
How Extreme does Extreme Programming Have to be? Adapting XP

Practices to Large-scale Projects

Lan Cao

Georgia State University

lcao@cis.gsu.edu

Kannan Mohan

Baruch College

kannan_mohan@baruch.

cuny.edu

Peng Xu, Balasubramaniam

Ramesh

Georgia State University

pxu/bramesh@cis.gsu.edu

Abstract

The need to develop software at Internet speed and

accommodate changes during the entire software

development life cycle has made lightweight or agile

development methodologies like Extreme

Programming popular. However, such methodologies
have been considered to be beneficial for small and

medium sized projects, with small teams. In this

research, based on a case study in an organization that

develops large-scale, complex software using a

modified form of extreme programming, we highlight
the key differences between agile principles proposed

in prior literature and the agile practices that are

suitable for large-scale, complex software

development. Based on these differences, we propose

general guidelines on tailoring agile development

methodologies to make them suitable for the
development of large, complex software systems .

1. Introduction

Organizations increasingly face a rapidly

changing business and technological environment. In

such a dynamic environment, traditional software

development approaches which assume that all

requirements can be anticipated at the beginning of

projects and will remain stable are unlikely to be

successful. The inability to continuously evolve the

software to be in alignment with changing

requirements means being unresponsive to business

conditions, which leads to business failure [10]. Agile

software development approaches such as Extreme

Programming (XP), Crystal methods, Lean

Development, Scrum, and Adaptive Software

Development (ASD), have been proposed to deal with

today’s turbulent business and technological

environment.

The goal of Agile Methods is to allow an

organization to be able to deliver quickly and change

quickly. [1, 5, 10]. The proposed agile practices in

software development vary, but they share the

common characteristics such as iterative development,

working in frequent consultation with the customer,

and having small and frequent releases. [1] One of the

widely used agile methodologies is Extreme

Programming (XP), a software development approach

that advocates rapid iterations, rigorously tested code

and working closely with end users [3, 4]. XP has

been successfully adopted in some small software

projects [13, 17].

Proponents of XP claim that using this method

brings advantages over conventional processes,

including lower management overhead, higher team

productivity, happier customers and shorter release

cycles. However the applicability of agile approaches

is constrained by several factors such as project size

and type, experience level of project personnel, and

access to committed customers. Boehm [5] argues that

agile methods are difficult to scale up to large projects

because of the lack of sufficient architecture planning,

over-focusing on early results and low levels of test

coverage. It is also recommended that agile methods

not be used in mission-critical software development.

However, in the current dynamic business

environments, agility is also needed for large projects

that face the same issues addressed by agile

methodologies such as changing environment,

ambiguous user requirements, and time pressure.

Software development organizations are under intense

pressure to deliver products rapidly, but with high

levels of quality assurance. Approaches that can

deliver just agility or are only plan-driven focusing on

quality can’t meet these needs. The ability to achieve

and quality is required now more than ever [5].

Agile methods cannot be adopted directly for

large, complex projects due to the lack of up-front

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 1

design and documentation [15]. However, most

experts agree that agile methodology and traditional

approaches are philosophically compatible [16]. For

example, XP practices have been mapped to SW-

CMM model that usually is considered appropriate for

large-scale projects or organizations [14]. Efforts have

been made to tailor XP methodology for large,

complex projects to achieve faster development cycle

times [8, 16]. Besides these case studies, principals or

guidelines on how to adopt agile methodology for

large-scale, complex projects have not been proposed

in the literature. In this research, based on a case study

in an organization that develops large-scale, complex

software using a modified form of extreme

programming, we identify agile practices that are

suitable for large-scale, complex software

development. These practices are also compared with

agile principles proposed in prior literature. Based on

the comparison, we argue that these agile practices

provide a general guideline on tailoring agile

development methodologies to make them suitable for

large and complex projects.

2. Agile software development

methodologies and large-scale projects

Traditional approaches emphasize the importance

of project plans and documentations, trying to control

unexpected changes. However, major changes in

requirements, scope and technology are out of the

control of development teams. The question often is

not how to minimize changes in a project but how to

better handle inevitable changes throughout its life

cycle [10]. Agile methods respond to this expectation

by adopting strategies designed to reduce the cost of

change throughout a project.

