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HOW FAR CAN WE GO WITH AMITSUR’S THEOREM IN

DIFFERENTIAL POLYNOMIAL RINGS?

AGATA SMOKTUNOWICZ

Abstract. A well-known theorem by S.A. Amitsur shows that the Jacobson

radical of the polynomial ring R[x] equals I[x] for some nil ideal I of R. In this

paper, however, we show that this is not the case for differential polynomial

rings, by proving that there is a ring R which is not nil and a derivation D

on R such that the differential polynomial ring R[x;D] is Jacobson radical.

We also show that, on the other hand, the Amitsur theorem holds for a

differential polynomial ring R[x;D], provided that D is a locally nilpotent

derivation and R is an algebra over a field of characteristic p > 0. The main

idea of the proof introduces a new way of embedding differential polynomial

rings into bigger rings, which we name platinum rings, plus a key part of the

proof involves the solution of matrix theory-based problems.

1. Introduction

Let R be a noncommutative associative ring. In 1956, S.A. Amitsur proved

that the Jacobson radical of the polynomial ring R[x] equals I[x] for some nil ideal

I of R [15]. Then in 1980, S. S. Bedi and J. Ram extended Amitsur’s theorem

to skew polynomial rings of automorphism type [5]. The question then arises as

to whether Amitsur’s theorem also holds for differential polynomial rings; that

is, whether the Jacobson radical of R[x;D] equals I[x;D] for a nil ideal I of R.

In 1975, D. A. Jordan [12] showed that Amitsur’s theorem holds for differential

polynomial rings R[x;D], provided that R is a Noetherian ring with an identity,

and in 1983, M. Ferrero, K. Kishimoto and K. Motose [8] showed that in the

general case the Jacobson radical of R[x,D] equals I[x,D] for an ideal I of R (and

I is nil if R is commutative). However, it remained an open question as to whether

I needs to be nil. We will answer this question in the negative, by proving the

following theorem.
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2 SMOKTUNOWICZ

Theorem 1. Let K be an arbitrary subfield of the algebraic closure of a finite

field. There is an K-algebra R and a derivation D on R such that R is not nil

and the algebra R[x;D] is Jacobson radical.

In particiular there is a ring R which is not nil and a derivation D on R such

that the ring R[x;D] is Jacobson radical.

Let F be the algebraic closure of a finite field, and let R be an F -algebra. Let K

be a subfield (possibly finite) of the field F , then R is also a K-algebra. Moreover,

R is nil as a K-algebra if and only if R is nil as an F -algebra; similarly R[x;D]

is Jacobson radical as a K-algebra if and only if R[x;D] is Jacobson radical as an

F -algebra. Therefore Theorem 1 also holds in the case when K is a finite field.

However, in the case when D is a locally nilpotent derivation we are able to

show the following.

Theorem 2. Let F be a field of characteristic p > 0, let R be an F -algebra and

D be a derivation on R. If D is a locally nilpotent derivation, then the Jacobson

radical of the differential polynomial ring R[x;D] equals I[x] for some nil ideal I

of R.

In 1987, J. Bergen, S. Montgomery and D.S. Passman showed that Amitsur’s

theorem also holds for differential polynomial rings in the case where R is a poly-

nomial identity algebra, and obtained far-reaching related results for enveloping

algebras of Lie algebras and crossed products [4]. Surprising applications of deriva-

tions in Lie algebras and nil algebras were found by V. M. Petrogradsky, I.P. Shes-

takov and E. Zelmanov [22, 23, 26]. We also note that the Jacobson radical of a

ring R[x;D] in the case when R has no nil ideals was investigated by P. Grzeszczuk

and J. Bergen [9]. For other results on such rings, see [18, 31]. Interesting results

in the case where R is a polynomial identity ring were obtained by J. Bell, B.

Madill and F. Shinko in [3], and by B. Madill in [17]; for example, in [3] it was

shown that, if R is a locally nilpotent ring satisfying a polynomial identity, then

R[x;D] is Jacobson radical. This does not hold in general for an arbitrary locally

nilpotent ring R (see [30]).

It was shown by J. Krempa [14] that the Koethe conjecture is equivalent to the

assertion that polynomial rings over nil rings are Jacobson radical. Notice that

logically Amitsur’s result works in the opposite direction to the Koethe problem.

In the direction of Amitsur it was shown by P. Nielsen and M. Ziembowski [19]

that R[x;D] need not be prime radical provided that R is a commutative nil ring

of bounded index of nilpotency. Recall also that it was shown in [8] that if R[x;D]
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is Jacobson radical then R is Jacobson radical. Notice that if R is an algebra over

a field whose cardinality exceeds the dimension of R as a vector space over F , and

such that R[x;D] is Jacobson radical, then R[x;D] is nil and hence R is nil [2].

The following questions remain open.

Question 1. Let R be a ring without nil ideals, and D a derivation on R; does it

follow then that R[x;D] is semiprimitive?

Notice that by Theorem 2 the answer to Question 1 is affirmative when R is an

algebra over a field of positive characteristic and D is locally nilpotent.

Question 2. Let F be a field of characteristic p > 0, let R be an F -algebra and D

be a locally nilpotent derivation on R. Suppose that R[x;D] is nil. Does it follow

that R[x] is nil?

Question 3. Are there examples as in Theorem 1, over the base field of charac-

teristic 0, or over non-algebraic extensions of finite fields?

Question 4. The examples constructed in Theorem 1 are not finitely generated

F -algebras. Is it possible to construct finitely generated examples?

Question 5. Is Theorem 2 valid over fields of characteristic zero?

Question 6. It was proved in [28] that any primitive ideal in R[x], where R is

nil has the form I[x]. Is the analogous result valid for the differential polynomial

setting?

Let D be a derivation on a ring R. Recall that the differential polynomial ring

R[x;D] consists of all polynomials of the form anx
n+ . . .+a1x+a0, where ai ∈ R

for i = 0, 1, 2 . . . , n. The ring R[x;D] is considered with pointwise addition and

multiplication given by xixj = xi+j and xa−ax = D(a), for all a ∈ R. For a given

ring A we denote by A1 the usual extension with an identity of the ring A. In a

non-unital algebra we assume that the ideal generated by a given set of elements

contains these elements. The main idea of the proof is contained in the following

result.

Theorem 3. Let n > 1 be a natural number. Let F be an infinite field, and let A′

be a free (non-unital) F -algebra in generators a1, . . . , an and x, and let A(∗) be the

ideal of A′ generated by a1, . . . , an. Then D(r) = xr − rx is a derivation on A′.

Let P be the smallest subalgebra of A′ containing elements a1, . . . , an and closed

under the action of D. Let I be an ideal in A′ with the property that γt(I) ⊆ I for
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every t ∈ F , where γt : A
′ → A′1 is the ring homomorphism such that γt(ai) = ai

for all i = 1, . . . , n and γt(x) = x+ t. Then the F -algebra

A(∗)/I ∩A(∗)

is isomorphic to the differential ring P̄ [y;D′], where P̄ = P/I ∩ P and D′ is the

derivation on P̄ such that D′(p+ (I ∩ P )) = xp− px+ (I ∩ P ) for every p ∈ P .

Observe, on the other hand, that a differential polynomial F -algebra R[x;D]

can be, in a natural way, embedded into the factor ring < R, x > /I, where

< R, x > is the free product of R and the polynomial ring F [x] and I is the ideal

generated by relations xr − rx − D(r). Notice that γt(I) ⊆ I for every t ∈ F ,

where γt :< R, x >→< R, x >1 is the ring homomorphism such that γt(r) = r for

all r ∈ R and γt(x) = x+ t. This shows that differential polynomial rings have a

presentation similar to the presentation from Theorem 39.

An outline of the proof for Theorem 1 now follows:

• Let F be a field, and let A′ be a free algebra in generators a, b, x, and A(∗)

be the ideal of A′ generated by a and b. We introduce ideal I(∗) in A(∗)

which is generated by entries of powers of some matrices X1, X2, . . .. It is

then shown that A(∗)/I(∗) is Jacobson radical.

• We introduce the platinum ideal L(I(∗)) of A(∗). We define L(I(∗)) to be

the smallest ideal such that I(∗) ⊆ L(I(∗)) and γt(I
(∗)) ⊆ L(I(∗)) for every

t ∈ F , where γt : A
′ → A′1 is the ring homomorphism such that γt(a) = a,

γt(b) = b and γt(x) = x+ t.

• It is then shown that A(∗)/L(I(∗)) is isomorphic to some differential poly-

nomial ring Z[y;D].

• Since A(∗)/I(∗) is Jacobson radical, then A(∗)/L(I(∗)) is Jacobson radical.

It follows that Z[y;D] is Jacobson radical.

• Next we introduce Assumption 1, and show that if F is a field which is

the algebraic closure of a finite field then Assumption 1 holds.

• It is then shown that if Assumption 1 holds then some subrings ofA(∗)/L(I(∗))

are not nil, which implies that Z is not nil.

• The last two sections contain matrix theory-based problems, which are an

important part of the proof.

For general information on polynomial identity algebras we refer the reader to

[6] and [24], and for diferential polynomial rings over associative noncommutative

rings to [13, 25] and [7]. We prove Theorem 2 in Section 2. Sections 3 − 9 and

10−17 are mathematically independent of each other and hence can be considered
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separately (in Sections 3-9 we prove Theorem 1 under the Assumption 1, and in

Sections 10 − 17 we prove Assumption 1 for algebras over some fields). Theorem

39 is proved in Section 4.

2. Proof of Theorem 2

Let R be a ring. Recall that an element r ∈ R is quasi-invertible in R if there

is s ∈ R such that r + s + rs = r + s + sr = 0. As every ring can be embedded

in a ring with an identity element, this can be written as (1 + r)(1 + s) = 1. Such

an element s is called a quasi-inverse of r. We start with the following well-known

fact

Lemma 4. Let Q be a ring, and let a ∈ Q be quasi-invertible, and let b, c ∈ Q be

quasi-inverses of a; then b = c.

Proof. Q is a subring of a ringQ1 with identity. Then 1+b = (1+b)((1+a)(1+c)) =

((1 + b)(1 + a))(1 + c) = 1 + c, so b = c. �

Let F be a field of characteristic p > 0 and let R be an F -algebra. Let D be a

locally nilpotent derivation on R. Let a ∈ R, then Dn(a) = 0 for some n. Observe

that using rule x · Dn(a) − Dn(a) · x = Dn+1(a), it can be proved by induction

that Dn(a) =
∑n

i=0 αix
n−iaxi where αi = (−1)i

(

n
i

)

(it can also be inferred using

rule (z − q)n =
∑n

i=0 αiz
j−iqi, where z denotes multiplication from the left by x,

and q multiplication from the right by x). Then Dpm

(a) = xpm ·a−a ·xpm

. Notice

that the binomial coefficients
(

n
i

)

are well defined for fields of finite characteristic.

Proof of Theorem 2: Let notation be as above, and let a ∈ R. D is a

locally nilpotent derivation, so there is m such that 0 = Dpm

(a) = xpm · a −
a · xpm

. If R[x;D] is Jacobson radical, then axpm

is quasi-invertible in R[x,D].

Let s be the quasi-inverse of axpm

; then s =
∑n

i=0 aix
i for some ai ∈ R. Let

S be a subring of R generated by elements a, a0, a1, . . . , an and elements Di(a),

Di(a0), D
i(a1) . . . , D

i(an) for i = 1, 2, . . .. Then D is a derivation on S and S[x;D]

is a subring of R[x;D]. Notice that element axpm

is quasi-invertible in S[x;D].

Recall that D is a locally nilpotent derivation, so there is k > m such that 0 =

Dpk

(ai) = xpk

ai − aix
pk

for 0 ≤ i ≤ n. Then xpk

commutes with all elements

of S, since xpk

Dj(ai) −Dj(ai)x
pk

= Dpk+j(ai) = 0. Therefore, D is a nilpotent

derivation on S, since Dpk

(r) = xpk · r − r · xpk

= 0 for every r ∈ S. Notice

that S[x;D] is a subring of a ring Q, where Q is the set of all series
∑∞

i=0 cix
i

with ci ∈ S with natural addition and multiplication xc − cx = D(c) for c ∈ S.

The multiplication on Q is well defined because D is a nilpotent derivation on S.
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Recall that xpm · a − a · xpm

= 0, hence (axpm

)i = ai · xi·pm

. Observe that for

c = a ·xpm

we have (1+c)(1−c+c2−c3+ . . .) = 1. Therefore, a′ =
∑∞

i=1(−1)ici =
∑∞

i=1(−1)iaixi·pm

is a quasi-inverse of a · xpm

in Q. By Lemma 4, we get s = a′,

hence a′ ∈ S[x;D]. It follows that aixi·pm

= 0 for almost all i; hence a is nilpotent.

3. Definitions and the Jacobson radical

Let F be a field. Throughout this paper we will assume that F is a countable

and infinite field. Notice in particular that the algebraic closure of any finite field

is countable. Let A′ be a free noncommutative F - algebra generated by elements

a, b and x; A′ is a free algebra in the category of non-unital algebras, so it does not

contain elements with non-zero constant term. We assign gradation 1 to elements

a and b and we assign gradation 0 to element x. By R we denote the subalgebra

of A′ generated by a and b, and by A we denote a subalgebra of A′ generated by

axi, bxi for i ≥ 0. Notice that A = RA′ +R, and hence A is a left ideal in A′. By

A′(n) we will denote the linear space spanned by all elements with gradation n in

A′. In general, if T is a linear subspace of A′, then we denote T (n) = T ∩A′(n). In

particular, A(n) denotes the linear space spanned by all elements with gradation

n in A. For a given ring Q we denote by Q1 the usual extension with an identity

of the ring Q. By 〈x〉 we will denote the ideal generated by x in A′.

Denote A(∗) = A+xA+x2A+. . . =
∑∞

i=0 x
iA, notice that A(∗) is the ideal of A′

generated by a and b. Given an ideal I in A we denote I(∗) = I +xI +x2I + . . . =
∑∞

i=0 x
iI.

The following Lemma is a reformulation of Lemma 7.2 in [29].

Lemma 5. Let r ∈ A. Then there is a matrix Xr of some finite size with entries

in A(1) and such that for every n > 0, r+Qr,n is quasi-invertible in algebra A/Qr,n

where Qr,n is the ideal generated by coefficients of matrix Xn
r in A. If r ∈ R, then

the quasi-inverse of r+Qr,n equals s+Qr,n for some s ∈ R. If r ∈ 〈x〉, then there

is α(Xr) such that Xi
r has all entries in 〈x〉 for every i > α(Xr).

Proof. To every r ∈ A we can assign matrix Xr of some finite size with entries

in A(1), like in Definition 7.1 in [29]. Let n be a natural number. We can apply

Lemma 7.2 from [29] to S = A(1) and r =
∑γ

i=1 si with si ∈ Si = A(i). Recall

that we used the following notation in [29], v0 = 1 and vi is the sum of all products

sj1sj2 . . . sjk where j1+. . .+jk = i and k is arbitrary. Observe now that by Lemma

7.2 in [29] r is quasi-invertible in A/Q(r, n).
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Observe also that if r ∈ A ∩ 〈x〉, then for a sufficiently large n matrix Xn
r has

all entries from A ∩ 〈x〉 by the Remark on page 925 in [29]. Notice also that all

coefficients of Xn
r are from A(n).

