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Abstract

Encouraged by the recent progress in pedestrian detec-

tion, we investigate the gap between current state-of-the-art

methods and the “perfect single frame detector”. We en-

able our analysis by creating a human baseline for pedes-

trian detection (over the Caltech dataset), and by manually

clustering the recurrent errors of a top detector. Our res-

ults characterise both localisation and background-versus-

foreground errors.

To address localisation errors we study the impact of

training annotation noise on the detector performance, and

show that we can improve even with a small portion of

sanitised training data. To address background/foreground

discrimination, we study convnets for pedestrian detection,

and discuss which factors affect their performance.

Other than our in-depth analysis, we report top perform-

ance on the Caltech dataset, and provide a new sanitised set

of training and test annotations.

1. Introduction

Object detection has received great attention during re-

cent years. Pedestrian detection is a canonical sub-problem

that remains a popular topic of research due to its diverse

applications.

Despite the extensive research on pedestrian detection,

recent papers still show significant improvements, suggest-

ing that a saturation point has not yet been reached. In this

paper we analyse the gap between the state of the art and

a newly created human baseline (section 3.1). The results

indicate that there is still a ten fold improvement to be made

before reaching human performance. We aim to investigate

which factors will help close this gap.

We analyse failure cases of top performing pedestrian

detectors and diagnose what should be changed to further

push performance. We show several different analysis, in-

cluding human inspection, automated analysis of problem

cases (e.g. blur, contrast), and oracle experiments (section

3.2). Our results indicate that localisation is an important

source of high confidence false positives. We address this
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37.64% MT DPM+Context

37.34% ACF+SDt

32.38% AlexNet
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29.24% SpatialPooling

24.80% LDCF

22.49% Katamari

21.89% SpatialPooling+

20.86% TA CNN
18.47% Checkerboards

5.62% Ours HumanBaseline

37.87% SDN

Figure 1: Overview of the top results on the Caltech-USA

pedestrian benchmark (CVPR2015 snapshot). At ∼ 95%
recall, state-of-the-art detectors make ten times more errors

than the human baseline.

aspect by improving the training set alignment quality, both

by manually sanitising the Caltech training annotations and

via algorithmic means for the remaining training samples

(sections 3.3 and 4.1).

To address background versus foreground discrimina-

tion, we study convnets for pedestrian detection, and dis-

cuss which factors affect their performance (section 4.2).

1.1. Related work

In the last years, diverse efforts have been made to im-

prove the performance of pedestrian detection. Follow-

ing the success of integral channel feature detector (ICF)

[6, 5], many variants [21, 23, 15, 17, 22] were proposed

and showed significant improvement. A recent review of

pedestrian detection [3] concludes that improved features

have been driving performance and are likely to continue

doing so. It also shows that optical flow [18] and context

information [16] are complementary to image features and

can further boost detection accuracy.

By fine-tuning a model pre-trained on external data

convolution neural networks (convnets) have also reached
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state-of-the-art performance [14, 19].

Most of the recent papers focus on introducing novelty

and better results, but neglect the analysis of the resulting

system. Some analysis work can be found for general ob-

ject detection [1, 13]; in contrast, in the field of pedestrian

detection, this kind of analysis is rarely done. In 2008, [20]

provided a failure analysis on the INRIA dataset, which is

relatively small. The best method considered in the 2012

Caltech dataset survey [7] had 10× more false positives

at 20% recall than the methods considered here, and no

method had reached the 95% mark.

Since pedestrian detection has improved significantly in

recent years, a deeper and more comprehensive analysis

based on state-of-the-art detectors is valuable to provide

better understanding as to where future efforts would best

be invested.

1.2. Contributions

Our key contributions are as follows:

(a) We provide a detailed analysis of a state-of-the-art ped-

estrian detector, providing insights into failure cases.

(b) We provide a human baseline for the Caltech Pedestrian

Benchmark; as well as a sanitised version of the annotations

to serve as new, high quality ground truth for the training

and test sets of the benchmark. This data is public1.

(c) We analyse the effects of training data quality. More spe-

cifically we quantify how much better alignment and fewer

annotation mistakes can improve performance.

(d) Using the insights of the analysis, we explore variants of

top performing methods: filtered channel feature detector

[23] and R-CNN detector [12, 14], and show improvements

over the baselines.

2. Preliminaries

Before delving into our analysis, let us describe the data-

sets in use, their metrics, and our baseline detector.

