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Abstract

This paper considers distributed hydrological models in hydrology as an expression of a pragmatic realism. Some of the problems of distributed

modelling are discussed including the problem of nonlinearity, the problem of scale, the problem of equifinality, the problem o f uniqueness and

the problem of uncertainty. A structure for the application of distributed modelling is suggested based on an uncertain or fuzzy landscape space

to model space mapping. This is suggested as the basis for an Alternative Blueprint for distributed modelling in the form of an application

methodology. This Alternative Blueprint is scientific in that it allows for the formulation of testable hypotheses. It focuses attention on the prior

evaluation of models in terms of physical realism and on the value of data in model rejection.  Finally, some unresolved questions that distributed

modelling must address in the future are outlined, together with a vision for distributed modelling as a means of learning about places.
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Realism in the face of adversity

It is almost 30 years since I wrote my first distributed

hydrological model for my PhD thesis, following the Freeze

and Harlan (1969) blueprint but using finite element

methods. My thesis (Beven, 1975) contained an application

of the model to the small East Twin catchment in the UK,

the catchment that had been studied in the field by Weyman

(1970). The model represented a catchment as a number of

variable width, slope following,  hillslope segments, each

represented by a 2D (vertical and downslope directions)

solution of the Richards equation (Fig. 1). Computer

limitations meant that only a coarse finite element mesh

could be used;  even then, on the computers available, it

proved difficult to perform simulations that took less

computer time than real time simulated.

The modelling results were never published. They were

simply not good enough. The model did not reproduce the

stream discharges, it did not reproduce the measured water

table levels, it did not reproduce the observed heterogeneity

of inputs into the stream from the hillslopes (Fig. 2).  It was

far easier at the time to publish the results of hypothetical

simulations (Beven, 1977).  The ideas in what follows are

essentially a distillation of those early experiences and of

thinking hard about how to do distributed modelling in some

sense “properly” since then.

The limitations of that PhD study were in part because of

the crudeness of the representation given the computer

resources available at the time (the model itself actually

existed as two boxes of computer cards).  Just as in numerical

weather forecasting,  the accuracy of numerical algorithms

for solving the partial differential equations and the feasible
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discretisation of the flow domains has improved

dramatically since 1975. However, just as in numerical

weather forecasting, there remain limits to the detail that

can be represented and there remains a problem of

representing or parameterising sub-grid scale processes. As

computer power improves further into the future, the feasible

discretisation will become finer but the problem of sub-grid

parameterisation does not go away. The form of that

parameterisation might become simpler at finer scale but

there is then the problem of knowing what might be the

actual values of parameters for all the different spatial

elements (Beven, 1989, 1996b, 2000a).

There is then an interesting question as to how far such

models, with their necessary approximations of  processes

and parameters at the element scale, can represent reality.

An analysis of this question reveals a number of issues. These

will be summarised here as the problems of nonlinearity; of

scale; of  uniqueness; of equifinality; and of uncertainty.

The aim is, as ever, a “realistic” representation of the

hydrology of a catchment that will be useful in making

predictions in situations that have not yet occurred or where

measurements have yet to be made. Indeed, one argument

for the use of distributed modelling in hydrology has always

been that they might be more “realistic” than simpler models

that are calibrated to historical data in a curve-fitting

exercise, with no guarantee, therefore, that they might do

well in simulating responses in other periods or other

Fig. 1. The East Twin catchment, UK (21 ha), showing the hillslopes

segments for the finite element model of the Lower

Catchment. Triangles show stream gauges.

conditions (e.g. Beven and O’Connell, 1982; Beven, 1985).

That argument continues to be used in discussions of the

problems of parameter estimation (e.g. Smith et al., 1994;

De Marsily, 1994; Beven et al., 2001).

What then does “realism” mean in the context of

distributed hydrological modelling?  At the risk of making

a gross generalisation, I suggest that most practising

environmental scientists have, as a working philosophy, a

pragmatic or heuristic realism; that the quantities that we

deal with exist independently of our perceptions and

empirical studies of them,  that this extends even to quantities

that are not (yet) observable, and that further work will move

the science towards a more realistic description of the world.

Again, at the risk of generalising, I would suggest that most

practising environmental scientists do not worry too much

about the theory-laden nature of their studies, (subsuming

any such worries within the general framework of the critical

rationalist stance that things will get better as studies

progress). As has been pointed out many times, this theory

laden-ness applies very much to experimental work, but it

applies even more pointedly to modelling work where theory

must condition model results very strongly.

