
formance evaluations and, still less,
evaluations of other research stages.

Evaluation is not standard practice
in part because our methodology is
vague. Where other sciences have
standard experimental methods and
analytic techniques, we have
faith—often groundless and mislead-
ing—that building programs is some-
how informative. Where other sci-
ences expect specific aspects of
research to be presented (for example,
hypotheses, related research, experi-
mental methods, and analyses and
results), empirical AI has no compara-
ble standards. Now, we do not advo-
cate blindly adopting the empirical
methods of, say, the behavioral sci-
ences; in fact, we argue elsewhere that
they are inappropriate to AI (Cohen
and Howe 1988). However, we are
saying that progress in AI would be
amplified by a methodology which
emphasizes evaluation for the overar-
ching reason that we can do our own
research better if we know, in detail,
the state of our colleagues’ research.

Where will this methodology—and,
specifically, the evaluation criteria,
experiment designs, and analytic
tools—come from? The challenge is
that we must develop it ourselves.
Explorations along these lines have
been reported in specific areas, for
example, machine learning (Langley
1987), distributed systems (Decker
1988), and expert systems (Geissman
and Schultz 1988; Gaschnig et al.
1983; Rothenberg et al. 1987). Discus-
sions of a broader scope focus on the
role of experiments in AI (Buchanan
1987; Newell and Simon 1976).
Although these papers address differ-
ent facets of evaluation, a common
theme is that we must develop our
own evaluation methods appropriate
to AI practice. If we try to retrofit the

valuation means making obser-
vations of all aspects of one's

research. Often, we think of evalua-
tion only in terms of how well AI sys-
tems perform, yet it is vital to all
stages of research, from early concep-
tualization to retrospective analyses
of series of programs. Indeed, some of
the most informative observations are
not performance measures but, rather,
describe why we are doing the
research, why our tasks are particular-
ly illustrative, why our views and
methods are a step forward, how com-
pletely they are implemented by our
programs, how these programs work,
whether their performance is likely to
increase or has reached a limit (and
why), and what problems we
encounter at each stage of our
research. To the research community,
these observations are more impor-
tant than performance measures
because they tell us how research
should proceed.

Thus, ideally, evaluation should be
a mechanism of progress both within
and across individual AI research pro-
jects. Evaluation provides impetus to
the research cycle. It opens new
avenues of research because experi-
ments often raise new questions as
others are answered and because it
identifies deficiencies and, thus, prob-
lems for further research. Evaluation
provides a basis for the accumulation
of knowledge. Without evaluation, we
cannot replicate results. Evaluation is
how you convince the community
that your ideas are worthwhile, that
they work and how. Because our col-
leagues rarely have access to run-time
data and programs at various develop-
ment stages, we have an unprecedent-
ed responsibility to evaluate and com-
municate all aspects of our research.
Unfortunately, we rarely publish per-

Evaluation should be a mechanism of
progress both within and across AI

research projects. For the individual, eval-
uation can tell us how and why our meth-

ods and programs work and, so, tell us
how our research should proceed. For the

community, evaluation expedites the
understanding of available methods and,
so, their integration into further research.

In this article, we present a five-stage
model of AI research and describe guide-
lines for evaluation that are appropriate

for each stage. These guidelines, in the
form of evaluation criteria and tech-

niques, suggest how to perform evalua-
tion. We conclude with a set of recom-

mendations that suggest how to encourage
the evaluation of AI research.

E
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methods of other fields, they will
probably become impediments. Thus,
in this article, we are motivated not
by envy of “scientific method,” but by
the sense that we are wasting oppor-
tunities to understand, by empirical
and analytic studies, the intelligent
artifacts we build at great expense.

This article adopts a simple multi-
stage model of AI research and
describes the kinds of evaluation that
are appropriate at each stage. (Bruce
Buchanan [1987] offers a similar
model.) Evaluative questions for each
stage are listed in figures 1–5 and dis-
cussed in the text. We ask these ques-
tions whenever we hear about new
research—questions we want
researchers to answer when they pub-
lish their work. We also describe in
schematic form some common kinds
of experiments with AI systems.
Where possible, we offer illustrations
from the AI literature. A companion
paper goes one step further and pre-
sents three detailed case studies
(Cohen and Howe 1988).