2.1. Caltech-USA pedestrian detection benchmark

Amongst existing pedestrian datasets [4, 9, 8], KITTI

[10] and Caltech-USA are currently the most popular ones.

In this work we focus on the Caltech-USA benchmark [7]

which consists of 2.5 hours of 30Hz video recorded from

a vehicle traversing the streets of Los Angeles, USA. The

video annotations amount to a total of 350 000 bound-

ing boxes covering ∼ 2 300 unique pedestrians. Detec-

tion methods are evaluated on a test set consisting of 4 024

frames. The provided evaluation toolbox generates plots

for different subsets of the test set based on annotation size,

occlusion level and aspect ratio. The established proced-

ure for training is to use every 30th video frame which res-

ults in a total of 4 250 frames with ∼1 600 pedestrian cut-

1http://www.mpi-inf.mpg.de/pedestrian_detection_cvpr16

Filter type MRO
−2

ACF [5] 44.2

SCF [3] 34.8

LDCF [15] 24.8

RotatedFilters 19.2

Checkerboards 18.5

Table 1: The filter

type determines the

ICF methods quality.

Base detector MRO
−2 +Context +Flow

Orig. 2Ped [16] 48 ~5pp /

Orig. SDt [18] 45 / 8pp

SCF [3] 35 5pp 4pp

Checkerboards 19 ~0 1pp

Table 2: Detection quality gain of

adding context [16] and optical flow

[18], as function of the base detector.

outs. More recently, methods which can leverage more data

for training have resorted to a finer sampling of the videos

[15, 23], yielding up to 10× as much data for training than

the standard “1×” setting.

MRO, MRN In the standard Caltech evaluation [7] the

miss rate (MR) is averaged over the low precision range

of [10−2, 100] FPPI (false positives per image). This met-

ric does not reflect well improvements in localisation er-

rors (lowest FPPI range). Aiming for a more complete

evaluation, we extend the evaluation FPPI range from tra-

ditional [10−2, 100] to [10−4, 100], we denote these MRO

−2

and MRO

−4
. O stands for “original annotations”. In section

3.3 we introduce new annotations, and mark evaluations

done there as MRN

−2
and MRN

−4
. We expect the MR

−4 met-

ric to become more important as detectors get stronger.

2.2. Filtered channel feature detectors

For the analysis in this paper we consider all methods

published on the Caltech Pedestrian benchmark, up to the

last major conference (CVPR2015). As shown in figure 1,

the best method at the time is Checkerboards, and most

of the top performing methods are of its same family.

The Checkerboards detector [23] is a generalisation

of the Integral Channels Feature detector (ICF) [6], which

filters the HOG+LUV feature channels before feeding them

into a boosted decision forest.

We compare the performance of several detectors from

the ICF family in table 1, where we can see a big improve-

ment from 44.2% to 18.5% MRO

−2
by introducing filters

over the feature channels and optimising the filter bank.

Current top performing convnets methods [14, 19] are

sensitive to the underlying detection proposals, thus we first

focus on the proposals by optimising the filtered channel

feature detectors (more on convnets in section 4.2).

Rotated filters For the experiments involving training new

models (in section 4.1) we use our own re-implementation

of Checkerboards [23], based on the LDCF [15] code-

base. To improve the training time we decrease the number

of filters from 61 in the original Checkerboards down

to 9 filters. Our so-called RotatedFilters are a sim-

plified version of LDCF, applied at three different scales (in

the same spirit as SquaresChnFtrs (SCF) [3]). More de-

tails on the filters are given in the supplementary material.
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As shown in table 1, RotatedFilters are significantly

better than the original LDCF, and only 1 pp (percent point)

worse than Checkerboards, yet run 6× faster at training

and test time.

Additional cues The review [3] showed that context and

optical flow information can help improve detections. How-

ever, as the detector quality improves (table 1) the re-

turns obtained from these additional cues erodes (table 2).

Without re-engineering such cues, gains in detection must

come from the core detector.

3. Analysing the state of the art

In this section we estimate a lower bound on the re-

maining progress available, analyse the mistakes of current

pedestrian detectors, and propose new annotations to better

measure future progress.

3.1. Are we reaching saturation?

Progress on pedestrian detection has been showing no

sign of slowing in recent years [23, 19, 3], despite recent im-

pressive gains in performance. How much progress can still

be expected on current benchmarks? To answer this ques-

tion, we propose to use a human baseline as lower bound.