This pragmatic realism is a “natural” philosophy in part

because, as environmental scientists, we are often dealing

with phenomena that are close to our day-to-day perceptions

of the world. At  a fundamental level I do a lot of computer

modelling but I think of it as representing real water. If I try

to predict pollutant transport, I think of it as trying to

represent a real pollutant. Environmental chemists measure

the characteristics of real solutions and so on. What I am

calling pragmatic realism naturally combines elements of

objectivism, actualism, empiricism, idealism,

instrumentalism, Bayesianism, relativism and hermeneutics;

of multiple working hypotheses, falsification, and critical

rationalism (but allowing adjustment of auxiliary

conditions); of confirmation and limits of validity; of

methodologies of research programmes while maintaining

an open mind to paradigm shifts; and of the use of “scientific

method” within the context of the politics of grant awarding

programmes and the sociology of the laboratory. Refined

and represented in terms of ideals rather than practice, it

probably comes closest to the transcendental realism of

Bhaskar (1989; see also Collier, 1994). However, in

hydrology at least, the practice often appears to have more

in common with the entertaining relativism of Feyerabend

(1991), not least because theories are applied to systems

that are open which, as Cartwright (1999) has recently

pointed out even makes the application of the equation

force=mass*acceleration difficult to verify or apply in

practice in many situations. Hydrologists also know only

too well the difficulties of verifying or applying the mass
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Fig. 2. Results of finite element simulations of the Lower East Twin catchment. All observed data collected by Darrell

Weyman. (a) Observed and predicted water table levels above a 1m wide throughflow trough. (b) Observed and

predicted discharges from the throughflow trough using only measured soil parameter. (c) Observed and predicted

discharges from the catchment. Dashed line: observed discharge from Upper catchment (not simulated). Dotted line:

observed discharge from upper catchment with simulated discharge from lower catchment added. Full line: observed

discharge measured at outlet from lower catchment.

(a)

(b)

(c)

and energy balance equations in open systems (Beven,

2001b, d). This does not, of course, mean that such principles

or laws should not be applied in practice, only that we should

be careful about the limitations of their domain of validity

(as indeed are engineers in the application of the force

equation).

It is in the critical rationalist idea that the description of

reality will continue to improve that many of the problems

of environmental modelling have been buried for a long

time. This apparent progress is clearly the case in many

areas of environmental science such as weather forecasting

and numerical models of the ocean. It is not nearly so clear

in distributed hydrological modelling even though many

people feel that, by analogy, it should be. This analogy is

critically misguided, for some of the reasons that will be

explored in the sections that follow. It has led to a continuing

but totally unjustified determinism in many applications of

distributed modelling and a lack of recognition of the limits

of distributed hydrological modelling in the face of these

adverse problems.
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The problem of nonlinearity

The problem of nonlinearity is at the heart of many of the

problems faced in the application of distributed modelling

concepts in hydrology, despite the fact that for many years

“linear” models, such as the unit hydrograph and more recent

linear transfer functions, have been shown to work well (see,

for example, Beven 2001a), particularly in larger catchments

(but see Goodrich et al., 1995, for a counter-example in a

semi-arid environment where channel transmission losses

result in greater apparent nonlinearity with increasing

catchment size).  In fact, this apparent linearity is often a

de facto artefact of the analysis. It applies only to the

relationship between some “effective” rainfall inputs and

river discharge (and sometimes only to the “storm runoff”

component of discharge). It does not apply to the relationship

between rainfall inputs and river discharge that is known to

be a nonlinear function of antecedent conditions, rainfall

volume, and the (interacting) surface and subsurface

processes of runoff generation. Hydrological systems are

nonlinear and the implications of this nonlinearity should

be taken into account in the formulation and application of

distributed models.

This we do attempt to do, of course. All distributed models

have nonlinear functional relationships included in their

local element scale process descriptions of surface and

subsurface runoff generation, whether they are based on the

Richards equation or the SCS curve number.  We have not

been so good at taking account of some of the other

implications of dealing with nonlinear dynamical systems,

however. These include, critically, the fact that nonlinear

equations do not average simply and that the extremes of

any distribution of responses in a nonlinear system may be

important in controlling the observed responses. Crudely

interpreted in hydrological terms, this means local subgrid-

scale nonlinear descriptions, such as Richards equation,

should not be used at the model element scale (let alone at

the GCM grid scale) where the heterogeneity of local

parameter variations is expected to be important (Beven,

1989, 1995). The local heterogeneities will mean that the

element scale averaged equations must be different from

the local scale descriptions; that using mean local scale

parameter values will not give the correct results, especially

where there are coupled surface and subsurface flows (Binley

et al., 1989); and that the extremes of the local responses

(infiltration rates, preferential flows, areas of first saturation)

will be important. This suggests, for example, that the use

of pedotransfer functions to estimate a set of average soil

parameters at the element scale of a distributed hydrological

model should not be expected to give accurate results. Note:

this follows purely from considerations of nonlinear

mathematics, even if Richards’ equation is acceptable as a

description of the local flow processes (which could also be

debated, e.g. Beven and Germann, 1982).

These implications are well known, so why have they been

ignored for so long in distributed modelling in hydrology?

Is it simply because there is no “physically based” theory to

put in the place of Richards equation, since alternative sub-

grid parameterisations seem too “conceptual” in nature?  The

recent work by Reggiani et al. (1998, 1999, 2000) is an

attempt to formulate equations at the subcatchment or flow

element scale directly in terms of mass, energy and

momentum equations but has not solved the problem of

parameterising the space and time integrated exchanges

between elements in heterogeneous flow domains.

