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ABSTRACT

A conput er system which ai ds conputer
engineers in fault diagnosis is described. The
system called CRIB (Conputer Retrieval
I nci dence Bank) is shown to fit into the class
of pattern-directed inference systens. Enphasis
is placed on the "before" and "after" phases of
system generation and it is shown why, to be
call ed an expert system these phases are
i mportant. The fornms of know edge used in CRIB
are shown to be adequate for diagnosis and yet
possess little of the structural or functional
know edge of nobre advanced expert systens.
Sunmaries are given of the three phases of
i mplementation: elicitation, inplementation of
know edge structures, validation and
i mprovenment. The idea of an expert systemas a
"model of conpetence" is nentioned :nd the
transferrance of the systemarchitecture to
sof tware di agnosi s, using the sane nodel, is
described. There are short discussion of system
performance and the nature of expert systens.

1. Introduction

Thi s paper, whilst also being a vehicle for
presenting the work on CRIB carried out between
1974 and 1979, attenpts to investigate the
"before" and "after" of an expert system Mst
of the papers witten on and around the field of
knowl edge engi neerirg systens have concentrated
on the structure of the programitself with
short di scussions of how the programcane into
bei ng and how the program perforns "in the
field'. However, an expert systemis a
non-acadeni ¢ exercise (not to say conmercial)
and the twin needs therefore to get the detail
ri ght beforehand and the performance right
afterwards, are equally inportant as the system
desi gn.

Four phases of the route to a viable expert
system may be distinguished. They are not
dissimlar to the staging of the devel opment of
any commerci al conmputer system They are:

1. Elicitation for the first approximtion
know edge base.

2. System desi gn and generation.
3. Continuous validation (debugging
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4. | nprovenent through experience.

Notice that we have not preenpted our discussion
of elicitation by specifying the source of the
initial know edge for the system In order to

di scuss this point we should Iike to make a
distinction in the people who cone into contact
with the system i.e. between experts and
practitioners. W consider this a useful one
especi ally where the system can be used for
education and di ssenination of know edge as can
a standard enquiry data-base. Practitioners are
t hose people who use the systemin the course of
their every-day work; experts are the handful of
peopl e who define what the work is and how it
shoul d be carried out.

The "Before" and "After" of an Expert System

2.1. Elicitation: fromexperts or
practitioners?

The dramatic rise to academ c consci ousness of
the expert system has cone about partially
because of the cult of the "expert" and his

| argely undi sputed place in our society.

However, an expert is only an expert relative to
the practitioners in the field. Mreover,
experts are always a tiny mnority of the whole
group. We would therefore Iike to ask the
gquestion "lIs an expert nec-essarily better than
a large nunber of practitioners?" The answer to
the question nmust surely depend to sone extent
on the sort of know edge involved. If know edge
is fragmentary, consisting largely of facts
which are additive in nature then the answer is
"no". Practitioners acting separately (or at

| east only | oosely connected) have different
experience and therefore different know edge.
The expert has only his own experience to rely
on and, whereas he nmight have a far w der
experience than any one practitioner, he cannot
mat ch the aggregated experience of a |arge group
of them If, or. the other hand, the know edge
needed is structural or systemic in nature, then
the answer to our question is "yes", the expert
is better. In fact, it is often the case that
experts are expert because of their ability to
see the structure of the domain and not nerely
its content.

In this paper we shall not discuss whether
knowl edge is of one formor the other. There is
sone di scussion both in Al. [11], [13] and,



perhaps nore relevantly, in philosophy (for exanple
see [91, [151 for general texts) which we refer the
reader to. The only point which nust be nade here is
that the sort of know edge which one nust have to be
effective in a particular domain is certainly
dependent on the activity or activities within that
donmi n. For exanple, the know edge required to be a
good bricklayer is mainly additive, consisting of
facts such as how to chop a brick in half; what
proportions of sand and cenent nake good nortar; how
to build a corner. On the other hand, the know edge
required by the builder enploying the bricklayer is
organi sational in the nmain. He must know how to tinme
the work of subcontractors where the work of one
depends on anot her finishing; how to bal ance

i ncom ng and out goi ng paynents so as not to go
bankrupt; when to quote a high price for a job he
cannot find time to do