The highest priority in agile methodologies is

satisfying the customer through early and continuous

delivery of valuable software [1]. Agile methodologies

accommodate changing requirements, and anticipate

them even late in development. Strategies such as

delivering working software frequently, reliance on

face-to-face communication, closely working with

customers, and keeping designs simple, are used to

mitigate the risks caused by changes. These

methodologies emphasize a fair amount of planning.

More value on the planning process is placed than the

resulting documentation [5]. The tacit knowledge

embodied in development teams is heavily relied on.

These methods work best when team size is small and

customers are dedicated to projects.

Several agile methodologies have been developed

with the above objectives. They include Extreme

Programming (XP), Crystal methods, Lean

Development, Scrum, Adaptive Software

Development (ASD). Among these, Extreme

Programming (XP) is the most widely used. XP is a

lightweight methodology that dispenses with much of

the usual application development process, such as

lengthy requirements definition and extensive

documentation. It emphasizes on keeping

development teams small and the code simple [4]. The

XP life cycle has four basic activities: coding, testing,

listening, and designing [14]. XP improves a software

project in four essential ways: communication,

simplicity, feedback, and courage. It encourages

continual communications with customers and teams,

maintaining simplicity, providing frequent feedback

via testing, and dealing with problems proactively

[14]. Twelve core practices are proposed to achieve

these goals
1
.

XP practices focus on maximizing

communication and enhancing team-work. Managers,

customers, and developers are all part of a team

dedicated to delivering quality software.

Communication barriers between developers and

customers are removed by having customers work

with developers onsite. Daily stand-up meetings and

pair programming enhance project communication

among team members, while lowering overhead.

Extensive communication and quick feedback help

build trust between customers and developers [12].

XP also empowers developers by enhancing their

sense of project control [13]. By adopting XP,

developers know where their project is heading and

whether it is delayed. Furthermore, constant testing

makes the programmers more aware of how well the

code meets its expected functionalities. This

knowledge improved the programmers’ motivation.

Though software projects can benefit from agile

methodologies, not all projects can directly adopt

them. Characteristics of large, complex projects make

it difficult to use agile methodologies directly. Large-

scale, complex systems face three major issues: the

thin spread of application domain knowledge,

fluctuating and conflicting requirements, and

communication and coordination breakdowns [7].

First, deep-application knowledge from development

team, required by large-scale, complex projects, is

thinly spread through many software development

staff. Such distributed knowledge must be integrated.

Substantial design effort has to be spent in

coordinating a common understanding of both the

application domain and of how the system should

perform. Second, the lack of application knowledge of

1

http://www.computerworld.com/softwaretopics/software/appdev/stor

y/0,10801,66192,00.html

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 2

developers and a variety of events such as changing

business goals and policies may cause fluctuating and

conflicting requirements in large, complex projects.

Third, a large number of groups have to coordinate

their activities and share information during software

development. Extensive effort needs to be spent

defining terms, coordinating representational

conventions, and creating channels for the flow of

information.

Agile methodologies lack up-front design and

investment in life-cycle architecture, and rely

primarily on tacit knowledge of individuals and

informal communication. All these practices can cause

high risks. For example, teams may make

irrecoverable architectural mistakes due to the lack of

appropriate design. Customers to whom the developers

have easy access to may not have enough knowledge

of the requirements. Informal communication may not

be effective when dealing with a large number of

stakeholders and vast amounts of information that are

characteristic of large projects. Traditional software

development approaches, that are plan-driven, reduce

these risks by a variety of strategies such as investing

in life-cycle architecture, documenting necessary

details, using formal external reviews, relying on

strong leadership etc.

However, large-scale, complex projects also face

dynamic change in project requirements and time-to-

market pressure. Studies show that agile methods can

be mapped to SW-CMM models, which is considered

a traditional guidance model for software development

process [14, 16]. To mitigate the risks in time-to-

market and changing requirements, efforts have been

made to adopt XP in large-scale projects, with mixed

results. Elssamadisy [8] and Reifer [16] report on the

large projects that try to adopt the XP methodology.

These studies show that some practices from agile

methodologies, such as iterative development,

frequent testing and feedback, small release, and

refactoring, are suitable for large projects. However,

some practices, such as standing-meetings and the use

of metaphors to describe system architectures, are not

appropriate. It is found that without an overall design,

it is difficult to maintain a big picture of the project as

the systems grow. The communication between

developers is also problematic when a large number of

stakeholders are included. Current literature does not

provide any guidance on how to tailor agile

methodologies for large-scale, complex projects. In

this research, a case study is conducted, from which a

set of practices on how to adopt an agile methodology

for large projects is proposed.