There are other implications of nonlinearity that are

known to be important. Nonlinear systems are sensitive to

their initial and boundary conditions. Unconstrained they

will often exhibit chaotic behaviour. Initial and boundary

conditions are poorly known in hydrology (see notably

Stephenson and Freeze, 1974), as often are the observed

values with which the model predictions are compared, but

fortunately the responses are necessarily constrained  by mass

and energy balances. It is these constraints that have allowed

hydrological modellers to avoid worrying too much about

the potential for chaos. Essentially, by maintaining

approximately correct mass and energy balances, models

cannot go too far wrong, especially after a bit of calibration

of parameter values. That does not mean, however, that it is

easy to get very good predictions (even allowing for

observation error), especially for extreme events.

This is reinforced by recent work in nonlinear dynamics

looking at stochastically forced systems of simple equations.

This work suggests that where there is even a slight error in

the behaviour or attractor of an approximate model of a

(known) system, the model will not be able to reproduce

correctly the extremes of the distribution of the output

variables either for short time scales or for integrated outputs

over long (e.g. annual) time scales. If this is true for simple

systems, does it imply that the same should be true for flood

prediction and water yield predictions using (always slightly

wrong) distributed models in hydrology?  How can predictive

capability be protected against these effects of nonlinearity?

The problem of scale

The problem of scale is inherently linked to that of

nonlinearity. Scale issues in linear systems are only related

to the problem of assessing adequately the inputs at different

scales with available measurement techniques.   As is well

known by all hydrological modellers, this is a problem even

in the simple assessment of rainfalls over different sizes of
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catchment area, even before trying to make some assessment

of the nature and heterogeneity of the surface and subsurface

processes with the measurement techniques available. It is

clear, for example, that we have kept the Richards equation

approach as a subgrid  scale parameterisation for so long

because it is consistent with the measurement scales of soil

physical measurements. Because we have no measurement

techniques that give information directly at the element grid

scales (say 10 m to 1 km in the case of distributed

hydrological models to 5 to 100 km in the case of land surface

parameterisations for NWP and GCM models) we have not

developed the equivalent, scale consistent, process

descriptions that would then take account implicitly of the

effects of subgrid scale heterogeneity and nonlinearity.

A recent comment by Blöschl (2001) has discussed the

scale problem in hydrology. His analysis has much the same

starting point as that of Beven (1995).  He also recognises

the need to identify the “dominant process controls” at

different scales but comes to a totally different conclusion.

Whereas Beven (1995) suggests that scaling theories will

ultimately prove to be impossible and that is therefore

necessary to recognise the scale dependence of model

structures, Blöschl (2001) suggested that it is in resolving

the scale problem that the real advances will be made in

hydrological theorising and practice in the future. How do

these two viewpoints bear on the application of distributed

hydrological models?

Let us assume for the moment that it might be possible to

develop a scaling theory that would allow the definition of

grid or element scale equations and parameter values on

the basis of knowledge of the parameter values at smaller

scales. Certainly some first attempts have been made to do

so in subsurface flows (e.g. Dagan, 1986, and others) and

surface runoff (e.g. Tayfur and Kavvas, 1998). Attempts are

also being made to describe element scale processes in terms

of more fundamental characteristics of the flow domain,

such as depositional scenarios for sedimentary aquifers.  This

reveals the difference between hydrology and some other

subject areas in this respect. In hydrology, the development

of a scaling theory is not just a matter of the dynamics and

organisation of the flow of the fluid itself. In surface and

subsurface hillslope hydrology, the flow is always responding

to the local pore scale or surface boundary conditions. The

characteristics of the flow domain determine the flow

velocities. Those characteristics must be represented as

parameter values at some scale. Those parameter values must

be estimated in some way. But the characteristics are

impossible to determine everywhere, even for surface runoff

if it occurs. For subsurface flow processes the characteristics

are essentially unknowable with current measurement

techniques. Thus, they must be inferred in some way from

either indirect or large scale measurements.  In both cases,

a theory of inference would be required. This would be the

scaling theory but it is clear from this argument that any

such theory would need to be supported by strong

assumptions about the nature of the characteristics of the

flow domain even if we felt secure about the nonlinearities

of the flow process descriptions. The assumptions would

not, however, be verifiable: it is more likely that they would

be made for mathematical tractability rather than physical

realism and applied without being validated for a particular

flow domain because, again, of the limitations of current

measurement techniques.

Thus, the problem of scale in distributed hydrological

modelling does not arise because we do not know the

principles involved. We do, if we think about it, understand

a lot about the issues raised by nonlinearities of the processes,

heterogeneities of the flow domains, limitations of

measurement techniques, and the problem of knowing

parameter values or structures everywhere.  The principles

are general and we have at least a qualitative understanding

of their implications, but the difficulty comes in the fact

that we are required to apply hydrological models in

particular catchments, all with their own unique

characteristics.