It thus appears to be dependent on the domain
whet her know edge should be first elicited from
experts or froma community of practitioners. Can we
then say sonet hing about the areas in which expert
systens have gained a foothold and generalise this
to future or projected applications? All the early
expert systems (see [83) concentrated on academ c or
scientific areas of know edge. The know edge
i nvol ved was ained at finding and making explicit
that which was previously inplicit; it involved a
hi gh degree of intellectual skill and thus clearly
fitted into the "expert elicitation" category. It is
true that they also used a | arge body of factua
know edge, but this was deci dedly subordinate to the
know edge directly concerned with "expertise" in the
area. The facts were taken for granted and forned a
significant but largely static part of the system
If what we have said before has any validity, there
shoul d, then, be areas of human activity in which
the notion of an expert is not inappropriate and
where the expertise depends in part on a |arge and
ever - changi ng body of facts. OF course the expert in
such a field will have the structuring skills of the
buil der in our exanple above, but the aggregated
practitioners will have nore factual know edge and
thus shoul d be the source of the initia
know edge- base. W believe that conputer fault
di agnosis is one such area (the area in which CRI B
operates) and that there are others of a sinmilar
nature (alnost any skilled trade, but also such
diverse fields as navigation, production scheduling
or information services).

Si nce nost know edge based systens split
know edge into two, nanely static know edge (facts)
and met hods of inference, organisation of the
techni ques of elicitation around these categories
can help both the interviewer and the interviewee.
When working with an individual (the expert), both
sorts of know edge tend to come together quite
snmoot hly, but working with an aggregate is
different. Firstly, elicited facts are only additive
i f inconsistency and contradiction are allowable. An
expert system however, cannot afford to show these
qualities to the user. It nmust have a way of
checking its self-consistency and reporting errors
when they occur. Some sort of semantic network is
the usual way of doing this although the problens of
bui l ding networks with sufficent expressive power
are well known 151, [13]. If these problens are to

be avoi ded, then there nmust necessarily be a
dimnution in the generality of know edge which the
systemcan maintain. In CRIB the sorts of know edge
which it stores are reduced to a m ni mum w t hout
reducing its efficiency as a diagnostic aid. These
sinple facts (see section 3.2) are easy to elicit
using a variety of techniques; no semantic network
i s then necessary.

Turning to nmethods of inference, it is apparent to
us that little has been done in devel opi ng
elicitation techniques fromexperts. Mst expert
systens using production system net hodol ogy
necessarily force all inference procedures into the
uniformsituation -> action pair. The elicitation is
thus characterised by the question "what rules do
you use?" rather than the nore general "how do you
make inferences?". Elicitation of nethods of

i nference from an aggregate of practitioners

i nvol ves a second | evel of system design since sone
form of induction nmust be used to capture
commonal i ti es anongst the nmenbers of the aggregate
This second level difficulty nmerely adds to the
already tricky process of elicitation and does not
seemworthwhile if an acceptable alternative is
available. This alternative is for the system
designer to supply methods of inference based on
theoretical notions of what it is to reason well in
the domai n under consideration. A study prior to
CRIB (called project DEEMEN, see (41) suggested that
a hierarchical nodel of the broken machine be
adopted to guide a step-by-step search for the
faulty part. The idea here is that the designer
supplies a nodel of conpetence which the systemthen
uses as the universal nethod of making inferences
and guiding the user. Les Johnson [111 nakes the
point that nopst A l. systens are in fact nodels of
conpetence. For our purpose this description is
correct since we have not attenpted to induce

net hods of diagnosis fromthe engi neers we worked
Wi th.

2.2. Validation and | nprovenent

I1f, as we have said, an expert systemis a nodel of
conpetence, then we nust be prepared

to change the nodel in the light of experience

by users. The same problemoccurs in this "after
generation" phase as with the "before" of elicit-
ation. It is mainly practitioners who use the system
and it is their experience with it that can help to
validate the nodel. But can this experience al so be
used to inprove the nodel ? In general we can say
that the systemusers cone to two different sorts of
conclusion after gaining experience with it. Either
the nodel is inadequate as a nodel of conpetence
(i.e. the systemis "inconpetent") or it is failing
to cope with

a w de enough range of new situations and net hods
of working. This leads to the distinction between
validation and inprovenent. An expert system

which is inmproving in the nore fundanental sense
nmust be gai ni ng new know edge; validation can

be carried out - by restructuring existing

know edge. The sane distinction also applies when
consi dering



the changes of a systemin tinme. Continuous
val i dation through day-to-day use by practitioners
can cope with small perturbations, like tuning a
radio set for better reception, but new know edge
usual ly cones froman expert (tuning to a "better"
station).

