFs used

in each inventory are shown spatially over North America

in Fig. 3. Updated EFs have also become recently available,

from a large recent EF compilation (Andreae, 2019) and mul-

tiple studies focused on western fuels because of recent field

intensives there. Some of this work has suggested that the

PM EFs for western US fuels may be higher than those used

in the inventories explored in this work (Liu et al., 2017).

For example, the OA EFs measured by Liu et al. (2017) are

roughly a factor of 1.5 to 4 larger than those used by the four

inventories in this work. The uncertainty in EFs is associated

with measurement technique, variation in the experimental

conditions used to measure species’ EFs in a laboratory, post-

processing and aging that can change smoke composition

rapidly but is likely not yet fully mechanistically understood,

and poorly characterized combustion and fire types (Akagi

et al., 2011). Measured EFs vary considerably from different

fuels (Jolleys et al., 2014; McMeeking et al., 2009); how-

ever, only coarse vegetation types (e.g., boreal forests) are

typically delineated in emission inventories, making it diffi-

cult to apply laboratory-measured EFs. Of relevance to this

study, relatively few measurements of BB have been made in

temperate regions, such as large portions of the US, where

much of the BB is prescribed for land management but con-

trolled to protect air quality (Akagi et al., 2011), conditions

which may lead to substantially lower BBA emissions (Liu et

al., 2017). Another potential source of uncertainty in EFs is

that experimentally derived OC EFs may represent SOA as

well as POA; EFs presented in compilations (Akagi et al.,

2011; Andreae and Merlet, 2001) are generally calculated

from fresh smoke where the quantity of SOA production is

not well constrained.

We quantify how the range in EFs contributes to the over-

all spread in BBA emissions. First, we divide emissions by

the applied EFs to estimate the underlying dry matter (DM)

consumed across inventories in the same regions and years

as our emissions analysis (Fig. 4) to isolate the importance

of EFs. We note that the two FD-BA inventories (GFED4s

and FINN1.5) quantify DM consumption in the construc-

tion of the inventory; however, for the FRP-based invento-

ries (QFED2.4 and GFAS1.2) this division results in effec-

tive DM consumed (FRE multiplied by an emission coeffi-

cient). We show DM calculated from BC emissions except

for QFED2.4, where we use the effective DM calculated

from the CO emissions so as to avoid any confounding issues

with the aerosol strength scaling factors discussed briefly in

Sect. 2.2. Across all regions, the range in DM tracks very

closely with the range observed across emissions, suggest-

ing that the uncertainty in the underlying DM, not EFs, is the

predominant factor in emissions uncertainty. We note that the

large range in the DM consumed globally alongside the sim-

ilar global CO emissions indicates that large differences in

the EFs of CO and different vegetation classifications offset

the DM differences for this species.

To further illustrate the role of EFs, Fig. 5 shows the

time series of total annual emissions from 2004 to 2016

for GFED4s, alongside the estimated emissions obtained

by applying the GFED4s EFs to the estimated DM for the

other three original inventories (applied using each invento-

ries’ respective vegetation mask). We then compare total an-

nual emissions from the original inventories (dashed lines)

with their GFED4s EF counterparts (solid lines) and with

the original GFED4s inventory from 2004 to 2016 (Fig. 5).

While eliminating the variation in assumed EFs does con-

strict the range in emissions across the inventories across

North America and globally, substantial differences there re-

main. This suggests that EFs are important but that under-

lying DM burned is the largest source of fire emissions un-

certainty – consistent with previous work (van Leeuwen et

al., 2014). One reason for this is that substantial uncertain-

ties are associated with using biome-averaged values to rep-

resent DM consumed for whole biomes (Veraverbeke et al.,

2015; van Leeuwen et al., 2014) and that satellite products
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Figure 5. Annual emissions scaled to GFED4s emissions factors

from 2004 to 2016. The original inventory emissions from FINN1.5

(orange), QFED2.4 (light blue), and GFAS1.2 (dark blue) are shown

as dashed lines, while their annual values using GFED4s (red) emis-

sions factors are shown as solid lines. The year 2012 is marked with

a gray rectangle.

and assumptions used to capture fuel burned vary signifi-

cantly (van der Werf et al., 2017, and references therein).