3. Agile practices for large-scale, complex

Projects

We are currently conducting a case study with a

large software development organization (called

FinApp hereafter) developing large-scale, complex

corporate financial applications. In this paper, we

present initial insights gained from this study.

3.1. Case description

FinApp is involved in the development of a

complex enterprise system that provides financial

services to banks, insurance companies, loans and

brokerages. The project includes more than 1,000

business objects in six different categories. There are

22 developers working on this project. The project

team started with a modified XP approach.

Specifically, a subset of XP practices has been

modified for use in this project. The project had

successfully delivered several applications before

FinApp was merged with another large organization.

3.2. Need for agile approach

FinApp had recognized the key role that certain XP

practices could play, when modified appropriately, in

developing their complex financial systems. The

sensitive and mission critical nature of the enterprise

system, in the views of critical stakeholders, well

defined and enforced its processes. However, there is

growing recognition that lack of agility makes it

difficult to make changes to accommodate evolving

requirements. Also, solely relying on formal

communication causes problems in understanding and

communication within the development team.

In the following sections, we discuss how FinApp

has tailored XP practices to suit their development

environment, and how these practices conform to agile

principles described in the literature.

3.3. Tailoring XP for large and complex

project

The business domain for FinApp is relatively

mature and stable. The application, by nature requires

high level of reliability, security, as well as quality.

“The difference is what we got here is an enterprise

application and that is what drove everything… We

have an extremely modified version of XP exactly

because we have enterprise application”, says a

project manager at FinApp. The enterprise application

requires a sound abstract design that can be applied to

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 3

different applications. The system architects spent six

months in developing business architecture and system

infrastructure.

Finapp is a “huge” application, with 7,000 program

files all together. Beyond the size, the application

involved corporate cash management, which is a very

complex domain. Security is critical and quality is the

focus of development effort. Even though users

requirements change over time there is a basic pattern

for business objects in the application domain. Based

on these considerations and restrictions of the project,

FinApp took a cautious agile approach by tailoring XP

practices.

3.3.1. Designing up front. XP de-emphasizes up

front design because it is claimed that everything is

changing. Instead, a “metaphor” is used to describe the

basic elements and relationships of the application

(Beck 2000). However, for complex, large-scale

projects upfront architectural design is considered to be

essential. In the FinApp project, upfront architectural

design is both possible and necessary.

First, the banking environment is relative stable and

the system can be described by a few typical business

patterns. The project manager states, “…So it turns out

that there is a fundamental pattern for this part, there

is a fundamental pattern for this part, there is a
fundamental pattern for this part. It turns out there are

6 or 8 patterns that covers most of the system“.

Second, for complex and mission critical

applications like a banking system, the use of best

practices such as flexible architectures and design

patterns is important. Upfront stable architectural

design results in a strong backbone that could support

several services built on top of it.

For a mission-critical application, upfront design

makes sure that the system meets security and

reliability requirements. “They (the customers) have to

make sure they don’t have a pension plan built on any
one of them, you know, so it has to be totally secure,

totally documented and very clear from upfront”.

Customers need to ensure that the developers have not

built a feature into the system to siphon out or divert

money. So all the design and source code are delivered

to the banks.

Upfront architectural design reduces the

development time for new functionalities. Each new

functionally is based on the infrastructure backbone

and design patterns drawn from Gamma et al [9]. With

this approach, the time and effort for implementing

new functionalities are much reduced when compared

to developing from scratch. “… each time we get a new

service …, what I am doing is mapping the pattern.

There is no need to technical specs. …we don’t have to

do detail technical specs because we were following

established patterns.” FinAPP project established new

services based on the existing services and design

patterns. For example, an application can be readily

configured to satisfy clients in the finance industry in

different countries, instead of developing custom

solutions.

Early architectural design also reduces developers

training time thereby mitigating the costs of brining

someone new on board. A project manager at FinApp

comments: “What I can do, on any given day, is to

unfold all the teams and put new people in them, I can

have people who start on Monday and be productive

on Thursday. Where most organizations take six

months I can actually have… because you talk the bank
pattern in a day and a half, and on Thursday you can

create your own based on the patterns”

Upfront design helps control the costs of change.