It is appropriate to ask whether inprovenent can
conme not fromexperts, but from an aggregate of
practitioners in the sane way as elicitation can
when the form of know edge is right. Even with a

I evel of interpretation (presumably by an
expert-systemexpert) it is hard to see howthis
could come about. Practitioners, by the nature of
their job, do not normally generate new know edge.
If they do it is not of the structural sort, but is
nore likely to be additive - the sort of know edge
whi ch an expert system should be able to handle by
the "fine-tuning" process of continuous validation
Thus an expert system must have interaction with a
domai n expert to inprove its effectiveness. Wth
nost systens this neans nodifications to data-base
structures and/ or procedures -nodes of interaction
not allowable to a practitioner.

3. CRIB: A Conputer Engineer’s D agnostic Aid

3.1. Overview.

The initial aims for CRIB were strictly conmmerci al
to reduce mai ntenance costs in two areas - training
of new engineers and existing engineers on new
equpi ment; increasing productivity by reducing the
average time per fault investigation. Wth
constraints like these it was clear that a highly
flexible, user-friendly systemwas needed.
Utimately, it was decided to aimCRIB at the CAFS
dat a- base processor (see section 3.4) with its

weal th of associated software packages and anal ysis
techni ques and, nore inportantly. its high
effieciency as a pattern-directed data-base system
However, early versions used standard file

techni ques for database managenent. The CAFS version
effected a 20-30 fold inprovenment in speed, using
the same | ogical structure

The whol e CRIB system consists of three prograns:

P1. The nmain program which carries out the executive
function (see section 3.4) is called DIAGNCSE. It
interfaces with the user (the field engineer)
through a sinple jargon-English translation package
This allows the engineer to comunicate with CRIB in
a fairly natural way to describe synptoms, inform of
actions carried out and control housekeepi ng
functions such as the investigation |og

P2. Sone degree of validation and fine tuning is
done by ADAPT whi ch exami nes the | ogs of previous
i nvestigations and updates tines of actions
perforned and investigation tines after a conplete
match with a synptom group (see section 3.2). It

al so handl es sub-groups (see section 3.4.1).

P3. Major restructuring of the data-base and the
insertion of new know edge are done through EXPERT.
As mentioned before, this is a specialised access to
the data-base and is done with the help of’ the

syst em desi gner.

3.2 Forns of Know edge for Conputer Diagnosis

Two questions were posed at the begi nning of

anal ysis for systemdesign. They were: Wat sort of
knowl edge does an engineer need to find faults on
broken conputers? and How does the engineer use this
knowl edge to find and cure the fault? The DEEMEN
project told us that nost field engi neers know
little about the correct functioning of the machine
at the electronic level but a lot at the |evel of

i nterfaces between nodul es. W therefore
concentrated on the notion of a replaceable or
repairable part (we called it a sub-unit) and the
interfaces between them The nornal concept of "a
fault" can then be dropped in favour of the location
of the fault within a sub-unit. It follows that the
only know edge needed about the structure of the
machine is the hierarchy of sub-units which
expresses the relati onship between them Such a

hi erarchy can be drawn as a tree whose | eaves are
the repl aceabl e/ repai rabl e nodul es

Support for this came fromthe DEEMEN reports. In
these, an easy-to-follow routine for diagnosis was
suggested in an attenpt to give engineers a
fail-safe method of proceeding when all else fails.
This procedure has the acronym TOAST and each letter
refers to the follow ng steps which when cycl ed
successively produce a spiral of diagnosis,
hopefully homing in on the fault by travelling down
the hierarchy.