Furthermore, assuming that the EFs used in the four in-

ventories are all equally reasonable values, we can estimate a

much larger range in plausible fire emissions by multiplying

the minimum and the maximum DM consumed across the

inventories by the smallest and largest EFs (Table 1) using

the GFED4s vegetation mask. Globally, this calculation sug-

gests a plausible range that spans a factor of 24 for BC and

18 for OC compared to the inventory spread of 2.3 and 1.7,

respectively. This suggests that using the range across these

four inventories may be a modest estimate of the uncertainty

in fire emissions.

Interannual differences, especially in North America, are

fairly consistent across the inventories except for 2014

(Fig. 5), where QFED2.4 trends down while the other three

increase. It should be noted that an updated version of

QFED (v2.5r1) does not show this decreasing trend in 2014.

Globally and in CONUS, GFED4s, GFAS1.2, and QFED2.4

show similar interannual differences, while FINN1.5 shows

the greatest interannual variability and different maximum

and minimum years. We note that 2012 is a fairly typical fire

year (see Fig. 5) and much of the following analysis will fo-

cus on this year.

We also explore the seasonality of BC and OC emissions

represented in the inventories for BONA, CONUS, and glob-

ally across the same 13 years (Fig. 6). The seasonality, in-

cluding relative magnitude, is generally consistent across re-

gions and species. Some seasonal features (e.g., the October–

November enhancement in BONA and the springtime en-

hancement in CONUS) are only visible in the three inven-

tories that rely on active fire counts or FRP – FINN1.5,

QFED2.4, and GFAS1.2 – which is consistent with work

suggesting that these methodologies pick up small fires bet-

ter than GFED4s (Kaiser et al., 2012). The fall peak in the

boreal region is driven by fires in eastern British Columbia.

The seasonal CONUS springtime peak is primarily associ-

ated with small fires (as identified in GFED4s), likely linked

to agricultural and prescribed burns in the southeastern US.

4 How emissions uncertainty impacts mass

concentrations and AOD

Given the large range in fire emissions, we use observations

to try to assess which (if any) inventory is most realistic. We

use IMPROVE surface observations and two airborne cam-

paigns to compare with model simulations driven by each in-

ventory. As another constraint on aerosol abundance, we also

compare model AOD with MODIS-observed AOD in North

America.

We test the model against IMPROVE observations of sur-

face concentrations across the US and find significant varia-

tion in model skill across the inventories with QFED2.4 gen-

erally biased high and FINN1.5 low (Figs. 7 and 8). Seasonal

comparisons of IMPROVE surface concentrations with sim-

ulated concentrations driven by the four different inventories

show similar patterns across aerosol species but significant

differences between the western and eastern US (Fig. 7). This

is likely related to how well the inventories capture the differ-

ences in burning regimes in the western (predominantly wild-

fires) and eastern (mostly prescribed and agricultural burns)

US (Brey et al., 2018). The southeastern US in particular is

of interest to the public health and policy communities be-

cause a prevalence of agricultural and prescribed burning

there, which dominates burned surface area (Nowell et al.,

2018), may have a stronger impact on low-altitude air qual-

ity in a relative sense than large wildfires that inject higher

into the air. We also analyze the western and eastern US sep-

arately because in the east the magnitude of fire emissions

is lower and BC is particularly dominated by anthropogenic

sources. In the western US, GFED4s, and GFAS1.2-driven

concentrations of both BC and OA match the seasonality and

magnitude of IMPROVE observations well. QFED2.4 is bi-

ased high, particularly during the peak in the wildfire season

(August–September). FINN1.5-based concentrations are bi-

ased low and are virtually indistinguishable from simulations

with no BB. In the eastern US, because fire is a smaller rela-

tive source of carbonaceous aerosol, there is less of a spread

between the simulations. All inventories other than QFED2.4

do a reasonable job capturing observations with a general

tendency for simulated BC and OA to be a bit too high, sug-
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Figure 6. Seasonal mean BC and OC emissions from 2004 to 2016 for boreal North America, CONUS, and the globe. GFED4s emissions

are in red, FINN1.5 emissions are in orange, QFED2.4 emissions are in light blue, and GFAS1.2 emissions are in dark blue.

