
How Far Can We Go on the x64 Processors?

Mitsuru Matsui1

Information Technology R&D Center
Mitsubishi Electric Corporation

5-1-1 Ofuna Kamakura Kanagawa, Japan
Matsui.Mitsuru@ab.MitsubishiElectric.co.jp

Abstract. This paper studies the state-of-the-art software optimization
methodology for symmetric cryptographic primitives on the new 64-bit
x64 processors, AMD Athlon64 (AMD64) and Intel Pentium 4 (EM64T).
We fully utilize newly introduced 64-bit registers and instructions for ex-
tracting maximal performance of target primitives. Our program of AES
with 128-bit key runs in 170 cycles/block on Athlon 64, which is, as far
as we know, the fastest implementation of AES on a PC processor.
Also we implemented a “bitsliced” AES and Camellia for the first time,
both of which achieved very good performance. A bitslice implementa-
tion is important from the viewpoint of a countermeasure against cache
timing attacks because it does not require lookup tables with a key-
dependent address. We also analyze performance of SHA256/512 and
Whirlpool hash functions and show that SHA512 can run faster than
SHA256 on Athlon 64. This paper exhibits an undocumented fact that
64-bit right shifts and 64-bit rotations are extremely slow on Pentium 4,
which often leads to serious and unavoidable performance penalties in
programming encryption primitives on this processor.

Keywords: Fast Software Encryption, x64 Processors, Bitslice

1 Introduction

This paper explores instruction-level software optimization techniques for the
new 64-bit x64 architecture on Athlon 64 and Pentium 4 processors. Of course a
64-bit programming is not a new topic; Alpha, PA-RISC, Sparc, etc. have been
already studied in many literatures, but the new x64 architecture is extremely
important and promising in the sense that it is a superset of the currently dom-
inant x86 architecture and Microsoft finally launched 64-bit Windows running
on the x64 processors in the PC market.

Interestingly and ironically, the x64 architecture was initially designed and
published by AMD under the name AMD64, and later followed by Intel under
the name EM64T. EM64T is binary compatible with AMD64, but the inter-
nal hardware design of Pentium 4 is completely different from that of Athlon
64. Intel pursues higher clock frequency with a deep pipeline and AMD seeks
for higher superscalability and lower memory latency with an on-chip I/O con-
troller (HyperTransport). Which of Intel and AMD is fast has been always a
controversial issue.

2

From programmer’s side, the x64 structure is what was long awaited; one
of its biggest impacts is liberation from the “register starvation”, which was
x86 programmer’s nightmare. This paradigm shift could be compared with the
liberation from the “segment wall” of a 16-bit program in 1980’s.

Our interest in the x64 architecture is two-fold. First we would like to see
to what extent performance gain is expected on this architecture for symmetric
cryptographic primitives, and then compare AMD with Intel, targeting at Athlon
64 and Pentium 4 processors. To do this, we started at looking at instruction-
level performance. AMD has published a reliable list of an instruction latency
and throughput of 64-bit instructions [20], but no similar information is cur-
rently available for Pentium 4. Our own experiments exhibit that some 64-bit
instructions of Pentium 4 are unexpectedly slow, which can lead to serious and
unavoidable performance penalties in programming encryption primitives.

Our first target primitive is AES [6]. We show that Athlon 64 is very suitable
for an AES program mainly because it can issue up to two memory instructions
in parallel. This boosts encryption speed of AES and, as a result, our program
runs at the speed of 170 cycles/block, which is the fastest record of AES on a
PC processor. Pentium 4 has a higher clock frequency than Athlon 64 in general,
but still Athlon 64 seems to outperform Pentium 4 for AES.

The next target is Camellia [1]. the structure of Camellia should fit to 64-bit
processors in nature. However, due to a long dependency chain, it was not easy
to obtain high performance. We here propose a two-block parallel encryption,
which can be used in a non-feedback mode such as the CTR mode, and show
that its encryption speed on Athlon 64 reaches 175 cycles/block, thanks to the
doubled number of registers.

We next develop a bitslice implementation of AES and Camellia. The bitslice
technique for speeding up an encryption algorithm was introduced by Biham [4],
which was remarkably successful for DES key search on 64-bit processors such as
Alpha. We revisit this implementation from the viewpoint of a countermeasure
against cache attacks [17].

A bitsliced cipher can achieve a good performance if the number of registers
is many and a register size is long, which fully meets the x64 architecture. We
carefully optimized the S-boxes of AES and Camellia in bit-level, and succeeded
in obtaining very good and performance. Note that a bitslice implementation of
AES was also discussed by Rudra et al. [18], but our paper for the first time
reports a measured performance of bitsliced AES and Camellia implemented on
a real processor.

Finally we study software performance of hash functions SHA256/512 and
Whirlpool. Our x64 implementation results show that SHA512 can be faster than
SHA256 on Athlon 64, and also faster than Whirlpool on both of Athlon 64 and
Pentium 4 processors, unlike the results on 32-bit Pentium shown in [13][14].