The tangible contribution of the
article is the organization of these
evaluative questions and experiment
schemas into five categories that cor-
respond with stages of research. More
important, by far, is the possibility

that the article will promote discus-
sion and the development of evalua-
tion techniques and, more broadly, AI
methodology. We recognize the
impediments to methodological dis-
cussions. Some might regard method-
ology as dangerously prescriptive,
while others regard it as irrelevant: A
reviewer said we are wasting our time
because AI methodology is just fine. A
friend dismissed this presentation as a
metapaper, and not worth the time it
would detract from substantive
research. However, evaluation was a
central issue at the recent meeting of
the Program Committee of the Ameri-
can Association for Artificial Intelli-
gence—not a general, perennial com-
plaint such as bad writing but a vital,
current problem in need of creative
solutions. How does one evaluate AI
research? This article doesn’t answer
the question fully; it is intended to
give us a place to begin.

Evaluating Each 
Stage of Research

We view empirical AI in terms of a
five-stage cycle: In the first stage, a
topic is refined to a task and a view of
how to accomplish the task; in the
second, the view is refined to a specif-

ic method; in the third, a program is
developed to implement the method;
in the fourth, experiments are
designed to test the program; in the
fifth, the experiments are run. finally,
the cycle begins again, informed by
the experiments’ results.

You might object that this approach
isn’t how AI research works. First,
this superficial description seems
severely top down. However, we show
how evaluations can produce unex-
pected conclusions and, thus, itera-
tions at each stage of the cycle. Sec-
ond, the model seems idealized
because it suggests that AI researchers
always design, run, and analyze exper-
iments, and we don’t. However,
although it is idealized, it isn’t
unattainable and, in fact, won’t
require many modifications to stan-
dard AI practice. Third, this model is
probably more appropriate to individ-
ual research projects than to huge,
collaborative efforts such as the
Pilot’s Associate or the Autonomous
Land Vehicle. These projects require
different models and different evalua-
tion criteria; however, we believe the
five-stage model characterizes much
AI research.

Stage 1: Refine the Topic to a Task

Empirical AI begins when researchers
find particular topics fascinating. The
first stage of the research cycle
involves simultaneously refining the
research topic to a task and identify-
ing a view. A task is something we
want a computer to do, and a view is a
predesign, a rough idea about how to
do it. This stage takes a lot of effort;
researchers don’t simply say, “Ok, we
are fascinated by discovery, so let’s try
mathematical discovery as a task and
heuristic search as a view” (Lenat
1976). The process is iterative because
if the task and view don’t fare well by
the evaluation questions in figure 1,
you have to modify and reevaluate
them.

The questions in figure 1 address
two basic evaluation concerns: Can
you justify the research task to your-
self and the community, and is your
view of how to solve the task viable?
(In the questions, we sometimes refer
to the problem, by which we mean
the task and the view combined.)

Figure 1. Criteria for Evaluating Research Problems.

1. Is the task significant? Why?
(a) If the problem has been previously defined, how is your reformulation an 

improvement?

2. Is your research likely to meaningfully contribute to the problem? Is the task 
tractable?

3. As the task becomes specifically defined for your research, is it still representa
tive of a class of tasks?

4. Have any interesting aspects been abstracted away or simplified?
(a) If the problem has been previously defined, have any aspects extant in the 

earlier definition been abstracted out or simplified?

5. What are the subgoals of the research? What key research tasks will be or 
have been addressed and solved as part of the project?

6. How do you know when you have successfully demonstrated a solution to the 
task? Is the task one in which a solution can be demonstrated?
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Question 1 asks us to justify the task:
Why is it interesting? If it has been
studied before, and you are advocating
a novel view (a reformulation), why
do you expect this new perspective to
be an improvement? Question 2 asks
whether one’s view of the task will
work. Perhaps the task itself is
intractable or is impossible given the
resources, or requires expertise or
hardware that isn’t available. The
question is especially important if
one’s research method is to “build it
and see what happens.” The problem
with this approach is not that it is rel-
atively undirected; all sciences have
exploratory aspects. The problem is
that AI is expensive. We generally
cannot afford to spend months or
years implementing a system unless
we’re pretty sure something interest-
ing will happen. (A related question,
whether the interesting stuff is
obscured or observable, is discussed in
the subsection on stage 4.)

