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Recent measurements have highlighted that even in vacuum spatially shaped photons travel slower than c, the speed of
monochromatic plane waves. Here we investigate the intrinsic delay introduced by “twisting” a photon, i.e., by intro-
ducing orbital angular momentum (OAM), and measure the photon time of flight with a Hong–Ou–Mandel inter-
ferometer. When all other parameters are held constant, the addition of OAM reduces the delay (accelerates) with
respect to the same beam with no OAM. We support our results using a theoretical method to calculate the group
velocity and gain an intuitive understanding of the measured OAM acceleration by considering a geometrical
ray-tracing approach.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must

maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
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1. INTRODUCTION

The propagation velocity of light in vacuum is a constant, c, only
for monochromatic plane waves: any deviation from the plane-
wave constraint can lead to a propagation velocity different from
c. Even the simplest of light beams, such as a focused Gaussian
beam, exhibits regions of modified group velocity [1]. A whole
range of more complicated beams that are appropriately shaped
in space, time, or space and time have been identified, which
exhibit intensity peaks and structures that are subluminal, super-
luminal, or accelerating [2–9].

A slightly more fundamental issue has been addressed recently,
namely, the propagation time of a single photon from one point
(the “source”) to another (the “detector”), thus highlighting that
the beam structure will modify the propagation time [10]. The
group velocity of a photon structured in the transverse dimension
propagating in vacuum can be calculated as

hv
�z�
g i �

��

∂2ϕ�r�

∂ω∂z

�

ω0

�

−1

, (1)

where ∂ω and ∂z indicate, respectively, the gradient with respect to
the photon carrier frequency ω and the position along the propa-
gation direction z, and ϕ�r� represents the phase front in the
cylindrical coordinates r � �r,φ, z� [10–12]. Here h…i denotes
the spatial average over the transverse beam structure, using the
normalized field intensity as a weight. In the case of a plane wave,
∂zϕ�r� � k0, where k0 � 2π∕λ is the vacuum wavevector of the
photon with a wavelength of λ. This plane wave provides the stan-
dard result that in vacuum the group velocity is equal to the speed
of light c � ω∕k0. However, as soon as there is a spatial structure

of any kind on the transverse photon profile, ∂zϕ�r� is a non-
trivial function of ω such that the speed along the propagation
direction will deviate from c. An intuitive understanding of this
deviation is based on the simple observation that c is the speed of a
monochromatic plane wave (as can be seen upon inspection of the
Maxwell equations), and that in a structured photon, the con-
stituent plane waves are propagating at non-zero angles with re-
spect to the propagation axis. The travel time of a photon from
one point “A” to another point “B” is longer due to these plane-
wave components traveling at an angle with respect to the axis
connecting A to B (and, hence, travel a longer distance). It is,
therefore, intuitively clear that the propagation time of a focused
(e.g., imaged from the source to the detector) photon will increase
as the ring radius is increased. This delay as a function of radius is
also well described within the framework of a simple ray-tracing
theory [10].

The propagation of light with an azimuthal phase gradient,
i.e., orbital angular momentum (OAM), was also examined
recently [12,13]. In this case, one must allow for the fact that
these beams have a ring-shaped spatial profile and that for increas-
ing OAM, the ring radius also naturally increases for the typical
beam types encountered in experiments, e.g., Laguerre–Gauss
(LG) or hypergeometric beams. The introduction of OAM will
therefore lead to the observation of a delay for increasing OAM
due the increasing ring size [12].

Here we address the fundamental question of the intrinsic
effect of OAM on the propagation time of a single photon.
This requires separating the effect of increasing OAM from
the effect of the associated increase in ring radius in naturally
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occurring OAM modes. Our measurements show that, rather
counterintuitively, OAM increases the velocity of the photon
when compared with a photon that has exactly the same spatial
profile but is carrying zero OAM. These findings are supported by
a theoretical model and ray-tracing considerations providing in-
tuitive explanations for the observed effect. Although the two-
photon interference, which necessitates the use of single photons,
is used to demonstrate the phenomenon here, this effect is
equivalently present in classical beams possessing OAM.

The effective change in velocity of beams carrying OAM may
have consequences in a number of quantum technologies, such as
quantum key distribution [14,15], which use OAM due to its
inherent high dimensionality [16–18]. For example, accurate tim-
ing of signals used in quantum communications may be affected if
the velocity of the photons is calculated incorrectly [19].
Furthermore, measurements of photons in cosmology could be
subject to discrepancies in arrival time if these subtle effects
are not properly accounted for [20].