The problem of uniqueness

In the last 30 years of distributed hydrological modelling

there has been an implicit underlying theme of developing

a general theory of hydrological processes. It has been driven

by the pragmatic realist philosophy outlined earlier. The

idea that if we can get the description of the dynamics of

the processes correct then parameter identification problems

will become more tractable is still strongly held. However,

in a recent paper,  I have put forward an alternative view:

that we should take much more account of the particular

characteristics of particular catchment areas, i.e. to consider

the question of uniqueness of place much more explicitly

(Beven, 2000a).

It is useful in this respect to consider the case where we

could define the “perfect” model description. In its equations,

such a model would properly reflect all the effects of local

heterogeneity on the flow dynamics and the nonlinearities

associated with the coupling of different flow processes. Test

simulations with such a model would show how it takes

account of the redistribution of the inputs by a vegetation

cover; the initiation of local overland flows, reinfiltration

on heterogeneous surfaces, initiation and propagation of

preferential flows, the effects of local field drainage and

ditches etc. Such a model clearly has the potential to produce

predictions that are accurate to within the limitations of
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measurement errors. However, such a model must still have

some way of taking account of all the local heterogeneities

of the flow domain in any application to a particular

catchment. In short, even the perfect model has parameters

that have to be estimated.

Presumably, the perfect model will embody within it some

expressions to relate the parameter values it requires to some

measureable characteristics of the flow domain (indeed, the

perfect model seems to require that a scaling theory is, in

fact, feasible). This could be done in either a disaggregation

or aggregation framework. A disaggregation framework

would require making inferences from catchment scale

measurements to smaller scale process parameters. This

would be similar to the type of calibration exercise against

catchment discharges that is often carried out today. It clearly

leaves scope for multiple parameter sets being able to

reproduce the catchment scale behaviour in a way that is

consistent with the model dynamics.

An aggregation process implies that information will be

required on the heterogeneity of parameter values within

the catchment area. We will not, however, be able to

determine those parameters everywhere in a particular

catchment area with its own unique characteristics,

especially because the perfect model would tell us that it is

the extremes of the distribution of characteristics that may

be important in controlling storm runoff generation. It is

always more difficult to estimate the extremes of a

distribution than the first two moments (even where the

distribution can be characterised in simple form). Thus, a

very large number of measurements would be required

without any real guarantee that they are spatially coherent.

Since our current measurement techniques have severe

limitations in assessing spatial variability then it would seem

that the aggregation approach would also result in a large

number of model parameter sets being consistent with the

model dynamics in reproducing the large scale behaviour.

Thus, even if we knew the structure of the perfect model,

uniqueness of place leads to a very important identifiability

problem. In the case of the perfect model, this could be

considered as simply a problem of non-identifiability i.e. a

unique (“optimal”) set of parameters would exist, if only

we had the measurements available to be able to identify it.

In practice, with limited measurements available there would

most probably be a non-uniqueness problem i.e. that there

appear to be several or many different optimal parameter

sets but the measurements do not allow us to distinguish

between them. However, we cannot normally assume that

we are using such a perfect model structure. Thus, Beven

(1993, 1996a,b) has suggested that it is better to approach

the problem of uniqueness of place using a concept of

equifinality of model structures and parameter sets. This

choice of word is intended to indicate an explicit recognition

that, given the limited measurements available in any

application of a distributed  hydrological model, it will not

be possible to identify an “optimal” model. Rather, we should

accept that there may be many different model structures

and parameter sets that will be acceptable in simulating the

available data.

It is worth stressing in this that, even if we believed that

we knew the perfect model structure, it would not be immune

to the problem of equifinality in applications to particular

catchments with their own unique characteristics.  Limited

measurements, and particularly the unknowability of the

subsurface, will result in equifinality, even for the perfect

model.

There has been a commonly expressed hope that, in the

future, remote sensing information would lead to the

possibility of more robust estimates of spatially distributed

parameter values for distributed hydrological modelling in

applications to unique catchment areas. Pixel sizes for

remote sensing are at the same scale, or even sometimes

finer, than distributed model element scales and in many

images we can easily detect visually spatial patterns that

appear to be hydrologically significant (we can include here

ground probing radar and cross-borehole tomography

techniques that give some insight into the local nature of

the subsurface flow domain). However, the potential for

remote sensing to provide the information required would

appear to be limited. The digital numbers stored by the sensor

do not give direct estimates of the hydrogical variables or

parameters required at the pixel scale. They require an

interpretative model.   Such a model will, itself, require

parameter values to reflect the nature of the surface, the

structure and state of the vegetation, the state of the

atmosphere, etc. In fact, the digital numbers received by the

user may already have been processed by an interpretative

model to correct for atmospheric effects etc. in a way that

may not reflect all the processes involved even if the

interpretative model is physically “realistic”. The user may

wish to leave such corrections to the imaging “experts”, but

will then need to apply a further interpretative model for

the hydrological purposes he/she has in mind. The resulting

uncertainties may, at least sometimes, be very significant

(see for example Franks et al., 1997), especially where the

parameters of the interpretative model might also be expect

to change over time, e.g. with vegetation growth or

senescence.