Question 3 suggests reevaluating
whether after narrowing the scope of
a task, it still exemplifies a research
topic. Most AI tasks, although specif-
ic, are designed to exemplify general
tasks. For example, we built a system
to design pulley systems and heat
sinks, confident that they exemplified
the class of mechanical design prob-
lems which can be solved without
decomposition into smaller subprob-
lems (Howe et al. 1986; Howe 1986).
Question 4 asks what has been left
out of research tasks. In the case of
our work on mechanical design, we
intentionally dropped the tasks of
decomposing and reintegrating design
subproblems; so, we knew in advance
that we would produce a model of
designing objects which required no
decomposition, not a general model of
mechanical design.

Questions 5 and 6 address whether
we have a productive research plan.
Most large projects require solutions
to multiple problems, such as design-
ing representations and control strate-
gies and building knowledge bases.
Question 5 concerns which of these
solutions will be research contribu-
tions of the project. Question 6 asks
whether you understand the problem
well enough to recognize a solution.

Evaluations during this stage direct
one’s own research and also provide

the AI community with carefully jus-
tified tasks, views, and reformula-
tions. It is sometimes worth publish-
ing work at this stage, long before
anything has been implemented and
demonstrated. Good contemporary
examples are some early papers on
reactive planning (Agre 1985; Chap-

man and Agre 1987) and papers relat-
ed to the CYC project (Lenat, Prakash,
and Shepherd 1986; Lenat and Feigen-
baum 1987). Many of the questions in
figure 1 are asked and answered in
these papers. Although preliminary,
these evaluations can be informative,
and it would be foolish to reject these

Figure 2. Criteria for Evaluating Methods.

1. How is the method an improvement over existing technologies?

(a) Does it account for more situations (input)? 
(b) Does it produce a wider variety of desired behaviors (output)? 
(c) Is the method expected to be more efficient (space, solution time, 

development time, and so on)? 
(d) Does it hold more promise for further development (for example, 

because of the introduction of a new paradigm)?

2. Does a recognized metric exist for evaluating the performance of your 
method (for example, is it normative, cognitively valid)?

3. Does it rely on other methods? (Does it require input in a particular 
form or preprocessed input? Does it require access to a certain type of 
knowledge base or routines?)

4. What are the underlying assumptions?

5. What is the scope of the method?

(a) How extendible is it? Will it easily scale up to a larger knowledge 
base? 

(b) Does it exactly address the task? Portions of the task? A class of 
tasks? 

(c) Could it or parts of it be applied to other problems? 
(d) Does it transfer to complicated problems (perhaps knowledge

intensive or more or less constrained or with complex interactions)?

6. When it cannot provide a good solution, does it do nothing or does it 
provide bad solutions or does it provide the best solution given the 
available resources?

7. How well is the method understood?

(a) Why does it work?
(b) Under what circumstances, won't it work?
(c) Are the limitations of the method inherent or simply not yet 

addressed? 
(d) Have the design decisions been justified?

8. What is the relationship between the problem and the method? Why 
does it work for this task?
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papers because they don’t answer the
questions in figures 2–5.

Stage 2: Design the Method

At this stage, one’s view is refined to a
method for solving the task. The word
method implies a single algorithm,
such as A*, candidate elimination, or
Waltz filtering. Frequently, however,
the method for a task combines sever-
al algorithms and assorted knowledge
structures. For example, the method
in Hearsay-II involved many knowl-
edge sources, data-driven and oppor-
tunistic control, and a novel commu-
nication structure (Erman et al. 1980).
Although this complexity strains the
word method, we maintain it to
remind us that we don’t jump imme-
diately into building programs but
first decide how we want to solve
tasks.

Criteria for evaluating methods are
presented in figure 2. The first two
questions suggest general criteria for
comparing the method with previous
work. These questions are prospective
because we might not be able to
answer them without implementing
the method. However, before we build
anything, it’s worth asking whether
we expect our approach to be better,
in some sense, than those which are
already available. Question 1 docu-
ments some common interpretations
of “better.” Note that in the early
going, a method need not necessarily
be better, just different if the differ-
ence holds promise (question 1d).
Question 2 asks what aspects of the
method’s performance will be evaluat-
ed. If the answer to question 1 is, “My
method is better because it is more
general,” then question 2 asks, “How
will this difference be demonstrated?”

Question 3 asks whether and to
what extent these evaluations are
qualified by the method’s reliance on
other factors. Sometimes, the answer
is obvious; for example, one might
have a method for discovering physi-
cal laws, but one’s evaluations of the
method should note whether it plans
its own experiments or, instead, relies
on a person or another method to pre-
sent data in an order that facilitates
discovery. However, question 3 can
also be difficult to answer prospec-
tively because the word rely is vague.