For large projects, the changes made to the system in

response to change requests or for fixing errors cause

unintended consequences and weaken the system over

time. Design patterns are used to control the damage of

changes by mechanisms such as centralized

exceptional handling.

Upfront design provides the developers with a

clearer understanding of the entire system and helps

them understand how several services can fit into the

backbone architecture. XP assumes that most stories

are independent [4], however, it was found to be untrue

in large and complex projects. Taber and Fowler [19]

also reported that, as a system grows, it becomes more

and more difficult to maintain a big picture of all the

implemented functionality and how they all worked

together. Architectural design becomes even more

important for complex, large-scale applications

because developers and analysts miss the connections

and dependencies between stories as the application

size and complexity grow [18]. An alternative to this

could be having a design that evolves with the process

instead of a complete upfront backbone design [11].

Such evolving design is seen to have the problem of

tight coupling between the persistence layer and

business layer, which makes it difficult to refactor the

code after several months of development. FinaApp

avoided this problem by having a detailed, upfront,

stable architecture. It uses stable and standard

interfaces, and patterns across the board. With the

infrastructure backbone, new services can just be

plugged in, following established design patterns.

3.3.2. Short release cycles with layered approach.

Short (2 to 4 week) release cycles and continuous

integration are touted as one of the highlights of agile

software development methodologies like extreme

programming. For large-scale and complex projects,

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 4

this is still seen as a relevant principle, with

adaptations. “Because everything is ambiguous… What

do customers want? Well, if you give me exactly what
they want, they are gong to look at it and say, that’s

neat, can you do this, I want something different. I

mean programming change is normal, adding the

sophisticated understanding and ambiguity is inherent

in the situation… So to me, you have to have this

collaborative on-going rapid development cycle, short
release.”

 The upfront structural design of the backbone

typically takes longer. At FinApp, the architectural

design took around 6 months. The layered approach,

similar to XP short release practices, delivered end-to

end functionalities that can go to production at the end

of each short iteration. This practice differs from XP in

that the duration of the iterations are not fixed, but are

based on the nature of the layers and tasks.

A FinApp project manager, commenting on the

need for this adaptation, states: “If you are doing

layered deliverables, if we are late, we still got some
stuff that works, rather than to say I don't have

anything that works.” The focus is on getting

production code that supports functionalities end-to-

end rather than developing heavily integrated modules.

3.3.3. Surrogate customer engagement. The ideal

customer for XP is an on-site customer who is also an

end-user and has the ability, knowledge and courage

for making decisions. Customer involvement is a key

factor for XP project success. However, in reality, such

access to customers is often difficult. In large-scale

projects, the problem is amplified as the complexity of

the application domain is often beyond the experience

or expertise of a small number of customers as well as

the developers. The scope of software development

expands to include a variety of stakeholders. The

composition of development teams becomes more

diverse, involving users and management from

throughout the organization. Another problem is that

accessible customers are often not the end users of the

system.

At FinApp, the real customers are banks and the

end users of banks or other financial organizations. The

customers are not readily available to the development

team. Though it is difficult to have an ideal customer

involved, the degree of customer involvement is

considered very important for development at FinApp.

“We don't have access to a real customer. So a true

onsite customer and the stories, they weren't an option.
”, says a project manager at FinApp. The customers

are surrogated by product managers or business

analysts, who have direct contacts with customers.

Product managers meet with the development team

almost everyday to discuss changes in requirements

and to make decisions on development options. Such a

practice led to better project outcomes when compared

to projects that had infrequent customer engagement.

“The most successful case I had was with automated

clearing where I actually got the product manager to

attend the meeting every morning at 10 am …. Any

developer who had an issue or a problem attended. So

what we did there was negotiated, problem-solved,

modified the requirements, modified the spec, there
really was a collaborative XP type of process where in

the consultation with our onsite customer in this case.

So that worked out great”, says the project manager at

FinApp. There is a clear need for continuous customer

engagement in large-scale, complex projects. When

direct access to customers is not feasible, the use of

surrogate customers who are domain experts appears a

reasonable compromise.

3.3.4. Flexible pair programming. Although pair

programming is seen as a good practice, it is not

considered to be realistic in all situations [8]. In

FinaApp, pair programming is used in a flexible way.

Only analysis, design, test case development, and unit

testing are done in pairs. Developers do try to code in

pairs and most of them return to solo coding. This is

inherently tied to the personality of the developers.