Thus, remote sensing information will also be subject to

equifinality in interpretation and uncertainty in prediction.

This will be compounded by the need to couple interpretative

models for satellite or aircraft images which, except under

unusual circumstances, give only information on near surface
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emissions, to models of the subsurface. However, it is worth

repeating that it is often possible to see hydrologically

significant patterns in some images. Thus, it should be

expected that there is useful information on the distributed

responses of particular hillslopes and catchments to be

gained from remote sensing, but it will certainly not solve

the problem of uniqueness.

The problem of equifinality

The recognition of equifinality arose out of Monte Carlo

experiments in applying models with different parameter

sets in simulating catchment scale discharges (Beven and

Binley, 1992; Duan et al., 1992; Beven, 1993). It resulted

in some interestingly different responses. The University of

Arizona group response was that a better method for

identifying the optimal parameter set was required, leading

to their development of the stochastic complex evolution

methodology, as embodied in the UA-SCE software. Other

experiments in global optimisation have explored simulated

annealing, genetic algorithms and Monte Carlo Markov

Chain methodologies (e.g. Kuczera, 1997, Kuczera and

Parent, 1999). A further recognition that the results of even

a global optimisation depended strongly on the evaluation

measure used has lead to the exploration of multi-objective

optimisation techniques such as the Pareto optimal set

methodology of Yapo et al. (1998) and Gupta et al. (1999),

again from the Arizona group. The underlying aim, however,

has still been to identify parameter sets that are in some

sense optimal.

The response of the Lancaster University group was

different. They were prepared to reject the idea that an

optimal model would ever be identifiable and develop the

concept of equifinality in a more direct way. This lead to

the Generalised Likelihood Uncertainty Estimation (GLUE)

Methodology (Beven and Binley, 1992; Beven et al., 2000,

Beven, 2001a). GLUE is an extension of the Generalised

Sensitivity Analysis of Hornberger, Spear and Young

(Hornberger and Spear, 1981; Spear et al., 1994) in which

many different model parameter sets are chosen randomly,

simulations run, and evaluation measures used to reject some

models (model structure/parameter set combinations) as non-

behavioural while all those considered as behavioural are

retained in prediction. In GLUE the predictions of the

behavioural models are weighted by a likelihood measure

based on past performance to form a cumulative weighted

distribution of any predicted variable of interest. Traditional

statistical likelihood measures can be used in this framework,

in which case the output prediction distributions can be

considered as probabilities of prediction of the variable of

interest. However, the methodology is general in that more

general likelihood measures, including fuzzy measures, can

be used in which case only conditional prediction limits or

possibilities are estimated. Different likelihood measures can

be combined using Bayes equation or a number of other

methods (Beven et al., 2000; Beven, 2001a).

There is one other implication of equifinality that is of

particular importance in distributed modelling. Distributed

models have the potential to use different parameter values

for every different element in the spatial discretisation. In

general this means that many hundreds or thousands of

parameter values must be specified. Clearly it is not possible

to optimise all these parameter values, they must be estimated

on the basis of some other information, such as soil texture,

vegetation type, surface cover etc. Values are available for

different types of soil, vegetation etc in the literature.

However, such values will themselves have been back-

calculated or optimised against observations gathered in

specific (unique) locations under particular sets of forcing

conditions. One of the lessons from GLUE studies is that it

is the parameter set that is important in giving a good fit to

the observations. It is very rarely the case that the simulations

are so sensitive to a particular parameter that only certain

values of that parameter will give good simulations. More

often a particular parameter value will give either good or

bad simulations depending on the other parameter values

in the set. Thus, bringing together different parameter values

from different sources is no guarantee that, even if they were

optimal in the situations where they were determined, they

will give good results as a set in a new set of circumstances.

Be warned!

The problem of uncertainty

The aim of the GLUE methodology is to produce a set of

behavioural models that properly reflect the uncertainties

arising from the modelling process and that reproduce the

observed behaviour of the catchment within the limitations

of measurement error. This is not always easy because of

errors in the input data and errors in the model structure,

both of which may be difficult to assess a priori. This is

demonstrated quite nicely in the simulation results of Freer

et al. (1996) where a timing error in the initiation of

snowmelt in the model results in a long period where the

GLUE model prediction limits parallel but do not bracket

the observations. This could of course be corrected, either

by adding a stochastic error model or, if the interest is in

short term forecasting, by data assimilation.

In principle, the additional uncertainties arising from

estimation errors in input data and other boundary conditions

could also be included in GLUE but this has not normally

been done, for reasons of both computational requirements
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and the problem of defining a model for that type of

uncertainty. Thus, again, the results will be conditional:

conditional on the input sequences used, the model structures

considered, the random parameter sets chosen, and the

likelihood measures chosen for model evaluation.  All these

choices, however, must be made explicit and can be subject

to critical review by end-users (and reviewers).