Interacting components of a method
rely on each other in the trivial sense
that without them all, the method
wouldn’t work; however, other kinds
of reliance are more difficult to see
prospectively. Indeed, it took several
years for Lenat and Brown (1983) to
recognize and document the reliance
of AM on its representation language.

Question 4 asks about one’s
assumptions. In our work on mechan-
ical design, we initially assumed that
all design variables (for example,
diameter of a pulley) were continuous.
Some planning algorithms assume
that the state of the world is known
and that the effects of all actions are
predictable. Some vision algorithms
assume noise is distributed uniformly.
It is important to state our assump-
tions if only to prevent others from
misstating them! For example, the
uncertainty literature has suffered a
decade-long debate about what the
conditional independence assumption
really means.

It might be difficult to answer the
remaining four questions prospective-
ly. Sometimes, one knows the scope
of a method before implementing it,
sometimes not (question 5). One
might anticipate that a method will
easily scale up, especially if it has
been designed to replace one which
will not, but one typically cannot
prove it. Question 6 is perhaps easier
to answer prospectively because it
reflects an important design criterion
for methods. Some methods are
designed to optimize, some to satis-
fice, and some to simply quit when
resources run out. For example, Victor
Lesser and his colleagues recently
described a set of approximate pro-
cessing methods for real-time problem
solving (Lesser, Durfee, and Pavlin
1987). By design, these methods are
intended to give the best possible per-
formance in the time available. How-
ever, lacking analytic tools, the actual
performance of these methods might
be impossible to predict. Then, ques-
tion 6 cannot be answered prospec-
tively. Similarly, questions 7 and 8
can rarely be answered except by
empirical work. Indeed, our inability
to answer these questions analytically
is often the impetus for building pro-
grams.

The purpose of the questions in fig-

ure 2 is to convince oneself and the
community of the utility, scope,
assumptions, performance, and limi-
tations of a method. Often, these eval-
uations are sufficient, and papers can
be published without further evalua-
tion. An example is DeKleer’s first
paper on the assumption-based truth
maintenance system (ATMS), which
answers many of the questions in fig-
ure 2 analytically: “[It] is possible to
work effectively and efficiently with
inconsistent information, context
switching is free, and most backtrack-
ing (and all retraction) is avoided.
These capabilities motivate a different
kind of problem-solving architecture
in which multiple potential solutions
are explored simultaneously. This
architecture is particularly well-suited
for tasks where a reasonable fraction
of the potential solutions must be
explored” (DeKleer 1986, abstract).

Analyses of methods are rarely so
thorough in AI, but even when they
are, one can elect to continue to sub-
sequent stages in the research cycle.
This continuation usually involves
building a program. We discern three
good reasons to build programs. first,
it is often worthwhile to implement
the method to experiment with prob-
lematic aspects of its behavior (for
example, Forbus and DeKleer [1988]
recently built a couple of simple pro-
grams to explore focusing in the
ATMS). Second (and more frequent),
no other way exists to answer some of
the questions in figure 2: Why does
the method work for this particular
task? Do tasks exist for which it
won’t work? Are the limitations of
the method inherent? and so on. We
eventually implemented our mechani-
cal design method in a program and
ran 125 experiments on different con-
figurations of the program, selectively
ablating components of the method
because we had no other way to probe
how interactions between these com-
ponents affected design performance
(Howe 1986).

The third role of programming is
exploratory. We might try out some
ideas to help us refine our method. We
think it is important to distinguish
this role of programming—refining a
method—from programming for the
purpose of experimenting with and
evaluating a method. Unfortunately,
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exploratory programming drifts easily
into building systems, and we begin
to focus on solving the task and forget
that from the standpoint of empirical
AI research, the purpose of building
systems is to tell us something about
our methods which we don’t already
know and can’t learn by analysis. We
build too many systems and evaluate
too few.

Stage 3: Build a Program

If our method requires programming
not merely to implement it but to
understand whether and why it
works, then we must build a program
that supports experiments. Although
in practice this stage might be indis-
tinguishable from exploratory pro-
gramming in the previous stage, its
purpose is different and so are the
evaluations we do at this stage.

The criteria in figure 3 concern
whether the program is informative.
Question 1 asks whether its internal
and external behavior clearly demon-
strates the method. Question 2
implies that programs are rarely infor-
mative if they are designed to run on
only a single example. Question 3
suggests specific ways to assess how
well the program implements the
method. Finally, because the purpose
of building a program is to tell us
something we didn’t already know,
question 4 asks whether we can pre-
dict performance in advance.

