
HOW EXPERT SHOULD AN EXPERT SYSTEM BE?

Roger T. Hartley

Man-Computer Studies Group,
 Computer Science Department,

 Brunel University, U.K.*

ABSTRACT

 A computer system which aids computer
engineers in fault diagnosis is described. The
system, called CRIB (Computer Retrieval
Incidence Bank) is shown to fit into the class
of pattern-directed inference systems. Emphasis
is placed on the "before" and "after" phases of
system generation and it is shown why, to be
called an expert system, these phases are
important. The forms of knowledge used in CRIB
are shown to be adequate for diagnosis and yet
possess little of the structural or functional
knowledge of more advanced expert systems.
Summaries are given of the three phases of
implementation: elicitation, implementation of
knowledge structures, validation and
improvement. The idea of an expert system as a
"model of competence" is mentioned :nd the
transferrance of the system architecture to
software diagnosis, using the same model, is
described. There are short discussion of system
performance and the nature of expert systems.

1. Introduction

 This paper, whilst also being a vehicle for
presenting the work on CRIB carried out between
1974 and 1979, attempts to investigate the
"before" and "after" of an expert system. Most
of the papers written on and around the field of
knowledge engineerirg systems have concentrated
on the structure of the program itself with
short discussions of how the program came into
being and how the program performs "in the
field". However, an expert system is a
non-academic exercise (not to say commercial)
and the twin needs therefore to get the detail
right beforehand and the performance right
afterwards, are equally important as the system
design.

Four phases of the route to a viable expert
system may be distinguished. They are not
dissimilar to the staging of the development of
any commercial computer system. They are:

1. Elicitation for the first approximation
knowledge base.

2. System design and generation.

3. Continuous validation (debugging

--

* From September, 1981 at Department of Computer
Science, Kansas State University, USA.

and fine-tuning).

4. Improvement through experience.

Notice that we have not preempted our discussion
of elicitation by specifying the source of the
initial knowledge for the system. In order to
discuss this point we should like to make a
distinction in the people who come into contact
with the system, i.e. between experts and
practitioners. We consider this a useful one
especially where the system can be used for
education and dissemination of knowledge as can
a standard enquiry data-base. Practitioners are
those people who use the system in the course of
their every-day work; experts are the handful of
people who define what the work is and how it
should be carried out.

The "Before" and "After" of an Expert System.

 2.1. Elicitation: from experts or
practitioners?

The dramatic rise to academic consciousness of
the expert system has come about partially
because of the cult of the "expert" and his
largely undisputed place in our society.
However, an expert is only an expert relative to
the practitioners in the field. Moreover,
experts are always a tiny minority of the whole
group. We would therefore like to ask the
question "Is an expert nec-essarily better than
a large number of practitioners?" The answer to
the question must surely depend to some extent
on the sort of knowledge involved. If knowledge
is fragmentary, consisting largely of facts
which are additive in nature then the answer is
"no". Practitioners acting separately (or at
least only loosely connected) have different
experience and therefore different knowledge.
The expert has only his own experience to rely
on and, whereas he might have a far wider
experience than any one practitioner, he cannot
match the aggregated experience of a large group
of them. If, or. the other hand, the knowledge
needed is structural or systemic in nature, then
the answer to our question is "yes", the expert
is better. In fact, it is often the case that
experts are expert because of their ability to
see the structure of the domain and not merely
its content.

 In this paper we shall not discuss whether
knowledge is of one form or the other. There is
some discussion both in A.I. [11], [13] and,

perhaps more relevantly, in philosophy (for example
see [91, [151 for general texts) which we refer the
reader to. The only point which must be made here is
that the sort of knowledge which one must have to be
effective in a particular domain is certainly
dependent on the activity or activities within that
domain. For example, the knowledge required to be a
good bricklayer is mainly additive, consisting of
facts such as how to chop a brick in half; what
proportions of sand and cement make good mortar; how
to build a corner. On the other hand, the knowledge
required by the builder employing the bricklayer is
organisational in the main. He must know how to time
the work of subcontractors where the work of one
depends on another finishing; how to balance
incoming and outgoing payments so as not to go
bankrupt; when to quote a high price for a job he
cannot find time to do.