If r ∈ R, then the entries of matrix Qr,n are in R, hence by the above reasoning

applied to ring R instead of A we get that r + Qn is quasi-invertible in R/Qn,

where Qn is the ideal generated by entries of Xn
r in R. Observe that Qn ⊆ Qr,n.

By Lemma 4, r+Qr,n has a quasi-inverse of the form s+Qr,n for some s ∈ R, as

required. �

The field F is countable, hence the set of elements of A is countable (since

A is finitely generated). It follows that the set of all matrices Xr for r ∈ A′ is

countable. We can ennumerate the matrices Xr with either r ∈ A∩A′xA′ or r ∈ R

as X1, X2, . . ..

The main result of this section is the following:

Theorem 6. Let notation be as above, in particular let matrices X1, X2, . . . be as

above. Let 0 < m1 < m2 < . . . be a sequence of natural numbers such that 20mi

divides mi+1, and mi > α(Xi) (where α(Xi) is as in Lemma 5). Let S′
i be the

linear space spanned by all entries of the matrix Xmi

i and let

Si =
∞
∑

j=1

A(j · 20mi − 2mi)S
′
iA(mi)A

1.

Let I be the ideal of A generated by the entries of matrices X30mk

k ·xi for all k > 0

and all i ≥ 0 (where the multiplication X30mk

k · xi is component-by-component).

Then I is a homogeneous ideal of A, I is contained in
∑∞

i=1 Si and A/I is Jacobson

radical. Moreover, IA′ ⊆ A′, and if g + h ∈ I and g ∈ R and h ∈ A ∩ 〈x〉 then

g, h ∈ I.

Proof. By Lemma 5 all entries of matrices Xk are in A(1), hence I is a homoge-

neous ideal of A. Let k > 0, observe first that the ideal Ik of A generated by entries

of the matrices X30mk

k is contained in the subspace Sk. It follows because entries

of every matrix Xk have degree one. Namely, if n > i + 2mk then every entry

of matrix Xn
k belongs to A(i)S′

kA(mk)A for every 0 ≤ i. Similarly every entry of

matrix Xn
k · xi belongs to A(i)S′

kA(mk)AA′ ⊆ A(i)S′
kA(mk)A. Observe also that,

by Lemma 5, all elements r ∈ R and all elements r ∈ A ∩ 〈x〉 are quasi-invertible

in A/I. Notice also that IA′ ⊆ I, as Xn
k · xi · r has entries in I for every r ∈ A′.

We will now show that for every r ∈ A element r+ I is quasi-invertible in A/I.

Let r = u+v, where u ∈ R and v ∈ A∩〈x〉. Since u ∈ R then by Lemma 5, there is

u′ ∈ R such that (1+u)(1+u′)+I = 1+I. Notice that element (1+r)+I has right
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inverse if and only if element (1+r)(1+u′)+I has right inverse in (A/I)1. We see

that (1+ r)(1+u′)+ I = (1+u+v)(1+u′)+ I = 1+v(1+u′)+ I. By assumption

1 + v(1 + u′) + I has right inverse by Lemma 5, because v(1 + u′) ∈ A ∩ 〈x〉
since v ∈ A ∩ 〈x〉. It follows that 1 + r + I has a right inverse in (A/I)1. In a

similar way we show that 1+ r+ I has a left inverse in (A/I)1. Therefore r+ I is

quasi-invertible in A/I (similarly as in Lemma 4).

The last assertion from the thesis of our theorems follws because mi > α(Xi),

and so the ideal generated by entries of matrix X30mi

i is either contained in 〈x〉 or
is generated by elements from R. �

Recall that A(∗) =
∑∞

i=0 x
iA. Notice that A′ = A(∗) + xF [x] where F [x] is the

polynomial ring over F (since A′ does not contain elements with non-zero constant

terms). Given an ideal I in A we denote I(∗) = I + xI + x2I + . . . =
∑∞

i=0 x
iI.

Lemma 7. Let A(∗) be as above. Let I be an ideal in A which is also a right ideal

in A′ (so IA′ ⊆ I). Let I(∗) = I + xI + x2I + . . . =
∑∞

i=0 x
iI. Then I(∗) is an

ideal in A(∗) and I ∩ R = I(∗) ∩ R. In addition if r + I is not a nilpotent in A/I

for some r ∈ R, then r + I(∗) is not a nilpotent in A(∗)/I(∗). Moreover, if A/I is

Jacobson radical then A(∗)/I(∗) is Jacobson radical.

Proof. Assume that A/I is Jacobson radical. Observe that I(∗) is a two-sided ideal

in A′. From Lemma 4.1 on page 50 in [15] (by interchanging the left and the right

side), we see that an element y is in the Jacobson radical of A′/I(∗) if yq + I(∗) is

quasi-invertible in A′/I(∗) for every q ∈ A′. Clearly, if y ∈ A then yq ∈ A for every

q ∈ A′. By assumption, if r = yq ∈ A then r + I is quasi-invertible in A/I and

hence r + I(∗) is quasi- invertible in A′/I(∗). Therefore every element a+ I(∗) for

a ∈ A is in the Jacobson radical of A′/I(∗). Recall that the Jacobson radical is a

two sided ideal. Therefore every element a′ + I(∗) for a′ ∈ A(∗) is in the Jacobson

radical of A′/I(∗). Observe that if b + I(∗) is a quasi-inverse of a′ + I(∗), then

b = −a′b − a′ ∈ A(∗) + I(∗) ⊆ A(∗). Therefore we can assume that b ∈ A(∗). It

follows that A(∗)/I(∗) is Jacobson radical.

We will now show that I ∩R = I(∗) ∩R. Let Ti = xi(RA′+R) = xiA for i ≥ 0.

Recall that A′ is a free algebra, and x /∈ R. Therefore if 0 6= ti ∈ Ti for i ≥ 0 then

elements t0, t1, . . . are linearly independent over F .

Let i ∈ I, then i = i0 + i1 + . . . + in for some i0 ∈ I, i1 ∈ xI, . . . , in ∈ xnI.

Observe that since I ⊆ A then ij ∈ Tj for j = 1, 2, . . . , n. If i ∈ R then i − i0 =

i1 + i2 + . . . + in. Notice that i − i0 ∈ T0. The above observation on elements ti
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implies that elements i−i0, i1, i2, . . . , in are all equal zero, so i = i0 ∈ I. Therefore

I ∩R = I(∗) ∩R.

Suppose now that r+ I(∗) is nilpotent in A(∗)/I(∗). Then rn ∈ I(∗) for some n,

so rn ∈ I by the above, and so r + I is nilpotent in A/I. �

4. Platinum ideals and platinum subspaces

In this section we introduce platinum spaces, which will be useful for construct-

ing examples of differential polynomial rings. Let notation be as in the previous

sections, in particular A′ is generated by elements a, b and x, and R is generated

by elements a and b.

Definition 1. Let P be the smallest subring of A′ satisfying the following prop-

erties.

• R ⊆ P

• If c ∈ P then xc− cx ∈ P

For a c ∈ R define D(c) = xc − cx. Then D is a derivation on P . Therefore

we can consider the differential polynomial ring P [y;D] where yc− cy = D(c) for

c ∈ P .

Remark 8. Another way to define P is to first to define the inner derivation D

associated with element x as D(r) = xr − rx for r ∈ A′, and then define P as the

intersection of all subrings of A′ which contain R and are closed under the action

of D. It is then clear that P ⊆ A′.

Recall that A′ is a free algebra with free generators a, b, x. Let q ∈ F then let

γq : A′ → A′1 be a ring homomorphism such that

γq(a) = a, γq(b) = b, γq(x) = x+ q.

Lemma 9. Let q ∈ F , then γq(p) = p for every p ∈ P .

Proof. We proceed by induction using the definition of P . Observe that γq(r) = r

for every r ∈ R. If u, v ∈ P and γq(u) = u and γq(v) = v then γq(u+ v) = u+ v

and γq(uv) = uv and γq(xu− xu) = (x+ q)γq(u)− γq(u)(x+ q) = xu− ux. �

Lemma 10. Let notation be as in Definition 1 and let F be an infinite field. Let

f : P [y;D] → A′ be a F -linear mapping such that f(p) = p and f(pyi) = pxi for

p ∈ P , i ≥ 1. Then f is injective and f is a homomorphism of rings.
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Proof. Observe that P embeds into A′ in a natural way as a subring, hence f(p) is

well defined as a ring homomorphism for p ∈ P . Every element of P [y;D] can be

uniquely written as a linear combination of elements pyi with p ∈ P , hence f is well

defined as a linear mapping. We will show that f is a ring homomorphism. Notice

first that binomial coefficients
(

n
i

)

are well definied in fields of finite characteristic.

Observe that if p, q ∈ P [y;D] then pynq = p
∑n

i=0

(

n
i

)

Di(q)yn−i.

Therefore f(pyn · qyj) = f(p
∑n

i=0

(

n
i

)

Di(q)yn−iyj) = p
∑n

i=0

(

n
i

)

Di(q)xn−i+j .

On the other hand, f(pyn)f(qyj) = pxn · qxj = p
∑n

i=0

(

n
i

)

Di(q)xn−i+j . Conse-

quently, f(pyn · qyj) = f(pyn)f(qyj).

We need to show that the kernel of f is zero. Suppose that f(
∑n

i=0 ciy
i) = 0

for some ci ∈ P . Since f(
∑n

i=0 ciy
i) = 0 then

∑n
i=0 cix

i = 0.

If c = 0 in A′ then clearly γq(c) = 0 for every q ∈ F (since γq is an homomor-

phism of rings). By Lemma 9 we get 0 = γq(
∑n

i=0 cix
i) =

∑n
i=0 ci(x+q)i. We can

write such equations for pairwise distinct elements q1, q2, . . . , qn+1 ∈ F and then

write them as (c0, c1, . . . , cn)M = 0 where M is a matrix with i-th column equal to

(1, (x+ qi), (x+ qi)
2, . . . , (x+ qi)

n)T . Observe that M is a transposition of a Van-

dermonde matrix, and hence the determinant of M is det(M) =
∏

i>j(qi−qj) ∈ F .

Hence there is matrix N in F [x] such that MN = Id·det(M), where Id is the iden-

tity matrix. It follows that (c0, c1, . . . , cn)M = 0 implies (c0, c1, . . . , cn)det(M) =

0, and so c0 = c1 = . . . = cn = 0. �

Recall that A(x) = A+ xA+ x2A+ . . ..

Lemma 11. Every element of A(∗) can be uniquely written in the form P +Px+

Px2 + . . . , moreover since A = RF [x] +RA(∗) every element of A can be written

in the form R[x] +RP +RPx+RPx2 + . . . (notice also that RP ⊆ P ∩A).

Proof. It can be shown by induction on n that xnP ⊆ P + Px + Px2 + . . . =
∑∞

i=0 Pxi. Next observe that the set P +Px+Px2 + . . . is closed under multipli-

cation and addition, hence it is a subring of A′ containing xiR and Rxi for every

i, hence it contains A(∗).

Suppose now that some elements from P+Px+Px2+. . . are linearly dependent

over F ; then
∑n

i=0 pix
i = 0 for some pi ∈ P . As A′ is a free algebra and γt is

a ring homomorphism for t ∈ F then γt(
∑n

i=0 pix
i) = 0. By Lemma 9 we get

∑n
i=0 pi(x+ t)i = 0. We can write such equations for different elements t = q1, t =

q2, . . . , t = qn+1 ∈ F and then write these equations as (p0, p1, . . . , pn)M = 0,

where M is a matrix with i-th column equal to (1, (x+qi), (x+qi)
2, . . . , (x+qi)

n)T .

Notice that M is a transposition of a Vandermonde matrix and the determinant
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of M is det(M) =
∏

i>j(qi−qj) ∈ F . Therefore M is invertible, with MN =Id for

some matrix N with entries in F [x] (where Id denotes the identity matrix). Hence

(p0, . . . , pn)M = 0 implies (p0, . . . , pn) = (po, . . . , pn)MN = 0, so p0 = p1 = . . . =

pn = 0, as required. �

Definition 2. Let S be a linear subspace in A′. We will say that S is a platinum

space if γq(S) ⊆ S for every q ∈ F .

Definition 3. Let I be an ideal in A′. We will say that I is a platinum ideal if

γq(I) ⊆ I for every q ∈ F . In particular, a platinum ideal is an ideal which is a

platinum subspace of A′.

We will say that A′/I is a platinum ring if I is a platinum ideal of A′.

Remark 12. Let I be an ideal in A′ and let Ī = I ∩P . Observe that Ī is an ideal

in P and if c ∈ Ī then xc− cx ∈ Ī (because xc, cx ∈ I).

Let I be a platinum ideal in A′. Denote Ī = I ∩ P . For p ∈ P we define

D(p) = xp−px. Then P/Ī is a ring with the derivation D(c+ Ī) = D(c)+ Ī where

D(c) = xc − cx. By the elementary Second Isomorphism Theorem ring P/Ī can

be embedded in A′/I via the mapping h : P/Ī → A′/I, where h(c+ Ī) = c+ I for

c ∈ P (see [12] for some related results).

Theorem 13. Let F be an infinite field. Let I be a platinum ideal in A′ then

I ⊆ A(∗). Denote Ī = I ∩ P . Let P ∗ = (P/Ī)[y;D] be the differential polynomial

ring with y(c+Ī)−(c+Ī)y = D(c+Ī) where D(c+Ī) = xc−cx+Ī, for c ∈ P . Then

the mapping f : P ∗ → A′/I given by f(p+ Ī) = p+I and f((p+ Ī)yi) = pxi+I for

p ∈ P , is an injective homomorphism of rings; moreover the image of P ∗ equals

A(∗)/I. Therefore, P ∗ can be embedded into A′/I.

Proof. We will first show that I ⊆ A(∗) and hence I is an ideal in A(∗). Observe

that A′ = A(∗)+xF [x], since A′ doesn’t contain elements with constant terms. Let

i = u+ v ∈ I where u ∈ A(∗) and v ∈ xF [x]. We will show that v = 0; suppose on

the contrary that v 6= 0. Notice that since F is an infinite field then γt(v) contains

a non-zero constant term from F for some t ∈ F . On the other hand A′ doesn’t

contain any elements with non-zero constant terms, hence γt(v) /∈ A′. Therefore

γt(i) = γt(u+ v) /∈ A′, a contradiction since I is a platinum ideal.

We will now show that the image of P ∗ is A(∗)/I. Notice that P ∗ = (P/Ī) +

(P/Ī)y + (P/Ī)y2 . . . =
∑∞

i=0(P/Ī)y
i. Consequently by the definition of mapping

f the image of P ∗ in A′/I equals (P + I)+(Px+ I)+ . . . =
∑∞

i=0 Pxi+ I. Clearly

P + Px + . . . ⊆ A(∗), since A(∗) equals the ideal of A′ generated by a and b. By

Lemma 11 we have A(∗) =
∑∞

i=0 Pxi, hence A(∗)/I =Im(P ∗).
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We will now show that f is an injective homomorphism of rings. By Remark

12, f is well defined as a ring homomorphism on P/Ī. Every element of P ∗ can be

uniquely written as a linear combination of elements pyi with p ∈ P , i ≥ 0, so f is

well defined as a linear mapping on P ∗. To check that f is a ring homomorphism

we proceed similarly as in Lemma 43.