2. EXPERIMENTS

We wish to study the propagation velocity of photons with a fixed
spatial profile, specifically, with a ring-shaped intensity distribu-
tion. Careful control of the transverse shape of the photons can be
achieved with an spatial light modulator (SLM), which can also be
used to impart the required OAM. In our experiment, indistin-
guishable photon pairs are generated via spontaneous parametric
down-conversion in a nonlinear crystal pumped by 100 fs,
404 nm wavelength pulses, provided by a frequency-doubled
80 MHz, Ti:sapphire oscillator. The experimental arrangement
is thereafter the same as that described in Ref. [10] (see Fig. 1
for details). The two photons are separated; one photon is used

as a reference, whereas the other is sent via a pair of SLMs. The
first SLM imprints the desired phase structure, whereas the sec-
ond applies the inverse phase to return the photon to a plane-wave
mode. In all the experiments (aside from the plane-wave refer-
ence), a focusing lens phase is imprinted on each of the SLMs
to form a 4f telescope between the input and output fibers.
The signal and reference photons are recombined at a 50:50 fiber
beam splitter where they undergo Hong–Ou–Mandel (HOM)
interference [21] and produce the characteristic HOM dip as
the variable path delay of the reference photon is scanned.
The photons are detected via two single-photon avalanche detec-
tors (Excelitas SPCM-14) and counted in coincidence via an
event timing module (PicoQuant HydraHarp 400). The position
of the HOM dip minimum is used to define the average transit
time of the structured photons. For each delay position of the
reference photon (controlled with a stepper motor) along the
HOM dip, we iteratively imprint all of the various ring-shaped
holograms (m � 0–8) onto the SLMs and integrate the coinci-
dence counts for 2 s for each m. The full delay-scan measurement
is then repeated 90 times and we take the final averaged (over the
90 independent measurements) HOM dip minimum and stan-
dard deviation error. This procedure (see Supplement 1 for more
details) effectively minimizes systematic errors, for instance, due
to thermal fluctuations, and allows increasing precision through
averaging over random contributions to variations in the mea-
sured HOM dip position. To remove the radial dependence,
we performed experiments with a ring-shaped mask applied to
the beam, where we choose for each m the size of the mask to
match the natural size of a LG beam after propagation to the
far field, given by D�m� � 2w

ffiffiffiffiffiffiffiffiffiffiffiffi

jmj∕2
p

, where w is the beam
waist. The phase (2πm in the range 0 < m < 8) and amplitude
mask were imposed onto the beam using the first SLM along with
a focusing lens phase with a focal length of f � 300 mm. We
also measured, for reference, the HOM dip position for a
Gaussian beam (m � 0), i.e., no structuring of the transverse
phase. Any systematic delays (due to, for example, the SLMs)
are removed by only considering the relative difference in optical
delay between measurements with/without OAM and the same
intensity profile. Figure 2 shows the data with OAM (red squares)
and without OAM (blue circles). We observe that all of the mea-
surements with OAM lie below those without OAM, thus clearly
indicating that photons with OAM suffer less delay than the same
(intensity profile) photons with no OAM. In order to assess the
impact of the statistical relevance of the data (large error bars in
Fig. 2), we provide an analysis to compare our data with the “null
hypothesis,” i.e., with the hypothesis that there is no difference in
delay between the photons with OAM and the photons with no
OAM. In Fig. 3(a), we show the difference between the photon
delays, i.e., the difference between the two sets of data in Fig. 2,
Δ�δz� � δzm>0 − δzm�0. Taking into account that there cannot
be a difference for m � 0 and that the OAM effect should in-
crease with m, we fit the data with the simplest phenomenological
model, a straight line, weighted with the measurement errors. The
darker shaded region shows the 1σ confidence bound of the fit to
the data, whereas the lighter shaded area shows the 3σ confidence
bound. As can be seen, the null hypothesis cannot explain the
data with a confidence that is slightly better than 3σ.

Therefore, when considered together, the data show with 3σ
confidence that OAM contributes to the group velocity of a pho-
ton and that this contribution leads to a speed up of the photon.