 It thus appears to be dependent on the domain
whether knowledge should be first elicited from
experts or from a community of practitioners. Can we
then say something about the areas in which expert
systems have gained a foothold and generalise this
to future or projected applications? All the early
expert systems (see [83) concentrated on academic or
scientific areas of knowledge. The knowledge
involved was aimed at finding and making explicit
that which was previously implicit; it involved a
high degree of intellectual skill and thus clearly
fitted into the "expert elicitation" category. It is
true that they also used a large body of factual
knowledge, but this was decidedly subordinate to the
knowledge directly concerned with "expertise" in the
area. The facts were taken for granted and formed a
significant but largely static part of the system.
If what we have said before has any validity, there
should, then, be areas of human activity in which
the notion of an expert is not inappropriate and
where the expertise depends in part on a large and
ever-changing body of facts. Of course the expert in
such a field will have the structuring skills of the
builder in our example above, but the aggregated
practitioners will have more factual knowledge and
thus should be the source of the initial
knowledge-base. We believe that computer fault
diagnosis is one such area (the area in which CRIB
operates) and that there are others of a similar
nature (almost any skilled trade, but also such
diverse fields as navigation, production scheduling,
or information services).

 Since most knowledge based systems split
knowledge into two, namely static knowledge (facts)
and methods of inference, organisation of the
techniques of elicitation around these categories
can help both the interviewer and the interviewee.
When working with an individual (the expert), both
sorts of knowledge tend to come together quite
smoothly, but working with an aggregate is
different. Firstly, elicited facts are only additive
if inconsistency and contradiction are allowable. An
expert system, however, cannot afford to show these
qualities to the user. It must have a way of
checking its self-consistency and reporting errors
when they occur. Some sort of semantic network is
the usual way of doing this although the problems of
building networks with sufficent expressive power
are well known 151, [13]. If these problems are to

be avoided, then there must necessarily be a
diminution in the generality of knowledge which the
system can maintain. In CRIB the sorts of knowledge
which it stores are reduced to a minimum without
reducing its efficiency as a diagnostic aid. These
simple facts (see section 3.2) are easy to elicit
using a variety of techniques; no semantic network
is then necessary.

Turning to methods of inference, it is apparent to
us that little has been done in developing
elicitation techniques from experts. Most expert
systems using production system methodology
necessarily force all inference procedures into the
uniform situation -> action pair. The elicitation is
thus characterised by the question "what rules do
you use?" rather than the more general "how do you
make inferences?". Elicitation of methods of
inference from an aggregate of practitioners
involves a second level of system design since some
form of induction must be used to capture
commonalities amongst the members of the aggregate.
This second level difficulty merely adds to the
already tricky process of elicitation and does not
seem worthwhile if an acceptable alternative is
available. This alternative is for the system
designer to supply methods of inference based on
theoretical notions of what it is to reason well in
the domain under consideration. A study prior to
CRIB (called project DEEMEN, see (41) suggested that
a hierarchical model of the broken machine be
adopted to guide a step-by-step search for the
faulty part. The idea here is that the designer
supplies a model of competence which the system then
uses as the universal method of making inferences
and guiding the user. Les Johnson [111 makes the
point that most A.I. systems are in fact models of
competence. For our purpose this description is
correct since we have not attempted to induce
methods of diagnosis from the engineers we worked
with.