The level of pairing is customized to suit to the nature

of the developers and the nature of the tasks that they

perform. A project manager at FinApp comments on

this need to tailor the practices to suit the

organizational culture as follows, “I am not going to

insist people share the monitor. That's just dictatorial.

I guess a lot of the developers that I hired here have
hacker personnel. They really want to code.” This

issue of flexible pairing is intimately related to

motivating the developers and keeping their morale

high. Sharing the same monitor and keyboard is also

seen as a flexible aspect that works better when left as

a choice to the developers.

The benefits of pair programming are also

appropriately recognized. Pair programming is seen

to:

• Reduce development time - Developers in pairs

work faster as reported in FinApp Project.

According to a project manager, two developers

working together in a project finishes the project

in roughly 80% time that would have taken if they

were assigned separately. “I can say that with

confidence because I have scheduled them both

way“. The communication between two

developers makes the communication

documentation and management unnecessary.

• Reduce training time - The developers learn from

each other since developers with different level of

experience and skills are paired together. “You are

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 5

always mentoring or being mentored”. “what I

can do, on any given day, is to unfold all the teams

and put new people in them, I can have people
who start on Monday and be productive on

Thursday. Where most organizations take six

month”, claims a FinApp project manager.

• Improve quality of code - Communication across

developers is seen as an essential factor that

reduces inconsistencies and defects during

development. A project manager at FinApp says,

“Because there's really synergy and one of the

biggest things is the communication where the two

developers have to convince each other that they

know what they are going to build before they

build them. And what the typical developer does is
half understands an idea and is trying to work it

out. Whereas if you actually have to write the test

cases first and explain it to somebody and get

somebody to buy it, they'll pick up the

inconsistencies and the holes. That to me is
probably the biggest plus in the whole thing.” This

also relates to the issue of collective ownership.

Pair programming increases the knowledge spread

across developers in the team, thereby enabling

any developer to tackle almost any problem

related to the system. Continuous rotation of

developer pairs facilitates such collective

ownership. “It was task oriented, but I pretty

much made sure that I arranged the tasks so that

nobody will, no team will work together for more

than 6 weeks and there was an average of 2

week”, says a project manager. Such rotation

facilitates developer learning and enhances the

sense of collective ownership.

• Create a collaborative and supportive environment

- Developers always have somebody to look for

help in a paired setting. Moreover, these pairs

work with teams of pairs and there's always a

network of people to talk to and learn from. By

doing this, a supportive and collaborative

environment is created.

3.3.5. Identifying and managing developers.

FinApp considers the hiring process to be highly

related to the success of its agile practices. Developers

who can recognize the importance of pattern-based

development and providing standard interfaces across

the system are seen as key to successfully projects.

Developers’ knowledge about architectural design and

design patterns is seen as critical. Approximately only

15% of the applicants are considered to be qualified for

this project environment.

Upholding developer morale is also seen as key to

successful project outcomes. At FinApp, it is believed

that motivated developers are better performers.

Hence, incentive schemes and flexibility initiatives

focus on motivating developers. “It created an

environment we have zero turnover”. The FinApp

project manager proceeds to comment that:

“…Respecting their contribution, and not reducing

them to cogs on the machine. And I see what happens

when you are going to say to reduce your developers to

just cogs. They are terrible. They are unhappy and the

only people you get are bad people”. Flexible working

hours, remote working, focus on results rather than

micro-management, are seen as key factors that affect

developer morale and motivation.

3.3.6. Reuse with forward refactoring. Pattern-

based and interface-based development approach

facilitates reuse to a considerable extent. Refactoring

is seen as a key technique to enhance reuse across

functionalities. However, refactoring here may take on

form different from what is defined in XP practices. In

XP, refactoring is a practice that improves the design

of the code without changing the functionalities of the

program. Repeated code is removed, code is

reorganized and cleaned, common lines of code are

abstracted out into separated classes. In FinApp

project, instead of changing existing code, “forward

refactoring” is largely used. “Forward refactoring” is

an approach to develop new features by reusing

existing code instead of developing new solutions.