We need to show that the kernel of f is zero. Suppose that f(
∑n

i=0(ci+Ī)yi) = 0

where ci + Ī ∈ P/Ī, ci ∈ P . By the definition of f we have
∑n

i=0(cix
i + I) =

0 + I in A′/I, hence
∑n

i=0 cix
i ∈ I. Since I is a platinum ideal we get that

γq(
∑n

i=0 cix
i) ∈ I for every q ∈ F . By Lemma 5, that implies

∑n
i=0 ci(x+ q)i ∈ I.

Write such equations for different elements q1, q2, . . . , qn+1 ∈ F , and then write

them as (c0, c1, . . . , cn+1)M = Q where M is a matrix with i-th column equal

to (1, (x + qi), (x + qi)
2, . . . , (x + qi)

n)T and Q is a vector with all entries from

I. Observe that M is a transposition of a Vandermonde matrix and hence the

determinant of M is det(M) =
∏

i>j(qi−qj) ∈ F . Therefore, M is invertible, with

MN =Id for some matrix N with entries in F [x] (where Id is the identity matrix).

Hence (c0, c1, . . . , cn)M = Q implies (c0, c1, . . . , cn) = QN . Since QN is a vector

with all entries in I, then c0, c1, . . . , cn ∈ I. Since ci ∈ P then ci ∈ P ∩ I = Ī

for i = 0, 1, 2, . . . , n. Therefore ci + Ī = 0 + Ī for every i ≤ n + 1, and so
∑n

i=0(ci + Ī)yi = 0, as required. �

Proof of Theorem 3. Notice that Theorem 13 is a special case of Theorem

3 for a1 = a and a2 = b. Observe that the number of generators of A doesn’t

influence the proof of Theorem 13, so the proof of Theorem 3 is the same as the

proof of Theorem 13.

Definition 4. For an element r ∈ A′ we define L(r)=spanF {γt(r) : t ∈ F}. Given

a linear space S ⊆ A′ we define L(S) =spanF {L(r) : r ∈ S}. Note that L(S) is

the linear space spanned by all elements γt(s) for t ∈ F , s ∈ S.

Lemma 14. Let S be a linear space, then L(S) is the smallest platinum space

containing S.

Proof. If S ⊆ Q and Q is a platinum space then γt(S) ⊆ Q for every t ∈ F .

Therefore L(S) ⊆ Q. We need to show that L(S) is a platinum space. Let

s ∈ L(S), then s =
∑

t∈W γt(st) where W is a finite subset of F and st ∈ S. Let

k ∈ F , then γk(s) =
∑

t∈W γk(γt(st)) =
∑

t∈W γk+t(st) ∈ L(S). �

Lemma 15. Let S ⊆ A′ be a platinum space, then S ⊆ A(∗). Suppose that sx ∈ S

for every s ∈ S. Then S = S′ + S′x+ S′x2 + . . . where S′ = P ∩ S.
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Proof. The proof that S ⊆ A(∗) is the same as the proof that I ⊆ A(∗) in Theorem

13. Observe first that S′xi ⊆ S for every i. We will show that S ⊆ S′ + S′x +

S′x2 + . . . =
∑∞

i=0 S
′xi. Let r ∈ S. By Lemma 11 we have r =

∑n
i=0 pix

i ∈ S for

some pi ∈ P . We will proceed by induction on n. If n = 0 then r = p0 ∈ P ∩ S,

as required. Suppose now that n > 0 and the result holds for all numbers smaller

than n, and we will show that it holds for n. Because A is a platinum subspace,

for every α ∈ F we have
∑n

i=0 pi(x+ α)i ∈ S. Let d =
∑n

i=0 pi(x+ α)i − r, then

d ∈ S. Observe that d =
∑n

i=0(pi(x + α)i − pix
i) =

∑n−1
i=0 dix

i for some di ∈ P .

By the inductive assumption d0 ∈ S, hence
∑n

i=1 piα
i = d0 ∈ P ∩S. This holds for

every α ∈ F . By the Vandermonde matrix argument, we get p1, . . . , pn ∈ P ∩ S.

Moreover, p0 = r −∑n
i=1 pix

i ∈ S and since p0 ∈ P then p0 ∈ P ∩ S. �

5. Linear mappings f and G

Let A∗ be the subalgebra of A generated by elements axiaxj and bxibxj for all

i, j ≥ 0. Notice that the notation A∗ is distinct from the notation A(∗), denoting

different objects.

Let B′ ⊆ A(2) be the linear F - space spanned by elements axibxj and bxiaxj for

all i, j ≥ 0. Let B =
∑∞

i=0 A(2i)B
′A. Observe that A = A∗ +B and A∗ ∩B = 0.

By F [x] we will denote the polynomial ring in variable x over F . Given a linear

mapping f by ker(f) and Im (f) we denote the kernel and the image of f .

Lemma 16. Let m be an even number and let S ⊆ A∗(m) be a platinum space

such that sx ∈ S if s ∈ S. Then there is a linear mapping f : A∗(m) → A∗(m)

such that

1. ker(f) = S,

2. f(pxi) = f(p)xi for every p ∈ A∗(m) ∩ P ,

3. f(p) ∈ P for every p ∈ A∗(m) ∩ P .

4. Moreover, for every s ∈ A∗(m) and t ∈ F ,

f(γt(s)) = γt(f(s)).

5. There is a linear space E ⊆ A∗(m) such that f(r) = r for r ∈ E, and

E ⊕ S = A∗(m). Moreover Im (f)⊕ ker(f) = A∗(m).

Proof. By Lemma 15, S = S′ + S′x+ . . . where S′ = S ∩ P ⊆ A∗(m). By Zorn’s

lemma, there exists a maximal linear subspace Q of A∗(m)∩P such that S′∩Q = 0.

Observe that then Q+ S′ = A∗(m) ∩ P and that Q is a platinum space (as every

subspace of P is a platinum space, by Lemma 9). Define f(r) = 0 for r ∈ S′ and

f(r) = r for r ∈ Q. Observe that A∗(m) =
∑∞

i=0(A
∗(m) ∩ P )xi by Lemma 15.
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Define f(pxi) = pxi for p ∈ A∗(m) ∩ P . By Lemma 11, f is a well defined linear

mapping. Notice that E = Q+Qx+Qx2+ . . . satisfies (5). Observe that f(s) = 0

for every s ∈ S. If r = r1 + r2 with ri ∈ S and r2 ∈ Q + Qx + Qx2 + . . . then

f(r) = r2, so the kernel of f equals S. The image of f is E, so (5) holds.

We will now show that f(γt(s)) = γt(f(s)). Let s ∈ S; then s =
∑

i pix
i for

some pi ∈ S′. Then f(s) =
∑

i f(pi)x
i. Since S is a platinum space then γt(s) ∈ S

for any t ∈ F . Observe that by the definition of γt we get

γt(s) =
∑

i

pi(x+ t)i,

since γt(p) = p for p ∈ P by Lemma 9. Therefore f(γt(s)) =
∑

i f(pi)(x+ t)i.

Observe now that

γt(f(s)) = γt(
∑

i

f(pi)x
i) =

∑

i

f(pi)(x+ t)i

(by Lemma 9, since f(pi) ∈ P ). It follows that f(γt(s)) = γt(f(s)). �

Remark 17. Notice that the fifth statement of Lemma 16 can be also formulated

by saying that the short exact sequence 0 → S → A∗(m) → E → 0 induced by

f : A∗(m) → Im(f) = E is split by the inclusion map section E → A∗(m).

For a matrix M , let S(M) be the linear space spanned by all entries of M ,

and L(M) be the linear space spanned by all matrices γt(M) for t ∈ F ( where

if M has entries mi,j then γt(M) has respective entries γt(mi,j)). Observe that

L(S(M)) = S(L(M)).

Definition 5. (Definition of mapping G) Let m be an even number and let f :

A∗(m) → A∗(m) be a linear mapping satisfying properties (1)–(5) from Lemma 16

(for some platinum space S). Define a linear mapping G : A∗(10m) → A∗(10m)

as follows:

If v1, . . . , v10 ∈ A∗(m) are monomials (products of generators) and v = v1v2 . . . v10,

then we define

G(v) = G(v1 . . . v10) = v1v2 . . . v9f(v10).

We can extend the mapping G by linearity to all elements of A∗(10m).

For every natural number j > 0 we extend the mapping G to the linear mapping

G : A∗(j · 10m) → A∗(j · 10m) in the following way: if w = w1 . . . wj where wi are

monomials and wi ∈ A∗(10m), then we define

G(w) = G(w1)G(w2) . . . G(wj).
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We can then extend the mapping G by linearity to all elements of A∗(j · 10m).

Moreover, we can also extend the mapping G to matrices with entries in A∗(j ·
10m), so if M has entries ai,j then G(M) has respectively entries G(ai,j). In

similar fashion we can extend the mappings f and γt to matrices.

Lemma 18. Let m,G be as in the definition of the mapping G above. Let mi, n be

natural numbers such that n divides m, and 10m divides mi. Let Mi be a matrix

with entries in A∗(n); then

L(S(G(Mi

mi
n ))) = G(L(S(Mi

mi
n ))).

Proof. Recall that S(M) denotes the linear space spanned by entries of matrix M ,

hence S(L(M)) = L(S(M)) and S(G(M)) = G(S(M)) for any matrix M with en-

tries in C. Consequently it is sufficient to show that L(G(Mi

mi
n )) = G(L(Mi

mi
n )).

We will first show that G(L(M10)) = L(G(M10)) for any M with entries in A∗(m).

Let t ∈ F , then G(γt(M
10)) = G(γt(M

9)γt(M)) = (γt(M))9f(γt(M)). By asser-

tion (4) from Lemma 16 we have f(γt(M)) = γt(f(M)). Therefore G(γt(M
10)) =

γt(M
9)f(γt(M)) = γt(M

9)γt(f(M)) = γt(G(M10)). Consequently G(L(M10)) =

L(G(M10)), as required.

By the definition of G, for the same M , and for any t ∈ F , and any number k,

G(γt(M
10k)) = G(γt(M

10))k = γt(G(M10))k = γt(G(M10k)).

Therefore, G(L(M10k) = L(G(M10k)). The result now follows when we take

M = M
m
n

i and k = mi

10m and substitute in the above equation. �

Lemma 19. Let M be a finite matrix with entries in A(j) ∩ R for some j. For

almost all n the dimension of the space R ∩ S(L(Mn)) = S̄(Mn) is smaller than
√
n. Notice also that since the entries of M are taken from R which is γt invariant

for all t ∈ F then the space S(L(Mn)) is finite dimensional for every n.

Proof. Since all entries of M are in R then S(L(Mn)) = S(Mn). Let M be an m

by m matrix, then the dimension of S̄(Mn) is at most m2, which for sufficiently

large n is smaller than
√
n. �

6. Supporting lemmas

Let n,m1 be natural numbers such that 20n divides m1. Let M1 be a matrix

with entries in A∗(n). Let f be a mapping satysfying properties (1)–(5) from

Lemma 16 for m = 2m1 and for the space S = S(L(M
m1
n

1 ))A∗(m1). We can then

define mapping G : A∗(j · 10 · 2m1) → A∗(j · 10 · 2m1) as in the previous section

(for every j).
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In the next three lemmas we will use the following notation. Let m be a natural

number and let V ⊆ A∗(m) be a linear space. Denote

E(V,m) =

∞
∑

j=1

A∗(j · 20m− 2m)V A∗(m)A∗1.

We begin with the following lemmas:

Lemma 20. Let j, n,m1 be natural numbers such that 20n divides m1. Let M1

be a matrix with coefficients in A∗(n). Let G be defined as at the beginning of

this section. Then the kernel of G : A∗(j · 20m1) → A∗(j · 20m1) is equal to

E(V,m1) ∩A∗(j · 20m1), where V = S(L(M
m1
n

1 )).

Proof. By assertion (5) from Lemma 16 applied for m = 2m1 and S = V A∗(m1),

there is a linear space E ⊆ A∗(2m1) and such that f(r) = r for r ∈ E and

E ⊕ S = A∗(2m1). For i = 1, 2, . . . , j, let D =
∏j

i=1 A
∗(18m1)E and let

Ti = A∗(i · 20m1 − 2m1) · V ·A∗((j − i) · 20m1 +m1).

Observe that D +
∑j

i=1 Ti = A∗(j · 20m1). If r ∈ Ti for some i, then G(r) = 0

by the definition of G. Observe that E(V,m1) ∩ A∗(j · 20m1) =
∑j

i=1 Ti, hence

E(V,m1) ∩A∗(j · 20m1) is contained in the kernel of G.

Let r be in the kernel of f . Write r = t+d, where t ∈ ∑j
i=1 Ti and d ∈ D, then

by the definition of G, G(r) = G(t+ d) = G(t) +G(d) = G(d) = d. Recall that r

is in the kernel of f , so d = 0 and hence r ∈ ∑j
i=1 Ti. It follows that the kernel of

G equals E(V,m1) ∩A∗(j · 20m1). �

Lemma 21. Let n, k be natural numbers with n even, and let m1 < m2 < . . . < mk

be such that 20nmi divides mi+1 for all 1 ≤ i < k and 20n divides m1. Let Mi

be matrices with entries in A∗(n) and let G : A∗(j · 20m1) → A∗(j · 20m1) be

defined as at the beginning of this section, and let j = mk

m1
. Let u ∈ A∗(20mk),

and denote Vi = L(S(M
mi/n
i )). Then u ∈ ∑k

i=1 E(Vi,mi) if and only if G(u) ∈
∑k

i=2 G(E(Vi,mi)).

Proof. Suppose that G(u) ∈ ∑k
i=2 G(E(Vi,mi)). It follows that G(u − e) = 0 for

some e ∈ ∑k
i=2 E(Vi,mi). Consequently u − e ∈ ker(G), and since by Lemma 20

ker(G) ⊆ E(V1,m1), it follows that u ∈ ∑k
i=1 E(Vi,mi).

To see the second implication, suppose now that u ∈ ∑k
i=1 E(Vi,mi); then

G(u) ∈ ∑k
i=1 G(E(Vi,mi)). By Lemma 20, E(V1,m1)∩A∗(20mk) ⊆ ker(G), hence

G(L(V1,m1)) = 0. It follows that G(u) ∈ ∑k
i=2 G(E(Vi,mi)), since all the consid-

ered spaces are homogeneous. �
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Lemma 22. Let notation be as in Lemma 21. For i = 2, 3, . . . denote

M ′
i = G(M

20m1
n

i ),Wi = L(S(M ′
i

mi
20m1 )), Ti = G(E(Vi,mi) ∩A∗(20mk)).

Then for i ≥ 2 we have Ti ⊆ E(Wi,mi) ∩A∗(20mk) ⊆ Ti + E(V1,m1).

Proof. Recall that 20m1 divides mi for all i ≥ 2; hence

Ti = A∗(20mk) ∩
∞
∑

j=1

G(A∗(j20mi − 2mi))G(L(S(Mi

mi
n )))G(A∗(mi))G(A∗1).