2.2. Validation and Improvement

If, as we have said, an expert system is a model of
competence, then we must be prepared
to change the model in the light of experience
by users. The same problem occurs in this "after
generation" phase as with the "before" of elicit-
ation. It is mainly practitioners who use the system
and it is their experience with it that can help to
validate the model. But can this experience also be
used to improve the model? In general we can say
that the system users come to two different sorts of
conclusion after gaining experience with it. Either
the model is inadequate as a model of competence
(i.e. the system is "incompetent") or it is failing
to cope with
a wide enough range of new situations and methods
of working. This leads to the distinction between
validation and improvement. An expert system
which is improving in the more fundamental sense
must be gaining new knowledge; validation can
be carried out - by restructuring existing
knowledge. The same distinction also applies when
considering

the changes of a system in time. Continuous
validation through day-to-day use by practitioners
can cope with small perturbations, like tuning a
radio set for better reception, but new knowledge
usually comes from an expert (tuning to a "better"
station).

It is appropriate to ask whether improvement can
come not from experts, but from an aggregate of
practitioners in the same way as elicitation can
when the form of knowledge is right. Even with a
level of interpretation (presumably by an
expert-system expert) it is hard to see how this
could come about. Practitioners, by the nature of
their job, do not normally generate new knowledge.
If they do it is not of the structural sort, but is
more likely to be additive - the sort of knowledge
which an expert system should be able to handle by
the "fine-tuning" process of continuous validation.
Thus an expert system must have interaction with a
domain expert to improve its effectiveness. With
most systems this means modifications to data-base
structures and/or procedures -modes of interaction
not allowable to a practitioner.

3. CRIB: A Computer Engineer’s Diagnostic Aid

3.1. Overview.

The initial aims for CRIB were strictly commercial:
to reduce maintenance costs in two areas - training
of new engineers and existing engineers on new
equpiment; increasing productivity by reducing the
average time per fault investigation. With
constraints like these it was clear that a highly
flexible, user-friendly system was needed.
Ultimately, it was decided to aim CRIB at the CAFS
data-base processor (see section 3.4) with its
wealth of associated software packages and analysis
techniques and, more importantly. its high
effieciency as a pattern-directed data-base system.
However, early versions used standard file
techniques for database management. The CAFS version
effected a 20-30 fold improvement in speed, using
the same logical structure.

The whole CRIB system consists of three programs:

P1. The main program which carries out the executive
function (see section 3.4) is called DIAGNOSE. It
interfaces with the user (the field engineer)
through a simple jargon-English translation package.
This allows the engineer to communicate with CRIB in
a fairly natural way to describe symptoms, inform of
actions carried out and control housekeeping
functions such as the investigation log.

P2. Some degree of validation and fine tuning is
done by ADAPT which examines the logs of previous
investigations and updates times of actions
performed and investigation times after a complete
match with a symptom group (see section 3.2). It
also handles sub-groups (see section 3.4.1).

P3. Major restructuring of the data-base and the
insertion of new knowledge are done through EXPERT.
As mentioned before, this is a specialised access to
the data-base and is done with the help of’ the
system designer.

3.2 Forms of Knowledge for Computer Diagnosis

Two questions were posed at the beginning of
analysis for system design. They were: What sort of
knowledge does an engineer need to find faults on
broken computers? and How does the engineer use this
knowledge to find and cure the fault? The DEEMEN
project told us that most field engineers know
little about the correct functioning of the machine
at the electronic level but a lot at the level of
interfaces between modules. We therefore
concentrated on the notion of a replaceable or
repairable part (we called it a sub-unit) and the
interfaces between them. The normal concept of "a
fault" can then be dropped in favour of the location
of the fault within a sub-unit. It follows that the
only knowledge needed about the structure of the
machine is the hierarchy of sub-units which
expresses the relationship between them. Such a
hierarchy can be drawn as a tree whose leaves are
the replaceable/repairable modules.

Support for this came from the DEEMEN reports. In
these, an easy-to-follow routine for diagnosis was
suggested in an attempt to give engineers a
fail-safe method of proceeding when all else fails.
This procedure has the acronym TOAST and each letter
refers to the following steps which when cycled
successively produce a spiral of diagnosis,
hopefully homing in on the fault by travelling down
the hierarchy.