Figure 7. The 2012 monthly comparison of simulated and observed median surface concentrations at IMPROVE sites in CONUS split

between east and west at −104◦ W longitude. Observations in black are compared with concentrations simulated using GFED4s in red,

FINN1.5 in orange, QFED2.4 in light blue, GFAS1.2 in dark blue, and a simulation with no biomass burning (noBB) in gray. Error bars show

the 25th to 75th percentile range of observations. Note the different scales among panels.
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Figure 8. Fire season (May–September) 2012 mean surface BC and OA concentrations in CONUS with the model driven by each inventory.

The circles show the mean observed surface concentrations at IMPROVE sites.

gesting an overestimate in anthropogenic emissions in the

eastern US. However, the 25th to 75th percentile bars on the

observations show that, across the US for BC and in the west

for OA, virtually all the simulations fall within this range of

the measurements. QFED2.4 overestimates OA well beyond

the 25th to 75th percentile range in the eastern US, starting

with the Northern Hemispheric wildfire season in May and

continuing the overestimate through the end of the calendar

year.

Figure 8 illustrates the ability of these simulations to cap-

ture the spatial distribution of observed surface concentra-

tions during the fire season (May–September). Similar skill

is seen across both aerosol species for GFED4s and GFAS1.2

(R2 for BC, 0.25 and 0.24, respectively, and for OA, 0.36

and 0.29, respectively), but FINN1.5 matches observed BC

somewhat better than OA (R2 of 0.23 and 0.034, respec-

tively) and QFED2.4 matches OA somewhat better than BC

(R2 of 0.46 versus 0.20). Consistent with the seasonal IM-

PROVE analysis, simulations driven by GFED4s, QFED2.4,

and GFAS1.2 have greater skill in the western US than the

eastern US, while the FINN1.5-driven simulation performs

better in the east. QFED2.4 is generally biased high, espe-

cially in the Pacific Northwest and, to some extent, in the

southeastern US. However, QFED2.4 also has the highest

skill in reproducing the spatial patterns of the highest con-

centrations when compared against the 95th percentile of ob-

served concentrations (not shown).

The ability of models to accurately represent aerosol con-

centrations aloft is also important for both air quality and

climate, and we use two fire-influenced aircraft campaigns,

DC3 and ARCTAS, to explore the model skill in this dimen-

sion. These campaigns provide observations from two very

different fire regimes across North America (see Sect. 2.3)

– DC3 in the central and southeastern US and a subset of

ARCTAS focusing on boreal Canada. In addition to median

vertical profiles for both BC and OA for each campaign,

we also show median vertical profiles filtered by the top

25th percentile of acetonitrile (equivalent to a concentration

cutoff of 167 ppt for DC3 and 213 ppt for boreal ARCTAS),
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Figure 9. The median vertical profiles of BC and OA mass concentrations (shown in 0.5 km bins) from the DC3 campaign. Observations

(black) are compared with simulations using the four fire inventories – GFED4s (red), FINN1.5 (orange), QFED2.4 (light blue), and GFAS1.2

(dark blue) – and a simulation with no fire emissions (noBB) in gray. Error bars show the 25th–75th percentile range of measurements

averaged in each vertical bin. The number of observations in each bin is given on the right side of each panel. Panels (a, c) show total results

for the campaign. Panels (b, d) show results filtered for the top 25th percentile of observed acetonitrile. Note the different scale between

BC panels.

a useful BB tracer that allows us to investigate the most BB-

influenced data.