Existing services are untouched, new services are

developed based on existing ones. For example, a

project manager in FinApp comments: “So what we

did was starting with the account transfer that already

been built. We refactor forward. What we did was we
took the account transfer and say ‘ok now we are

going to build wire transfer… You built it in XP, you

built once to satisfy your current need, then you get a

new set of requirements, you overlaid them and find

out that these are the part that stays the same. This is

the part that changes. So this is where I have to insert
my design patterns in order to isolate change from

static”. Existing design and code is refactored forward

to include new functions. In summary, in typical XP

practices, refactoring is a way to improve the design

and making the system more robust, in FinApp,

refactoring is seen as a technique for reuse with the

support of the upfront architectural design. The

architecture is designed in such a manner that it is not

restricted to just banks. It can be tailored to be used in

any financial institution.

3.3.7. Controlled empowerment --organizational

structure. Project managers at FinApp consider deep

hierarchical organizational structure to result in

unresponsive environments with high inertia. A

project manager at FinApp notes: “What we had in

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 6

terms of XP, first of all, we didn’t have layers and

layers of management. I just hate those layers of

middle management. It is the worst thing about our
occupation. We got rid of those…we got an extremely

fast, extremely responsive, extremely flexible

environment”. Decentralizing development-oriented

decision-making is seen as critical for a successful

agile practice. “From my point of view, the concept of

XP, a lot of them come from OO management --push
decision making down, to invoke productivities,

empower the people who are actually doing the work.

Part of that was: not to insist that they share a

monitor.”

The empowerment is controlled in an elegant

manner through the committed use of standard

interfaces and design patterns. The developers cannot

stray away from a standard approach to solving the

problems at hand.

3.4. Beyond XP practices - interesting

findings

In summary, at FinApp, concept of patterns and up

front design, a layered deliverables approach, and pair

programming are seen as the most important practices

for developing large-scale, complex applications. In

addition, our study identifies some interesting practices

that are different from but not necessarily inconsistent

with XP principles.

3.4.1. Impact of up front design on other

practices. According to XP practices, big upfront

design is not appropriate to embrace frequent changes.

However, it is interesting to find that in this case that

upfront architectural design actually supports other

agile practices such as pair programming, refactoring

and short release.

The benefits of pair programming are realized with

the support of design patterns. The patterns predefined

the structure of the system and foster understanding of

the whole project. Based on the deep understanding

and standard patterns, communication between

developers is more efficient. Further, design patterns

also eliminate the need for detailed documentation and

layered management. This helps reduce the

development time and supports rapid development.

Most importantly, the knowledge transfer between

pairs is largely enhanced by the design patterns. New

people are always paired with someone who knows the

patterns. A project manager put it this way: “…I can

have (new) people who start on Monday and be

productive on Thursday … because you talk the bank

pattern in a day and a half, and on Thursday you can
create your own based on the patterns. … two weeks

we can cover all patterns.”

The benefit of reuse by refactoring in FinApp is

also supported by the design patterns. In FinApp, since

all functions are developed followed the design

patterns, existing functions are largely reused to build

new functions. “To me, XP and design patterns are all

the same things, and refactoring.”

3.4.2. Management support and organizational

culture. The FinApp case shows that management

support is critical for successful adoption of an agile

software development approach. FinApp has been

very successful in delivering quality products on

schedule and within budget until the company merged

with another big traditional banking company. The

new organization values structured procedures, formal

and detailed documentation and hierarchical

management more than agility. “… there are these

concepts that if I have enough procedures, If I have

details on my procedures, then everything is going to

be taken care of. We don’t have to worry about it. But

it is simply not true that at certain point, the

procedures get so heavy weight.” The change in

organizational culture resulted in the termination of the

use of agile approach. Detailed documentation was

required. The attempted reversal from a lightweight to

heavyweight methodology is resulting in lack of

communication among the stakeholders and thereby

increases number of defects due to misinterpretation.

4. Agile Principles vs. Practices for

Large-scale and Complex Software

Development

Based on a discovery colloquium, Baskerville et al

[2] have described a set of agile development

principles (Table 2). Also, based on a study of

software development practices in multiple U.S.

Internet software development companies, they have

identified a set of Internet speed development

practices. They compare the agile principles to

traditional software development principles, and with

Internet speed software development practices. They

observe that ‘each of the Internet speed development

practices come together to enact each of the agile

principles’. They also compare the practices and

principles that were identified by their study with the

principles proposed in the agile manifesto

(www.agilealliance.com), which characterizes the

values of agile methods and how agile methods

distinguish themselves from traditional methods.