In simulation, the use of a stochastic error model raises

some interesting issues.  It should be expected that the

structure of the modelling errors should vary over time. This

has long been recognised in terms of the heteroscedasticity

of errors but, in hydrological series, it should also be expected

that the errors will be non-gaussian and changing in skew

between high and low flows. Thus it may be difficult to

formulate a statistical error model (and likelihood function)

that is consistent over both time and, with the GLUE

methodology, for different behavioural parameter sets that

may also vary locally in their bias and error covariance

structures. So much of statistical parameter inference is

predicated on the implicit assumption that the “true” model

is available, that the rejection of that possibility in favour of

a concept of equifinality means that some new approaches

are needed. GLUE is one such approach that can be used

for models for which it is computationally feasible. It has

been used for distributed and semi-distributed models over

limited domains but clearly there are still some distributed

modelling problems for which the parameter dimensionality

and computational times mean that a full Monte Carlo

analysis remains infeasible. However, it is an open question

as to whether the affordable parallel computer power to do

so will arrive before we develop the conceptual and

theoretical developments or measurement techniques that

might make a GLUE-type analysis unnecessary.

One response to the equifinality problem is to suggest

that the problem only arises because we are using poor

models (Beven, 1996a). Again, there is a widespread belief

that if we could get the model dynamics right then perhaps

we would have less parameter identification problems. The

analysis above suggests that this belief is not justified. Even

the perfect model will be subject to the problem of

equifinality in applications and we know very well that we

have not quite attained the perfect model. Clearly, therefore,

we are using poor models in that sense but many modern

modellers, as instrumentalists, will argue that despite their

limitations they are the best models available (often giving

quite acceptable simulations) and they are what we must

make use of in practical prediction. Thus, it is perhaps best

to view the uncertainty arising from equifinality as a question

of decidability. The fact that we have many models that give

acceptable simulations of the available data does not mean

that they are poor models. It only means that they cannot be

rejected (are not decidable) on the basis of the data to hand.

Additional data, or different types of data, might mean that

we could reject more of the models that up to now have

been behavioural in this sense.

In some cases new data might mean that we could reject

all the models we have available, in which case we might

have to revise the model structures or potential parameter

sets considered in the analysis. In this case we could actually

gain understanding. If models continue to work acceptably

well but cannot be distinguished then there is really no way

of deciding between them. If we have to reject models then

we will gain much more information about what might be

an appropriate process description. If we have to reject all

models then we will have to query the model structure itself,

or look more closely at how meaningful are the observations

that we are using to decide on model rejection. However,

rejection of all models will also mean that we have no

predictions, so we might (just possibly) instead choose to

relax our criteria for retaining models as “acceptable”.

Is there a way ahead?  How far can we go?

Looking at the problem of equifinality as a question of

decidability allows an interesting reformulation of the GLUE

approach, to the extent that Beven (2001b) has suggested

that it allows an Alternative Blueprint for distributed model

in hydrology, to replace that of Freeze and Harlan (1969). It

is not, however, an alternative set of descriptive equations.

The discussion above suggests that, although we know that

the Freeze and Harlan description is inadequate, we do not

yet have the measurement techniques that would enable us

to formulate a new scale dependent set of process

descriptions. Thus we will have to resort to the variety of

conceptual formulations that are currently available (this

includes Richards equation which, as applied as a sub-grid

parameterisation in practice, is certainly a conceptual model

that should be expected to have scale dependent parameter

values, Beven, 1989, 1996b).

Within the GLUE framework this is not a problem in

principle, only a problem of computational resources.

Ignoring computational limitations it will be possible in

principle to evaluate different model conceptualisations, and

parameter sets within those conceptualisations, to evaluate

which models are behavioural and which should be rejected,

according to some statistical or more pragmatic criteria.

Further, it will be possible to give some relative ranking to

the different behavioural models in terms of the likelihood

weights to be used in the determination of prediction limits.

It is true that many modellers find that the relativism inherent

in this type of GLUE methodology is totally incompatible

with a view of hydrology as a science. I suspect that many
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end-users of hydrological predictions would take a similar

view.

However, my own view is that there is actually an

opportunity here to put hydrological prediction on a firmer

scientific basis (see Beven, 2000a). Let us pursue the idea

of equifinality as a problem of decidability given the available

data a little further.  The idea of accepting many behavioural

models in prediction because they have all given simulations

that are consistent with the available data does not mean

that those models are indistinguishable, nor that we could

not decide between those models given the right sort of data.

This is perhaps best viewed in terms of a mapping of the

landscape of a catchment into the model space (Beven,

2000a, b, 2001b). Accepting the concept of equifinality, each

landscape unit might be represented by many different

behavioural models in the model space. The mapping will

therefore be an uncertain or fuzzy mapping depending on

what type of evaluation measures are used, with different

landscape units mapping into possibly overlapping areas of

the model space. The differences in predicted behaviour for

the behavioural models for each landscape unit can then be

reflected in mapping the results of simulations in the model

space.