Table 1 shows our reference machines and environments. Throughout this
paper, we refer to Pentium 4 with Prescott core as Pentium 4; it is a current
dominant core of Intel’s EMT64 architecture.

3

Processor Name AMD Athlon 64 3500+ Intel Pentium 4 HT

Core Name Winchester Prescott

Other Processor Info Stepping 4 Revision 14

Clock Frequency 2.2GHz 3.6GHz

Cache (Code/Data) 64KB / 64KB 12Kµops / 16KB

Memory 1GB 1GB

Operation System Windows XP 64-bit Edition

Compiler Microsoft Visual Studio 2005 beta

Table 1. Our reference machines and environments.

2 The x64 Architecture

2.1 x86 vs x64

The x64 (or x86-64) is the first 64-bit processor architecture that is a superset of
the x86 architecture. It was initially proposed and implemented by AMD and,
in an ironic twist of processor history, later adopted by Intel under the name
EM64T. Most of the extended features of the x64 architecture are what PC
programmers long awaited:

1. The size of general registers is extended to 64 bits. The 32-bit eax register,
for instance, is now lower half of the 64-bit rax register.

2. Additional eight general registers r8-r15 and eight xmm registers xmm8-xmm15
are introduced.

3. Almost all x86 instructions now accept 64-bit operands, including rotate
shift instructions.

In particular the register increase has liberated PC programmers from the
nightmare of register starvation. It is highly expected that these benefits open up
new possibilities of fast and efficient cryptographic applications in near future.
On the other side, using these extended features may cause the following new
penalties, which can be serious in some cases:

1. An instruction requires an additional prefix byte in using a 64-bit operand
or a new register. An increase in instruction length reduces decoding rate.

2. A 64-bit instruction is not always as efficient as its corresponding 32-bit
instruction. Performance of an instruction might vary in 32-bit mode and
64-bit mode.

How fast a specific instruction runs is an issue of processor hardware design,
not instruction set design. We will see that the second penalty above can be
serious for Intel Pentium 4 processor and show that a great care must be taken
when we implement a cryptographic algorithm on this processor.

4

2.2 Athlon 64 vs Pentium 4

Athlon 64 is a 3-way superscalar processor with 12 pipeline stages. It can de-
code and execute up to three instructions per cycle. Its three ALU’s and three
AGU’s work independently and simultaneously, and moreover up to two 64-bit
read/write instructions can access data cache each cycle in any combination
of reads and writes. Hence, for example, an n-time repetition of the following
(highly practical) code, which consists of five micro operations, works in n cycles,
that is, 5µops/cycle.

xor rax,TABLE1[rsi*8] ; 64-bit load and 64-bit ALU

xor rbx,TABLE2[rsi*8] ; 64-bit load and 64-bit ALU

add rsi,1 ; 64-bit ALU

Almost all of the 64-bit instructions of Athlon 64 runs in the same perfor-
mance as its corresponding 32-bit x86 instructions, which is why Athlon 64 is
often called a genuine 64-bit processor. The internal architecture of this pro-
cessor is well-documented by AMD [20] and relatively easy to understand. A
document written by Hans de Vries [21] is also helpful for understanding the
architecture of Athlon 64. Working on this processor is generally less frustrating
than exploring on Pentium 4.

One drawback of Athlon 64 is that it can fetch only 16 bytes of instructions
from instruction cache per cycle. This means that the decoding stage can be still
a bottleneck of performance, unlike Pentium 4. It is hence critically important
for programmers to reduce an average instruction length for obtaining maximal
performance on this processor.

A prominent feature of the Pentium 4 processor family is that instructions
are cached after decoded, and hence the decoding capability is not a perfor-
mance limiter any more, as long as a critical loop is covered by the trace cache
(instruction cache) entirely.

There exist two different core architectures in the Pentium 4 family, of which
we treat a newer one, the Prescott core, in this paper. Prescott has a deep 31-
stage pipeline and achieves high clock frequency. At the time of writing, the
highest frequency of the Athlon 64 family is 2.8GHz, while that of the Pentium
4 family is 3.8GHz, 36% faster than fastest Athlon 64.

Intel has not published pipeline architecture details of the Prescott core,
nor documented information about how EM64T instructions are handled in its
pipeline stages. To optimize a program on Pentium 4, we have to refer to not only
Intel’s document of the 32-bit architecture IA-32 [10], which is often erroneous,
but also resources outside Intel such as Agner [8] Kartunov [12].

As far as we know, Prescott can run continuously three micro operations per
cycle in an average (some resource says four, but we are not sure), which is less
than Athlon 64. Moreover, many instructions of Prescott have a longer latency
and/or a lower throughput than those of Athlon 64. This is a clear consequence of
the high clock frequency of the Prescott core. Table 2 shows a brief comparative
summary of these processors.

5

Athlon 64 Pentium 4

Current highest clock frequency 2.8GHz 3.8GHz (good)

Decoding bottleneck possible mostly no (good)

Average instruction latency low (good) sometimes high

Maximal continuous execution rate 5µops/cycle (good) 3µops/cycle

Table 2. A simple comparison between Athlon 64 and Pentium 4.