Modified XP practices, while successful at FinApp,

are aimed at providing agility within the constraints of

a large project. These practices still are guided by the

agile principles. Table 3 shows the mapping between

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 7

Modified XP practices followed to develop large-scale,

complex projects and agile principles that are proposed

by Baskerville et al. [2].

Table 2: Agile Principles (Adopted from Baskerville

et al 2003)

No. Agile Principles

1 Accept multiple valid approaches

2 Accommodate requirements change

3 Engage the customer

4 Build on successful experience

5 Develop good teamwork

6 Effective software development conforms to

project environment constraints

7 Prepare for unexpected consequences from

innovation in software processes

Table 3: Comparing Modified XP Practices in

Large Projects and Agile Principles

Agile Practices for Complex,

Large-scale projects

Agile

Principles

Designing upfront 1, 4, 6

Short release cycles with layered

approach

2

Surrogate customer engagement 3

Flexible pair programming 1, 5

Identifying and managing developers 4, 5

Reuse with refactoring 4

Flatter hierarchies with controlled

empowerment

7

From table 3 we can see that most of the agile

practices identified in FinApp case fit well with the

agile principles. This match, on one hand, illustrates

the appropriateness of these practices. On the other

hand, it also suggests the appropriateness of following

agile principles in large complex projects.

Practice 1: Designing upfront. Instead of adopting

the whole set of XP practices, FinApp used a

“modified XP” approach. It combines designing

upfront with agile practices such as short release, pair

programming, and refactoring. This practice follows

principle 1 “accept multiple valid approaches”. This

practice matches with principle 6 too. Use of multiple

approaches, on the other hand, results from constraints

of the environment. FinApp is large in scope, complex

in functionality and mission critical in nature.

Development of this kind of system requires a

carefully designed architecture.

Practice 2: Short Release cycles with a layered

approach. FinApp delivers end-to-end functionalities

in each short iteration. By doing that, the system

continuously accommodates requirements changes

(Principle2). The delivered functionalities suit the

customer need rather than focusing on documenting

detailed specifications.

Practice 3: Surrogate customer engagement.

This practice is a modified version of an XP practice --

on site customer. This practice follows the agile

principle 3 “Engage the customer”. FinApp cannot

access its real customer, instead, it uses product

managers as a surrogate.

Practice 4: Flexible pair programming.

Following agile principle 5 which is to “develop good

team work”, flexible pair programming is used in

FinApp. This practice is a modified version of XP

“Pair programming” practice. Contrary to “always

paired” in XP, in FinApp, developers are paired in

analysis, design and testing. Coding is done by solo

programming. The combination of solo programming

and pair programming (Principle 1) overcomes some

shortfalls of pair programming (e.g., developer’s

resistance), while still benefiting from it where

feasible.

Practice 5: Identifying and managing

developers. People factor is more important in agile

development than in traditional development [6].

FinApp team emphasized choosing the right people for

the team and created a collaborative environment to

support teamwork (Principle 5). Developers’

knowledge and experiences on different aspects of a

project are greatly valued (principle 4).

Practice 6: Reuse with forward refactoring.

This practice maps to the principle of building on

successful experience. Refactoring is used as a

technique to enhance reuse. Agile methodologies like

XP do not emphasize development for reuse. They

place a priority on speed, responsiveness and

improvisation [2]. Developers usually focus only on

their current need instead of building components for

later reuse. However, for a large project like FinApp,

development of upfront architectural design and use of

design patterns are critical. Functionalities of the

system are developed based on design patterns. Also,

modules that have been developed to handle specific

functionalities are refactored and made generic enough

so that they can be tailored to handle different

functionalities. By doing this, code can be reused to

speed up development. This approach shows that reuse

does not actually conflict with the agile approach and

should be included in agile principles for large-scale

projects.

Practice 7: Flatter hierarchies with controlled

empowerment. In FinApp, layers of management are

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 8

replaced by a slimmer organization that improves

communications between stakeholders and increases

productivity. Developers are empowered to make their

own decisions. On the other side, for a large and

mission-critical application, the empowerment might

cause unexpected consequences such as

incompatibilities among the development process and

products produced by different developers. . FinApp

took several steps to deal with this issue (Principle 7).

The upfront architecture design and design patterns are

used to standardize development. For example,

exception handling is centralized to control potential

damages resulting from changes that are necessary. No

agile principle deals organizational structures.