One of the interesting features of this view of the modelling

processes is that, in principle, everything is known about

the simulations in the model space. If the models are run

purely deterministically with a single set of input forcing

data this will be a one to one mapping. But even if the model

is stochastic and the inputs are treated stochastically then

the output statistics could still be mapped in the model space,

subject only to computational constraints. Thus differences

in predicted behaviour in the model space can be identified

and an exploration of the model space might then provide

the basis for setting up some testable hypotheses that might

allow some of the behavioural models to be rejected on the

basis of a new data collection programme within an

underlying falsificationist framework. The approach is then

analogous to that of multiple working hypotheses (the

behavioural models) with an experimental programme

designed to differentiate between them and (hopefully) falsify

or reject some of them. This might then be represented as

hydrological science to the end-user and/or research grant

awarding agency.

It is this process that forms the Alternative Blueprint of

Beven (2001b). The Alternative Blueprint as method can

be summarised by the following six stages:

(i) Define the range of model structures to be considered.

(ii) Reject any model structures that cannot be justified

as physically feasible a priori for the catchment of

interest.

(iii) Define the range for each parameter in each model.

(iv) Reject any parameter combinations that cannot be

justified as physically feasible a priori.

(v) Compare the predictions of each potential model with

the available observed data (which may include both

catchment discharge and internal state measurements,

as well as any qualitative information about catchment

processes) and reject any models which produce

unacceptable predictions, taking account of estimated

error in the observations.

(vi) Make the desired predictions with the remaining

successful models to estimate the risk of possible

outcomes.

In terms of the assessment of physically realistic distributed

models in hydrology the most important steps in this process

are the rejection of models that cannot be considered as

physically feasible, either a priori, or as resulting in

unrealistic predictions.

There is an interesting further stage that might prove to

be useful in the future. If, in principle, a model structure or

set of model structures has an adequate range of hydrological

functionality and that functionality can be mapped in the

model space for a certain set of input conditions then the

areas of different functional response can be mapped out in

the model space. Thus, it may only be necessary to make

representative predictions for these different functionally

similar areas of the feasible model space and not for all

possible models in the feasible space, thereby increasing

the computational efficiency of the methodology, at least in

prediction.  The definition of what constitutes functional

similarity is, of course, an issue and will undoubtedly vary

with the aims of a project.  A first attempt at the application

of such a strategy, in the context of defining land surface to

atmosphere fluxes over a heterogeneous landscape, has been

outlined by Franks et al. (1997; see also Beven and Franks,

1999).

Some unresolved questions……

The approach outlined above provides a way forward for a

scientific approach in distributed hydrological modelling.

It recognises that different functional responses within the

model space may be a guide to hypothesis formulation and

testing. It recognises that the landscape unit to model space

mapping may be uncertain or fuzzy in nature. It recognises

that uniqueness of place is not just a problem of trying to

identify a unique model parameter set (as usually assumed

with most current applications of distributed models). It

recognises the primary importance of data in evaluating and

rejecting models as physically feasible. It recognises that
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new conceptual developments are unlikely to happen quickly

but can incorporate them easily as necessary. Indeed, it may

be that conceptual model developments are most likely to

happen when we are forced to reject all the available models

because of inconsistency with data.

There remain many unresolved questions that must be

addressed in distributed modelling in the future. A collection

of such questions arose out of the Francqui Workshop on

the future of distributed modelling in hydrology held in

Leuven in April 2000 (see Beven, 2000b, Beven and Feyen,

2001). Some of the most important, relevant here, include:

how far do we need to consider the detail in processes

descriptions when there is no way to measure the local detail

necessary to support such descriptions?  Can a model, for

example, based on a hysteretic storage discharge relationship

for a hillslope be just as physically acceptable as the local

hysteresis in soil moisture characteristics required by a full

local application of the Richards equation (or, in the structure

of the Alternative Blueprint would you reject it a priori as

physically infeasible)?

A further question arises in applications requiring

distributed predictions (for example of the extent of  flood

inundation, of the risk of erosion, of potential source areas

for non-point pollution, etc). If it is accepted that accuracy

in local predictions must be necessarily limited, when would

predictions of where rather than how much be acceptable.

In some cases, such as those noted above, a relative

assessment of the spatial distribution of risk, including an

assessment of uncertainty, might be sufficient for risk based

decision making.

There are still relatively few assessments of distributed

models that have included spatially distributed observations

in either calibration or evaluation. Most assessments are

still based on comparisons of observed and predicted

discharges alone. This is perfectly understandable given the

time and effort required in gathering the spatial data sets

necessary but it is really not acceptable (for a fine example

of a study that has made assessments of spatial predictions

see Uhlenbrook and Leibundgut, 2001). As Klemeš (1986)

pointed out, even split record tests of models based on

discharge data alone are not a strong test of model feasibility

for lumped models, let alone distributed models. However,

the intention to test the spatial predictions of a distributed

model raises further questions. What sort of data should be

collected as a useful and cost effective test?  How best to

make use of spatial data that might already be available, for

example from observation wells or soil moisture profiles,

when there may be a mismatch in scales between the

observations and the predicted variables?  What sort of

evaluation or likelihood measures should be used when the

errors may be variable in structure in space and time?  Can

the spatial data be used to suggest different model structures

where predictions of current model structures are shown to

be deficient?   These questions can be posed within the

Alternative Blueprint but will require commitment in

applications of the methodology to detailed data sets.