Which of AMD and Intel is faster is always a controversial issue. We will
show in this paper that in many cryptographic algorithms Athlon 64 outperforms
Pentium 4 on the 64-bit platform, except a code using xmm instructions (SSE2),
even if we take into consideration Pentium 4’s faster clock frequency.

2.3 Instruction Latency and Throughput

Table 3 shows a list of an instruction latency (left) and throughput (right) of
some of x64 instructions. We derived all the data in the list experimentally.
Specifically, we measured the number of execution cycles of a code that consists
of 100-1000 repetitions of a target instruction. Some fractional values on Pentium
4 are approximate. A latency of an instruction is n, when its result can be used
in n cycles after the instruction has been issued. A throughput is the maximal
number of the same instructions that can run continuously in parallel per cycle.

We believe that this table is of independent interest. It is quite surprising
that 64-bit right shifts shr and 64-bit rotations ror,rol are extremely slow on
Pentium 4. We do not know what was behind in this decision in Intel. Clearly
this is a bad news for programmers of cryptographic algorithms.

Throughout this paper, we assume that a memory read/write is one µop each,
and hence that xor reg,[mem] and xor [mem],reg consist of two µops and
three µops, respectively. An exact µop break-down rule has not been published.

Processor Pentium 4 (EM64T) Athlon 64 (AMD64)

Operand Size 32 64 32 64

mov reg,[mem] 4, 1 4, 1 3, 2 3, 2

mov reg,reg 1, 3 1, 3 1, 3 1, 3

movzx reg,reg8L 1, 3 1, 3 1, 3 1, 3

movzx reg,reg8H 2, 4/3 - 1, 3 -

add reg,reg 1, 2.88 1, 2.88 1, 3 1, 3

sub reg,reg 1, 2.88 1, 2.88 1, 3 1, 3

adc reg,reg 10, 2/5 10, 2/5 1, 5/2 1, 5/2

sbb reg,reg 10, 2/5 10, 2/5 1, 5/2 1, 5/2

xor/and/or reg,reg 1, 7/4 1, 7/4 1, 3 1, 3

not reg 1, 7/4 1, 7/4 1, 3 1, 3

shr reg,imm 1, 7/4 7, 1 1, 3 1, 3

shl reg,imm 1, 7/4 1, 7/4 1, 3 1, 3

ror/rol reg,imm 1, 1 7, 1/7 1, 3 1, 3

6

Processor Pentium 4 (EM64T) Athlon 64 (AMD64)

Operand Size 128 128

movdqa xmm,[mem] -, 1 -, 1

movdqa xmm,xmm 7, 1 2, 1

movd xmm,reg + movd reg,xmm 13, - 14, -

paddb/paddw/paddd xmm,xmm 2, 1/2 2, 1

paddq xmm,xmm 5, 2/5 2, 1

pxor/pand/por xmm,xmm 2, 1/2 2, 1

psllw/pslld/psllq xmm,xmm 2, 1/2 2, 1

pslldq xmm,xmm 4, 1/2 2, 1

psrlw/psrld/psrlq xmm,xmm 2, 1/2 2, 1

psrldq xmm,xmm 4, 1/2 2, 1

Table 3. A list of an instruction latency and throughput of Pentium 4 and Athlon 64.

After our creating this table, we found an independent (but not formally
published) result obtained by Granlund [9]. Table 3 contains several results that
are not covered in [9]. Our results mostly agree with Granlund’s for Athlon 64,
but look slightly different for some instructions of Pentium 4. It is known that
Pentium 4 Prescott has many variations (stepping, revision), which can lead
to subtly different instruction timings. Since Intel has not published detailed
information on the hardware design of Prescott, it is difficult to derive the precise
timing information.

3 AES

First we discuss a fast implementation of AES on the x64 architecture. See [6] for
the detailed specification of the AES algorithm. In [13], an x86 code of the “basic
component” of AES, which corresponds to Subbytes+Shiftrows+Mixcolumns,
was proposed for Pentium 4 processors. Code 1 shows the proposed code with
a modification for the x64 platform. One round of AES, except the final round,
can be implemented with four additional xor instructions, which corresponds to
AddRoundKey, and four-time repetition of the basic component:

movzx esi,al ; first address

mov/xor reg32_1,table1[rsi*4] ; first table lookup

movzx esi,ah ; second address

mov/xor reg32_2,table2[rsi*4] ; second table lookup

shr eax,16

movzx esi,al ; third address

mov/xor reg32_3,table3[rsi*4] ; third table lookup

movzx esi,ah ; fourth address

mov/xor reg32_4,table4[rsi*4] ; fourth table lookup

Code 1. An x64 implementation of the basic component of AES.

7

Alternatively, the last two lines can be also written in the following form,
which was recommended for Pentium 4 with Prescott core, where using ah is a
bit expensive:

shr eax,8 ; fourth address

mov/xor reg32_4, table4[rax*4] ; fourth table lookup

Code 2. An alternative implementation of the basic component (part).