Fig. 1. Experimental setup to study the path length traveled by a struc-
tured photon. Pulses of light with a central wavelength of 404 nm are
produced by frequency-doubling a Ti:sapphire laser in a type-I beta-
barium borate (BBO) crystal. Photon pairs at 808 nm are generated
in a type-II BBO crystal. The photons are polarized orthogonally and
are split on a polarizing beam splitter. One photon is spatially structured
via an SLM, whereas the other photon (reference) is coupled to a polari-
zation-maintaining fiber (PMF) with the input end mounted on a stepper
motor so as to finely control the length of free-space propagation before
the fiber and, therefore, the optical delay (delay line). The phase structure
of the structured photon is returned to a Gaussian beam by a second SLM
and coupled into a PMF and recombined with the reference photon on a
50:50 beam splitter where the photons undergo HOM interference.
Single-photon detectors are used to coincidence count the output pho-
tons. The position of the HOM interference dip measures the transit
time of the signal photon.
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A simple theoretical model can provide a physical justification
and insight into this surprising effect.

3. THEORY

One simple set of modes to consider is the Bessel–Gauss set [22].
These beams exhibit an extended depth of field and an annular

intensity distribution in the far field [23–25]. Following Ref. [10],
the z-averaged velocity of a photon can be expressed as

vg �
L

R

z2
z1
dzhv�z�g i

−1
, (2)

where L � z2 − z1 and where z1 and z2 indicate, respectively, the
start (source) and end (detector) positions of the photon path.
The time taken for a photon to travel L is thus t � L∕vg , and
the distance between a structured photon and a plane wave that
travels at constant speed of c over a fixed time is given by

δz � ct − L �

�

∂

∂k
�arghψ�r, k0�jψ�r, k�i�jk0 − z

�

z2

z1

, (3)

where arg is the complex argument, and jψ�r, k�i is the normal-
ized field amplitude such that hψ jψi denotes the overlap integral
in the transverse plane �r,ϕ�. In the case of the paraxial wave
approximation, this simplifies to [10]

vg �
c

1�
hk2

⊥
iz1

2k20

≈ c

�

1 −
hk2

⊥iz1
2k20

�

(4)

and

δz �
L

2k20
hk2

⊥iz1 , (5)

where h…iz1 denotes average over the normalized field amplitude
at the source z � z1 and k⊥ is the transverse wavevector.

This analysis provides a rigorous estimation of the change in
the propagation velocity of the structured photons we use in the
experiments. Numerical estimation of Eq. (5) gives the dashed
and solid lines in Fig. 2.

An intuitive model of the influence of OAM on the speed of a
photon may also be obtained within the context of a geometrical
ray description [26]. The delay is estimated by considering the
photon propagation from the plane of the “source” to that of the
“detector,” i.e., the object and image planes of a non-magnifying
telescope. A Laguerre–Gauss LG0,0 mode (a Gaussian mode with
no OAM) will be spatially inverted as it travels through the beam
waist, i.e., images will appear inverted at the telescope imaging
plane. In Fig. 4(a), we show the Poynting vector for this mode
(indicated as “lens ray”) that goes through an effective rotation of
α � 180° in the transverse plane. A Laguerre–Gauss LGm,0 mode

Fig. 2. Experimental results. Photon path delay, measured relative to a
Gaussian (m � 0) beam, for photons with a ring aperture for the cases
with (red squares) and without (blue circles) OAM. The ring diameter of
the photons is D�m� � 2w

ffiffiffiffiffiffiffiffiffiffiffiffi

jmj∕2
p

. The lines show the theoretical
predictions based on Eq. (5).

(a)

(b)

Fig. 3. Effect of adding OAM to beams with a ring aperture. (a) We
show the difference in path length between ring-shaped photons with and
without OAM, Δ�δz� � δzm>0 − δzm�0. The solid black line is the error-
weighted, linear regression of the data. The dark (light) shaded area shows
the 1σ�3σ� confidence bound. The null hypothesis (Δ�δz� � 0) is shown
as a dashed red line: this cannot explain the data with a confidence better
than 3σ. (b) The data are fit using the full theoretical description of the
group velocity for Bessel–Gauss modes Eq. (5) (solid line) and the ray-
tracing approach using Eq. (6) (dashed line). The insets show transverse
profiles of the m � 0, 5 intensity profiles measured using a continuous-
wave source. A wedge is removed from the ring to illustrate that adding
OAM rotates the intensity profile by an angle measured to be
α � 155° for all values of m.