We find that concentrations driven by the various invento-

ries perform somewhat differently against each of the cam-

paigns (Figs. 9 and 10). Across both campaigns, QFED2.4-

driven modeled concentrations are generally biased high,

particularly towards the surface, while FINN1.5 simulations

are nearly always biased low (Figs. 9 and 10). QFED2.4

has been constrained to observed AOD, so one could as-

sume that it would perform best. We find that after adjust-

ing the QFED2.4 emissions downward to account for our

different OM : OC ratio, QFED2.4 simulations of OA do

match observed concentrations fairly well; however, BC con-

centrations remain much too high. This suggests that the

QFED2.4 biome-specific adjustment factors should not be

applied to BC and that the scaling factor applied in this in-

ventory to match AOD constraints may be accounting for er-

rors in other properties (i.e., optical properties or background

aerosol) and not fire emissions. This is consistent with re-

cent work showing that even when observed and modeled

concentrations agree in the Amazon, observed and modeled

AOD sometimes do not (Reddington et al., 2019). Over the

continental US (Fig. 9), QFED2.4 emissions result in the

highest concentrations of OA and BC; however, in the bo-

real region (Fig. 10), simulations driven by GFAS1.2 (as

well as GFED4s to a lesser extent) produce more smoke

than QFED2.4, consistent with the relative emissions mag-

nitudes shown for these regions in Figs. 2 and 5. As a result,

both GFAS1.2 and GFED4s significantly overestimate both

BC and OA concentrations towards the surface in the boreal

region.

In DC3, all four inventories (and even the noBB run) over-

estimate the BC median vertical profile, suggesting that an-

thropogenic emissions are overestimated in the southeast-

ern US, consistent with the IMPROVE analysis. This is re-

inforced by the DC3 BC vertical profile filtered for fire in-
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Figure 10. The median vertical profiles of BC and OA mass concentrations (shown in 0.5 km bins) from the boreal part of the ARCTAS

campaign. Observations (black) are compared with simulations using the four fire inventories – GFED4s (red), FINN1.5 (orange), QFED2.4

(light blue), and GFAS1.2 (dark blue) – and a simulation with no fire emissions (noBB) in gray. Error bars show the 25th–75th percentile

range of measurements averaged in each vertical bin. The number of observations in each bin is given on the right side of each panel.

Panels (a, c) show total results for the campaign. Panels (b, d) show results filtered for the top 25th percentile of observed acetonitrile. Note

the different scale among panels.

fluence where three of the inventories (GFED4s, FINN1.5,

and GFAS1.2 to a lesser extent) match observations quite

well. Similarly, in boreal ARCTAS, all the inventories, but

FINN1.5 overestimate BC concentrations, especially towards

the surface.

This analysis suggests that anthropogenic emissions of BC

may be overestimated throughout the US, that the two FRP-

based inventories and GFED4s (to some extent) may overes-

timate boreal emissions, and that FINN1.5 emissions are too

low throughout but in boreal regions in particular. In con-

cert with the analysis at IMPROVE sites, this indicates that

GFED4s-driven simulations generally provide the best match

to observations but with substantial underestimates and over-

estimates in some regions and species.

Our comparisons with in situ mass concentrations, both

at the surface and aloft, consistently suggest that the

FINN1.5 inventory substantially underestimates fires over

North America. Scaling relationships between fire activity

and dry matter consumed should be revisited for this inven-

tory for North American fuels. One likely cause of the un-

derestimation of North American fires by FINN1.5 is that

the MODIS Land Cover Type (LCT) data used to define

burned ecosystems assigns shrubs where other classifications

assign forest, leading to lower fuel-burned estimates. A sec-

ond likely contributor to this underestimate is that the way

in which burned area is calculated from active fire counts un-

derestimates large wildfires, which is particularly relevant for

the western US. This underestimation was also seen in earlier

work by Pfister et al. (2011) using FINN1.5 to explore CO

from fires in California.