The questions in figure 3 (especially
question 4) illustrate the iterative
nature of evaluation at each stage: We
don’t build a program first and then
throw it away if it is uninformative or
utterly predictable; we develop infor-
mative, interesting programs by con-
tinuing evaluation—just as we itera-
tively evaluate and develop tasks,
views, methods, and experiments.
However, unlike the earlier evalua-
tions of tasks, views, and methods,
evaluation at this stage is primarily
for the individual researcher, not for
the community at large.

Stage 4: Design Experiments

The fourth stage of the research cycle
is to design experiments with the
newly implemented system. Just as
we evaluate the design and construc-
tion of systems from the standpoint of

1. How demonstrative is the program?

(a) Can we evaluate its external behavior? 

(b) How transparent is it? Can we evaluate its internal behavior? 

(c) Can the class of capabilities necessary for the task be demonstrated 
by a well-defined set of test cases? 

(d) How many test cases does it demonstrate?

2. Is it specially tuned for a particular example?

3. How well does the program implement the method?

(a) Can you determine the program's limitations? 

(b) Have parts been left out or kludged? Why and to what effect? 

(c) Has implementation forced a detailed definition or even reevaluation of 
the method? How was this reevaluation accomplished?

4. Is the program's performance predictable?

1. How many examples can be demonstrated?

(a) Are they qualitatively different?

(b) Do these examples illustrate all the capabilities that are claimed? Do 
they illustrate limitations?

(c) Is the number of examples sufficient to justify the inductive 
generalizations?

2. Should the program's performance be compared to a standard such as 
another program, or experts and novices, or its own tuned 
performance? Should the standard be normative, or cognitive validity, or 
outcomes either from the real world or from simulations?

3. What are the criteria for good performance? Who defines the criteria?

4. Does the program purport to be general (domain-independent)?

(a) Can it be tested on several domains? 

(b) Are the domains qualitatively different? 

(c) Do they represent a class of domains? 

(d) Should performance in the initial domain be compared to performance 
in other domains? (Do you expect that the program is tuned to perform 
best in domain(s) used for debugging?) 

(e) Is the set of domains sufficient to justify inductive generalization?

5. Is a series of related programs being evaluated?

(a) Can you determine how differences in the programs are manifested as 
differences in behavior?

(b) If the method was implemented differently in each program in the 
series, how do these differences affect the generalizations? 

(c) Were difficulties encountered in implementing the method in other 
programs?

Figure 3. Criteria for Evaluating Method Implementation.

Figure 4. Criteria for Evaluating the Experiments' Design.
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whether they are informative, so we
should evaluate whether experiments
with these systems will be informa-
tive. Criteria for evaluating experi-
ments (as opposed to their outcomes)
are presented in figure 4. The purpose
of question 1 is to encourage us to test
our programs with many, qualitative-
ly different examples that illustrate
the abilities and limitations of our
programs. Questions 2 and 3 ask
whether our programs should be com-
pared with a standard (for example, an
expert) and what specific comparisons
will be made. Question 4 asks
whether our experiments provide
enough evidence to claim that a pro-
gram is general, and question 5 sug-
gests criteria for comparing programs.
Both questions acknowledge that pro-
grams (and their underlying methods)
are evaluated in the context of other
research projects and, so, raise the
methodological issues of how results
accumulate and generalize over pro-
jects (see also Conclusion and Cohen
and Howe [1988]).

These questions address what can
be evaluated in experiments but don’t
say how the experiments should be
conducted. AI has been evolving rudi-
mentary, informal experiment
schemas that address some of the
questions in figure 4. Here, we
describe five experiment schemas:
Comparison studies. In the basic form
of a comparison study, we select one
or more measures of a program’s per-
formance; then, both the program and
a standard solve a set of problems;
and, finally, the solutions are com-
pared on the measures. For example,
we can compare the average number
of subgoal violations generated by one
planning program on a set of problems
(the measure) with the same measure
on another extant program (the
standard). Typically, the programs
implement different methods, or they
can be different configurations of a
single program.