We asked domain experts to manually “detect” pedestrians

in the Caltech-USA test set; machine detection algorithms

should be able to at least reach human performance and,

eventually, superhuman performance.

Human baseline protocol To ensure a fair comparison

with existing detectors, most of which operate at test time

over a single image, we focus on the single frame monocu-

lar detection setting. Frames are presented to annotators

in random order, and without access to surrounding frames

from the source videos. Annotators have to rely on pedes-

trian appearance and single-frame context rather than (long-

term) motion cues.

The Caltech benchmark normalises the aspect ratio of

all detection boxes [7]. Thus our human annotations are

done by drawing a line from the top of the head to the point

between both feet. A bounding box is then automatically

generated such that its centre coincides with the centre point

of the manually-drawn axis, see illustration in figure 2. This

procedure ensures the box is well centred on the subject

(which is hard to achieve when marking a bounding box).

To check for consistency among the two annotators, we

produced duplicate annotations for a subset of the test im-

ages (∼ 10%), and evaluated these separately. With a

Intersection over Union (IoU) ≥ 0.5 matching criterion,

the results were identical up to a single bounding box.

Conclusion In figure 3, we compare our human baseline

with other top performing methods on different subsets of

1 2 3

Figure 2: Illustration of bounding box generation for human

baseline. The annotator only needs to draw a line from the

top of the head to the central point between both feet, a tight

bounding box is then automatically generated.

the test data . We find that the human baseline widely out-

performs state-of-the-art detectors in all settings2, indicat-

ing that there is still room for improvement for automatic

methods.

3.2. Failure analysis

Since there is room to grow for existing detectors, one

might want to know: when do they fail? In this section we

analyse detection mistakes of Checkerboards, which

obtains top performance on most subsets of the test set (see

figure 3). Since most top methods of figure 1 are of the ICF

family, we expect a similar behaviour for them too. Meth-

ods using convnets with proposals based on ICF detectors

will also be affected.

3.2.1 Error sources

There are two types of errors a detector can do: false pos-

itives (detections on background or poorly localised detec-

tions) and false negatives (low-scoring or missing pedes-

trian detections). In this analysis, we look into false positive

and false negative detections at 0.1 false positives per im-

age (FPPI, 1 false positive every 10 images), and manually

cluster them (one to one mapping) into visually distinctive

groups. A total of 402 false positive and 148 false negative

detections (missing recall) are categorised by error type.

False positives After inspection, we end up having all false

positives clustered in eleven categories, shown in figure

4a. These categories fall into three groups: localisation,

background, and annotation errors. Localisation errors are

defined as false detections overlapping with ground truth

bounding boxes, while background errors have zero overlap

with any ground truth annotation.

Background errors are the most common ones, mainly ver-

tical structures (e.g. figure 5b), tree leaves, and traffic lights.

This indicates that the detectors need to be extended with a

better vertical context, providing visibility over larger struc-

tures and a rough height estimate.

Localisation errors are dominated by double detections

2Except for IoU ≥ 0.8. This is due to issues with the ground truth,
discussed in section 3.3.
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Figure 3: Detection quality (log-average miss rate) for different test set subsets. Each group shows the human baseline, the

Checkerboards [23] and RotatedFilters detectors, as well as the next top three (unspecified) methods (different for

each setting). The corresponding curves are provided in the supplementary material.

(high scoring detections covering the same person, e.g. fig-

ure 5a). This indicates that improved detectors need to have

more localised responses (peakier score maps) and/or a dif-

ferent non-maxima suppression strategy. In sections 3.3 and

4.1 we explore how to improve the detector localisation.

The annotation errors are mainly missing ignore regions,

and a few missing person annotations. In section 3.3 we

revisit the Caltech annotations.

False negatives Our clustering results in figure 4b show

the well known difficulty of detecting small and occluded

objects. We hypothesise that low scoring side-view persons

and cyclists may be due to a dataset bias, i.e. these cases

are under-represented in the training set (most persons are

non-cyclist walking on the side-walk, parallel to the car).

Augmenting the training set with external images for these

cases might be an effective strategy.