Since each of the four tables occupies 1KB and we need additional four tables
for the final round, a total of 8KB data memory is needed for the entire AES
tables. This implementation is highly optimized and well scheduled, and hence
also works on 64-bit environments excellently.

Readers might be tempted to write the following code instead, which looks
more “genuine” 64-bit style:

movzx rsi,al

mov/xor reg32_1,table1[rsi*4]

movzx rsi,ah ; no such instruction

mov/xor reg32_2,table2[rsi*4]

shr rax,16 ; slow on Pentium 4

movzx rsi,al

mov/xor reg32_3,table3[rsi*4]

movzx rsi,ah ; no such instruction

mov/xor reg32_4,table4[rsi*4]

Code 3. This code does not work.

Code 3 does not work since a higher 8-bit partial register such as ah can be
used only in x86 code (the third and eighth lines), which is one of the small
number of exceptional instructions that do not have an extended 64-bit form.
If we change movzx rsi,ah into the original form movzx esi,ah, then code 3
works as expected, but is still slow on Pentium 4 because shr rax,16 is a 64-bit
right shift instruction.

Moreover, since the number of higher 8-bit registers are still limited to four
(ah,bh,ch,dh) in the x64 environment, we have to assign eax,ebx,ecx,edx to
reg32_1,...,reg32_4, which are used as address registers in the next round,
to minimize the number of instructions, but this is impossible without sav-
ing/restoring at least one input register in each round. In the x86 environment,
we had to access temporary memory for this due to register starvation, but in
the x64, we can use a new register instead, which slightly improves performance.

In summary, we should keep an x86 style, using new registers for temporary
memory in implementing AES on x64 environments. Table 4 summarizes our
implementation results of the AES algorithm with 128-bit key on Athlon 64 and
Pentium 4 processors, where the right most column shows the best known result
on 32-bit Pentium 4:

Our program runs very fast on the Athlon 64 processor. As far as we know,
this is the fastest AES implementation ever made on a PC processor; faster

8

than Pentium 4 even if we take into consideration higher clock frequency of the
Pentium 4 processor. This is mainly because Athlon 64 can execute two memory
load instructions with 3 latency cycles in parallel. The number of memory reads
for one block encryption of AES is 4 (for plaintext loads) + 11× 4 (for subkey
loads) + 16× 10 (for table lookups) = 208, which means that Pentium 4 takes
at least 208 cycles/block for one block encryption.

Considering an instruction latency of Athlon 64, the theoretical limit of AES
performance on this processor seems around 16 cycles/round = 160 cycles/block.
Our result is hence reaching closely this limit.

Processor Athlon 64 Pentium 4 Pentium 4
64-bit 64-bit 32-bit [13]

cycles/block 170 256 284

cycles/byte 10.6 16.0 17.8

instructions/cycle 2.74 1.81 -

µops/cycle 3.53 2.34 -

Table 4. Our implementation results of AES with 128-bit key.

4 Camellia

The next example of our implementation is another 128-bit block cipher Camellia
[1]. Recently Camellia has been adopted in the NESSIE project [16], Japan’s
CRYPTREC project [5] and also the ISO/IEC 18033-3 standard [11].

Camellia supports three key sizes; 128 bits, 192 bits and 256 bits as AES,
where we treat the 128-bit key version. The basic structure of Camellia is Feistel
type, consisting eighteen rounds with additional four small FL functions. Figures
1 and 2 show the F-function and the FL-function, respectively.

Fig. 1. The F-function of Camellia.

9

Fig. 2. The FL-function of Camellia.

The F-function has a typical SP-structure of eight-byte width, which is quite
suitable for 64-bit processors. Code 4 shows an implementation of (half of) the
F-function of Camellia with the minimum number of x64 instructions, which
should get the benefits of 64-bit registers:

movzx esi,al ; first address

xor rbx,table1[rsi*4] ; first table lookup

movzx esi,ah ; second address

xor rbx,table2[rsi*4] ; second table lookup

shr rax,16

movzx esi,al ; third address

xor rbx,table3[rsi*4] ; third table lookup

movzx esi,ah ; fourth address

xor rbx,table4[rsi*4] ; fourth table lookup

shr rax,16

... ; fifth to eighth

Code 4. An x64 implementation of the F-function of Camellia.

In practice, however, this code does not run very fast because of a long de-
pendency chain; especially the xor chain hinders parallel execution of multiple
instructions. Although we can obtain some performance improvement by intro-
ducing some intermediate variables to cut the dependency chain, the resultant
performance gain is limited.

On the other side, it should be noted that code 4 is using only three regis-
ters. Therefore it is possible to compute two blocks in parallel without register
starvation, which is expected to boost the performance. This parallel compu-
tation method can be applied to a non-feedback mode of operation, such as a
counter mode. Our optimized code for encrypting two blocks of Camellia in par-
allel, where they are interleaved in every half round, runs in 175 cycles/block on
Athlon 64; this performance is almost the same as that of AES.