Finally, there is a real question as to how to develop

distributed models that properly reflect the collective

intelligence of the hydrological community.  At first sight it

would appear that one major store of collective intelligence

is in the model software systems of the current generation

of distributed models. I would venture to suggest, however,

that the continued application of models based on the Freeze

and Harlan blueprint is not an indication of much collective

intelligence (Beven, 2001e). It is a simple response to the

fact that no coherent alternative has been proposed over the

last 30 years. “Progress” in that time has consisted in trying

available distributed models to see if they work with more

or less calibration and little reporting of cases where they

have failed in their spatial predictions (though the graphics

have certainly improved). It remains to be seen if new model

structures will develop out of new measurements (remote

sensing, tomographic imaging, incremental stream

discharges etc.) becoming available, but in the short term

this seems unlikely.  Where then is the collective intelligence

of the hydrological community stored?  There appear to be

two more important depositories.  One is the back issues of

journals relevant to hydrology, including journals in

complementary fields (soil science, plant physiology,

nonlinear dynamics, etc); the other the field data sets that

have been collected from experimental and operational

catchments over the years. It does seem at the current time

that not much is being made of either of these sources of

information and that a fundamental review of what is

necessary information for the development of future

distributed models is needed.

It is, perhaps, opportune at this point to return to my PhD

thesis and the East Twin catchment. In his 1970 paper on

the results of field studies in the East Twin, Darrell Weyman

noted:

“To produce a control section discharge of  12 litres/sec by

throughflow alone from 540 m of bank requires a mean peak

throughflow discharge of 1320 cm3/min/metre. In contrast

the peak discharge from the soil [throughflow] plots was

only 185 cm3/min/metre. On the other hand, measured seeps

from the soil at other locations on the channel gave peak

discharges for this storm of up to 7800 cm3/min. The supply

area for these inputs is indeterminate but in terms of bank

length is certainly not more than one metre as seep spacing

is often less than that distance.” (p.31)

Thirty years on is there a distributed model that could be

said to be able to make use of this information?  Or, within
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the Alternative Blueprint, would the existing models all be

rejected a priori at this site?  Think about it in respect of

both principle and practice (and the naivety of a young

graduate student)!

……and a vision for the future

The Alternative Blueprint, outlined briefly above and in

Beven (2001b), provides a framework for doing distributed

modelling as hydrological science in a consistent way and

in the face of the various adversities faced by the modeller.

It is useful, within the sociology of science, to have such a

methodology as a defence against criticism of the apparently

ad hoc nature of some of the models that are reported,

especially those that use conceptual model elements to

interpret the information available from GIS overlays.

However, distributed models are not only being developed

because the computational resources, object oriented

programming languages, graphical interfaces, and spatial

databases of today make it a relatively easy task to implement

such models, but because there is a demand for practical

prediction of the effects of land use change, of non-point

source pollution, of the risks and impacts of erosion, and so

on. The future of distributed modelling lies, in fact, not so

much in the development of new theories for scaling or

process representation but in the application of models and

their use over a period of time in specific catchments.

This is very important because long term use in specific

catchments implies an increasing potential for model

evaluation, post-simulation audits, and learning about where

the model does not work. This suggests that including an

assessment of predictive uncertainty in modelling studies

will be a good idea for the modeller since it allows a greater

possibility of being “right”, or at least of being wrong

gracefully. It also suggests that, over time, there should be a

greater possibility of learning about the uniqueness of

different places within an application area, building up that

knowledge, both qualitative and quantitative, in a form that

can be used to refine the representation of functional

responses within the framework of the Alternative Blueprint.

This will be one way of making use of the increased computer

power that will be available in the future: to build a system

that will store or re-run the results of past simulations in a

form that can be compared with a current situation; to

identify where there is drift or error in the simulations or

where the model functionality seems inadequate; to act as a

repository for information, knowledge and understanding

about specific catchment areas such that local model

representations of those areas can be improved.

This does not imply that such a system, focussed on the

details of specific catchments, should not take new

developments in modelling into account. Clearly, if some

radical change in modelling concepts is achieved in the

future, perhaps driven by new measurement techniques, then

there should be the potential to include it. The challenge

will be to make a system that is “future proof” in this respect,

not only with respect to such new developments but also to

the change of people who will run it and to changes in the

computer systems on which it might run. Then, gradually,

we will gain more real understanding about how local

hydrological systems really work, including all their local

complexities. It is now possible to model the hydrology of

the globe (albeit with some uncertainty). More modestly and

more importantly it should also now be possible to model

places on that globe in detail: still with uncertainty,  but

gradually learning about their particular characteristics and

particular idiosyncracies in hydrological response.
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