To understand better the issue with small pedestrians, we

measure size, blur, and contrast for each (true or false) de-

tection. We observed that small persons are commonly sat-

urated (over or under exposed) and blurry, and thus hypo-

thesised that this might be an underlying factor for weak

detection (other than simply having fewer pixels to make

the decision). Our results indicate however that this is not

the case. As figure 4c illustrates, there seems to be no cor-

relation between low detection score and low contrast. This

also holds for the blur case, detailed plots are in the sup-

plementary material. We conclude that the small number

of pixels is the true source of difficulty. Improving small

objects detection thus need to rely on making proper use

of all pixels available, both inside the window and in the

surrounding context, as well as across time.

Conclusion Our analysis shows that false positive errors

have well defined sources that can be specifically targeted

with the strategies suggested above. A fraction of the false

negatives are also addressable, albeit the small and occluded

pedestrians remain a (hard and) significant problem.

3.2.2 Oracle test cases

The analysis of section 3.2.1 focused on errors counts.

For area-under-the-curve metrics, such as the ones used in
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Figure 4: Errors analysis of Checkerboards [23] on the

test set.

Caltech, high-scoring errors matter more than low-scoring

ones. In this section we directly measure the impact of loc-

alisation and background-vs-foreground errors on the detec-
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(a) double detection (b) vertical structure

Figure 5: Example of analysed false positive cases (red

box). Additional ones in supplementary material.

tion quality metric (log-average miss-rate) by using oracle

test cases.

In the oracle case for localisation, all false positives that

overlap with ground truth are ignored for evaluation. In the

oracle tests for background-vs-foreground, all false posit-

ives that do not overlap with ground truth are ignored.

Figure 6a shows that fixing localisation mistakes im-

proves performance in the low FPPI region; while fixing

background mistakes improves results in the high FPPI re-

gion. Fixing both types of mistakes results zero errors, even

though this is not immediately visible in the double log plot.

In figure 6b we show the gains to be obtained in MRO

−4

terms by fixing localisation or background issues. When

comparing the eight top performing methods we find that

most methods would boost performance significantly by fix-

ing either problem. Note that due to the log-log nature of the

numbers, the sum of localisation and background deltas do

not add up to the total miss-rate.

Conclusion For most top performing methods localisation

and background-vs-foreground errors have equal impact on

the detection quality. They are equally important.

3.3. Improved Caltech-USA annotations

When evaluating our human baseline (and other meth-

ods) with a strict IoU ≥ 0.8 we notice in figure 3 that

the performance drops. The original annotation protocol

is based on interpolating sparse annotations across multiple

frames [7], and these sparse annotations are not necessar-

ily located on the evaluated frames. After close inspection

we notice that this interpolation generates a systematic off-

set in the annotations. Humans walk with a natural up and

down oscillation that is not modelled by the linear interpol-

ation used, thus in most frames have shifted bounding box

annotations. This effect is not noticeable when using the

forgiving IoU ≥ 0.5, however such noise in the annotations

is a hurdle when aiming to improve object localisation.

This localisation issues together with the annotation er-

rors detected in section 3.2.1 motivated us to create a new

set of improved annotations for the Caltech pedestrians

dataset. Our aim is two fold; on one side we want to provide

a more accurate evaluation of the state of the art, in particu-

lar an evaluation suitable to close the “last 20%” of the prob-

lem. On the other side, we want to have training annotations

10
3

10
2

10
1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

18.47(33.20)% Checkerboards

15.94(25.49)% Checkerboards (localisation oracle)
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(a) Original and two oracle curves for Checkerboards de-
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(b) Comparison of miss-rate gain (∆MRO
−4

) for top performing methods.

Figure 6: Oracle cases evaluation over Caltech test set.

Both localisation and background-versus-foreground show

important room for improvement.

(a) False annotations (b) Poor alignment

Figure 7: Examples of errors in original annotations. New

annotations in green, original ones in red.

and evaluate how much improved annotations lead to better

detections. We evaluate this second aspect in section 4.1.

New annotation protocol Our new annotations are done

both on the test and training 1× set, and focus on high qual-

ity. The annotators are allowed to look at the full video

to decide if a person is present or not, they are requested

to mark ignore regions in areas covering crowds, human

shapes that are not persons (posters, statues, etc.), and in

areas that could not be decided as certainly not containing

a person. Each person annotation is done by drawing a line

from the top of the head to the point between both feet, the

same as human baseline. The annotators must hallucinate

head and feet if these are not visible. When the person is

not fully visible, they must also annotate a rectangle around

the largest visible region. This allows to estimate the occlu-

sion level in a similar fashion as the original annotations.
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Detector
Training

data

Median

IoUO

Median

IoUN

Roerei [2] INRIA 0.76 0.84

RotatedFilters Orig. 10× 0.80 0.77

RotatedFilters New 10× 0.76 0.85

Table 3: Median IoU of true positives for detectors trained

on different data, evaluated on original and new Caltech

test. Models trained on INRIA align well with our new an-

notations, confirming that they are more precise than previ-

ous ones. Curves for other detectors in the supplement.