On the other hand, the performance on Pentium 4 is still poor because of
a long latency of the 64-bit right shift instructions. Probably a code without
using 64-bit instructions could be faster on Pentium 4. Table 5 summarizes our
implementation results of (two-block parallel) Camellia. Further optimization
efforts on Pentium 4 are now ongoing.

10

Processor Athlon 64 Pentium 4

cycles/block 175 457

cycles/byte 10.9 28.6

instructions/cycle 2.46 0.94

µops/cycle 3.28 1.26

Table 5. Performance of our two-block parallel program of Camellia with 128-bit key.

Code 5 is our implementation of the FL-function on 64-bit registers without
dividing a 64-bit input into two 32-bit halves. The required number of instruc-
tions of this tricky code is a bit smaller than that of a straightforward method.

mov rcx,[key] ; load 64 bits (klL+klR)

and rcx,rax ; rax = input

shr rcx,32

rol ecx,1

xor rax,rcx

mov ecx,[key] ; load 32 bits again (klR)

or ecx,eax

shl rcx,32

xor rax,rcx ; rax = output

Code 5. An x64 implementation of the FL-function of Camellia.

5 Bitslice Implementation

This section discusses a bitslice implementation of AES and Camellia. The bit-
slice implementation was initially proposed by Biham [4], which makes an n-
block parallel computation possible, where n is a block size and one (software)
instruction corresponds to n simultaneous one-bit (hardware) operations, by re-
garding the i-th bit of register j as the j-th bit of the i-th block.

In general, this implementation can be faster than an ordinary implementa-
tion when the following conditions are met:

— The bit-level complexity of the target algorithm is small.
— The number of registers of the target processor is many.
— The size of registers of the target processor is long.

The bitslice implementation was successful for DES [4] and MISTY [15] on
the Alpha processor, since these algorithms are small in hardware and Alpha
has thiry-two 64-bit general registers.

It is obvious that there is no hope of gaining performance using the bitslice
technique on x86 processors, which have only eight 32-bit registers. However
we have now sixteen 64-bit registers and it is now an interesting topic to see
to what extent the x64 architecture contributes to fast encryption. Note that
128-bit xmm registers are of no use, due to a poor latency and throughput of
SSE2 instructions.

11

Moreover, a program written in the bitslice method does not use any table
lookups with a key-dependent address. This means that a bitsliced code is safe
against implementation attacks such as cache timing attacks [17]. As far as we
know, this is the first paper that describes bitslice implementations of AES and
Camellia on an actual processor.

Clearly the most critical part of the bitslice program of these cipher algo-
rithms is a design of the 8x8 S-boxes. To minimize the number of instructions
of each of the S-boxes, which is composed of an inversion function over GF (28)
and a linear transformation for either of AES and Camellia, we should look
at its hardware implementation, not software, due to the nature of the bitslice
implementation.

Satoh et. al [19] proposed to design an inversion circuit of GF (28) using
circuits of GF (2) in hardware by recursively applying circuits of a subfield of
index two. We further considered an optimality of linear transformations that
are required before and after the inversion function to design the entire S-box
structure, and reached the following basis of GF (28) over GF (2) for a bitslice
S-box with a small number of instructions:

(1,β5,β,β6,α,β5α,βα,β6α),

where α8 + α6 + α5 + α3 + 1 = 0, and β = α6 + α5 + α3 + α2 ∈ GF (24).

Table 6 shows the number of x64 instructions required for implementing the
S-box of AES and Camellia, respectively. The “Before inversion”/“After inver-
sion” column shows the number of register-register logical instructions required
for the linear transformation before/after the Galois field inversion, respectively.
The two numbers of the “Inversion on GF (28)” column shows the number of
register-register logical instructions and register-memory load/store instructions.
In the inversion part, all of the fifteen 64-bit general registers are used except the
stack register, and additional five 64-bit temporary memory areas are needed.
Appendix B shows a source code of our implementation of this AES S-box.

Before inversion Inversion on GF (28) After inversion Total

AES S-box 12 156(reg) + 21(mem) 16 205

Camellia S-box 12 156(reg) + 21(mem) 14 203

Table 6. The number of x64 instructions of the S-box of AES and Camellia

Using this S-box implementation, we made the entire bitslice programs of
AES and Camellia. Table 7 shows the resultant performance of our codes.

The speed shown in this table is slower than that of the ordinary imple-
mentation method shown in the previous sections, but is still in a very practical
level. Note that in the bitslice implementation Camellia is slightly faster than the
bitsliced AES. This is mainly because Camellia has a fewer number of S-boxes
(144) than AES (160), though Camellia has an additional FL-function. Also the
performance of Athlon 64 is excellent again, since three logical instructions can
run on Athlon in parallel, but only two on Pentium 4.