Some of the disagreement aloft with the baseline model

across inventories may be related to the model failure to cap-

ture injection heights for some fires that loft aerosols above

the boundary layer. This is not represented in the simulations

Atmos. Chem. Phys., 20, 2073–2097, 2020 www.atmos-chem-phys.net/20/2073/2020/
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Figure 11. The mean Northern Hemispheric fire season (May–September) simulated AOD at 550 nm sampled to and compared with daily

MODIS-observed AOD from the Aqua satellite for 2012 and 2014.

shown here, but typical approaches put too much aerosol at

the top of boundary layer (∼ 2 km) (Zhu et al., 2018) (see

Fig. S3 for an injection height sensitivity test). It is also worth

noting that sampling in the DC3 campaign was biased to-

wards convective outflow given campaign goals, and it is pos-

sible that the model may also have errors in convection and

convective removal.

Figure 11 shows the spatial distribution of average AOD

over North America during the Northern Hemispheric fire

season (May–September) in both 2012 and 2014 compared to

MODIS-observed AOD. In general, the model simulation un-

derestimates observed AOD, which may result from a com-

bination of errors in model optics, background aerosol, or

cloud contamination in the MODIS product. We note that

Reddington et al. (2019) similarly show that their model un-

derestimates AOD, even when it captures the observed mass

concentrations of PM over the Amazon. Here we focus on the

fire-driven AOD features. Across both years, FINN1.5 AOD

is low compared to MODIS in CONUS and does not capture

the fires in BONA. GFED4s and GFAS1.2-driven AOD look

quite similar to each other across years and include the large

fire signatures in BONA that MODIS observes. AOD driven

by QFED2.4 identifies the boreal (and potentially Pacific

Northwest) fire signatures in 2012 but misses the large boreal

hot spot in 2014 that is evident in both MODIS-observed and

GFED4s and GFAS1.2 AOD.

www.atmos-chem-phys.net/20/2073/2020/ Atmos. Chem. Phys., 20, 2073–2097, 2020
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Figure 12. Bar plots of mean OA mass concentrations from the DC3 (a) and boreal ARCTAS (b) campaigns. Observations (black) are

compared with simulations using the four fire inventories: GFED4s (red), FINN1.5 (orange), QFED2.4 (light blue), and GFAS1.2 (dark

blue). The hatched version of each inventory denotes OA mass concentrations using the baseline fire SOA scheme while the full color of

each shows OA with the new SOA from fire parameterization.