The new annotations do share some bounding boxes with

the human baseline (when no correction was needed), thus

the human baseline cannot be used to do analysis across dif-

ferent IoU thresholds over the new test set.

In summary, our new annotations differ from the human

baseline in the following aspects: both training and test sets

are annotated, ignore regions and occlusions are also an-

notated, full video data is used for decision, and multiple

revisions of the same image are allowed.

After creating a full independent set of annotations, we con-

solidated the new annotations by cross-validating with the

old annotations. Any correct old annotation not accounted

for in the new set, was added too.

Our new annotations correct several types of errors in

the existing annotations, such as misalignments (figure

7b), missing annotations (false negatives), false annotations

(false positives, figure 7a), and the inconsistent use of “ig-

nore” regions. More examples of “original versus new an-

notations” provided in the supplementary material, as well

as a visualisation software to inspect them frame by frame.

Better alignment In table 3 we show quantitative evidence

that our new annotations are at least more precisely local-

ised than the original ones. We summarise the alignment

quality of a detector via the median IoU between true pos-

itive detections and a given set of annotations. When evalu-

ating with the original annotations (“median IoUO” column

in table 3), only the model trained with original annotations

has good localisation. However, when evaluating with the

new annotations (“median IoUN” column) both the model

trained on INRIA data, and on the new annotations reach

high localisation accuracy. This indicates that our new an-

notations are indeed better aligned, just as INRIA annota-

tions are better aligned than Caltech.

Detailed IoU curves for multiple detectors are provided

in the supplementary material. Section 4.1 describes the

RotatedFilters-New10× entry.

4. Improving the state of the art

In this section we leverage the insights of the analysis,

to improve localisation and background-versus-foreground

Detector Anno. variant MRO

−2
MRN

−2

ACF

Original 36.90 40.97

Pruned 36.41 35.62

New 41.29 34.33

RotatedFilters

Original 28.63 33.03

Pruned 23.87 25.91

New 31.65 25.74

Table 4: Effects of different training annotations on detec-

tion quality on validation set (1× training set). Italic num-

bers have matching training and test sets. Both detectors im-

prove on the original annotations, when using the “pruned”

variant (see §4.1).

discrimination of our baseline detector.

4.1. Impact of training annotations

With new annotations at hand we want to understand

what is the impact of annotation quality on detection qual-

ity. We will train ACF [5] and RotatedFilters mod-

els (introduced in section 2.2) using different training sets

and evaluate on both original and new annotations (i.e.

MRO

−2
, MRO

−4
and MRN

−2
, MRN

−4
). Note that both detect-

ors are trained via boosting and thus inherently sensitive to

annotation noise.

Pruning benefits Table 4 shows results when training with

original, new and pruned annotations (using a 5/6+1/6 train-

ing and validation split of the full training set). As expected,

models trained on original/new and tested on original/new

perform better than training and testing on different annota-

tions. To understand better what the new annotations bring

to the table, we build a hybrid set of annotations. Pruned an-

notations is a mid-point that allows to decouple the effects

of removing errors and improving alignment.

Pruned annotations are generated by matching new and ori-

ginal annotations (IoU ≥ 0.5), marking as ignore region

any original annotation absent in the new ones, and adding

any new annotation absent in the original ones.

From original to pruned annotations the main change is re-

moving annotation errors, from pruned to new, the main

change is better alignment. From table 4 both ACF and

RotatedFilters benefit from removing annotation er-

rors, even in MRO

−2
. This indicates that our new training set

is better sanitised than the original one.

We see in MRN

−2
that the stronger detector benefits more

from better data, and that the largest gain in detection qual-

ity comes from removing annotation errors.

Alignment benefits The detectors from the ICF family be-

nefit from training with increased training data [15, 23], us-

ing 10× data is better than 1× (see section 2.1). To lever-

age the 9× remaining data using the new 1× annotations we

train a model over the new annotations and use this model
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Figure 8: Examples of automatically aligned ground truth

annotations. Left/right→ before/after alignment.