Observe that

M ′
i

mi
20m1 = [G(M

20m1
n

i )]
mi

20m1 = G(Mi

mi
n )

by the definition of mapping G. Therefore, and by Lemma 18 applied form = 2m1,

L(S(M ′
i

mi
20m1 )) = L(S(G(Mi

mi
n ))) = G(L(S(Mi

mi
n ))).

It follows that

Ti = A∗(20mk) ∩
∞
∑

j=1

G(A∗(j20mi − 2mi))(L(S(M
′
i

mi
20m1 )))G(A∗(mi))G(A∗1).

It follows that Ti ⊆ E(Wi,mi) ∩A∗(20mk).

We will now show that E(Wi,mi) ∩ A∗(20mk) ⊆ Ti + E(V1,m1). Recall that

the mapping G can be defined on A∗(j · 20m1) for any j, and that 20m1 divides

mi for each i > 1. Observe now that by assertion (5) from Lemma 16, ker(f)+Im

(f) = A∗(m). Therefore, by the construction of mapping G we get that A∗(j ·
20m1) = (Im (G) + kerG) ∩A∗(j · 20m1) for every j.

It follows thatA∗(mi) ⊆ G(A∗(mi))+ker(G)∩A∗(mi). By Lemma 20, A∗(mi) ⊆
G(A∗(mi))+E(V1,m1)∩A∗(mi). Similarly, A∗(j ·20mi−2mi)) ⊆ G(A∗(j20mi−
2mi)) + E(V1, n1) ∩A∗(j · 20mi − 2mi). It follows that E(Wi,mi) ∩A∗(20mk) ⊆
Ti + E(V1,m1). �

Theorem 23. Let notation be as in Lemma 22. Let u ∈ A∗(20mk). Then

u ∈
k

∑

i=1

E(Vi,mi),

if and only if

G(u) ∈
k

∑

i=2

E(Wi,mi).

Proof. We will first prove thatG(u) ∈ ∑k
i=2 E(Wi,mi) implies u ∈ ∑k

i=1 E(Vi,mi).

Assume on the contrary that G(u) ∈ ∑k
i=2 E(Wi,mi) and u /∈ ∑k

i=1 E(Vi,mi).

Observe that by Lemma 22, E(Wi,mi)∩A∗(20mk) ⊆
∑k

i=2 Ti+E(V1,m1), hence
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G(u) ∈ ∑k
i=2 Ti + E(V1,m1). Therefore there is g ∈ ∑k

i=2 Ti and h ∈ E(V1,m1)

andG(u) = g+h. By assertion (5) from Lemma 16 we get that Im (G)∩ker(G) = 0.

Since G(u) and g are in Im(G) and h ∈ E(V1,m1) is in the kernel of mapping G,

then G(u)−g = h implies G(u)−g = 0. Therefore G(u) ∈ ∑k
i=2 Ti, a contradiction

with Lemma 21.

We will now prove that G(u) /∈ ∑k
i=2 E(Wi,mi) implies u /∈ ∑k

i=1 E(Vi,mi).

Suppose that G(u) /∈ ∑k
i=2 E(Wi,mi). By Lemma 22, G(u) /∈ ∑k

i=2 Ti, where

Ti = G(E(Vi,mi) ∩ A(20mk)). Observe that by Lemma 20, G(E(V1,m1)) = 0.

Since G is a linear mapping it implies u /∈ ∑k
i=1 E(Vi,mi) (as otherwise we would

have G(u) ∈ ∑k
i=2 Ti.) �

7. Assumptions 1 and 2

Let notation be as in Section 5. Recall that, for a matrix M , S(M) denotes the

linear space spanned by all entries of M , and L(M) =
∑

t∈F γt(M). Recall that

by 〈x〉 we denote the ideal generated by x in A.

The following statement will be called Assumption 1 (for F -algebra A).

Assumption 1. Let M be a matrix with entries in A∗(j) for some j, and such

that for almost all α matrix Mα has all entries in 〈x〉. Then there are infinitely

many n, such that the dimension of the space R∩S(L(Mn)) does not exceed
√
n.

Comment. Notice that, since A′ is a graded algebra, it is necessary to assume

that all elements of the matrix M have the same degree, since otherwise the entries

ofMα would have many homogeneous components and dimF (R∩S(L(Mn))) could

exceed
√
n. On the other hand, it would be possible to assume that M is a matrix

with entries in A(j) for some j; however, for our purpose it suffices to assume that

M is a matrix with entries in A∗(j), for some j.

Remark 24. Suppose that Assumption 1 holds, and let k be a natural number.

We can apply Assumption 1 to matrix Mk to get the following implication of

Assumption 1: Let m be a natural number. There are infinitely many n divisible

by k such that the dimension of the space R ∩ S(L(Mn)) is less than
√
n.

Definition 6. Let l, t,m, n be natural numbers and let r0, r1, . . . , rt ∈ A∗. We

define

e(n,m)(r0, r1, . . . , rt) =
∑

i1+...+im=n

ri1ri2 . . . rim .

The following lemma is similar to Lemma 7 (b) in [27].
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Lemma 25. Let m,n, t, l be natural numbers, and let r0, r1, . . . , rl ∈ A∗(t). De-

note e(n,m) = e(n,m)(r0, r1, . . . , rl); then for every 0 < k < m

e(n,m) =

n
∑

i=0

e(i, k)e(n− i,m− k).

Proof. It is easier to prove a more general result where ri are free generators of a

free algebra and we assign gradation i to element ri. Such a result can be proved

for example by induction on k. The special case when ri ∈ A∗(t) implies Lemma

25. �

Lemma 26. Let l, t,m be natural numbers and let r0, r1, . . . , rl ∈ A∗(t). Denote

r′i = e(i,m)(r0, r1, . . . , rl). Then for every n and every i ≤ lmn,

e(i, n)(r′0, r
′
1, . . . , r

′
lm) = e(i,mn)(r0, r1, . . . , rl).

Proof. We will use induction on n. If n = 1 then the result is clear. Suppose

that n > 1 and that the result holds for all numbers smaller than n. By Lemma

25, e(i,mn)(r0, r1, . . . , rl) =
∑i

j=0 e(j,m(n− 1))(r0, r1, . . . , rl) · e(j,m)(r0, . . . , rl).

By the inductive assumption and by Lemma 25, we get e(i,mn)(r0, r1, . . . , rl) =
∑i

j=0 e(j, n− 1)(r′0, . . . , r
′
lm) · e(j, 1)(r′0, . . . , r′lm) = e(j, n)(r′0, . . . , r

′
l). �

Recall that 〈x〉 is the ideal of A′ generated by x.

Lemma 27. Let F be a field, and suppose that Assumption 1 holds for F -algebra

A. Let n, t be natural numbers and let M be a matrix with coefficients in A∗(n).

Assume that either all entries of M are in R or for almost all q entries of Mq are in

〈x〉. Let t ≥ 1, r0, r1, . . . , rt ∈ A∗(n)∩R, and denote e(j, k) = e(j, k)(r0, r1, . . . , rt).

Assume moreover that there are ri, ri′ 6= 0 such that ri′ /∈ F ·ri for some 0 ≤ i, i′ ≤
t. Then there exist m and j, j′ such that 20n divides m and

e(j,
20m

n
) /∈ A∗(18m)V A∗(m)

and

e(j′,
20m

n
) /∈ F · e(j, 20m

n
) +A∗(18m)V A∗(m),

where V = L(S(M
m
n )) ⊆ A∗(m). Moreover, if c > 0 is a natural number then we

can assume that 20nc divides m.

Proof. Consider elements e(i, 20m
n ) for all m divisible by n. Observe that, for

almost all such m, the linear space spanned by e(i, 20m
n ) for i = 0, 1, 2, . . . has

dimension larger than
√

20m
n + 2. By Assumption 1 and Lemma 19, dimF V ≤

√

20m
n for infinitely manym (moreover by Remark 24 we can assume that infinitely
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many m are divisible by 20nc). Consequently there is m divisible by n and j, j′

such that e(j, m
n ) /∈ V and e(j′, m

n ) /∈ V + F · e(j′, m
n ). Moreover, we can assume

that 20nc divides m, by the Remark 24.

Let j be minimal such that e(j, m
n ) /∈ V and j′ minimal such that e(j′,m) /∈

V + F · e(j, m
n ). We claim that e(j, 20m

n ) /∈ A∗(18m)V A(m) and e(j′, 20m
n ) /∈

A∗(18m)V A(m) + F · e(j, 20m
n ).

Notice that e(0, m
n ) = r0

m
n . Recall that A∗ is a graded algebra, and there-

fore e(j, m
n )e(0, m

n ) /∈ V A∗(m1); this can be seen by comparing the elements

from A∗(m) at the end of each side. By Lemma 25, e(j, 2m
n ) = e(j, m

n )e(0, m
n ) +

∑

i<j e(i,
m
n )e(j − i, m

n ). By the minimality of j, we get e(j, 2m
n ) /∈ V A∗(m). No-

tice also that, by a similar argument j is minimal such that e(j, 2m
n ) /∈ V A∗(m).

Observe now that e(0, 18m
n )e(j, 2m

n ) /∈ A∗(18m)V A∗(m); this can be seen by com-

paring the elements from A∗(18m) at the beginning of each side. By Lemma

25, e(j, 20m
n ) = e(0, 18m

n )e(j, 2m
n ) +

∑

i<j e(j − i, 18m
n )e(i, 2m

n ). Recall that j was

minimal such that e(j, 2m
n ) /∈ V A∗(m), therefore e(j, 20m

n ) /∈ A∗(18m)V A(m).

Observe now that, since e(j′, m
n ) /∈ V +F · e(j, m

n ), then by the same reasoning

as above applied to the set T ′ = V + F · e(j, m
n ) instead of the set V , we get

e(j′,
20m

n
) /∈ A∗(18m)T ′A∗(m).

By the definition of T ′ we have e(j, m
n ) ∈ T ′ and by the minimality of j, e(i, m

n ) ∈ V

for i < j . By Lemma 25,

e(j,
20m

n
) ∈ A∗(18m)

j
∑

i=0

e(i,
m

n
)A∗(m) ⊆ A∗(18m)T ′A∗(m).

Therefore A∗(18m)V A(m)+F ·e(j, 20m) ⊆ A∗(18m)T ′A∗(m). Hence e(j′, 20m
n ) /∈

A∗(18m)V A∗(m) + F · e(j, 20m), as required. �

We will now introduce Assumption 2. We introduce this Assumption to shorten

the statements of several theorems, where we will simply write let Assumption 2

hold instead of writing the sentences from below. The Assumption 2 simply says

that numbers mi and matrices Mi satisfy some conditions, these conditions are

now described.

Assumption 2. Let n, k be natural numbers with n even, and let m1 < m2 <

. . . < mk be such that 20nmi divides mi+1 for all 1 ≤ i < k and 20n divides m1.

Let Mi for i = 1, 2, . . . , k + 1 be matrices with entries in A∗(n) and assume that

either Mi
q has entries in 〈x〉 for almost all q, or Mi has entries in R.

We will use the following notation. The mapping G : A∗(t·20m1) → A∗(t·20m1)

is defined as in Lemma 20 for t = mk

m1
.
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For i = 2, 3, . . . denote Vi = L(S(M
mi/n
i )),M ′

i = G(M
20m1

n

i ),Wi = L(S(M ′
i

mi
20m1 ))

and Ti = G(E(Vi,mi) ∩A∗(20mk)).

Lemma 28. Suppose that Assumption 1 holds for F -algebra A. Suppose that

Assumption 2 holds. Let k ≥ 0 be a natural number. Then the following conditions

hold.

1. If k = 0, let r0, r1, . . . , rl ∈ A∗(n). Suppose that there are j, j′ such that

α · rj + β · rj′ 6= 0,

provided that α, β ∈ F are not both zero. Denote e(j, k) = e(j, k)(r0, r1, . . . , rt).

Then there exists m1 such that 20n divides m1 and

α · e(l, 20m1

n
) + β · e(l′, 20m1

n
) /∈ E(V1,m1).

2. If k > 0, let r0, r1, . . . , rl ∈ R ∩ A∗(20mk) for some l ≥ 1. Suppose that

there are j, j′ such that

α · rj + β · rj′ /∈ W,

provided that α, β ∈ F are not both zero, where W =
∑k

i=1 E(Vi,mi).

Denote e(j, k) = e(j, k)(r0, r1, . . . , rt).

Then there exist mk+1 such that for some l, l′,

α · e(l, mk+1

mk
) + β · e(l′, mk+1

mk
) /∈ W ′,

provided that α, β ∈ F are not both zero, where W ′ =
∑k+1

i=1 E(Vi,mi) and

Vk+1 = L(S(Mk+1

mk+1

n )). Moreover, 20nmk divides mk+1.

Proof. We will proceed by induction on k. If k = 0 then the result follows from

Lemma 27 applied for m = m1 and matrix M = M1. Let k ≥ 1 and assume that

the thesis is true for all numbers smaller than k; we will prove it for k.

Suppose that k = 1. By the assumption there are j, j′ such that α · rj +β · rj′ /∈
E(V1,m1) provided that α, β are not both zero. Let f,G be as in Theorems 20

and 23; then by Theorem 23

α ·G(rj) + β ·G(rj′) /∈
k

∑

i=2

E(Wi,mi) = 0,

since k = 1. Next we apply Lemma 27 for matrix M = G(M
20m1

n

1 ), for elements

G(ri) instead of elements ri, and for n = 20m1, and we find m such that if α, β ∈ F

are not both zero then
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αē(j′,
20m

20m1
) + βē(j,

20m

20m1
) /∈ A∗(18m)W1A

∗(m),

where ē(i, 20m
20m1

) = e((i, 20m
20m1

)(G(r1), . . . , G(rl)) and W1 = S(L(G(M
m

20m1 ))) =

S(L(G(M
m
n

1 ))).

Observe that ē(i, m
m1

) = G(e(i, m
m1

)). Let m2 = m then

αG(e(j′,
m2

m1
)) + βG(e(j,

m2

m1
)) /∈ A∗(18m2)W1A

∗(m2),

By Theorem 23,

αe(j′,
m2

m1
) + βe(j,

m2

m1
) /∈ W ′,

hence Lemma 28 holds.

Suppose that k > 1 and assume that the result holds for all numbers smaller

than k. By the assumption there are j, j′ such that α·rj+β ·rj′ /∈ W provided that

α, β are not both zero. Let f,G be as in Theorems 20 and 23; then by Theorem

23

α ·G(rj) + β ·G(rj′) /∈
k

∑

i=2

E(Wi,mi),

provided that α, β ∈ F are not both zero.

Recall that M ′
i = G(Mi)

20m1
n and Wi = L(S(M ′

i

mi
20m1 )) for i = 2, 3, . . . , k.