Variations on the basic form depend
on what you want to demonstrate. For
example, if you want to measure
whether the program’s performance is
consensual, you can compare the pro-
gram to a panel of human experts.
You can also include novices—an
interesting control condition to
ensure that successful performance

requires expertise (for example, Short-
liffe 1976 ran a panel of experts and
novices in his studies of MYCIN).
Sometimes, the performance of a pro-
gram can be compared with objective,
recognized standards. Normative the-
ories, such as probability theory, pro-
vide one kind of standard; for exam-
ple, some researchers argue that
because human experts are incapable
of integrating probabilistic informa-
tion consistently, their performance
should not set standards. Another
kind of standard is provided by real or
simulated worlds; we might evaluate
a complex planner by seeing whether
it generates plans that succeed in the
world. All these examples suggest
that our measures and standards
depend heavily on what we want to
demonstrate and, ultimately, on our
research goals.

Direct assessment. A related
scheme, though not strictly a compar-
ison study, has humans judging or
scoring the program’s performance.
Direct assessment happens when test
problems have so many acceptable
solutions that a program and a stan-
dard cannot be expected to generate
the same ones. For example, we built
a system some years ago that generat-
ed portfolios for investors (Cohen and
Lieberman 1983), none of which were
identical with portfolios generated by
an expert for the same problems. Our
program’s portfolios were not bad but,
rather, there are many good ways to
generate portfolios, and portfolios
rarely coincide by chance. In these
cases, one cannot compare the pro-
gram’s performance with the expert’s
but must instead rely on the expert’s
direct assessment of the program.
Unfortunately, this test is weaker
than a comparison because experts
can be overly generous to the pro-
gram. Moreover, direct assessment
does not tell us whether the program
is performing better than the expert.

Ablation and substitution studies.
We can evaluate the contribution of
individual components to the perfor-
mance of complex systems by remov-
ing or replacing these components.
Removing components (ablation
[Newell 1975]) is informative in sys-
tems that can solve problems without
these components; for example, we

might assess the contribution of
caching by running a system without
caching. It takes little insight to pre-
dict some effect; the goal is to find out
whether performance on all types of
problems is equally affected by the
presence of a cache and, if not, what
interactions between the cache and
the problem type explain the variance.

Many AI systems are so brittle that
they collapse when components are
removed. In these cases, we might
substitute dumb components for
those we hope to show are smart; for
example, we might substitute an
exhaustive control strategy for a
sophisticated, opportunistic one.

Tuning studies. By tuning a system
to perform as well as possible on a set
of test data, we can learn how much
performance can be improved, how
difficult it is to achieve, and whether
the resulting system can still solve
other test cases. From a research per-
spective, it seems wasteful and poten-
tially misleading to tune systems just
to increase their performance without
addressing these questions.

Limitation studies. By testing a pro-
gram at its known limits, we can bet-
ter understand its behavior in adverse
conditions—we can learn whether it
is robust. We can push a program to
its limits by providing imperfect data
(rearranged, noisy, incomplete, or
incorrect), restricted resources (com-
putation time or available knowl-
edge), and perverse test cases.

Inductive studies. One way to sup-
port claims of generality is to solve
new and different problems. If we
claim that, say, a mechanical design
system is general, then we might
want to run problems in many areas
of mechanical design—pulley sys-
tems, I beams, extrusions, and so on
(Howe et al. 1986; Orelup 1987). Even
if we don’t claim a program is general
(and we question whether inductive
studies, in fact, demonstrate generali-
ty in the conclusion), we must, at
least, test it on problems other than
those we used to develop it.

The purpose of evaluation at this
stage is to convince the researcher and
the community that studies of a pro-
gram (or programs)independent of
their results—are well designed and
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complete. Experiment schemas, if we
could specify them in adequate detail,
would offer researchers a shorthand to
describe their studies (for example,
“We ran a comparison study between
versions 1, 2, and 3 of the program,
measuring hit rate on three data sets
that were characterized by their aver-
age signal-to-noise ratio”).

Stage 5: Analyze the
Experiments’’ Results

Now that our method has been imple-
mented in a fully instrumented pro-
gram, and our experiments are well
designed, we can ask whether the sys-
tem works and why it works. The
purpose of evaluation at this stage is
to convince the research community
that your methods are viable, and
their limitations in both performance
and scope, and suggest further
research. The first three questions in
figure 5 evaluate the program by its
performance on the task. Questions 4,
5 and 6 assess the utility of the pro-
gram. Questions 7 and 8 identify the
program’s frailties and strengths:
When does it break, and what compo-
nents contribute to its successful
operation? Question 8e is most salient
to the generalization of results
because it justifies good performance
for the program in terms of the task, a
relationship that might be exploited
in the design of other methods.