Test : carry out an appropriate test on
t he machi ne

(bserve: observe and record the results

Anal yse: analyse the results and in the
light of this:

Split: split the faulty sub-systeminto
faulty and non-faulty parts

Test : generate an appropriate test for
the faulty sub-system

TOAST provi des support for CRIB as a nodel of
conpetence in conputer diagnosis. TOAST al so needs
know edge of the rel ationship, through the Anal yse
phase, between the results of tests carried out by
the engineer and the formthat the next test should
take. The analysis is sinply represented as an
associ ation of synmptons and faulty sub-unit. This
begs two questions: Do synptons uniquely identify
faulty sub-units? and How do we know which pairs to
put in the data-base? The second question is
concerned with elicitation and will be left for
section 3.3. The experts we worked with told us that
the answer to the first is "no"; sone synptons are
comon to nmany faults and so nore information is
needed. We did not want to include know edge of
machi ne function and so the other information which
we added to the pair was all of the other synptons
(perhaps ten or fifteen) which had been observed
before the current one. Does a group of synptons
taken together uniquely identify a faulty sub-unit?
If an engi neer only observes these synptons and
finds the fault, then his analytic skills (ifany)
are reflected in the choice of actions which yield
the synptoms in the group. W do not then need to
represent the analytic skills explicitly



- they are represented inplicitly through the
synmpt om gr oupi ngs.

However, sone synptons are only observed as a result
of lengthy and intricate operations. The know edge
needed here is which synptons are better |ooked for
than others. Since CRIB has no functional know edge
it nust base its assessnent on attributes of actions
which potentially yield synptons in the various
groupi ngs. Attributes such as the time it takes to
perform an action; how nmany groups contain it; and
how I ong the investigation mght take after it has
been observed are only heuristically adequate in
this case. However, since the final aimis to find
all of the synptons in any one group the heuristic
element is only concerned with nmeans and not ends.

The know edge needed for a nodel of conpetence in
conput er di agnosi s can be summarised thus

K1. A hierarchy of sub-units representing
the structure of the nachine as a collection
of repairable or replaceable parts

K2. A nunber of synptom group/sub-unit pairings
whi ch represent successful fault investigations.

K3. Attributes of synmptomrelated actions which are
heuristically adequate to determ ne the next action

M Procedures for operating a nodified TOAST cycle
in order to progress down the hierarchy to the
faulty sub-unit.

3.3. Elicitation of Know edge in CRIB.

The hierarchy of sub-units (K1) was fornulated in
di scussion with people who train field engineers.
The main aimwas to provide a conprehensive

br eakdown of the chosen "patient" machine (ICL 2903)
to the level of replaceable or repairable nodul es
The bul k of the K2 know edge canme from an
interpretation of a set of fault-finding guides for
the 2903. These had been produced by an expert

engi neer using his experience of genera

faul tfinding and applying this to what was then a
brand new machi ne

Wth hindsight, our first stage elicitation should
have cone directly froman expert (there were no
practitioners at the tine with any direct
experience). Information could have been gained from
system engi neers during a series of interviews about
specific fault investigations. The data could then
have been cast in a formsuitable for CRI B w thout
engaging in the sort of interpretation demanded by
the gui des. W cannot enphasi se strongly enough that
the success or failure of an expert system can
largely rest on this initial stage of elicitation

3.4 System Design and Generation.

The description of the internal workings of CRIB
given here follows the analysis given by Hays-Roth
et al. [10). O her nore straightforward accounts may
be found el sewhere [13, [2]. The categories of

knowl edge K1 to K4 have many of the characteristics
of what they cal

a Pattern-Directed inference System (PDI'S). The
group/ sub-unit pairings can be seen as expressing
the foll owi ng inference

Rl. if synptons Sl to N have been observed then
assume the fault is in sub-unit U

The procedures in K4 will clearly have a matching
function, in part; the process of |looking for a
suitable split to make (as in TOAST) will involve
mat ching the current observed-synptom set with each
of the pairings in the data-base. The synptom groups
are patterns and the pairings are inferences

In general, a PDI'S consists of a |large, constantly
changi ng body of data and a relatively small, fixed
set of procedures which operate on them These
procedures taken together formthe executive of the
PDI'S. Hays-Roth et al. discuss PD'S executives in
four parts: selection, matching, scheduling and
execution. It is possible to discuss CRIB in these
terns.

Selection: filtering data before the expensive

mat chi ng process. The CRIB user is able to direct
the programto | ook only for matches anpbngst synptom
groups paired with any chosen sub-unit and not, as
is normal, with all of the sub-units bel ow the
currently assunmed faulty one. This can inprove
search efficiency and CRIB can then quickly inform
the engi neer whether he has |l ocated the fault
correctly or not.