Observe that the number of matrices M ′
i is k−1, hence we can apply the inductive

assumption to matrices M ′
2,M

′
3, . . . ,M

′
k. Namely we enumerate M ′′

i = M ′
i+1,

m′
i = mi+1 for every i and we apply the inductive assumption to matrices M ′′

i for

i ≤ k − 1 and to numbers m′
i and to elements r̄i = G(ri) and to n = 20m1. We

obtain that there is m = mk+1 and j, j′ such that if α, β ∈ F are not both zero

then

α ·G(e(j,
mk+1

mk
)) + β ·G(e(j′,

mk+1

mk
)) /∈

k
∑

i=2

E(Wi,mi),

since G(e(j, mk+1

mk
)) = e(j, mk+1

mk
)(G(r0), G(r1), . . . , G(rl)). By Theorem 23, we get

α · e(j, mk+1

mk
) + β · e(j′, mk+1

mk
)) /∈ W ′, unless α = β = 0. �

Let X1, X2, . . . be matrices as in Theorem 6. Let Y1, Y2, . . . be matrices such

that Yi has entries in A∗(2) and X2
i = Yi + M(B′), where M(B) is the set of

matrices with entries in M(B′). Recall that Let B′ ⊆ A(2) is the linear F - space

spanned by elements axibxj and bxiaxj for all i, j ≥ 0.

Recall that e(i, n)(a2, b2) is the sum of all products of n elements, such that i

of them are equal to b2 and n− i of them are equal to a2.
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Theorem 29. Let F be a countable field, and suppose that Assumption 1 holds

for F -algebra A. For every i, n denote e(i, n) = e(i, n)(a2, b2). Let Y1, Y2, . . . be

as above, then there are natural numbers m1 < m2 < . . . such that 20nmi divides

mi+1 for all i and 40 divides m1. Moreover, for every n there are j, j′ such

that αe(j, n) + βe(j′, n) /∈ T , provided that α, β ∈ F are not both zero, where

T =
∑∞

i=1 E(Vi,mi) and Vi = L(S(Y
mi
2

i )).

Proof. Notice that e(j, n) ⊆ A∗(2n) for every n. Observe first that if u(j, n) ∈ T

for some n and all j ≤ n, then by Lemma 25 for every n′ > n we have e(j, n′) ∈ T,

for all j ≤ 2n′. Therefore, it is sufficient to prove that there are m1 < m2 < . . .

and j1, j2, . . . and j′1, j
′
2, . . . such that for every k,

α · e(jk, 10mk) + β · e(j′k, 10mk) /∈ T,

provided that α, β ∈ F are not both zero. Notice that

T ∩A∗(20mk) =
k

∑

i=1

E(Vi,mi),

since all spaces E(Vi,mi) are homogeneous.

We will construct numbers m1,m2, . . . inductively using Lemma 28. By Lemma

28, applied for n = 2 and matrices Mi = Yi, there is m1 and j, j′ such that

α · e(j, 10m1) + β · e(j′, 10m1) /∈ T, provided that α, β ∈ F are not both zero,

moreover 40 divides m1.

Suppose now that for some k ≥ 1 we constructed elements m1, . . . ,mk such

that if α, β ∈ F are not both zero then

α · e(jk, 10mk) + β · e(j′k, 10mk) /∈ T.

By Lemma 28 there are l, l′ such that

α · e(l, mk+1

mk
)(r0, . . . , r10mk

) + β · e(l′, mk+1

mk
)(r0, . . . , r10mk

) /∈ T,

where ri = e(i, 10mk). By Lemma 26, we get e(i, 10mk+1) = e(i, mk+1

mk
)(r0, . . . , r10mk

).

Consequently, α · e(l, 10mk+1) + β · e(l′, 10mk+1) /∈ T, therefore we constructed

mk+1 satisfying the thesis of our theorem. Continuing in this way we construct

all elements mi. �

8. Nility

Let A∗ be a subalgebra of A generated by elements axiaxj and bxibxj for all

i, j ≥ 0.
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Let B′ ⊆ A(2) be a linear F - space spanned by elements axibxj and bxiaxj for

all i, j ≥ 0. Let B =
∑∞

i=0 A(2i)B
′A. Observe that A = A∗ +B and A∗ ∩B = 0.

In this chapter we denote e(i, n) = e(i, n)(a2, b2) to be the sum of all products

of n elements, such that i of them are equal to b2 and n− i of them are equal to a2,

so e(k, n) ∈ A∗(2n). Recall that an ideal in A is homogeneous if it is homogeneous

with respect to the gradation given by assigning gradation 1 to elements a and b

and gradation 0 to element x.

Lemma 30. Suppose that J is a homogeneous ideal in A such that R/R ∩ J is a

nil algebra. Then there is m > 0 such that e(k,m) ∈ J +B, for every 0 ≤ k ≤ m.

Proof. By assumption, there is a number m such that for every n ≥ m we have

(a+ b2)n ∈ J . Let v(k, n) be the sum of all products of k elements b2 and n− 2k

elements a; then v(k, n) ∈ A(n). Observe that

(a+ b2)n =
∑

0≤k≤n
2

v(k, n+ k) ∈ J,

and since J is homogeneous and v(k, n+ k) ∈ A(n+ k) it follows that

v(k, n+ k) ∈ J

for every natural k ≤ n
2 , and every n ≥ m.

Therefore v(k, 2m) = v(k, (2m − k) + k) ∈ J for every 0 ≤ k ≤ m, since

2m− k ≥ m. Observe that e(k,m)− v(k, 2m) ∈ B, so e(k,m) ∈ B + J . �

Theorem 31. Let notation be as in Theorem 6, and denote Q =
∑∞

i=1 Si. Then

there is a homogeneous ideal J in A which is a platinum ideal, A/J is Jacobson

radical and J is contained in L(Q). Moreover, JA′ ⊆ J so J is a right ideal in

A′.

Proof. By Theorem 6, there is an ideal I in A such that I ⊆ Q. Denote J = L(I);

then L(I) =
∑

t∈F γt(I). Observe that I ⊆ Q implies L(I) ⊆ L(Q). We claim

that L(I) is an ideal in A, and a right ideal in A′. We need to show that if

α ∈ L(Q) then rα, αr′ ∈ L(I), for every r ∈ A and r′ ∈ A′. Since α ∈ L(Q) then

α =
∑

t∈W γt(st) for some finite subset W of F , and where st ∈ I. Observe that

rγt(s) = γt(γ−t(r)st) ∈ γ−t(I) ⊆ L(I) and γt(s)r
′ = γt(sγ−t(r

′)) ⊆ γt(I) ⊆ L(I),

since by Theorem 6, I is a right ideal in A′. By Lemma 14, L(I) is a platinum

ideal in A. Since A/I is a Jacobson radical then A/L(I) is a Jacobson radical, so

we can set J = L(I). �
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9. Assumption 1 implies Theorem 1

The aim of this section is to prove the following.

Theorem 32. Let F be a field, and suppose that Assumption 1 holds for F -algebra

A. Then there is an F -algebra Z and a derivation D on Z such that the differential

polynomial ring Z[y;D] is Jacobson radical but Z is not nil.

Proof. Let m1,m2, . . . be as in Theorem 29 and denote T =
∑∞

i=1 E(Vi,mi) and

Vi = L(S(Y
mi
2

i )). By Theorem 29 for every n there are j, j′ such that α · e(j, n) +
β · e(j′, n) /∈ T , provided that α, β ∈ F are not both zero. Observe that since

e(j, n) ∈ A∗ and T ⊆ A∗ and A∗ ∩ B = 0, it follows that for every n there are

j, j′ ≤ n such that

α · e(j, n) + β · e(j′, n) /∈ T +B,

provided that α, β ∈ F are not both zero.

By Theorem 31 applied for such m1,m2, . . . we get that there is a homogeneous

ideal J in A which is a platinum ideal, A/J is Jacobson radical and J is contained

in L(Q), where Q =
∑∞

i=1 Si as in Theorem 6. Moreover, JA′ ⊆ J so J is a right

ideal in A′. Denote J (∗) = J +xJ +x2J + . . . =
∑∞

i=0 x
iJ , then J (∗) is a platinum

ideal in A′. Let A(∗) = A + xA + x2A + . . .; then A(∗) is an F -algebra and J (∗)

is an ideal in A(∗). By Lemma 7, A(∗)/J (∗) is Jacobson radical. In addition, if

r+ J is not a nilpotent in A/J for some r ∈ R, then r+ J (∗) is not a nilpotent in

A(∗)/J (∗).

We will now show that R/R ∩ J is not a nil algebra. Observe now that L(Si) ⊆
∑∞

j=1 A(j ·20mi−2mi)L(S
′
i)A(mi)A

1, where S′
i = S(Xi

mi) (since L(A(j)) ⊆ A(j)

for any j), and that X2
i = Yi + Bi, where Bi are matrices with entries in B.

Moreover A(j) ⊆ A∗(j) + B for every even j, by the definition of B. It follows

that L(SiA
1) ⊆ E(Vi,mi) + B for every i. By the first part of this proof we get

that for every n there are j, j′ ≤ n such that α · e(j, n) + β · e(j′, n) /∈ T +B. On

the other hand J ⊆ L(Q) =
∑∞

i=1 L(Si) ⊆ T +B. It follows that

α · e(j, n) + β · e(j′, n) /∈ J

provided that α, β ∈ F are not both zero. By Lemma 30 we get that R/R ∩ J is

not a nil algebra. So there is r ∈ R such that r + J is not nilpotent in A/J . By

Lemma 7, r + J (∗) is not nilpotent in A(∗)/J (∗).

Let P be as in Theorem 13; so if a ∈ P then ax− xa ∈ P , R ⊆ P and P is the

smallest subring of A′ with this property. We can apply Theorem 13 to I = J (∗)

and let Z = P/J̄ where J̄ = P ∩ J (∗). Then Z[y;D] is a differential polynomial
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ring with y(r + J̄) − (r + J̄)y = D(r) + J̄ , where D(r + J̄) = xr − rx + J̄ . By

Theorem 13, Z[y;D] can be embedded in A′/J (∗) and the image of Z[y;D] equals

A(∗)/J (∗) where A(∗) = A+xA+x2A+ . . ., hence the image of Z[y;D] is Jacobson

radical, and so Z[y;D] is Jacobson radical.

It remains to show that Z is not a nil ring. By Lemma 30 we get that R/R∩ J

is not a nil algebra. So there is r ∈ R such that r + J is not nilpotent in A/J .

By Lemma 7 we get that rn /∈ J (∗), and therefore rn /∈ J̄ = J (∗) ∩ P for n ≥ 1.

Therefore r + J̄ is not nilpotent in P/J̄ , so P/J̄ is not nil. �

10. Assumption 3

Let C be a matrix with entries ai,j ∈ F and let r ∈ A then Ca will denote the

matrix with entries ai,j · r.
Let M =

∑ξ
i=1 Aiai, where for each i, Ai is a matrix with coefficients in F , and

a1, a2, . . . , aξ ∈ A. By H we will denote the F -algebra generated by matrices Ai,

and by W we will denote the Wedderburn radical of H, which is the sum of all

nilpotent ideals in H. Notice that W is the largest nilpotent ideal in H, since H

is finite dimensional. By s we will denote the smallest natural number such that

W s = 0.

We will say that a matrix M satisfies Assumption 3 if the following holds:

1. M =
∑ξ

i=1 Aiai, where for each i, Ai is a matrix with coefficients in F ,

and a1, a2, . . . , aξ are elements from A which are linearly independent over

F and have the same degree – say α. Moreover, ai ∈ A(α) ∩ 〈x〉 for each
i ≤ ξ (where 〈x〉 is the ideal generated by x in A′).

2. A1 = e, where e is a matrix such that e2 = e, r − er ∈ W , r − re ∈ W .

where W is as at the beginning of this section.

Let A′1[y] be the polynomial ring in variable y over ring A′1.

Definition 7. For a variable y (commuting with all elements from A′) let γy :

A′ → A′1[y] be a homomorphism of algebras such that γy(a) = a, γy(b) = b and

γy(x) = x+ y.

For a variable y (commuting with all elements from A′) we can write

γy(M) =

t
∑

i=0

yiMi,

where all entries of Mi are homogeneous elements of A of degree α, similarly to

the entries of matrix M .
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Let matrix M =
∑ξ

i=1 Aiai satisfy Assumption 3. Let γy(M) =
∑t

i=0 y
iMi.

Denote

w(n,m) =
∑

i1+i2+...+im=n

Mi1Mi2 . . .Mim .

The following lemma is known, and is another variant of Lemma 7 in [27].

Lemma 33. Let notation be as above. Let m,n be natural numbers; then for every

k < m

w(n,m) =

n
∑

i=0

w(i, k)w(n− i,m− k).

Lemma 34. Let F be an infinite field. Let matrix M =
∑ξ

i=1 Aiai satisfy As-

sumption 3 and γy(M) =
∑t

i=0 y
iMi. Then for each j,

Mj ⊆
ξ

∑

i=1

AiA.

Moreover, for every n,m,w(m,n) ⊆ HA where H is the algebra generated by

matices A1, . . . , Aξ.

Proof. Recall that γy(M) =
∑t

i=0 y
iMi; therefore by substituting y = αi for

α ∈ F , we get γα(M) =
∑t

i=0 α
iMi. By applying this for α = t1, . . . , α = tξ for

various t1, . . . , tξ ∈ F , and using the fact that a Vandermonde matrix is invertible

that each Mi is a linear combination of matrices γα(M) for various α ∈ F . Recall

that M =
∑ξ

i=1 Aiai, hence γα(M) =
∑ξ

i=1 Aiγα(ai). Therefore each Mj is a

linear combination of matrices Aiγα(ai) ⊆ AiA. By the definition of elements

w(n,m) (Definition 7) we get w(n,m) ∈ HA. �

Lemma 35. Let F be an infinite field and let n be a natural number. Let Q be the

linear subspace of A spanned by all entries of matrices w(n,m) for n = 0, 1, . . .;

then all entries of the matrix Mm belong to Q. Moreover Q = S(L(Mm)).

Proof. By assumption γy(M
m) = (

∑t
i=0 y

iMi)
m, hence for any α ∈ F , when

substituting y = α we get

γα(M
m) = (

t
∑

i=0

αiMi)
m =

m·t
∑

i=0

αiw(i,m).

Therefore every entry of a matrix γα(M
m) is in the subspace generated by entries

of matrices w(i, n) for various i; hence S(L(Mm) ⊆ Q.
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On the other hand, let α1, α2, . . . , αtm be non-zero distinct elements of F, then

we can substitute α = αj into the equation

t·m
∑

i=0

αi · w(i,m) = γα(M
m).

We can then use the Vandermonde matrix argument to show that each w(i,m)

is a linear combination of elements γαi
(Mm) for 1 ≤ i ≤ tm. Therefore Q ⊆

S(L(Mm)). �

11. Embedding platinum subspaces in bigger subspaces

Let notation be as in the previous section. Let M be a matrix satisfying As-

sumption 3. Let H, W , e be as in Assumption 3.

Definition 8. Recall that H can be considered as a subalgebra of some matrix

algebra over F . Let H ′ denote algebra H + FI, where I is the identity matrix.

Recall that

w(n,m) =
∑

i1+i2+...+im=n

Mi1Mi2Mi3 . . .Mim .

Let s be such that W s = 0.

Let f1, f2, . . . be elements from H ′. We define element (f1, f2, . . .) ∗w(m,n) for

j = 1, 2, . . . in the following way:

(f1, f2, . . .) ∗ w(n,m) =
∑

i1+i2+...+im=n

f1Mi1f2Mi2f3Mi3 . . . fmMim .