5 Secondary organic aerosol from biomass burning

and its implications

Previous simulations in Sect. 4 included the GEOS-Chem

default minor source of SOA from fires. The recent NOAA

Fire Lab 2016 experiment (Lim et al., 2019) reported large

increases in OA mass when fire emissions were oxidatively

aged, as have many other laboratory studies. However, this

has not been observed in the majority of field campaigns

(see Sect. 1). While uncertainties in this potential source

of additional OA mass are large, we test the sensitivity of

our results to this additional source. The default scheme –

(0.013 times CO emissions) (Kim et al., 2015; Cubison et al.,

2011) – results in a mean annual global source of BB SOA

(∼ 5 Tg yr−1) from GFED4s, which is at the lower range of

potential annual global fire SOA source amounts reported in

Shrivastava et al. (2017). We implement a new parameteri-

zation from the NOAA Fire Lab 2016 lab studies for SOA

production from BB based on Lim et al. (2019) (2.48 times

POA emissions). This new scheme produces a mean annual

global GFED4s source of BB SOA of ∼ 41 Tg yr−1, which

is roughly in the middle of estimates reported in Shrivas-

tava et al. (2017). In principle, such a large additional source

of OA should be distinguishable from observations. How-

ever, our previous analysis using the default scheme demon-

strates that the range in estimated POA is so large that it is

challenging to say how much additional OA mass from SOA

from BB would be consistent with the observations. In par-

ticular, even with negligible SOA, the model already matches

observed OA with at least one inventory (QFED2.4). With

this new parameterization, we show a roughly order of mag-

nitude increase in the BB SOA burden (and thus more than a

doubling of total OA) from GFED4s in 2012 with similar in-

creases across the other inventories. Figure 12 shows how

this new SOA impacts model–observation agreement with

the DC3 and ARCTAS campaigns. The QFED2.4 simula-

tions now overestimate OA across campaigns while FINN1.5

simulations improve against observations modestly, consis-

tent with its smaller BB OA burdens to start with. It is possi-

ble that the AOD-based scaling of QFED2.4 emissions pre-

viously compensated for underestimated SOA. With the new

SOA parametrization, GFED4s and GFAS1.2 simulations are

better able to capture the magnitude of the mean concentra-

tions observed during DC3. However, for boreal ARCTAS,

GFED4s and GFAS1.2-driven simulations with the default

scheme captured observed OA concentrations and were in-

deed overestimated (Fig. 10); thus, this new large source of

fire SOA exacerbates this overestimate. Our analysis of ob-

servations over North America can neither preclude nor con-

firm the presence of a large source of SOA from fires, given

the uncertainty in POA emissions over the region. This ad-

ditional SOA source is not included in the assessment of air

quality and radiative impacts of fires in Sects. 6 and 7.

6 How emissions uncertainty translates to air quality

and fire PM exposure

We next explore how uncertainty in fire emissions affects es-

timates of air quality impacts. We show the differences in

fire PM2.5 (calculated as the sum of the BB-only BC and

OA mass fractions for aerosol under 2.5 µm) exposure spa-

tially (Fig. S5) and quantify the range in population-weighted

fire PM2.5 exposure in 2012 across North America (Canada

and CONUS only) given by the four inventories. We calcu-

late fire PM2.5 exposure by averaging surface concentrations

of the sum of BC and OA from BB across North Amer-

ica in 2012. We then calculate population-weighted annual

fire PM2.5 for each inventory by using population data from

the Gridded Population of the World, Version 4 (GPWv4),

created by the Center for International Earth Science Infor-

mation Network (CIESIN, 2018) and available from the So-

cioeconomic Data and Applications Center (SEDAC) (https:

//sedac.ciesin.columbia.edu/data/collection/gpw-v4, last ac-

Atmos. Chem. Phys., 20, 2073–2097, 2020 www.atmos-chem-phys.net/20/2073/2020/
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Figure 13. Bar plots of the 2012 annual mean population-weighted

fire PM2.5 exposure across the four inventories (GFED4s in red,

FINN1.5 in orange, QFED2.4 in light blue, and GFAS1.2 in dark

blue) across North America (Canada and CONUS only) at nested

resolution. See Figure S6 for an analysis from 2012 to 2014 and for

bar plots split out for Canada and the US at 2 × 2.5◦.

cess: 6 February 2019). We linearly interpolate the gridded

UN-adjusted population count dataset, which has a native

resolution of 30 arcsec and provides population estimates

for 2000, 2005, 2010, 2015, and 2020, to 2012 and grid

the data to the GEOS-Chem nested grid (0.5◦×0.625◦). Fig-

ure 13 shows that the range in BBA emissions carries for-

ward to uncertainty in 2012 North America fire annual mean

PM2.5 exposure with a range of 0.5–1.6 µg m−3. The World

Health Organization (WHO) air quality guidelines for annual

mean PM2.5 are 10 µg m−3, and the US EPA annual standard

for PM2.5 is 12 µg m−3. Thus, the range in fire PM2.5 expo-

sure across the inventories in North America is equivalent to

roughly 10 % of these air quality standards. The population-

weighted mean PM2.5 exposure due to fires in North America

varies by about a factor of two between different years, re-

flecting the location and intensity of different fire events (see

Figs. S6 and S7 for an analysis of 2012–2014 at 2◦×2.5◦).

Because the 24 h average PM2.5 reflects acute exposure,

we also looked at the differences in this metric when driven

by each inventory. Over the US, the simulated daily PM2.5

from fires in 2012 ranges up to 1778 µg m−3 as simulated by

QFED2.4 while FINN1.5-driven simulations show the small-

est maximum BBA concentration at 55 µg m−3. A number

of regions experience well over the PM2.5 daily standard

(35 µg m−3) due to fires alone on more than 10 d a year, and

in some locations this occurs for several weeks (see Fig. S8),

highlighting smoke as a major cause for air quality degrada-

tion in the US. These regions and the magnitudes of daily fire

influence are highly variable year to year.