Test: carry out an appropriate test on
the machine

Observe: observe and record the results

Analyse: analyse the results and in the
light of this:

Split: split the faulty sub-system into
faulty and non-faulty parts

Test: generate an appropriate test for
the faulty sub-system

TOAST provides support for CRIB as a model of
competence in computer diagnosis. TOAST also needs
knowledge of the relationship, through the Analyse
phase, between the results of tests carried out by
the engineer and the form that the next test should
take. The analysis is simply represented as an
association of symptoms and faulty sub-unit. This
begs two questions: Do symptoms uniquely identify
faulty sub-units? and How do we know which pairs to
put in the data-base? The second question is
concerned with elicitation and will be left for
section 3.3. The experts we worked with told us that
the answer to the first is "no"; some symptoms are
common to many faults and so more information is
needed. We did not want to include knowledge of
machine function and so the other information which
we added to the pair was all of the other symptoms
(perhaps ten or fifteen) which had been observed
before the current one. Does a group of symptoms
taken together uniquely identify a faulty sub-unit?
If an engineer only observes these symptoms and
finds the fault, then his analytic skills (ifany)
are reflected in the choice of actions which yield
the symptoms in the group. We do not then need to
represent the analytic skills explicitly

- they are represented implicitly through the
symptom groupings.

However, some symptoms are only observed as a result
of lengthy and intricate operations. The knowledge
needed here is which symptoms are better looked for
than others. Since CRIB has no functional knowledge
it must base its assessment on attributes of actions
which potentially yield symptoms in the various
groupings. Attributes such as the time it takes to
perform an action; how many groups contain it; and
how long the investigation might take after it has
been observed are only heuristically adequate in
this case. However, since the final aim is to find
all of the symptoms in any one group the heuristic
element is only concerned with means and not ends.

The knowledge needed for a model of competence in
computer diagnosis can be summarised thus:

K1. A hierarchy of sub-units representing
the structure of the machine as a collection
of repairable or replaceable parts.

K2. A number of symptom group/sub-unit pairings
which represent successful fault investigations.

K3. Attributes of symptom-related actions which are
heuristically adequate to determine the next action.

M Procedures for operating a modified TOAST cycle
in order to progress down the hierarchy to the
faulty sub-unit.

3.3. Elicitation of Knowledge in CRIB.

The hierarchy of sub-units (K1) was formulated in
discussion with people who train field engineers.
The main aim was to provide a comprehensive
breakdown of the chosen "patient" machine (ICL 2903)
to the level of replaceable or repairable modules.
The bulk of the K2 knowledge came from an
interpretation of a set of fault-finding guides for
the 2903. These had been produced by an expert
engineer using his experience of general
faultfinding and applying this to what was then a
brand new machine.

With hindsight, our first stage elicitation should
have come directly from an expert (there were no
practitioners at the time with any direct
experience). Information could have been gained from
system engineers during a series of interviews about
specific fault investigations. The data could then
have been cast in a form suitable for CRIB without
engaging in the sort of interpretation demanded by
the guides. We cannot emphasise strongly enough that
the success or failure of an expert system can
largely rest on this initial stage of elicitation.

3.4 System Design and Generation.

The description of the internal workings of CRIB
given here follows the analysis given by Hays-Roth
et al. [10). Other more straightforward accounts may
be found elsewhere [13, [2]. The categories of
knowledge K1 to K4 have many of the characteristics
of what they call

a Pattern-Directed inference System (PDIS). The
group/sub-unit pairings can be seen as expressing
the following inference:

R1. if symptoms S1 to N have been observed then
assume the fault is in sub-unit U.

The procedures in K4 will clearly have a matching
function, in part; the process of looking for a
suitable split to make (as in TOAST) will involve
matching the current observed-symptom set with each
of the pairings in the data-base. The symptom groups
are patterns and the pairings are inferences.