However, it is found in our study that organizational

issues are very important to the successful adoption of

agile approaches.

5. Conclusion

Given the need to develop software at Internet

speed, to accommodate changes in requirements,

lightweight methodologies are becoming increasingly

important. However, such methodologies cannot be

applied readily to every project. They have to be

tailored to suit the nature of the system and the

development environment. This is especially true for

large-scale, complex, and enterprise systems. Based

on the initial findings from a case study, we have

proposed a set of agile practices that have been tailored

to be suitable for large-scale, complex projects. We

have compared these tailored practices with agile

principles that were proposed prior research. Creating

a stable architectural design upfront is recognized as

the striking difference between the agile practices for

large-scale projects and agile principles.

This research has several implications to theory and

practice. The guidelines for tailoring agile practices

proposed in this research can help software

development organizations that are considering the

adoption of agile development methodologies. This

research emphasizes the importance of using a cautious

approach to adopting lightweight methodologies,

ensuring their suitability and identifying different

aspects of the methodologies like XP that may not be

suitable under particular circumstances. We also

highlight the applicability of agile development

principles to large-scale, complex projects. Typically,

XP has been considered to be useful only for small and

medium sized projects with small team sizes.

However, we suggest that even large-scale, complex

projects can benefit from adapting XP to suit to their

environments.

Future research will focus on identifying theoretical

underpinnings of such lightweight methodologies and

provide theoretical bases for tailoring such approaches.

Further case studies should be conducted to refine our

findings and to identify specific characteristics of

projects that should be carefully considered while

tailoring development methodologies, and how those

characteristics can impact development methodologies.

6. References

[1]Manifesto for Agile Software Development. 2001, Agile

Alliance:

[2]R. Baskerville, B. Ramesh, L. Levine, J. Pries-Heje, and

S. Slaughter, "Is Internet-Speed Software Development

Different?," IEEE Software, vol. Sep, 2003.

[3]K. Beck, Extreme Programming Explained: Embrace

Change, Boston: Addison-Wesley, 2000.

[4]K. Beck and M. Fowler, Planning Extreme Programming,

New York, NY: Addison Wesley Longman, 2001.

[5]B. Boehm, "Get Ready for Agile Methods, with Care,"

IEEE Computer, vol. 35, no. 1, 2002, pp. 64-69.

[6]A. Cockburn and J. Highsmith, "Agile Software

Development: The People Factor," IEEE Computer, vol.

Nov, 2001.

[7]B. Curtis, H. Krasner, and N. Iscoe, "A Field Study of the

Software Design Process for Large Systems,"

Communications of the ACM, vol. 31, no. 11, 1988.

[8]A. Elssamadisy, "XP On A Large Project – A Developer’s

View," in Proceedings of XP/Agile Universe, Raleigh, NC,

2001.

[9]E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design

Patterns: Elements of Reusable Object-Oriented Software,

Addison-Wesley, 1995.

[10]J. Highsmith and A. Cockburn, "Agile Software

Development: The Business of Innovation," IEEE

Computer, vol. 34, no. 9, 2001.

[11]J. Little, "Up-Front Design Versus Evolutionary Design

in Denali’s Persistence Layer," in Proceedings of XP/Agile

Universe, Raleigh, NC, 2001.

[12]R.C. Martin, "eXtreme Programming Development

through Dialog," IEEE Software, vol. 18, no. 6, 2001.

[13]O. Murru, R. Deias, and G. Mugheddu, "Assessing XP at

a European Internet Company," IEEE Software, vol. 20, no.

3, 2003.

[14]M.C. Paulk, "Extreme Programming from a CMM

Perspective," IEEE Software, vol. 18, no. 6, 2001.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 9

[15]J. Rasmusson, "Introducing XP into Greenfield Projects:

Lessons Learned," IEEE Software, vol. 20, no. 3, 2003.

[16]D.J. Reifer, "XP and the CMM," IEEE Software, vol. 20,

no. 3, 2003.

[17]B. Rumpe and A. Schr der, "Quantitative Survey on

Extreme Programming Project," in Proceedings of XP2002,

2002.

[18]G. Schalliol, "Challenges for Analysts on a Large XP

Project," in Proceedings of XP/Agile Universe, Raleigh, NC,

2001.

[19]C. Taber and M. Fowler, "An Iteration in the Life of an

XP Project," Cutter IT Journal, vol. 13, no. 11, 2000.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 10