Fig. 4. Ray picture of the plane-wave trajectories in the case of a fixed-
diameter ring-shaped beam passing through the focus of a telescope
formed between lenses placed at positions A and B (separated by a dis-
tance of L � 2f ). In the zero-OAMm � 0 case (indicated as “lens ray”),
images are inverted, corresponding to a rotation of the ray by an angle of
α � 180°. Introducing OAM (indicated as “OAM ray”) necessarily leads
to a smaller rotation angle of α and thus to a shorter path length covered
by the respective Gaussian beam, i.e., to an acceleration of the photon.
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with an OAM integer m behaves somewhat differently: the
Poynting vector no longer rotates by 180°. Rather, the vector
rotates by an angle that is smaller in absolute value and in either
a clockwise or a counter-clockwise direction depending on the
sign of the OAM [27].

Using this geometrical insight, it is therefore possible to esti-
mate the photon path difference between a generic ring-shaped
beam with and without OAM (but with a fixed ring radius):

δzRayTracing �

�

1

2
−

1 − cos α

4

�

D2

L
, (6)

where L is the distance between the two lenses and D is the diam-
eter of the intensity ring. As can be seen from the ray-tracing
Eq. (6), any OAM will actually advance the photon arrival with
respect to a beam with the same intensity profile and m � 0. In
other words, the longest possible trajectory that a light ray can
take is given by image inversion, α � 180°, corresponding to
what is expected for an m � 0 beam. If one adds OAM, the rays
will then be skewed yet still remain rays, i.e., straight lines that can
therefore only connect the object to the image plane via trajec-
tories that are shortened. These shortened trajectories imply a
faster transit time for photons that carry OAM with respect to
photons that carry none.

The delay difference between OAM and no OAM is compared
with the theory in Fig. 3(b). The solid line shows the prediction
based on Eq. (5) for Bessel–Gauss modes similar to those used in
the experiments. The curve uses the exact radial distribution mea-
sured in the experiments and thus has no free parameters. The
dashed line shows the expected delays calculated from the simpler
ray-tracing theory. This ray-tracing approach requires knowledge
of the Poynting vector rotation angle α. We thus performed addi-
tional measurements with a standard diode laser injected into the
arm containing the SLMs. We then impose the same phase and
amplitude masks as for the single-photon experiments, but now
with a 45° slice removed around α � 0°. The insets in Fig. 3(b)
show just one example: for m � 0, the “slice” is rotated by
α � 180°, corresponding to the expected image inversion for
our telescopic imaging setup, whereas for m � 5 the slice is only
rotated by α � �155°. We verified that this rotation is indepen-
dent of the OAM winding number. We therefore use this value of
α in Eq. (6).

Both models correctly predict the observed trend of the data,
i.e., a negative delay shift of the photons with OAMwhose absolute
value is increasing with the topological number m. Due to the
standard deviation error of the measurements, we can only affirm
that both models agree within 1 standard deviation with the data.
This agreement is nevertheless rather remarkable considering both
models have no free parameters and thus support the conclusion
that OAM speeds up a photon. Although both models discussed
above were used to directly compare with the 4f telescope in our
experimental setup, the effects described are general and apply to
any beam carrying OAM that propagates in free space from the
near field to the far-field (or focal plane of a lens.

4. CONCLUSIONS

We have shown experimentally that the introduction of OAM
onto a photon reduces its transit time over a fixed path length.
This result is not in contradiction with previous results where the
spatial profile of a classical light beam was allowed to vary as OAM
was introduced. The main purpose of our study here is that we are

investigating the intrinsic OAM delay, rather than the overall ef-
fect due to both OAM and spatial reshaping of the beam due to
the OAM. This acceleration of the photon due to OAM can be
understood within the framework of ray optics and is related to
the fact that the longest path for a ray is given by rays that invert
an image through a telescope. Beams or photons with OAM ro-
tate images by an angle that is always less than 180° and, hence,
energy flows along shorter paths. We also show that a more rig-
orous description can be obtained by explicitly calculating the
group velocity [see Eq. (1)]. We underline that the main result
of this work is the experimental verification, with a confidence of
3σ, that the intrinsic effect of OAM is to speed up the photon.
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