1×
data

10× data

aligned with
MRO

−2
(MRO

−4
) MRN

−2
(MRN

−4
)

Orig. Ø 19.20 (34.28) 17.22 (31.65)

Orig. Orig. 10× 19.16 (32.28) 15.71 (28.13)

Orig. New 1/2× 16.97 (28.01) 14.54 (25.06)

New New 1× 16.77 (29.76) 12.96 (22.20)

Table 5: Detection quality of RotatedFilters on test

set when using different aligned training sets. All mod-

els trained with Caltech 10×, composed with different

1× +9× combinations.

to re-align the original annotations over the 9× portion. Be-

cause the new annotations are better aligned, we expect this

model to be able to recover slight position and scale errors

in the original annotations. Figure 8 shows example results

of this process. See supplementary material for details.

Table 5 reports results using the automatic alignment pro-

cess, and a few degraded cases: using the original 10×,

self-aligning the original 10× using a model trained over

original 10×, and aligning the original 10× using only a

fraction of the new annotations (without replacing the 1×
portion). The results indicate that using a detector model to

improve overall data alignment is indeed effective, and that

better aligned training data leads to better detection quality

(both in MRO and MRN ). This is in line with the analysis

of section 3.2. Already using a model trained on 1/2 of the

new annotations for alignment, leads to a stronger model

than obtained when using original annotations.

We name the RotatedFilters model trained using

the new annotations and the aligned 9× data, Rotated-

Filters-New10×. This model also reaches high me-

dian true positives IoU in table 3, indicating that indeed it

obtains more precise detections at test time.

Conclusion Using high quality annotations for training im-

proves the overall detection quality, thanks both to im-

proved alignment and to reduced annotation errors.

4.2. Convnets for pedestrian detection

The results of section 3.2 indicate that there is room for

improvement by focusing on the core background versus

foreground discrimination task (the “classification part of

object detection”). Recent work [14, 19] showed compet-

itive performance with convolutional neural networks (con-

Test proposals Proposal +AlexNet +VGG
+bbox reg

& NMS

ACF [5] 48.0% 28.5% 22.8% 20.8%

SquaresChnFtrs [3] 31.5% 21.2% 15.9% 14.7%

LDCF [15] 23.7% 21.6% 16.0% 13.7%

Rot.Filters 17.2% 21.5% 17.8% 13.8%

Checkerboards [23] 16.1% 21.0% 15.3% 11.1%

Rot.Filters-New10× 12.9% 17.2% 11.7% 10.0%

Table 6: Detection quality of convnets with different pro-

posals. Grey numbers indicate worse results than the input

proposals. All numbers are MRN
−2

on the Caltech test set.

Figure 9: Oracle case analysis of proposals + convnets (after

second NMS). Miss-rate gain, ∆MRO

−4
. The convnet signi-

ficantly improves background errors, while slightly increas-

ing localisation ones.

vnets) for pedestrian detection. We include convnets into

our analysis, and explore to what extent performance is

driven by the quality of the detection proposals.

AlexNet and VGG We consider two convnets. 1) The

AlexNet from [14], and 2) The VGG16 model from [11].

Both are pre-trained on ImageNet and fine-tuned over Cal-

tech 10× (original annotations) using SquaresChnFtrs

proposals. Both networks are based on open source, and

both are instances of the R-CNN framework [12]. Albeit

their training/test time architectures are slightly different

(R-CNN versus Fast R-CNN), we expect the result differ-

ences to be dominated by their respective discriminative

power (VGG16 improves 8 pp in mAP over AlexNet in the

Pascal detection task [12]).

Table 6 shows that as the quality of the detection pro-

posals improves, AlexNet fails to provide a consistent gain,

eventually worsening the results of our ICF detectors (sim-

ilar observation in [14]). Similarly VGG provides large

gains for weaker proposals, but as the proposals improve,

the gain from the convnet re-scoring eventually stalls.

After closer inspection of the resulting curves (see sup-

plementary material), we notice that both AlexNet and

VGG push background instances to lower scores, and at the
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27.60(41.92)% ACF-Caltech+

23.72(38.27)% LDCF

22.18(34.56)% Katamari

21.59(34.61)% AlexNet

21.56(35.96)% SpatialPooling+

18.75(34.26)% TA-CNN

16.69(30.78)% Ours-RotatedFilters

15.81(28.57)% Checkerboards

12.96(22.20)% Ours-RotatedFilters-New10x

10.00(20.77)% Ours-RotatedFilters-New10x+VGG

0.88% Ours-HumanBaseline

Figure 10: Detection quality on Caltech test set (reasonable

subset), evaluated on the new annotations (MRN

−2

(

MRN

−4

)

).