Lemma 36. Let notation be as above and let m be a natural number larger than

s (where W s = 0). Let u = (f1, f2, . . .) be such that f1, f2, . . . , fs ∈ W ∪ {I − e};
then u ∗ w(n,m) = 0, for every n.

Proof. Observe that for every k, fkMik is a matrix with entries in W ; hence

u ∗ w(n,m) has entries in W s = 0. �

Definition 9. For n ≥ 1 define tn = (f1, f2, . . .), where f1 = f2 = . . . = fn−1 =

I−e, fn = e and I = fn+1 = fn+2 = . . . . For n ≥ 0 define t′n = (f1, f2, . . .), where

f1 = f2 = . . . = fn = I − e and I = fn+1 = fn+2 = . . . .

Lemma 37. Let notation be as above. Then for every m,n,

w(n,m) =
s

∑

i=0

ti ∗ w(n,m).



HOW FAR CAN WE GO WITH AMITSUR’S THEOREM IN DIFFERENTIAL POLYNOMIAL RINGS?29

Proof. Observe first that w(n,m) = (I, I, . . .)∗w(n,m) = t1∗w(n,m)+t′1∗w(n,m);

then t′1 ∗ w(n,m) = t2 ∗ w(n,m) + t′2 ∗ w(n,m), and for every i, t′i ∗ w(n,m) =

ti+1 ∗w(n,m)+ t′i+1 ∗w(n,m). By summing all these equations for i = 1, 2, . . . , s,

and the equation w(n,m) = t1 ∗w(n,m)+ t′1 ∗w(n,m), we get w(n,m)+
∑s

i=1 t
′
i ∗

w(n,m) =
∑s+1

i=1 ti ∗ w(n,m) + t′i ∗ w(n,m). By Lemma 36, ts+1 = t′s+1 = ts = 0.

It follows that w(n,m) =
∑s

i=0 ti ∗ w(n,m). �

Definition 10. (Definition of set D(M))

Let matrix M satisfy Assumption 3, and let H, W , e be as in Assumption 3.

Fix E1, E2, . . . , Eβ - a basis of W for some β (recall that W is the Wedderburn

radical of H).

Let E = {I − e, E1, E2, . . . , Eβ}.
Let P1, P2, . . . , Pβ′ be such that E1, . . . , Eβ , P1, . . . , Pβ′ span algebra H. We

can assume that for every i

Pie = Pi.

It follows because H = He+H(I − e) ⊆ He+W . Moreover e = he for h = e.

Recall that W s = 0.

Let 0 ≤ q < s. We say that element (f1, f2, . . .) is good and has distance q + 1

if f1, . . . , fq ∈ E, fq+1 ∈ {e, P1, P2, . . . , Pβ′} and I = fq+2 = fq+3 = . . . .

The set of all good elements will be denoted D(M).

Lemma 38. Let M be a matrix satisfying Assumption 3. The set D(M) is finite.

Proof. It follows because every element in D(M) has distance at most s. �

Lemma 39. Let M be a matrix satisfying Assumption 3. Then, for every m,n,

w(n,m) is a linear combination of elements u ∗ w(n,m) with u ∈ D(M).

Proof. It follows from Lemma 37, since every ti ∈ D(M). �

Fix m. Let u ∈ D(M). Recall that u ∗ w(n,m) is a matrix with coefficients

in A. By u ∗ w(n,m)k,l we denote the element of A which is at the k, l entry of

matrix u ∗ w(n,m). By [u ∗ w(n,m)]k,l we will mean the quintuple (u, n,m, k, l).

Recall that by I we denote the identity element in H ′ (which can be also seen

as the identity matrix when we embed H into a matrix ring.)

Definition 11. (Definition of ordering)

We first denote an ordering on elements of E : E1 < E2 < . . . < Eβ . We then

define Eβ < I − e < e < P1 and P1 < P2 < . . . < Pβ′ . We can now define a

lexicographical ordering on the good set D(M).
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In particular, if the distance of v is larger than the distance of u then v < u;

for example (I − e, e, I, . . .) < (P1, I, I, . . .).

Let M be a matrix satisfying Assumption 3. Fix m, and define the following

ordering on quintuples [u ∗w(n,m)]k,l with u ∈ D(M), and k, l ≤ d where M is a

d by d matrix:

1. If the distance of v is larger than the distance of u then [v ∗w(n,m)]k,l <

[u ∗ w(n′,m)]k′,l′ , for every n, n′, k, k′, l, l′ ≤ d.

2. If the distance of v is the same as the distance of u and n < n′ then

[v ∗ w(n,m)]k,l < [u ∗ w(n′,m)]k′,l′ , for every k, k′, l, l′ ≤ d.

3. If the distance of u is the same as the distance of v and v is smaller than

u then [v ∗ w(n,m)]k,l < [u ∗ w(n,m)]k′,l′ , for every k, k′, l, l′ ≤ d.

4. If (k, l) < (k′, l′) with respect of lexicographical ordering then [u∗w(n,m)]k,l <

[u ∗ w(n,m)]k′,l′ , for every u, n.

Fix m. Notice that this is an ordering on the set of quintuples [u ∗ w(n,m)]k,l

with u ∈ D(M) and k, l ≤ d, where M is a d by d matrix.

12. Sets Bm(M) and Zm(M)

We now define sets Bm(M) and Zm(M).

Definition 12. (Definition of set Bm(M)) Let M be a matrix satisfying Assump-

tion 3, and m,n be natural numbers.

We will say that quintuple [u∗w(n,m)]k,l is in the set Bm(M) if u∗w(n,m)k,l is a

linear combination over F of elements v∗w(n′,m)k′,l′ such that [v∗w(n′,m)]k′,l′ <

[u ∗ w(n,m)]k,l.

Definition 13. (Definition of set Zm(M)) Let M be a matrix satisfying Assump-

tion 3, and m,n be natural numbers.

Recall that R is the algebra generated by elements a and b.

We will say that quintuple [u∗w(n,m)]k,l is in the set Zm(M) if there is element

r ∈ R such that:

1. This element r is a linear combination of elements v ∗ w(n′,m)k′,l′ such

that [v ∗ w(n′,m)]k′,l′ ≤ [u ∗ w(n,m)]k,l.

2. r is not a linear combination of elements v∗w(n′,m)k′,l′ with [v∗w(n′,m)]k′,l′ <

[u ∗ w(n,m)]k,l.

Notice that for a given quintuple [u ∗ w(n,m)]k,l = (u, n,m, k, l) ∈ Zm(M),

there may be many elements r satisfying Properties [1] and [2] above. However,

we fix one such element r and call it r(u, n,m, k, l).
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Lemma 40. Fix m. Let M be a matrix satisfying Assumption 3. The sets Zm(M)

and Bm(M) are disjoint, that is Zm(M) ∩Bm(M) = 0.

Proof. Suppose on the contrary, that there is some element in [u ∗ w(n,m)]k,l ∈
Zm(M) ∩ Bm(M), then there is r ∈ R which is a linear combination of some

elements v ∗ w(n′,m)k′,l′ such that [v ∗ w(n′,m)]k′,l′ ≤ [u ∗ w(n,m)]k,l. Be-

cause [u ∗ w(n,m)]k,l ∈ Bm(M) then u ∗ w(n,m)k,l is a linear combination of

v ∗w(n′,m)k′,l′ such that [v ∗w(n′,m)]k′,l′ < [u ∗w(n,m)]k,l. Therefore r is also a

linear combination of [v∗w(n′,m)]k′,l′ such that [v∗w(n′,m)]k′,l′ < [u∗w(n,m)]k,l,

a contradiction with the definition of set Zm(M). �

Lemma 41. Let notation be as above. Let m be a natural number and let Rm(M)

be the linear space spanned by all elements from R which are a linear combination

of elements u∗w(n,m)k,l for some u ∈ D(M) and some n, k, l with k, l ≤ d (where

M is a d by d matrix). Then the dimension of the space Rm(M) is the same as

the cardinality of set Zm(M).

Proof. Let r(u, n,m, k, l) ∈ R be as in Definition 13. Let Qm(M) be the linear

space spanned by elements r(u, n,m, k, l) ∈ R for (u, n,m, k, l) ∈ Zm(M). We will

show that Rm(M) = Qm(M). Observe first that if s ∈ Rm(M) then

s =
∑

(v,n′,m,k′,l′)≤(u,n,m,k,l)

α(v,n′,m,k′,l′) · v ∗ w(n′,m)k′,l′ ,

for some (u, n,m, k, l) = [u ∗ w(n,m)]k,l and some α(v,n′,m,k′,l′) ∈ F. If we take

a presentation of s with [u ∗ w(n,m)]k,l minimal possible, we in addition get

α(u,n,m,k,l) 6= 0 and [u ∗ w(n,m)]k,l ∈ Zm(M).

Note that if s = r(u, n,m, k, l), then s ∈ Zm(M). Suppose that s 6= r(u, n,m, k, l);

then by Definition 13 there is α ∈ F such that

s− α · r(u, n,m, k, l) =
∑

(v,n′,m,k′,l′)<(u,n,m,k,l)

β(v,n′,m,k′,l′) · v ∗ w(n′,m)k′,l′

for some β(v,n′,m,k′,l′) ∈ F . Therefore s− r(u, n,m, k, l) ∈ Rm(M).

We will now show that s ∈ Qm(M) by induction with respect to the ordering

of the quintuples (u, n,m, k, l) ∈ Zm(M).

Let [u0 ∗ w(i,m)]t,t′ be the minimal quintuple in Zm(M) such that there is

s ∈ Rm(M) with s /∈ Qm(M). Notice that r(u0, i,m, t, t′) ∈ Rm(M). Let s ∈
Rm(M) have a presentation as above with (u, n,m, k, l) = (u0, i,m, t, t′). By the

definition of Zm(M) we get that for some α the element s − α · r(u0, i,m, t, t′)

is a sum of elements associated to quintuples smaller than (u0, i,m, t, t′). Notice

that s − α · r(u0, i,m, t, t′) ∈ Rm(M), and by the minimality of s we get that
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s − α · r(u0, i,m, t, t′) ∈ Qm(M). Since r(u0, i,m, t, t′) ∈ Qm(M), it follows that

s ∈ Qm(M). �

13. Main supporting lemma

Let M be a matrix which satisfies Assumption 3, and let notation be as in the

previous section.

Lemma 42. Let M be a matrix satisfying Assumption 3. Let m be a natural

number and let u = (f1, f2, . . .) ∈ D(M). For every k ≤ m,

u∗w(n,m) =

n
∑

j=0

((f1, f2, . . . , fk, I, I, . . .)∗w(j, k))·((fk+1, fk+2, . . .)∗w(n−j,m−k)).

Proof. This follows from Lemma 33 and from the definition of operation ∗. �

Lemma 43. Let notation be as in Lemma 42. Suppose that u has distance k+1.

Then

u ∗ w(n,m) =

n
∑

j=0

((f1, f2, . . . , fk) ∗ w(j, k)) · fk+1 · w(n− j,m− k).

Moreover, for every t ≤ m− k,

w(n− j,m− k) = w(0, t)w(n− j,m− k − t) +

n−j
∑

i=1

w(i, t)w(n− j − i,m− k − t).]

Proof. Since u has distance k+ 1 then u = (f1, f2, . . . , fk, fk+1, I, I, . . . , I), where

fk+1 ∈ {e, P1, . . . , Pβ′} and by assumptions on Pi’s we have fk+1e = fk+1. The

first equation follows from Lemma 42. The second equation follows when we apply

Lemma 33 to w(n− j,m− k). �

Let M be a matrix satisfying Assumption 3, and let notation be as in Assump-

tion 3. In particular, H ′ is an algebra generated by matrices from H and an

identity matrix, W is the Wedderburn radical of H and W s = 0. Recall that I

denotes the identity element in H ′.

Lemma 44. Let notation be as above. Let f1, f2, . . . , fk ∈ W ∪ {I − e} and let

fk+1 ∈ H ′. Let u = (f1, f2, . . . , fk+1, I, I, . . .), and let m,n > 0, m > k+1, m > s.

Then u ∗w(n,m) is a linear combination of matrices of the form u′ ∗w(n,m) and

u′′ ∗ w(n,m), where u′ ∈ D(M) and u′ has distance k + 1, and where u′′ is of the

form (g1, . . . , gk+1, I, I, . . .) where g1, g2, . . . , gk+1 ∈ E.
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Proof. Observe that fk+1 is a linear combination of elements αi and βi, where

α1 ∈ E = {E1, . . . , Eβ , I − e} and βi ∈ {e, P1, . . . , Pβ′} (where notation is as

in the definition of the ordering of D(M)). Therefore u ∗ w(n,m) is a linear

combination of elements u(i) ∗w(n,m) and elements u(i) ∗w(n,m), where u(i) =

(f1, . . . , fk, αi, I, I, . . .) and elements u′(i) = (f1, . . . , fk, βi, I, I, . . .), for some i.

Observe that u′(i) are in the set D(M) and have distance k + 1. On the other

hand, elements u(i) are of the form (g1, . . . , gk+1, I, I, . . .), where g1, g2, . . . , gk+1 ∈
W ∪ {I − e} and gk+2 = I, as required. �

14. Introducing sets Uk,t and Vk,t

Let M =
∑ξ

i=1 Aiai be a matrix satisfying Assumption 3. Let notation be as

in Assumption 3 and in the previous sections. Let aξ+1, aξ+2, . . . be such that

a1, a2, . . . , aξ, aξ+1, . . . is a basis of A(α) (such elements exist by Zorn’s lemma).

Recall that a1, . . . , aξ ∈ 〈x〉; hence we can assume that every ai is either in 〈x〉 or
in R. Recall that 〈x〉 is the ideal of A′ generated by x.

Denote Qt =
∑

(i1,i2,...,it) 6=(1,1,...,1) ai1ai2 . . . aitA. Let k, t be natural numbers,

and define:

V = A(k)at1A,U = A(k)Qt.

Recall that M is a d by d matrix. By T (U) we will denote the set of all d by d

matrices with all entries in U , and by T (V ) we will denote the set of all d by d

matrices whose entries are in V . Recall that s is such that W s = 0.

Remark 45. Let r ∈ R ∩A(m) for some m > t+ k. Then r ∈ U .

Proof. Denote Q = A(k)(R∩A(t))A(m−t−k), Q′ = A(k)(〈x〉∩A(t))A(m−t−k).

Notice that Q∩Q′ = 0, since A is the free algebra generated by axi, bxi for i ≥ 0.

Let U1 = U ∩ Q and U2 = U ∩ Q′. Observe that U ∩ A(m) = U1 ⊕ U2, because

every element among a1, a2, . . . is either in R or in 〈x〉.
Notice that if a ∈ A(m) then a ∈ U1 + U2 + V . Recall that U2, V ⊆ 〈x〉, since

a1 ∈ 〈x〉. Let r = r1 + r2 + r3, where r1 ∈ U1, r2 ∈ U2, r3 ∈ V. Observe that

r − r1 ∈ Q and r2 + r3 ∈ Q′; it follows that r = r′ ∈ U1 ⊆ U . �

Let G : A(m)∩V → A(m− t) be the linear mapping defined for monomials and

then extended by linearity to all elements from A(m) ∩ V as follows:

G(wa1tw′) = ww′, where w is a monomial from A(k) and w′ is a monomial

from A(m− k − t). We can then extend mapping G to matrices: if M is a matrix

with entries ai,j then G(M) is the matrix with entries G(ai,j).