The questions in figure 5 are what
most people regard as evaluation.
Consequently, they neglect the earlier
questions and end up with unclear or
unconvincing answers at this stage. If
a program hasn’t been constructed in
such a way that its performance is
observable (figure 3), and the experi-
ment hasn’t been designed with clear
or convincing criteria and control con-
ditions (figure 4), then this stage of
evaluation is not likely to be informa-
tive. Evaluation begins early in the
research cycle. It can’t be tacked to
the end. We can’t ask how a program
compares with its standard (question
1) unless we have a standard, and it
isn’t convincing to dream one up after
we have built the program! Even if
you have a standard in mind, you
should assure yourself that it makes
sense: As noted earlier, we had a
vague idea that we would compare the

performance of our portfolio manage-
ment program with the performance
of a portfolio manager, but it turned
out (too late) there was no way to
make this comparison. Similarly,
question 2 builds on earlier stages of
evaluation: To compare a program’s
performance to predictions about per-
formance, one needs predictions! One
cannot simply dream up a few straw-
man predictions to give the impres-
sion of empiricism. Yet, we see few
reports that include predictions and
fewer still in which the program per-
forms other than as predicted. The
same point can be made about several
other questions in figure 5: It will be
difficult to determine performance
limitations or why a program works
or doesn’t work in a post hoc manner.

Conclusion

Each stage in our simple model of
research affords opportunities for eval-
uation; indeed, iterations at each stage
and cycles throughout the model are
driven by evaluation. This is the first
step in what should become an ongo-
ing discussion of AI methodology. We
need to develop the model further—or
alternative models as necessary—so
we have a common language for dis-
cussing the stages of our research and
the kinds of evaluation appropriate to
each. The research cycle and the ques-
tions and experiments outlined here
form only a skeleton of a methodolo-
gy. One way to slowly fill out this
skeleton is to carefully describe our
experiments and results. Another is to 

Figure 5. Criteria for Evaluating What the Experiments Told Us.

1. How did program performance compare to its selected standard (for 
example, other programs, people, normative behavior)?

2. Is the program's performance different from predictions of how the method 
should perform?

3. How efficient is the program in terms of space and knowledge
requirements?

4. Did the program demonstrate good performance?

5. Did you learn what you wanted from the program and experiments?

6. Is it easy for the intended users to understand?

7. Can you define the program's performance limitations?

8. Do you understand why the program works or doesn't work?

(a) What is the impact of changing the program even slightly? 

(b) Does it perform as expected on examples not used for debugging? 

(c) Can the effect of different control strategies be determined? 

(d) How does the program respond if input is rearranged, noisy, or
missing? 

(e) What is the relationship between characteristics of the test problems and 
performance (either external, or internal if program traces are available?) 

(f) Can the understanding of the program be generalized to the method? To char-
acteristics of the method? To a larger task?
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publish methodological papers. For
example, we want to see extensive
discussions along the following lines.

First, we encourage discussions of
experiment schemas, with appropriate
control conditions, measures, stan-
dards, and analyses of results. We
hope to see schemas that are more
detailed and task specific than the few
we discussed in the stage 4 subsec-
tion. We also hope to see discussions
of specific evaluation criteria in the
context of experiment schemas. We
know that the criteria we presented in
gures 1–5 are, in some respects, a bad
compromise: too general to be infor-
mative and not general enough to
encompass all research in empirical
AI (for example, they don’t tell us how
to evaluate methodological papers
such as this one).

A second topic for discussion is the
methodological role of programs. Why
should we build programs? This topic
is an important part of a broader
debate on the empirical AI research
cycle, which requires considerable
elaboration beyond the sketch given
earlier.

Third, and most important: What
does it mean to replicate and general-
ize results? When can we claim that a
particular method is general—when it
has been implemented in one program
and run on many test cases, or when
it has been implemented in many pro-
grams in different task domains? Per-
haps we should be asking, instead,
how we can bound the applicability of
methods. Are we obliged to claim gen-
erality on inductive grounds (for
example, the program ran in several
domains)? We don’t say, “The sun will
rise because it always has.” Rather,
“Here’s why the sun will rise.” Is
there a similar deductive notion of
generality in AI? This methodological
problem is perhaps our most difficult:
How do we know that a result is gen-
eral, that we don’t have to build any
more systems to illustrate it? How do
we know, conversely, that two appar-
ently different results are, in fact,
demonstrations of the same thing?
Given that AI programs are different
(they have different code, algorithms,
machines, domains, performance
characteristics, assumptions, and
underlying purposes), can we abstract
any results from them that we can

agree are common? (See Cohen and
Howe [1988] for further discussion.)