In general, a PDIS consists of a large, constantly
changing body of data and a relatively small, fixed
set of procedures which operate on them. These
procedures taken together form the executive of the
PDIS. Hays-Roth et al. discuss PDIS executives in
four parts: selection, matching, scheduling and
execution. It is possible to discuss CRIB in these
terms.

Selection: filtering data before the expensive
matching process. The CRIB user is able to direct
the program to look only for matches amongst symptom
groups paired with any chosen sub-unit and not, as
is normal, with all of the sub-units below the
currently assumed faulty one. This can improve
search efficiency and CRIB can then quickly inform
the engineer whether he has located the fault
correctly or not.

Matching: carrying out the matching between observed
symptoms, input by the user, and symptom groups in
the data-base. This function is carried out by the
CAFS data-base processor. Enquiries, in the form of
Boolean expressions of attributes known to the
data-base, are presented to CAFS as a microcode
program. The device then returns selected parts of
all records which satisfy the request to the
mainframe via a DMA link.. Information about the
CAFS side of the CRIB implementation are contained
in [2]. Technical information about CAFS can be
found in [3].

Scheduling: three outcomes are possible after
matching has been completed. The first is that there
is one and only one match with a rule in the
data-base. In this case scheduling is not needed.
The other two are more difficult. Either there is
more than one match or only partial ones. What to do
next is the subject of meta-rules which describe how
to proceed in situations of imperfect matching. The
meta-rules in CRIB for handling partial matches are
aimed at suggesting actions to the engineer which
will yield symptoms to complete the match. The rules
are:

MR1. Choose a symptom which is the only remaining one
in a group. (All the others have been observed
already).

MR2. Choose the symptom with the highest membership
in partially-matched groups. (This is the symptom,
which if it were observed, would give the engineer
the most information).

MR3. Resolve conflicts in MR1 and MR2 by taking

the symptom with the shortest time factor.

In fact, because there are many situations,
especially early on in an investigation, when even
the rules given above do not yield a unique choice,
the rules are applied five times (eliminating the
previous choice each time) and five symptoms are
chosen, giving the engineer an element of choice in
his actions.

3.4.1. Sub-groups.

Although TOAST represents a good model of diagnostic
competence, engineers do not always like to work in
this rigorous fashion. In particular, some of them
are skilled at recognising the emergence of patterns
of symptoms before all of the symptoms to confirm a
fault have been observed. This heuristic knowledge
can be captured in a set of assumption rules of the
form:

 R2. if symptoms S1 to N are present
 then assume that SN+1 to N+M are present
 too (but not observed)

The symptom set (the sub-group) on the lefthand side
of the rule is a sub-set of the whole symptom set
(the key-group) which implies a faulty sub-unit. The
ideal is still to match a whole key-group but a
match with a sub-group is considered heuristically
adequate to make progress in the investigation. The
program ADAPT checks for confirmation when a
sub-group is used successfully and can also reject
those which are disconfirmed by failure. More
importantly, ADAPT "discovers" new sub-groups by
applying the following meta-rule:

 MR4. if action suggestions resulting from
 a partial match result -in the completion
 of that match
 then insert the symptoms making up the
 partial match into the data-base as a
 possible sub-group.

3.4.2. Implementation of rules and meta-rules.

Meta-rules MR1-4 are implemented conventionally
through fixed procedures. Since they form the
analytic part of the model of competence, there is
no need to represent them explicitly, However, rules
R1 and R2, when instantiated by particular symptom
groupings, need a flexible representation which
allows addition and modification of rules as the
system grows and changes. Thus all rules in the CRIB
data-base are represented as relations between
symptom groups and either sub-units as in the case
of key-groups (R1), or other groups as with
sub-groups (R2), CAFS is an ideal vehicle for
supporting such relations.