34 SMOKTUNOWICZ

Lemma 46. Let n,m, k, t be natural numbers with m > k + t,m > t + s, t ≥ 1.

Let G be defined as before this theorem. Let u = (f1, f2, . . .) ∈ D(M) have distance

k+1, so f1, . . . , fk ∈ E and fk+1 = he for some h /∈ W . Then u∗w(n,m) = v̄+ ū

for some v̄ ∈ T (V ), ū ∈ T (U). Moreover, G(v̄) = u ∗w(n,m− t) + s, where s is a

linear combination of elements of the form u′ ∗w(n− i,m− t) for i > 0 and where

u′ ∈ D(M) has either the same distance as u or larger distance than u.

Proof. Observe that w(n,m) =
∑n

i=0 F
′
i by Lemma 43, where

F ′
i =

n−i
∑

j=0

w(j, k)w(i, t)w(n− i− j,m− k − t).

By the definition of operation ∗ we get u ∗ w(n,m) =
∑

i=0 Fi where

Fi =

n−i
∑

j=0

[u′ ∗ w(j, k)] · fk+1 · w(i, t) · w(n− i− j,m− k − t),

where u′ = (f1, f2, . . . , fk, I, I . . .). Recall also that fk+1 = he for some h /∈ W .

Observe that

w(j, t) = qja1
t + u′

j ,

for some u′
j ∈ T (U) and some matrix qj with entries in F . Recall that w(0, t) =

M0
t = M t = (

∑ξ
i=1 Aiai)

t and that A1 = e. Therefore q0 = A1
t = e, so w(0, t) =

ea1
t + u′

0. It follows that F0 = v0 + u0, where u0 ∈ T (U) and

v0 =
n
∑

j=0

[u′ ∗ w(j, k)] · fk+1ea1
t · w(n− j,m− k − t) ∈ T (V ).

Recall that fk+1e = fk+1, by assumption on Pi’s. By Lemma 33,

G(v0) =
n
∑

j=0

[u′ ∗ w(j, k)] · fk+1e · w(n− j,m− k − t) = u ∗ w(n,m− t).

Observe now that Fi = vi + ui, where ui ∈ T (U) and

vi =

n−i
∑

j=0

[u′ ∗ w(k, j)] · fk+1 · qia1t · w(m− k − t, n− i− j) ∈ T (V ).

By Lemma 25,

G(vi) = u(i) ∗ w(, n− i,m− t)

where u(i) = (f1, f2, . . . , fk, fk+1qi, I, I, . . .). By applying Lemma 44 several times

we get that u(i) ∗ w(n − i,m− t) is a linear combination of elements of the form

u′ ∗ w(n − i,m − t) for i > 0 and where u′ is in D(M) and has distance at

least k + 1, or u′ = (g1, . . . gl, I, I, . . .) for some l > s and all g1, . . . , gl ∈ E.

In the latter case u′ ∗ w(n − i,m − t) = 0 by Lemma 36, hence the latter case
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can be omitted. Observe now that v̄ =
∑n

i=0 vi, so G(v̄) = G(v0) +
∑

i G(vi) =

u ∗ w(n,m − t) +
∑n

i=1 u(i) ∗ w(n − i,m − t) and the result follows (since u has

distance k + 1). �

Lemma 47. Let m, k, t, n be natural numbers with m > k + t, m > t + s and

t ≥ s, t ≥ 1 (where W s = 0). Let u = (f1, f2, . . .) ∈ D(M) have distance larger

than k + 1, so f1, . . . , fk+1 ∈ E. Then u ∗ w(n,m) = v̄ + ū for some v̄ ∈ T (V ),

ū ∈ T (U).

Let G : A(m)∩V → A(m−t) be as defined and extended to matrices as in Lemma

46. Then G(v̄) is a linear combination of elements of the form u′ ∗ w(n′,m − t)

for n′ ≥ 0 and where u′ ∈ D(M) has distance larger than k + 1.

Proof. Observe that w(n,m) =
∑n

i=0 F
′
i by Lemma 43, where

F ′
i =

n−i
∑

j=0

w(j, k)w(i, t)w(n− i− j,m− k − t).

By the definition of operation ∗ we get u ∗ w(n,m) =
∑

i=0 Fi where

Fi =
n−i
∑

j=0

[u′ ∗ w(j, k)] · u′′ ∗ ·w(i, t) · w(n− i− j,m− k − t),

where u′ = (f1, f2, . . . , fk, I, I . . .) and u′′ = (fk+1, fk+2, . . . , fs, I, I, . . .) (as ele-

ments of D(M) have distance at most s).

Observe that

u′′ ∗ w(j, t) = qja1
t + u′

j

for some u′
j ∈ T (U) and some matrix qj with entries in F . Notice also that

qj = fk+1h for some matrix h since fk+1 is the first entry of u′′. It follows that

qj ∈ W since fk+1 ∈ W ∪ {I − e}.
Observe now that Fi = vi + ui, where

vi =

n−i
∑

j=0

[u′ ∗ w(j, k)] · qia1t · w(n− i− j,m− k − t),∈ T (V )

and ui ∈ T (U). By Lemma 33,

G(vi) = u(i) ∗ w(n− i,m− t)

where u(i) = (f1, f2, . . . , fk, qi, I, I, . . .). Recall that qi ∈ W . Because f1, . . . , fk+1 ∈
W , then by Lemma 44 applied several times we get that u(i)∗w(n−i,m−t) is a lin-

ear combination of elements of the form u′∗w(n−i,m−t) for i > 0 and where either

u′ is in D(M) and has the distance larger than k + 1, or u′ = (g1, . . . gl, I, I, . . .)

for some l > s and all g1, . . . , gl ∈ E. In the latter case u′ ∗ w(m,n) = 0 by
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Lemma 36, hence this case can be omitted. Observe now that v̄ =
∑n

i=0 vi, so

G(v̄) = ∑n
i=0 G(vi) =

∑n
i=0 u(i)∗w(n− i,m− t); the result follows (since each u(i)

has distance larger than k + 1). �

Recall that s is such that W s = 0.

Theorem 48. Let M be a matrix satisfying Assumption 3. Let t > s, and k, l >

0,m > k + t,m > t + s, n ≥ 0 be natural numbers. Let u ∈ D(M). If element

[u ∗ w(n,m)]j,l ∈ Zm(D) then [u ∗ w(n,m− t)]j,l ∈ Bm−t(M).

Proof. Since u ∈ D(M) then u has distance k+1 for some k ≥ 0. By the definition

of set Zm(M) there is r ∈ R such that

r =
∑

(v,n′,m,j′,l′)≤(u,n,m,j,l)

α(v,n′,m,j′,l′)v ∗ w(n′,m)j′,l′

where α(v,n′,m,j′,l′) ∈ F and α(u,n,m,j,l) 6= 0. Observe that for every v ∈ D(M)

and every n′ we can write

v ∗ w(n′,m) = q(v, n′,m) + z(v, n′,m)

where q(v, n′,m) ∈ T (V ) and z(v, n′,m) ∈ T (U), where T (U), T (V ) are as in Lem-

mas 46 and 47. By q(v, n′,m)j,l we will denote the k, l-entry of matrix q(v, n′,m)

(similarly for z(v, n′,m)). It follows that

r =
∑

(v,n′,m,j′,l′)≤(u,n,m,j,l)

α(v,n′,m,j′,l′)(q(v, n
′,m)j′,l′ + z(v, n′,m)j′,l′).

By Remark 45 r ∈ U , hence
∑

(v,n′,m,j′,l′)≤(u,n,m,j,l) α(v,n′,m,j′,l′)q(v, n
′,m)j′,l′ ∈

U . Since U ∩ V = 0 it follows that

∑

(v,n′,m,j′,l′)≤(u,n,m,j,l)

α(v,n′,m,j′,l′)q(v, n
′,m)j′,l′ = 0.

We can apply mapping G to this equation. We then get

G(q(v, n,m)j,l) =
∑

(v,n′,m,j′,l′)<(u,n,m,j,l)

β(v,n′,m,j′,l′)G(q(v, n′,m)j′,l′),

for some β(v,n′,m,j′,l′) ∈ F. Let W be the linear space spanned by all elements

v ∗w(n′,m− t)j′,l′ with [v ∗w(n′,m− t)]j′,l′ < [u ∗w(n,m− t)]j,l. By Lemma 46,

G(q(u, n,m)j,l)−u∗w(n,m−t)j,l ∈ W . By Lemmas 47 and 46, G(q(v, n′,m)j′,l′) ∈
W , provided that [v ∗ w(n′,m)]k′,l′ < [u ∗ w(n,m)]j′,l′ (if v has the same distance

as u then we use Lemma 46; if v has distance larger than u we use Lemma 47).

Therefore, u∗w(n,m− t)j,l ∈ W . This means that [u∗w(n,m− t)]j,l ∈ Bm−t(M).

�
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15. Main result

Let N be a matrix. Recall that by S(N) we denote the linear space spanned by

all entries of matrix N ; similarly if N1, N2, . . . , Nk are matrices with entries in A

then by S(N1, N2, . . . , Nk) we will denote the linear space spanned by all entries

of matrices N1, N2, . . . , Nk.

Theorem 49. Let M be a matrix satisfying Assumption 3. For arbitrary c, there

is m > c such that R ∩ S(w(0,m), w(1,m), w(2,m), w(3,m), . . .) is a linear space

over F of dimension less than
√
n.

Proof. Recall that, by Lemma 39, w(0,m), w(1,m), . . . ∈ ∑

u∈D(M),i=0,1,... Fu ∗
w(i,m) for i = 1, 2, . . . k and u ∈ D(M) with distance at most s, where W s =

0. It is sufficient to show that for infinitely many m the dimension of the set

Rm(M) = R ∩∑

u∈Dm(M),i=0,1,... S(u ∗ w(i,m)) is less than
√
m. By Lemma 41

it is equivalent to show that the cardinality of set Zm(M) is smaller than
√
m for

infinitely many m.

We will provide a proof by contradiction. Suppose, on the contrary, that there

is c such that for every m > c, set Zm has more than
√
m elements.

By Theorem 48, if [u′ ∗ w(i,m)]k,l ∈ Zm(M) and [u ∗ w(i′,m′)]k′,l′ ∈ Zm′(M)

and m > m′ + s, m′ > 2s then (u, i, k, l) 6= (u′, i′, k′, l′). It follows because by

Theorem 48 [u ∗ w(i,m′)]k,l ∈ Bm′(M) and Bm′(M) ∩ Zm′(M) = 0 by Theorem

40, so (u, i, k, l) 6= (u′, i′, k′, l′).

Let m be a natural number. Recall that M is a d by d matrix with entries in

A(α) ∩ 〈x〉. Recall that γy(M) =
∑t

i=0 Miy
i, so w(i,m) = 0 if i > tm.

Let Cm(M) be the set of all tuplets (u, i,m, k, l), where 0 ≤ i ≤ m(s + 2)t,

k, l ≤ d, u ∈ D(M). Recall that set D(M) is finite. Therefore there is a constant

z such that for every m the cardinality of the set Cm(M) is smaller than zm.

We can now choose m > z2 and m > c+ 3s.

For q = 1, 2, . . . ,m let Fq be the set of elements (u, i,m, k, l) such that (u, i,m+

q(s+ 1), k, l) ∈ Zm+q(s+1)(M) where u ∈ D(M).

Let (u, i,m+ q(s+1), k, l) ∈ Zm+q(s+1)(M). Notice that i ≤ t(m+ q(s+1)) ≤
m · t · (s + 2), as otherwise w(i,m+ q(s + 1)) = 0 (since w(i, j) is zero if i > t · j
by the construction of w(i, j)). Therefore Fq ⊆ Cm(M), for q = 1, 2, . . . ,m.

Notice that the cardinality of Fq is the same as the cardinality of Zm+q(s+1)(M),

and hence larger than
√
m. By Theorem 48, Fi ∩ Fj = ∅ for any 1 ≤ i, j ≤ m.

Therefore the cardinality of
⋃s

i=1 Fi is larger than m
√
m.
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Recall that Fi ⊆ Cm(M) for i = 1, 2, . . . ,m. Therefore, the cardinality of

Cm(M) has to be at least m
√
m. This gives us a contradiction, since we showed

that the cardinality of Cm(M) is smaller than zm, yet we assumed that m >

z2. �

We will now prove that Assumption 1 holds for algebras over a field F , where

F is the algebraic closure of a finite field.

Theorem 50. Let F be a field. Let M be a matrix satisfying Assumption 3. For

arbitrary c, there is m > c such that R ∩ S(L(Mm)) is a linear space over F of

dimension less than
√
n.

Proof. We can now apply Theorem 49 to the matrix M to get that

R ∩ S(w(0,m), w(1,m), w(2,m), . . .)

is a linear space over F of dimension less than
√
n. By Lemma 35, we have

S(L(Mm)) = S(w(0,m), w(1,m), w(2,m), . . .).

�

16. Matrices

In this section F denotes the algebraic closure of a finite field. The aim of

the next two sections is to show that, if N is an arbitrary matrix with entries

in A(j) ∩ 〈x〉 for some j, then some power of N satisfies Assumption 3. Here

the notation A and R is not related to the similar notation appearing in previous

chapters; instead, R denotes a general ring.

Definition 14. Let R be a finite dimensional F -algebra generated by elements

r1, r2, . . . , rn ∈ R. Let M be the multiplicative monoid generated by elements

r1, . . . , rn. Let Z+ be the set of all positive integers. Let α : M → Z+ be the

function such that

• α(ri) = 1 for i = 1, . . . , n.

• If u, v ∈ M then α(u · v) = α(u) + α(v).

The number α(r) will be caled the weight of element r ∈ M . Notice that one

element may have many weights.

We say that α is the weight function on R related to elements r1, . . . , rn.

Definition 15. Let notation be as in Definition 14. We will say that an element

r ∈ R is pseudo-homogeneous if it can be expressed as a linear combination of



HOW FAR CAN WE GO WITH AMITSUR’S THEOREM IN DIFFERENTIAL POLYNOMIAL RINGS?39

elements with the same weight, say β. The weight of r is β. The weight of r will

be denoted degw(r).

By the linear space of pseudo-homogeneous elements of weight n we will mean

the linear space over F spanned by all pseudo-homogeneous elements of weight n;

this linear space will be denoted R(n).

By R1, we will denote the algebra which is the usual extension of R by an

identity element, and by R(0) we will denote the space F · 1 in R1.

The following Lemma closely resembles Lemma 1 from [21]. However, our ring

need not be graded, so we provide a detailed proof using similar methods as in

[21].

Lemma 51. Let R be a simple F -algebra with an identity element and let notation

be as in Definition 14. Assume that

1 =
k′

∑

i=k

bi,

where bi is a pseudo-homogeneous element of weight i for each i. Let h ∈ R be a

pseudo-homogeneous element in R. Denote Hi =
∑i−degw h

j=0 R(j)hR(i−j−degw h)

for n ≥ degw h. Then there exist ci ∈ H(i) such that

1 =

t′
∑

i=t

ci

for some t > k′ and t′ − t < k′.