12

Algorithm AES Camellia

Processor Athlon 64 Pentium 4 Athlon 64 Pentium 4

cycles/block 250 418 243 415

cycles/byte 15.6 26.1 15.2 25.9

instructions/cycle 2.75 1.66 2.74 1.61

µops/cycle 3.20 1.93 2.99 1.75

Table 7. Our implementation results of bitsliced AES and Camellia with 128-bit key

6 Hash Functions: SHA256/512 and Whirlpool

This section briefly shows our implementations of three recent hash functions
SHA256, SHA512 [7] and Whirlpool [2][3], all of which are now under consider-
ation for an inclusion in the new version of the ISO/IEC 10118 standard. Note
that the message block size of SHA256 and Whirlpool is 64 bytes, while SHA512
has a 128-byte message block.

Table 8 summarizes our performance results of SHA256, where the first col-
umn presents an ordinary implementation using general registers, and the second
column shows a four-block parallel implementation (in the sense of [13][14]). It
is seen that the x64 code of Athlon 64 establishes an excellent superscalability,
2.88 instructions/cycle, which is very close to its structural limit, 3 instruc-
tions/cycle. On the other hand, Pentium 4 is faster than Athlon 64 on the xmm
code, considering Pentium 4’s faster clock frequency.

Processor Athlon 64 Pentium 4

Instructions x64 (1b) xmm (4b) x64 (1b) xmm (4b)

cycles/block 1173 1154 1600 1235

cycles/byte 18.3 18.0 25.0 19.3

instruction/cycle 2.88 1.15 2.11 1.08

µops/cycle 3.16 1.22 2.31 1.14

Table 8. Our implementation results of SHA256.

Table 9 illustrates our implementation results of SHA512, where the sec-
ond column shows a two-block parallel code using xmm instructions. Also the
right two columns are previous results shown on [13]. A remarkable fact is that
SHA512 runs faster than SHA256 on Athlon 64 because an 64-bit instruction
runs in the same latency/throughput as its corresponding 32-bit instruction on
this processor. On the other side, Pentium 4 is very slow due to a long latency
of 64-bit rotate operations, which are unavoidable in programming SHA512.

Our final example is Whirlpool. Our experimental results presented in Table
10 shows that Whirlpool is not faster than SHA512 on either of Athlon 64 and
Pentium 4 in 64-bit environments.

13

Processor Athlon 64 Pentium 4 Pentium 4 [13]

Instructions x64 (1b) xmm (2b) x64 (1b) xmm (2b) mmx (2b) xmm (4b)

cycles/block 1480 2941 3900 3059 5294 3111

cycles/byte 11.6 23.0 30.5 23.9 41.4 24.3

instruction/cycle 2.85 1.15 1.08 1.10 - -

µops/cycle 3.17 1.21 1.20 1.14 - -

Table 9. Our implementation results of SHA512.

Processor Athlon 64 Pentium 4 Pentium 4 [13]

Instructions x64 x64 mmx

cycles/block 1537 2800 2319

cycles/byte 24.0 43.8 36.2

instruction/cycle 2.27 1.24 -

µops/cycle 3.08 1.69 -

Table 10. Our implementation results of Whirlpool.

7 Concluding Remarks

This paper explored the state-of-the-art implementation techniques for speeding
up symmetric primitives on the x64 architecture. In many cases Athlon 64 attains
better performance than Pentium 4 EM64T, even if Pentium 4’s higher clock
frequency is taken into consideration. Probably the slow 64-bit right shifts and
64-bit rotations of Pentium 4 will be (should be) redesigned in the next core
architecture for EM64T.

We also showed the first bitslice implementation of AES and Camellia on
these processors and demonstrated that our program achieved very good perfor-
mance. We believe that a bitslice implementation has a significant and practical
impact from the viewpoint of resistance from cache timing attacks. For inter-
ested readers, we summarize the coding style we adopted and how we measured
clock cycles of our programs in appendix A, and list an assembly language source
code of a bitsliced S-box of AES in appendix B.

References

[1] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, T. Tokita:
“The 128-Bit Block Cipher Camellia”, IEICE Trans. Fundamentals, Vol.E85-A,
No.1, pp.11-24, 2002.

[2] P. Barreto, V. Rijmen: “The Whirlpool Hashing Function”, Proceedings of First
Open NESSIE Workshop, Heverlee, Belgium, 2000.

[3] P. Barreto: “The Whirlpool Hash Function”,
http://planeta.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html

[4] E. Biham: “A Fast New DES Implementation in Software”, Proceedings of Fast
Software Workshop FSE’97, Lecture Notes in Computer Science, Vol.1267, pp.260-
272, Springer-Verlag, 1997.

14

[5] Cryptography Research and Evaluation Committees: The CRYPTREC Homepage
http://www.cryptrec.org/

[6] Federal Information Processing Standards Publication 197, “Advanced Encryption
Standard (AES)”, NIST, 2001.

[7] Federal Information Processing Standards Publication 180-2, “Secure Hash Stan-
dard”, NIST, 2002.

[8] A. Fog: “How To Optimize for Pentium Family Processors”, Available at
http://www.agner.org/assem/

[9] T. Granlund: “Instruction latencies and throughput for AMD and Intel x86 Pro-
cessors”, Available at http://swox.com/doc/x86-timing.pdf

[10] IA-32 Intel Architecture Optimization Reference Manual, Order Number 248966-
011,
http://developer.intel.ru/download/design/Pentium4/manuals/24896611.pdf

[11] ISO/IEC 18033-3, “Information technology - Security techniques - Encryption
algorithms - Part3: Block ciphers”, 2005.