Mat chi ng: carrying out the matching between observed
synptons, input by the user, and synptom groups in
the data-base. This function is carried out by the
CAFS dat a- base processor. Enquiries, in the form of
Bool ean expressions of attributes known to the
dat a- base, are presented to CAFS as a m crocode
program The device then returns selected parts of
all records which satisfy the request to the

mai nfrane via a DMA link.. Information about the
CAFS side of the CRIB inplenentation are contained
in [2]. Technical information about CAFS can be
found in [3].

Schedul i ng: three outconmes are possible after

mat chi ng has been conpleted. The first is that there
is one and only one match with a rule in the
data-base. In this case scheduling is not needed

The other two are nore difficult. Either there is
nore than one match or only partial ones. Wat to do
next is the subject of neta-rules which describe how
to proceed in situations of inperfect matching. The
neta-rules in CRIB for handling partial matches are
ai med at suggesting actions to the engi neer which
will yield synptons to conplete the match. The rules
are:

MR1. Choose a synptom which is the only remaining one
in a group. (Al the others have been observed
al ready) .

MR2. Choose the symptomwi th the hi ghest menbership
in partially-matched groups. (This is the synptom

which if it were observed, woul d give the engi neer
the nmost information).

MR3. Resolve conflicts in MRL and MR2 by taking



the synmptomw th the shortest time factor.

In fact, because there are many situations,
especially early on in an investigation, when even
the rul es given above do not yield a unique choice
the rules are applied five times (eliminating the
previous choice each tine) and five synptons are
chosen, giving the engineer an element of choice in
hi s actions.

3.4.1. Sub-groups.

Al t hough TOAST represents a good nodel of diagnostic
conpet ence, engineers do not always like to work in
this rigorous fashion. In particular, some of them
are skilled at recognising the emergence of patterns
of symptoms before all of the synptonms to confirma
fault have been observed. This heuristic know edge
can be captured in a set of assunption rules of the
form

R2. if synptons S1 to N are present
then assume that SN+1 to N+M are present
too (but not observed)

The synptom set (the sub-group) on the lefthand side
of the rule is a sub-set of the whole synptom set
(the key-group) which inplies a faulty sub-unit. The
ideal is still to match a whol e key-group but a
match with a sub-group is considered heuristically
adequate to make progress in the investigation. The
program ADAPT checks for confirnmati on when a
sub-group is used successfully and can al so reject
those which are disconfirnmed by failure. Mre

i nportantly, ADAPT "discovers" new sub-groups by
applying the follow ng nmeta-rule:

MR4. if action suggestions resulting from
a partial match result -in the conpletion
of that match
then insert the synptoms neking up the
partial match into the data-base as a
possi bl e sub-group

3.4.2. Inplenmentation of rules and neta-rules.

Meta-rul es MR1-4 are inplenented conventionally
through fixed procedures. Since they formthe
analytic part of the nodel of conpetence, there is
no need to represent themexplicitly, However, rules
Rl and R2, when instantiated by particular synptom
groupi ngs, need a flexible representation which

all ows addition and nodification of rules as the
system grows and changes. Thus all rules in the CRIB
dat a- base are represented as rel ati ons between
synpt om groups and either sub-units as in the case
of key-groups (Rl), or other groups as with
sub-groups (R2), CAFS is an ideal vehicle for
supporting such rel ations.

3.5 Validation, |nprovenment and Performance

It was possible to validate CRI B s conpetence
assum ng that the correspondence between synptomns
and the actions designed to reveal themwas accurate
and that the fault-finding guide data was not too
far fromthe truth. A relatively inexpert

user was asked to be conpletely guided by CRI B and
"carry out’ the actions suggested by the system If

all was well, we would have expected CRIB to
suggest, as a final action, the replacenment or
repair of a termnal sub-unit. This was the case in
a | arge nunber of 'investigations’ carried out (some
200 in all). However, in some cases, especially
where the chain of suggested actions was |ong, the
really relevant actions were not displayed soon
enough. The reason for this was pinpointed in the
schedul i ng of actions after a partial match (see MR2
in section 3.4). Wien little information is
available to CRIB to partition the synptom groups it
tends to spread its net too wide in the search for
possibilities. However, by using the filtering
facility described in section 3.4, it was possible
to resolve at |east some of these difficulties. Ful
detail can be found in [2), where several 'real’

faul ts discovered by an expert engineer are

descri bed.