Proof. Let I be the ideal generated by h in R then I =
∑∞

i=degw h Hi. Notice

that R = I since R is a simple algebra, therefore there are ci ∈ H(i) such that

1 =
∑t′

i=t ci; t
′ − t will be called the length of expression 1 =

∑t′

i=t ci. We can

assume that t > k and that t′ − t is minimal possible. If t′ − t < k′ then the result

follws; suppose that t′ − t ≥ k′. Recall that
∑k′

i=k bi = 1 therefore

1 = ct(

k′

∑

i=k

bi) +

t′
∑

i=t+1

ci.

Notice that the weight of element ctbk′ is t + k′ ≤ t′. Therefore, 1 =
∑t′

i=t+1 ei

where ei = ctbi−t + ci for i ≥ t + 1. We have obtained a contradiction since the

expression 1 =
∑t′

i=t+1 ei has smaller length than the expression 1 =
∑t′

i=t ci. �

The following lemma resembles Proposition 1 from [21]. However, our ring is

ungraded, so we need to repeat the argument.
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Lemma 52. Let R be a simple F -algebra with an identity element and let notation

be as in Definition 14. Let

1 =

k′

∑

i=k

bi

with each bi pseudo-homogeneous of weight i for some k, k′, with k′−k the minimal

possible. Then all bi are in the center of R.

Proof. The proof is similar to the proof of Proposition 1 in [21]. We will show first

that all bi belong to the center of R. Suppose the contrary, and let z be minimal

such that c′ = rbz − bzr 6= 0 for some pseudo-homogeneous r (we can assume

that r is pseudo-homogeneous, since every element in R is a linear combination

of pseudo-homogeneous elements). Since R is simple, then R equals the ideal

generated by c′. Notice that c′ is a pseudo-homogeneous element. Let c be a

pseudo-homogeneous element which is a product of the generators r1, . . . , rn of

R and the element c′, with the element c′ appearing at least 2k′ times. Such a

non-zero element c exists, since a simple ring is prime.

By the previous lemma,

1 =
t′
∑

j=t

ci

where ci are pseudo-homogeneous and ci ∈
∑i−degw c

j=0 R(j)cR(i− j−degw c) ⊆ Ri.

Moreover, t′ − t < k′. Recall that c′ = −∑k′

i=z+1 di, with di = rbi − bir.

Notice that ct is pseudo-homogeneous of weight t. Observe that c′ is pseudo-

homogeneous of weight z + degw r and each di is pseudo-homogeneous of weight

i + degw r. Recall that each ci is a linear combination of products of elements

ai and element c′; we can substitute at some place in each of these products

c′ = −∑k′

i=z+1 di. Therefore,

ct =

k′−z+t
∑

i=t+1

fj

where each fj is a linear combination of products of some generators r1, . . . , rn

of R and element c′, with element c′ appearing at least 2k′ − 1 times and each

product is pseudo-homogeneous of weight j (so each fj is pseudo-homogeneous of

weight j). Now if k′ − z + t ≤ t′ we can substitute in this way for element ct in

1 =
∑t′

j=t ci and obtain

1 =

t′
∑

j=t+1

c′i



HOW FAR CAN WE GO WITH AMITSUR’S THEOREM IN DIFFERENTIAL POLYNOMIAL RINGS?41

where each c′i is pseudo-homogeneous of weight i and is a linear combination of

products of the generators r1, . . . , rn of R and the element c′, with the element c′

appearing at least 2l − 1 times.

Continuing in this way we can substiture c′ = −∑k′

i=z+1 di several times to

obtain (because t′ − t ≤ l) that

1 =
t′
∑

j=t′−(k′−z)+1

c′′i

where c′′i are pseudo-homogeneous of weight i. Observe that t′−(t′−(k′−z)+1) =

k′ − z − 1 < k′ − k. This is a shorter presentation than

1 =

k′

∑

i=k

bi.

Hence we obtain a contradiction. �

Lemma 53. Let R be a finite dimensional simple F -algebra and let notation be

as in Definition 14. Then 1 is a pseudo-homogeneous element of R.

Proof. Since a1, . . . , an generate R, then there are pseudo-homogeneous elements

bi such that

1 =
k′

∑

i=k

bi.

We can assume that k′ − k is the minimal possible. By the previous lemma, each

bi is central. By the Wedderburn-Artin theorem, R is isomorphic to a matrix ring

with coefficients from F . Hence, every central element is of the form α · I, where
I is the identity matrix and α is from F . Then pi = αi · I, and since 1 =

∑k′

i=k bi,

then some αi 6= 0. Then 1
αi
bi = I is pseudo-homogeneous. �

Remark 54. Since F is the algebraic closure of a finite field, then for every

matrix m there is a natural number γ(M) > 0 such that (Mγ(M))2 = Mγ(M) is a

diagonalizable matrix. Moreover, if all eigenvalues of M are nonzero, then there

is a natural number β(M) > 0 such that Mβ(M) = I, the identity matrix.

To prove this, we need to restrict ourselves to diagonal matrices, where this

result holds, and to the Jordan blocks. Let αI +N be a Jordan block with α on

diagonal; then N is a stricly uppertriangular matrix, and hence nilpotent. Let

p be a characteristic of the field F . Then (αI + N)p
n

= αpn

I + Npn

; therefore

(αI+N)p
n

= αnI = I for sufficiently large n, as required. For some related results

see [1].
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If R1, R2, . . . Rt are algebras, then elements of algebra R = ⊕t
i=1Ri will be

written as (q1, q2, . . . , qt), with qi ∈ Ri.

Theorem 55. Let R be a finite dimensional F -algebra and let notation be as

in Definition 14. Suppose that R = R1 ⊕ R2 ⊕ · · · ⊕ Rt for some simple finite

dimensional F -algebras R1, R2, . . . , Rt. Then 1 is a pseudo-homogeneous element

of R.

Proof. We proceed by induction on t. If t = 1 then the result follows from

the previous Lemma. Assume that t > 1 and that the result holds for num-

bers 1, 2, . . . , t − 1. Recall that r1, . . . , rn are generators of R (see Definition

14). Each element ri can be written as ri = (r′i, ei) with r′i ∈ R′ where R′ =

R1 ⊕R2 ⊕ · · · ⊕Rt−1 and ei ∈ Rt. We can apply the inductive assumption to the

algebra R′ = R1 ⊕ R2 ⊕ · · · ⊕ Rt−1 with generators a′i for i = 1, . . . , n. Then the

identity element of R′ is pseudo-homogeneous in R′. It follows that element (1, e)

is a pseudo-homogeneous element of R for some e ∈ Rt.

Similarly, by the previous Lemma applied to the ring Rn we obtain that (f, 1)

is a pseudo-homogeneous element of R, for some f ∈ R′.

Observe that, since a power of a pseudo-homogeneous element is a pseudo-

homogeneous element, then (1, e)γ and (f, 1)β are pseudo-homogeneous elements

of the same weight for some γ, β > 0. Let α1, . . . , αs be the eigenvalues of matrix

fβ ; then for any scalar c the matrix cI + fβ has the eigenvalues c+α1, . . . , c+αs.

The field F is infinite, therefore there are c, c′ ∈ F ′ such that all the eigenvalues

of matrix M = c(1, e)γ + c′(f, 1)β are nonzero. By Remark 54, some power of the

matrix M is the identity matrix. As M is a pseudo-homogeneous element of R it

proves the result. �

We will now prove the following result for rings which are not necessarily

semisimple.

Theorem 56. Let R be a finite dimensional F -algebra which is not nilpotent and

let notation be as in Definition 14. Then there is a pseudo-homogeneous element

e ∈ R such that e2 − e ∈ W , and for every r ∈ R we have r − er ∈ W and

r − re ∈ W , where W is the Wedderburn radical of R (the largest nilpotent ideal

in R).

Proof. Consider the algebra R′ = R/W . Then r′1 = r1 +W, r′2 = r2 +W, . . . , r′n =

rn + W are generators of R′. We can consider Definition 14 for the algebra R′

and its generators r′1, . . . , r
′
n (in place of R and r1, . . . , rn). The algebra R′ is
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semisimple, so by Theorem 55 it has a pseudo-homogeneous identity element e+

W = 1 for some pseudo-homogeneous e ∈ R. Observe that for every r ∈ R we

have r +W = 1 · (r +W ) = (r +W ) · 1, hence r − er ∈ W and r − re ∈ W for

every r ∈ R. In particular e2 − e ∈ W . �

Theorem 57. Let R be a finite dimensional F -algebra which is not nilpotent and

let notation be as in Definition 14. Then there is f ∈ R such that f2 = f and for

every r ∈ R we have r − fr ∈ W and r − rf ∈ W , where W is the Wedderburn

radical of R.

Notice then that for every r ∈ R we have f(fr) = fr, because f2 = f .

Proof. Let e be as in the previous theorem. Then e2 − e ∈ W , and by the remark

before Lemma 55 there is m > 0 such that f = em satisfies f2 = f . Notice also

that for every r ∈ R we have r − rem ∈ W . Indeed, the latter follows because

r − emr = (r − er) + (er − e2r) + . . . + (em−1r − emr) ∈ W , since r′ − er′ ∈ W

where r′ = eir, by assumption. Similarly r − emr ∈ W. �

17. Matrices and noncommutative algebras

In this section F denotes the algebraic closure of a finite field. Let N be a

matrix whose coefficients are elements of A of the same degree. Assume that for

almost all i entries of N i are in 〈x〉. We will first show that for some natural

number q either Nq = 0 or M = Nq satisfies Assumption 3.

Lemma 58. Let N =
∑ξ′

i=1 A
′
ia

′
i where for each i, A′

i is a matrix with coefficients

in F and a′1, a
′
2, . . . a

′
ξ′ are elements from A which are linearly independent over

F and have the same degree. Let H ′ be the F -algebra generated by matrices A′
i.

Let β be a natural number. Then, for some ξ, Nβ =
∑ξ

i=1 Aiai where each ai is a

product of exactly β elements from the set {a′0, a′1, . . . , a′ξ}. Moreover, a0, a1, . . . , aξ

are linearly independent over F and {A1, A2, . . . , Aξ} equals the set of matrices

which are products of exactly β matrices from the set {A′
1, . . . , A

′
ξ′}

Proof. Observe that distinct products a′i1a
′
i2
· · · a′iβ are linearly independent over

F, because each of them has the same degree and each of them is a product of

elements starting with a or b—the generators of R. Therefore their products are

linearly independent over F . Alternatively, it can be proved by induction on β. �

Lemma 59. Let notation be as in Lemma 58, and let H be an algebra generated

by matrices A1, A2, . . . , Aξ. Let W be the Wedderburn radical of H, and W ′ the

Wedderburn radical of H ′. If r ∈ H ∩W ′ then r ∈ W .
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Proof. Observe first that the ideal generated by r in H ′ is nilpotent, as r ∈ W ′.

Therefore the ideal generated by r in H is nilpotent, and since W is the sum of

all nilpotent ideals in H it follows that r ∈ W . �

Theorem 60. Let notation be as in Lemmas 58 and 59. Assume that for almost

all i entries of N i are in 〈x〉. Then for infinitely many β the matrix M = Nβ

satisfies the following: either M = 0 or M =
∑ξ

i=1 Aiai, where for each i, Ai

is a matrix with entries in F and a1, a2, . . . , aξ are elements from A ∩ 〈x〉 which

are linearly independent over F and have the same degree. Moreover, there is an

element e ∈ H which is a linear combination of matrices A1, . . . , Aξ and such that

e2 = e and r− er ∈ W and r− re ∈ W for all r ∈ H, where W is the Wedderburn

radical of H.

Proof. Recall that N =
∑ξ′

i=1 A
′
ia

′
i. If the algebra H ′ generated by A′

1, A
′
2, . . . , A

′
ξ′

is nilpotent then Nβ = 0 for almost all β. It remains to consider the case when N

is not a nilpotent matrix.

We will first show that all the assertions of our theorem except the assertion

that a1, a2, . . . , aξ are elements from A∩ 〈x〉 hold for some number β. Recall that

A′
1, A

′
2, . . . A

′
ξ′ are generators of algebra H ′. We can consider Definition 14 for

algebra R = H ′ and for generators ri = A′
i for i = 1, . . . , n where n = ξ′. We can

then apply Theorem 57 to algebra H ′ to get that there is f ∈ H ′ such that f2 = f

and f − fr = 0 and r− rf = 0, and f is a pseudo-homogeneous element of weight

β, for an appropriate β. By Lemma 58 the set {A1, A2, . . . , Aξ} equals the set

of elements which are products of exactly β elements from the set {A′
1, . . . , A

′
ξ′}.

Therefore matrices A1, . . . , Aξ span the linear space of pseudo-homogeneous el-

ements of weight β in H ′, hence f is a linear combination of A1, . . . , Aξ; hence

f ∈ H. Let W ′ be the Wedderburn radical of H ′. By Lemma 59, W ′ ∩H ⊆ W ,

therefore r − rf ∈ W and r − fr ∈ W for all r ∈ H. Therefore our result holds

for e = f and M = Nβ (by Lemma 58). We have shown that our result holds for

some β.

To show that there are infinitely many elements β with this property, observe

that for any natural number k > 0 we can apply the same reasoning to βk = k · β
and ek = ek instead of β and e. In this way we will obtain infinitely many

β ∈ {β1, β2, β3, . . .} satisfying the thesis.

Notice that a1, a2, . . . , aξ are elements from A∩ 〈x〉 for sufficiently large β, this

finishes the proof. �
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Corollary 61. Let notation be as in Theorem 60. Then we can assume that

A1 = e (by using linear combinations of elements ai instead of elements ai).

Corollary 62. Let A,A′, R be as in Theorem 6, and 〈x〉 denote the ideal generated
by x in A′. Let N be a matrix whose coefficients are elements of A of the same

degree. Assume that for almost all i entries of N i are in 〈x〉, then for some natural

number q either Nq = 0 or M = Nq satisfies Assumption 3.

Proof. It follows from Theorem 60 and from Corollary 61. �

Theorem 63. Assumption 1 holds for F -algebra A.

Proof. Let N be a matrix with entries in A∗(j) for some j, and such that for almost

all i matrix N i has all entries in 〈x〉. By Corollary 62 either N is a nilpotent

matrix or for some q matrix M = Nq satisfies Assumption 3. By Theorem 50

applied to M = Nq, there are infinitely many n such that the dimension of the

space R ∩ S(L(Mn)) doesn’t exceed
√
n. Observe that S(L(Mn)) = S(L(Nq·n))

(because operations S and L depend only upon the matrix, not on the way it is

presented). Therefore R ∩ S(L(Nq·n)) has dimension ≤ √
n ≤ √

qn. This holds

for infinitely many n.

�

Proof of Theorem 1. Recall that F is the algebraic closure of a finite field,

and hence F is countable and infinite. By Theorem 63, Assumption 1 holds for

F -algebra A. Then, by Theorem 32 there is an F -algebra Z and a derivation D

on Z such that the differential polynomial ring Z[y;D] is Jacobson radical but Z

is not nil.

Assume now that K is a subfield of F . If R is an F -algebra then R is also a K-

algebra. Therefore, Theorem 1 also holds for an arbitrary subfield of the algebraic

closure of any finite field.
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