One concrete recommendation is
that editors, program committees, and
reviewers should begin to insist on
evaluation. Editorial policies rarely
preclude evaluation—we all think it’s
a good idea—but neither do they
require them. This is one reason that
papers almost never describe an entire
research cycle—a problem, a task, a
view, methods, programs, experi-
ments, and results. Editorial policy is
perhaps the most effective way to
guide empirical AI practice toward
complete evaluation. (Lately, the
machine learning community has
explicitly mentioned evaluation crite-
ria in calls for papers, and Langley
(1987) has advocated evaluation in his
editorials.)It can also encourage the
following uncommon kinds of papers.

Short studies with extant systems.
Many of the experiments discussed in
the subsection on stage 4, which
address how and why systems work,
are extensive, self-contained, publish-
able studies. Even after a system has
been thoroughly explored, it can still
serve as a test bed for studies with
other methods, knowledge representa-
tions, control structures, and so on. AI
systems take so long to build that we
really cannot afford to drop them
until we have learned all we can from
them. A good model of this kind of
work is a book on extensive experi-
ments with MYCIN edited by
Buchanan and Shortliffe (1984).

Negative results.  For example, we
need to know when methods don’t
work as expected, when systems per-
form less well as they become more
knowledgeable, when scaling up caus-
es problems. When did you last read
an AI paper that said something didn’t
work?

Progress reports.  We should publish
progress reports throughout the devel-
opment of large AI projects, not wait
until they are finished. Lenat’s CYC
project (Lenat, Prakash, and Shepherd
1986), for example, is slated to contin-
ue throughout the 1990s. We cannot
afford to wait until then to see how
CYC is progressing—especially
because it involves pioneering tech-
niques and ideas that we need much
sooner.

When we began writing this article,
we took the view that science is not
legislated, controlled, or forced upon
its practitioners but is a voluntary
business in which loose organizations
of individuals somehow produce
coherent, cumulative progress. We
obviously believe evaluation and
methodology will help this process; it
isn’t hard to do, and it suggests new
research, generalizations, and
hypotheses that one wouldn’t discover
otherwise.
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Consultants for Management Decisions, Inc. (CMD), a 
steadily growing custom software fin-m located in Kendall 
Square, is looking for qualified AI professionals. 

I 

ARTIFICIAL INTELLIGENCE PROFESSIONALS 
III 

* NATURAL LANGUAGE PROCESSING * 
l EXPERTSYSTEMS l 

* INTELLIGENT USER INTERFACES * 
I 

Applicants should have experience with LISP and C, strong 
academic preparation, the ability to work well with others, 
and a commitment to developing quality software. 
Staff members are involved with the client through all phases 
of a project: application identification, technology analysis, 
functional specification, system development, installation, 
and training. We seek professionals with a blend of talents, 
who can program effectively and interact with a client’s 
senior executives, domain experts, and systems staff. 

CMD cherishes and promotes excellence. Challenging work, 
congenial staff, competitive salaries and benefits. Send your 
resume in confidence to: 

President, CMD, Inc. 
One Broadway 

Cambridge, MA 02142-1101 

ARTIFICIAL 
INTELLIGENCE 
SCIENTIST 
United Technologies Research Center, an in- 
ternationally recognized R 81 D facilib, has the 
following posItron available for a qualified 
professional Expanded activities in Artificial 
Intel!igence research requires senior individ- 
ual to investigate and define Al approaches 
in qualitative reasoning, knowledge repre- 
sentatron, machine IearnIng, natural lan- 
guage processing, knowledge-based srmula- 
tion, distributed Al and connectionst systems 
Requirements include an M S or Ph D in 
Computer Science, coursework in Al, LISP, 
and knowledge representation to implement 
state-of-the-art Al systems in a variety of 
challenging problem domalns 
United Technologies offers an excellent com- 
pensation and benefits program To explore 
your potential with us. send a resume with 
salary hrstory and requirements, to Dr 
Wayne Kuhnly, MS 35AIM, United Technol- 
ogies Research Center, Silver Lane, East Hart- 
ford, CT 06108 