[12] Victor Kartunov: “Prescott: The Last of the Mohicans? (Pentium 4: from
Willamette to Prescott)”
http://www.xbitlabs.com/articles/cpu/display/netburst-1.html

[13] M. Matsui, S. Fukuda: “How to Maximize Software Performance of Symmetric
Primitives on Pentium III and 4 Processors”, Proceedings of Fast Software Work-
shop FSE2005, Lecture Notes in Computer Science, Vol.3357, pp.398-412, Springer-
Verlag, 2005.

[14] J. Nakajima, M. Matsui: “Performance Analysis and Parallel Implementation of
Dedicated Hash Functions on Pentium III”, IEICE Trans. Fundamentals, Vol.E86-
A, No.1, pp.54-63, 2003.

[15] J. Nakajima, M. Matsui: “Fast Software Implementations of MISTY1 on Alpha
Processors”, IEICE Trans. Fundamentals, Vol.E82-A, No.1, pp.107-116, 1999.

[16] New European Schemes for Signatures, Integrity, and Encryption (NESSIE),
https://www.cosic.esat.kuleuven.ac.be/nessie/

[17] D. A. Osvik, A. Shamir, E. Tromer: “Full AES key extraction in 65 milliseconds
using cache attacks” Crypto 2005 rump session.

[18] A. Rudra, P. Dubey, C. Jutla, V. Kummar, J. Rao, P. Rohatgi: “Efficient Rijn-
dael Encryption Implementation with Composite Field Arithmetic”, Proceedings
of CHES 2001, Lecture Notes in Computer Science, Vol.2162, pp.171-184, Springer-
Verlag, 2001.

[19] A. Satoh, S. Morioka, K. Takano, S. Munetoh: “A Compact Rijndael Hardware
Architecture with S-Box Optimization”, Proceedings of Asiacrypt 2001, Lecture
Notes in Computer Science, Vol.2248, pp.239-254, Springer-Verlag, 2001.

[20] Software Optimization Guide for AMD64 Processors, Publication 25112,
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs

/25112.PDF

[21] Hans de Vries: “Understanding the detailed Architecture of AMD’s 64 bit Core”,
http://chip-architect.com/news/2003_09_21_Detailed_Architecture_of

_AMDs_64bit_Core.html

15

Appendix A: Coding Style and How to Measure Cycles

The coding style of our programs is basically the same as that in [13]. Our
programs are thread-safe; that is, we did not use any static memory area except
read-only constant tables. Also we did not write any key dependent code such
as a self-modifying trick.

Our assembly codes have the following interface that is callable from C lan-
guage, and we assume that the subkey has been given in the third argument.
In the x64 environments, the arguments are usually passed through registers,
not through stack, but this calling convention does not affect performance of
encryption functions seriously if block is sufficiently large.

We also assume that all addresses are appropriately aligned, at least on a
16-byte boundary to reduce possible mis-alignment penalties.

Function(uchar *plaintext, uchar *ciphertext, uint *subkey, int block)

The method for measuring a speed of Function that we adopted is that using
the cpuid+rdtsc instruction sequence, which is common in x86 processors, as
shown below:

xor eax,eax

cpuid ; pipeline flush

rdtsc ; read time stamp

mov CLK1,eax ; current time

xor eax,eax

cpuid

Function(..., int block)

xor eax,eax

cpuid ; pipeline flush

rdtsc ; read time stamp

mov CLK2,eax ; current time

xor eax,eax

cpuid

Code 6. A code sequence for measuring a speed of Function.

We first ran the code above and recorded CLK2-CLK1. Then we removed
Function from the code, ran again the code and recorded CLK2-CLK1. Since the
second record is an overhead of the measurement itself, we subtracted the second
record from the first record, then divded it by block and adopted the resultant
value as “cycles/block”. In practice, we made the measurement 100 times, of
which we removed exceptional cases due to, for instance, an interruption caused
by an operation system, and took an average on the remaning cases.

Strictly speaking the rdtsc instruction returns 64-bit clock tics to edx and
eax, but we used only lower 32 bits, because if an overflow of eax took place
during the measurement, it could be removed as an exceptional case.

16

Appendix B: Source Program of Bilsliced AES Sbox

This appendix shows a source code of our bitslice implementation of the Sbox of AES,
which is written in x64 assembly language with Microsoft MASM syntax. The complete
program is described as a macro with eight register inputs and eight register outputs.
We wrote several instructions in a single line for saving space.