7 Impacts on the direct radiative effect

Across North America and globally, we compare the mean

annual top-of-atmosphere (TOA) all-sky DRE of BB-only

BC and OA driven by each of the inventories with the

OA DRF reported in the Fifth Assessment Report (AR5) of

the Intergovernmental Panel on Climate Change (IPCC). We

quantify the annual mean BBA DRE in 2012 (Fig. 14) and

Figure 14. Top-of-atmosphere all-sky direct radiative effect of

BB-only BC (a–c) and OA (d–f) averaged over 2012 in BONA,

CONUS, and globally. GFED4s is shown in red, FINN1.5 is or-

ange, QFED2.4 is light blue, and GFAS1.2 is dark blue (the size of

BC versus OA panels is not to scale).

the Northern Hemispheric fire season (May–September) av-

erage DRE in each year from 2012 to 2014 (Fig. S9) to inves-

tigate interannual variability. The differences across invento-

ries seen in the sections above translate to the large ranges in

DRE estimated for BONA and CONUS with smaller but still

significant ranges seen globally.

For 2012, GFAS1.2-driven global DRE is largest in abso-

lute magnitude for BBA (−0.11 W m−) with FINN1.5 be-

ing smallest (−0.048 W m−2) (see Table S1 in the Supple-

ment for underlying values). These values are significantly

more negative than previous estimates of BBA DRE, which

ranged from −0.01 to 0.13 W m−2 (Rap et al., 2013; Ward

et al., 2012). Previous work suggests that the whitening

of fire-generated brown carbon (BrC) may limit the global

absorption from BrC (Forrister et al., 2015; Wang et al.,

2016). Wang et al. (2018) estimate a modest global mean

DRE of BrC of +0.048 W m−2 when accounting for this

whitening; however, uncertainties in the magnitude and the

evolution of absorption of BrC remain large. We treat OA

as scattering here, which may lead to a positive bias in

the total DRE of carbonaceous aerosol from smoke, thus

we focus on the range in values associated with the use

of various fire inventories rather than the absolute magni-

tude of the DRE. The range across the 2012 annual global

mean inventory-driven BBA DRE is −0.062 W m−2, which

is comparable to the magnitude of the direct radiative forc-

ing of OA (−0.09 W m−2) reported in the in AR5 (IPCC,

2013). Only some fires contribute to the DRF, but we have

shown here that the uncertainty in BBA DRE as represented

www.atmos-chem-phys.net/20/2073/2020/ Atmos. Chem. Phys., 20, 2073–2097, 2020
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by the spread in values driven by different inventories is

on a comparable scale to the anthropogenic influence on

OA forcing. While we have not assessed the annual global

mean BBA DRE across other years, we have quantified the

Northern Hemispheric fire season BBA DRE from 2012 to

2014, which shows generally similar trends across years with

some variability; larger boreal fire years generally affect the

DRE driven by GFED4s and GFAS1.2 the most (see 2014

in Fig. S9). The year 2014 also appears to be an outlier year

where GFED4s and GFAS1.2-driven OA DRE are larger than

QFED2.4-driven DRE across BONA, CONUS, and globally,

consistent with our emissions analysis (see Fig. 5).The IPCC

estimate of aerosols’ contributions to the DRF only includes

one set of historical fire emissions and one for each RCP

– this choice allows for better intermodal comparisons but

masks underlying uncertainty from fire emissions, which we

have shown here to be important.