Further results in the supplementary material.

Detector aspect MRO

−2
(MRO

−4
) MRN

−2
(MRN

−4
)

RotatedFilters 19.20 (34.28) 17.22 (31.65)

+ Alignment §4.1 16.97 (28.01) 14.54 (25.06)

+ New annotations §4.1 16.77 (29.76) 12.96 (22.20)

+ VGG §4.2 16.61 (34.79) 11.74 (28.37)

+ bbox reg & NMS 14.16 (28.39) 10.00 (20.77)

Checkerboards 18.47 (33.20) 15.81 (28.57)

Table 7: Step by step improvements from previ-

ous best method Checkerboards to Rotated-

Filters-New10x+VGG.

same time generate a large number of high scoring false

positives. The ICF detectors are able to provide high recall

proposals, where false positives around the objects have low

scores (see [14, supp. material, fig. 9]), however convnets

have difficulties giving low scores to these windows sur-

rounding the true positives. In other words, despite their

fine-tuning, the convnet score maps are “blurrier” than the

proposal ones. We hypothesise this is an intrinsic limita-

tion of the AlexNet and VGG architectures, due to their in-

ternal feature pooling. Obtaining “peakier” responses from

a convnet most likely will require using rather different ar-

chitectures, possibly more similar to the ones used for se-

mantic labelling or boundaries estimation tasks which re-

quire pixel-accurate output.

Fortunately, we can compensate for the lack of spatial

resolution in the convnet scoring by using bounding box

regression. Adding bounding regression over VGG, and ap-

plying a second round of non-maximum suppression (first

NMS on the proposals, second on the regressed boxes), has

the effect of “contracting the score maps”. Neighbour pro-

posals that before generated multiple strong false positives,

now collapse into a single high scoring detection. We use

the usual IoU ≥ 0.5 merging criterion for the second NMS.

The last column of table 6 shows that bounding box

regression + NMS is effective at providing an additional

gain over the input proposals, even for our best de-

tector RotatedFilters-New10×. On the original

annotations RotatedFilters-New10×+VGG reaches

14.2% MRO

−2
, which improves over [14, 19]. Our best per-

forming detector RotatedFilters-New10× runs on a

640 × 480 image for ~3.5 seconds, including the ICF slid-

ing window detection and VGG rescoring. Training times

are counted 1~2 days for the RotatedFilters detector,

and 1~2 days for VGG fine-tunning.

Figure 9 repeats the oracle tests of section 3.2.2 over our

convnet results. One can see that VGG significantly cuts

down the background errors, while at the same time slightly

increases the localisation errors.

Conclusion Although convnets have strong results in im-

age classification and general object detection, they seem

to have limitations when producing well localised detection

scores around small objects. Bounding box regression (and

NMS) is a key ingredient to side-step this limitation with

current architectures. Even after using a strong convnet,

background-versus-foreground remains the main source of

errors; suggesting that there is still room for improvement

on the raw classification power of the neural network.

5. Summary

In this paper, we make great efforts on analysing the fail-

ures for a top-performing detector on Caltech dataset. Via

our human baseline we have quantified a lower bound on

how much improvement there is to be expected. There is

a 10× gap still to be closed. To better measure the next

steps in detection progress, we have provided new sanitised

Caltech train and test set annotations.

Our failure analysis of a top performing method has

shown that most of its mistakes are well characterised. The

error characteristics lead to specific suggestions on how to

engineer better detectors (mentioned in section 3.2; e.g.

data augmentation for person side views, or extending the

detector receptive field in the vertical axis).

We have partially addressed some of the issues by meas-

uring the impact of better annotations on localisation ac-

curacy, and by investigating the use of convnets to improve

the background to foreground discrimination. Our results

indicate that significantly better alignment can be achieved

with properly trained ICF detectors, and that, for pedestrian

detection, convnet struggle with localisation issues, that can

be partially addressed via bounding box regression. Both on

original and new annotations, the described detection ap-

proach reaches top performance, see progress in table 7.

We hope the insights and data provided in this work will

guide the path to close the gap between machines and hu-

mans in the pedestrian detection task.
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