3.5 Validation, Improvement and Performance.

It was possible to validate CRIB’s competence
assuming that the correspondence between symptoms
and the actions designed to reveal them was accurate
and that the fault-finding guide data was not too
far from the truth. A relatively inexpert
user was asked to be completely guided by CRIB and
’carry out’ the actions suggested by the system. If

all was well, we would have expected CRIB to
suggest, as a final action, the replacement or
repair of a terminal sub-unit. This was the case in
a large number of ’investigations’ carried out (some
200 in all). However, in some cases, especially
where the chain of suggested actions was long, the
really relevant actions were not displayed soon
enough. The reason for this was pinpointed in the
scheduling of actions after a partial match (see MR2
in section 3.4). When little information is
available to CRIB to partition the symptom groups it
tends to spread its net too wide in the search for
possibilities. However, by using the filtering
facility described in section 3.4, it was possible
to resolve at least some of these difficulties. Full
detail can be found in [2), where several ’real’
faults discovered by an expert engineer are
described.

3.5.1. Assessment of performance.

CRIB can certainly help an engineer to find faults
on broken computers where these faults have been
successfully remedied before. If an engineer does
not spot a fault as a known one (whether or not he
is using a system such as CRIB), he must fall back
upon basic knowledge both about the particular
machine he is working on (possibly functional
knowledge) and about diagnosis in general. In this
case, CRIB, with its complete lack of explicit
functional knowledge, cannot help. However, the
unknown symptom group will, of course, contain many
symptoms which are known and are present in other
groups. It is thus possible that the engineer, with
a little thought on his part, can locate the true
fault. This process has been observed when using
CRIB in an unstructured way; ignoring suggestions,
putting in unsolicited symptoms etc. Further
discussion and a proposed solution to the ’new
faults’ problem are in (1].

4. SOFTCRIB: An Exercise in Generalization.

If the structures and mechanisms within CRIB can be
described independently from the content of the data
which drives it, then the description will be of a
production system capable of wider application than
computer diagnosis. This line of thinking follows
the generation of PUFF [81 and PROSPECTOR [71 and
GUIDON [61 from the system architecture of MYCIN
(the EMYCIN or Essential-MYCIN concept).

The next most obvious application for CRIB was
diagnosis of software faults in a similar fashion to
hardware faults. Within ICL, a group a
’dump-crackers’ had already gathered data on faults
exhibited by a new large-scale operating system
called VME/K Most of the concepts in CRIB carried
across to the software domain. albeit with
reinterpretation. A hierarchy of attributes describe
the different levels of detail within the operating
system. These attributes were chosen to partition
hugs in a reasonable way and the whole system of
attributes forms a paradigmatic ’representation of
the operating system’s path-

ology. Attributes which are immediately subordinate
to a common attribute can then be characterised as
answers to a single question. e.g. What type of
dump? is subordinate to What software version?

 The remaining correspondences were
straightforward. Symptoms remained as symptoms, and
key groups of symptoms corresponded to a trace of
symptoms recorded on the way to fixing a bug.
Actions were classified as either patches or
questions which when answered by the user yielded
further symptoms of that particular bug. Other less
important features of SOFTCRIB concerning
interaction with and use of the new system can be
found in [1]. Once again the power of a
hierarchically guided diagnostic methodology has
been demonstrated to be adequate to the task.
Moreover, the production system architecture of CRIB
enabled the change of function merely through a
change of data-base content and a simple
re-interpretation of parts of the data structures.

5. Conclusions: What is an Expert System?.

Many workers in knowledge engineering and expert
systems have attempted to define the field from
several different angles. It has been said that an
expert system should be able to explain itself to
the user (as does MYCIN for example) just as a human
expert can. Claims have also been made for ’natural
language’ interfacing; being interactive in the form
of a dialogue; having incremental data-bases and
being adaptive and heuristic in operation. All of
these attributes are highly desirable and even
necessary in some cases. However, they are all
reduced to being incidental window-dressing unless
the system does actually possess expertise in its
field. Hence the emphasis in this paper on the
"before" and "after" phases. Elicitation of
expertise is crucial to the initial success of the
system; adaptability and a capability for
improvement are crucial to its continued success.