8 Conclusions

Most models do not test basic uncertainty associated with

fire emissions both in air quality and climate studies – our

work suggests that this uncertainty is large and may sub-

stantially impact our understanding of fire impacts. We note

that, while we refer to the spread across these inventories

as the uncertainty in emissions, additional factors, not rep-

resented by any of these inventories, may increase the true

uncertainty in the estimated emissions beyond what we have

shown in this work. We provide an evaluation of this uncer-

tainty by comparing multiple commonly used fire emission

inventories (GFED4s, FINN1.5, QFED2.4, and GFAS1.2)

that have become available in the last 5 to 10 years. We show

that the four inventories perform differently depending on

species, location, and season. We also calculate that average

BC and OC emissions differ by roughly a factor of 5 and

4, respectively, across the inventories in BONA. The range

in BC and OC emissions in CONUS is even larger (a factor

of ∼ 7 and 6, respectively). Global ranges in BC emissions

are smaller than those in North America (∼ 2.3) with a some-

what more modest spread (∼ 1.7) in OC emissions, possibly

because of emission factor differences. We also show that dry

matter (not emission factor) differences are the driving force

for emissions variation across inventories.

With such large differences in emissions, we test which

of these inventories drives model simulations closest to ob-

servations over North America. We show that modeled con-

centrations both at the surface and aloft show variable skill

across inventories when compared to in situ observations

(IMPROVE, DC3 and ARCTAS campaigns) with FINN1.5

biased low for BC and OA and QFED2.4 biased high against

observed BC. GFED4s and GFAS1.2-driven AOD also do a

better job matching MODIS-observed AOD over the regions,

in general and with specific features, than FINN1.5 and

QFED2.4. QFED2.4 emissions may be biased high because

they were scaled up to ensure that the GEOS model AOD

simulation matches satellite-observed AOD, potentially mis-

attributing biases in aerosol extinction efficiency and SOA

formation in the GEOS model to emission. MODIS AOD has

also been shown to be high in some environments (Lapina et

al., 2011). That these enhancement factors are too high is fur-

ther reinforced by the fact that, after adjusting the QFED2.4

emissions downward to account for our different OM : OC

ratio, QFED2.4 simulations of OA match observed concen-

trations fairly well across campaigns, while BC concentra-

tions remain much too high. The assumptions that FINN1.5

uses to compute burned area from active fire counts likely

contribute to its low bias and should be revisited, especially

for regions with large wildfires (e.g., boreal Canada and the

western US). We also show that a laboratory-based parame-

terization for fire SOA, scaled from fire POA emissions, does

improve model agreement with observations in some regions.

However, from our comparisons, the range in POA emissions

makes it challenging to discern whether SOA from fires is

significant.

This range in fire emissions also carries through to un-

certainties in the air quality and radiation impacts of fires,

which we have shown to be large and significant. Over

North America, depending on the inventory used, large

differences in both the spatial extent and magnitude of

BBA-only annual and daily surface concentrations and also

in population-weighted annual fire PM2.5 exposure (0.5–

1.6 µg m−3 for 2012) arise. We have also shown that fire

emissions uncertainty produces a considerable envelope in

global BBA DRE (−0.062 W m−2), roughly comparable to

the direct radiative forcing of OA (−0.09 W m−2) reported

in AR5.

Additional evaluation of satellite-based fire emission in-

ventories, particularly in other large BB source regions,

would help to provide insight into fire emissions uncertainty.

Observations at all scales (surface, aloft, and satellite) are

needed to better constrain our understanding of fire emissions

and processing. To bridge fire emissions and subsequent im-

pacts, additional investigation of uncertainties in fire aerosol

aging and processing (e.g., injection heights, mixing state,

SOA formation) is needed. Our work suggests that emissions

uncertainty is a major factor in our ability to model the air

quality and climate impacts of fires and should be incorpo-

rated into modeling studies of both.

Data availability. The GEOS-Chem model is publicly available

at: https://doi.org/10.5281/zenodo.1343547 (GEOS-Chem, 2018).

The IMPROVE data are also available publicly at: http://vista.

cira.colostate.edu/Improve/data-page/ (last access: 19 June 2018)

(IMPROVE, 2018). The DC3 campaign data are available at

https://www.eol.ucar.edu/field_projects/dc3 (last access: 18 Febru-
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