;**

;* Bitslice Implementation of Sbox of AES *

;* Using x64 Instructions (AMD64 / EM64T) *

;* *

;* Input (rax,rbx,rcx,rdx,rbp,r8,r9,r10) *

;* Output (rbx,rdx,rax,r15,rbp,rcx,r10,r9) *

;* *

;* 205 Instructions (184 logical 21 memory) *

;* 40 Temporary Memory Bytes *

;* *

;* (C) Mitsuru Matsui 2005,2006 *

;**

SBOX MACRO

InBasisChange rax,rbx,rcx,rdx,rbp,r8,r9,r10

Inv_GF256 r10,rbp,rbx,rcx,rdx,r8,r9,rax,r11,r12,r13,r14,r15,rsi,rdi

OutBasisChange r10,rbp,rbx,rcx,rdx,r8,r9,rax,r15

ENDM

;**************************

;* InBasisChange: (12) *

;**************************

InBasisChange MACRO g0,g1,g2,g3,g4,g5,g6,g7

xor g6,g5 xor g6,g1 xor g5,g4 xor g7,g5 xor g4,g3

xor g4,g0 xor g0,g2 xor g7,g0 xor g3,g2 xor g2,g6

xor g3,g1 xor g6,g4

ENDM

;***************************

;* OutBasisChange: (16) *

;***************************

OutBasisChange MACRO g0,g1,g2,g3,g4,g5,g6,g7,g8

xor g1,g3 xor g1,g5 xor g1,g0 mov g8,g1 xor g8,g2

xor g1,g4 xor g2,g6 xor g6,g1 xor g1,g7 xor g7,g2

xor g2,g3 xor g3,g5 xor g3,g0 xor g0,g4 xor g0,g7

xor g4,g5

;We can skip the follwing four NOTs by modifying subkey in advance.

;not g6 ;not g0 ;not g7 ;not g4

ENDM

17

;***

;* Mul_GF4: Input x0-x1,y0-y1 Output x0-x1 Temp t0 (8) *

;***

Mul_GF4 MACRO x0,x1,y0,y1,t0

mov t0,x1 xor x1,x0 and x0,y0 and t0,y1

xor y0,y1 and x1,y0 xor x1,x0 xor x0,t0

ENDM

;**

;* Inv_GF4: Input x0,x1 Output x0,x1 (2) *

;**

Inv_GF4 MACRO x0,x1

and x0,x1 not x0

ENDM

;**

;* Mul_GF16: Input x0-x3,y0-y3 Output x0-x3 Temp t0-t3 (35) *

;**

Mul_GF16 MACRO x0,x1,x2,x3,y0,y1,y2,y3,t0,t1,t2,t3

mov t0,x2 mov t1,x3 mov t2,y3

mov t3,t0 and t3,t2 and t0,y2 and t2,t1 and t1,y2

xor t1,t3 xor t0,t1 xor t1,t2

xor x2,x0 xor x3,x1 xor y2,y0 xor y3,y1

Mul_GF4 x2,x3,y2,y3,t3

Mul_GF4 x0,x1,y0,y1,t3

xor x2,x0 xor x3,x1 xor x0,t1 xor x1,t0

ENDM

;**

;* Inv_GF16: Input x0-x3 Output x0-x3 Temp t0-t3 (34) *

;**

Inv_GF16 MACRO x0,x1,x2,x3,t0,t1,t2,t3

mov t0,x0 mov t1,x1 xor t0,x2 xor t1,x3 mov t2,t0

Mul_GF4 x0,x1,t0,t1,t3

xor x0,x3 xor x1,x2

Inv_GF4 x0,x1

mov t0,x0

Mul_GF4 x2,x3,t0,x1,t3

Mul_GF4 x0,x1,t2,t1,t3

18

ENDM

;**

;* Inv_GF256: Input x0-x7 Output x0-x7 Temp t0-t3,s0-s2 (177) *

;**

Inv_GF256 MACRO x0,x1,x2,x3,x4,x5,x6,x7,t0,t1,t2,t3,s0,s1,s2

mov t0,x0 mov t1,x1 mov t2,x2 mov t3,x3 xor t0,x4

xor t1,x5 xor t2,x6 xor t3,x7

mov [rsp+0],t0 mov [rsp+8],t1

mov [rsp+16],t2 mov [rsp+24],t3

mov [rsp+32],x7

Mul_GF16 x0,x1,x2,x3,t0,t1,t2,t3,s0,s1,s2,x7

mov x7,[rsp+32]

xor x0,x4 xor x1,x4 xor x2,x4 xor x3,x4 xor x1,x5

xor x3,x5 xor x2,x6 xor x2,x7 xor x3,x7

Inv_GF16 x0,x1,x2,x3,t0,t1,t2,t3

mov t0,[rsp+0] mov t1,[rsp+8]

mov t2,[rsp+16] mov t3,[rsp+24]

mov [rsp+0],x0 mov [rsp+8],x1

mov [rsp+16],x2 mov [rsp+24],x3

Mul_GF16 x0,x1,x2,x3,t0,t1,t2,t3,s0,s1,s2,x7

mov t0,[rsp+0] mov t1,[rsp+8]

mov t2,[rsp+16] mov t3,[rsp+24]

mov [rsp+24],x3 mov x7,[rsp+32]

Mul_GF16 x4,x5,x6,x7,t0,t1,t2,t3,s0,s1,s2,x3

mov x3,[rsp+24]

ENDM