The question posed in the title of the paper can now
be seen as relevant to tying "before" to "after". It
is of little use to attempt a full-scale
representation of expertise in the elicitation phase
(knowledge engineering is not cognitive modelling)
if the resulting system is difficult to modify and
hence to improve. It is equally bad to program
elaborate schemes for fine-tuning the data-base when
its content does not properly represent the desired
expertise. The system should thus only capture that
part of the expertise which is sure to be useful to
all practitioners, and which can be readily modified
through straightforward improvement schemes. CRIB
partly meets these demands, but its authors now see
it as a prototype for something better in the
future. Certainly production system architecture has
many desirable features, but expert system
architectures should vary according to the forms of
knowledge needed to capture a particular sort of
expertise. Elicitation techniques geared towards
these different forms of knowledge are thus vital.

ACKNOWLEDGEMENTS

Initially, it was Andrew Bond, in the team led by
Frank George who suggested a system like CRIB. Les
Rabbitts of ICL engineering training provided some
of the early ideas. Thanks are due to Bob Beakley
and Ted Newman of ACTP and to Gerry Piper and Tony
James of ICL. The biggest thankyou, however, goes to
Tom Addis of ICL RADC for his hard work,
encouragement and insights too numerous to mention.

REFERENCES

[1] Addis, T.R. Towards an ’Expert’ Diagnostic
System. ICL Technical Journal, May:79--105, 1980.
[2) Addis, T.R. and Hartley, R.T. A Fault Finding
Aid Using a Content Addressable File Store ICL
Research and Advanced Development Centre Stevenage,
U.K. TN 79/3, 1979.
[3] Babb, E. Implementing a Relational Database by
means of Specialised Hardware. ACM Transactions on
Database Systems 4(1):1-29, 1979.
[4] Bureau of Information Science in cooperation
with the Department of Trade and Industry. Contract
K78B1/314 Computer Fault Finding Methods. Technical
Report, May 1973.
[5] Brachman, R.J. What’s in a Concept: Structural
Foundations of Semantic Networks. International
Journal of Man-Machine Studies 9:127-152, 1977.
[6] Clancey, W.J. Tutoring Rules for Guiding a Case
Method Dialogue. International Journal of
Man-Machine Studies 11:25-49, 1979.
[7] Duda, Richard; Gaschnig, John and Hart, Peter
Model Design in the PROSPECTOR Consultant System.
for Mineral Exploration in Expert Systems in the
Microelectronic Age edited by Donald Michie.
Edinburgh University Press, 1979.
[8] Feigenbaum, E.A. Themes and Case Studies of
Knowledge Engineering in Expert Systems in the
Microelectronic Age edited by Donald Michie.
Edinburgh University Press, 1979.
[9] Griffiths A.P. (ed) Knowledge and Belief (Oxford
readings in philosophy), CUP, 1967. [10] Hays-Roth,
Frederick; Waterman, D.A. and Lenat. Douglas B.
Principles of Pattern-Directed Inference Systems in
Pattern-Directed Inference Systems edited by D.A.
Waterman and Frederick Hays-Roth. Academic Press,
1978.
[11] Johnson, Leslie Practical Reasoning
Man-Computer Studies Group, Brunel University.
M-CSG/TR/1, 1979.
[12] McCarthy, John. Epistemological Problems of
Artificial Intelligence. Proceedings of 5th.
International Joint Conference on Artificial
Intelligence. MIT, 1977.
[13] Schubert, L.K. Extending the Power of Semantic
Networks Artificial Intelligence 7(2):163-198, 1976.
[141 Sloman, Aaron. The Computer Revolution in
Philosophy Harvester press, 1978. [151 Woozley A.D.
Theory of Knowledge: an Introduction, Hutchinson.
1969.
[14] Sloman, Aaron. The Computer Revolution in
Philosophy Harvester Press, 1978.
[15] Woolzley A.D. Theory of Knowledge: an
Introduction, Hutchinson, 1969.