3.5.1. Assessnent of performance

CRIB can certainly help an engineer to find faults
on broken conmputers where these faults have been
successfully remedi ed before. If an engi neer does
not spot a fault as a known one (whether or not he
is using a systemsuch as CRIB), he nust fall back
upon basic know edge both about the particul ar
machi ne he is working on (possibly functiona

knowl edge) and about diagnosis in general. In this
case, CRIB, with its conplete lack of explicit
functional know edge, cannot hel p. However, the
unknown synmptom group will, of course, contain many
synpt oms whi ch are known and are present in other
groups. It is thus possible that the engineer, with
alittle thought on his part, can locate the true
fault. This process has been observed when using
CRIB in an unstructured way; ignoring suggestions,
putting in unsolicited synptons etc. Further

di scussi on and a proposed solution to the ’'new
faults’ problemare in (1]

4. SOFTCRIB: An Exercise in CGeneralization

If the structures and nechani sns within CRI B can be
described independently fromthe content of the data
which drives it, then the description will be of a
production system capabl e of wi der application than
conput er diagnosis. This line of thinking foll ows
the generation of PUFF [81 and PROSPECTCOR [71 and
GUI DON [61 fromthe systemarchitecture of MYCIN
(the EMYCI N or Essential -MYCIN concept).

The next nost obvious application for CRI B was

di agnosi s of software faults in a simlar fashion to
hardware faults. Wthin ICL, a group a

" dunp-crackers’ had already gathered data on faults
exhibited by a new | arge-scal e operating system
called VME/ K Most of the concepts in CRIB carried
across to the software domain. albeit with
reinterpretation. A hierarchy of attributes describe
the different levels of detail within the operating
system These attributes were chosen to partition
hugs in a reasonable way and the whol e system of
attributes forms a paradigmatic ’'representation of
the operating systenis path-



ol ogy. Attributes which are inmrediately subordinate
to a common attribute can then be characterised as
answers to a single question. e.g. Wat type of
dump? is subordinate to What software version?

The remai ning correspondences were
strai ghtforward. Synptoms remained as synptons, and
key groups of synptons corresponded to a trace of
synptonms recorded on the way to fixing a bug.
Actions were classified as either patches or
questions which when answered by the user yiel ded
further synptoms of that particular bug. Other |ess
i nportant features of SOFTCRI B concerning
interaction with and use of the new system can be
found in [1]. Once again the power of a
hi erarchical |y gui ded di agnosti c net hodol ogy has
been denpbnstrated to be adequate to the task.
Mor eover, the production systemarchitecture of CRIB
enabl ed the change of function nmerely through a
change of data-base content and a sinple
re-interpretation of parts of the data structures.

5. Conclusions: Wiat is an Expert Systenf.

Many workers in know edge engi neering and expert
systens have attenpted to define the field from
several different angles. It has been said that an
expert system should be able to explain itself to
the user (as does MYCIN for exanple) just as a human
expert can. C ains have al so been made for ’'natural

| anguage’ interfacing; being interactive in the form
of a dial ogue; having increnental data-bases and

bei ng adaptive and heuristic in operation. Al of
these attributes are highly desirable and even
necessary in sone cases. However, they are all
reduced to being incidental w ndow dressing unless
the system does actually possess expertise inits
field. Hence the enphasis in this paper on the
"before" and "after" phases. Elicitation of
expertise is crucial to the initial success of the
system adaptability and a capability for

i nprovenent are crucial to its continued success.

The question posed in the title of the paper can now
be seen as relevant to tying "before" to "after". It
is of little use to attenpt a full-scale
representation of expertise in the elicitation phase
(know edge engineering is not cognitive nodelling)

if the resulting systemis difficult to nodify and
hence to inprove. It is equally bad to program

el aborate schenmes for fine-tuning the data-base when
its content does not properly represent the desired
expertise. The system should thus only capture that
part of the expertise which is sure to be useful to
all practitioners, and which can be readily nodified
through straightforward i nprovenent schenmes. CRIB
partly meets these demands, but its authors now see
it as a prototype for sonething better in the
future. Certainly production systemarchitecture has
many desirable features, but expert system
architectures should vary according to the fornms of
knowl edge needed to capture a particular sort of
expertise. Elicitation techniques geared towards
these different forms of know edge are thus vital
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