
Mon. Not. R. Astron. Soc. 397, 431–444 (2009) doi:10.1111/j.1365-2966.2009.14938.x

How flat can you get? A model comparison perspective on the curvature

of the Universe

Mihran Vardanyan,1⋆ Roberto Trotta1,2⋆ and Joseph Silk1⋆
1Astrophysics, Denys Wilkinson Building, Oxford University, Keble Road, Oxford, OX1 3RH
2Blackett Laboratory, Astrophysics Group, Imperial College London, Prince Consort Road, London SW7 2AZ

Accepted 2009 April 20. Received 2009 April 8; in original form 2009 January 26

ABSTRACT

The question of determining the spatial geometry of the Universe is of greater relevance than

ever, as precision cosmology promises to verify inflationary predictions about the curvature of

the Universe. We revisit the question of what can be learnt about the spatial geometry of the

Universe from the perspective of a three-way Bayesian model comparison. By considering two

classes of phenomenological priors for the curvature parameter, we show that, given the current

data, the probability that the Universe is spatially infinite lies between 67 and 98 per cent,

depending on the choice of priors. For the strongest prior choice, we find odds of the order

of 50:1 (200:1) in favour of a flat Universe when compared with a closed (open) model. We

also report a robust, prior-independent lower limit to the number of Hubble spheres in the

Universe, NU � 5 (at 99 per cent confidence). We forecast the accuracy with which future

cosmic microwave background (CMB) and baryonic acoustic oscillation (BAO) observations

will be able to constrain curvature, finding that a cosmic variance-limited CMB experiment

together with an Square Kilometer Array (SKA)-like BAO observation will constrain curvature

independently of the equation of state of dark energy with a precision of about σ ∼ 4.5 × 10−4.

We demonstrate that the risk of ‘model confusion’ (i.e. wrongly favouring a flat Universe in the

presence of curvature) is much larger than might be assumed from parameter error forecasts for

future probes. We argue that a 5σ detection threshold guarantees a confusion- and ambiguity-

free model selection. Together with inflationary arguments, this implies that the geometry of

the Universe is not knowable if the value of the curvature parameter is below |�κ | ∼ 10−4.

This bound is one order of magnitude larger than what one would naively expect from the size

of curvature perturbations, ∼10−5.

Key words: methods: statistical – cosmology: cosmological parameters – cosmology: theory.

1 IN T RO D U C T I O N

Constraints on the total energy density of the Universe, �tot, have

improved spectacularly in the last two decades. Before the onset of

precision cosmology, the total matter energy content of the Universe

was known only with order-of-magnitude precision. The determi-

nation of the angular scale of the first acoustic peak in the cosmic

microwave background (CMB) was a major milestone towards de-

termining the spatial curvature. The location of the first peak, ℓ ∼
220, together with estimates of the Hubble constant, implies that

the Universe is close to flat. While 10 years ago this statement could

be made with an accuracy of the order of 10 per cent (de Bernardis

⋆E-mail: mva@astro.ox.ac.uk (MV); r.trotta@imperial.ac.uk (RT);

silk@astro.ox.ac.uk (JS)

et al. 2000), more refined measurements of the CMB power spec-

trum by the Wilkinson Microwave Anisotropy Probe (WMAP) and

other experiments have reduced the statistical uncertainty to sub-

percent precision in recent years (Komatsu et al. 2009). In turn, this

has allowed us to tighten constraints around a flat Universe with no

spatial curvature, �κ = 1 − �tot ∼ 0. This spectacular increase by

over a factor of 100 in accuracy in less than two decades reflects

huge steps forward in detector technology, telescope design and

computing power.

As there are only three discrete possibilities for the underlying

geometry in a Friedmann–Robertson–Walker Universe1 [namely,

1 Although the space of models could be extended to include non-trivial

topologies, in this paper we shall keep with the simplest option, namely that

the Universe’s topology is trivial, as searches for non-trivial topologies have

been unsuccessful to date (Cornish et al. 2004).
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432 M. Vardanyan, R. Trotta and J. Silk

flat, close and open; see, however, Mersini-Houghton et al. (2008)

for a landscape-motivated alternative with an oscillatory curvature

term], the question of which one of these three models is the correct

description for our Universe is particularly well suited to be phrased

in terms of model comparison. In his pioneering application of the

Bayesian model comparison framework to cosmology, Jaffe (1996)

found that the determination of the Hubble parameter using the

Cepheid variable method coupled with a lower limit to the age

of the Universe already allowed one to infer that a Universe with

vanishing curvature and non-zero cosmological constant was the

preferred model (albeit only with modest odds of about 7:1). More

recently, the WMAP 3-year data implied that the odds in favour of

a flat Universe increased to between 29:1 (Trotta 2007a) and 48:1

(Kunz, Trotta & Parkinson 2006) when comparing a flat Universe

with curved models (both open and closed).

Unlike many dark energy models that are mostly phenomenologi-

cal, models predicting curvature are rooted in fairly well understood

physics, a feature which helps in setting physically motivated priors

on the model parameters. For example, the possibility of a flat, �κ ∼
0 Universe has long been favoured by theoretical prejudice, as a flat

or close-to-flat Universe is a generic prediction of the inflationary

scenario, which appears to have been confirmed by observations to

date. With the prospect of even more vigorous observational cam-

paigns coming up in the next decade, it is timely to ask to which point

the accuracy in �κ can and should be pushed before the question

about the flatness of the Universe becomes irrelevant, uninteresting

or undecidable. Determining curvature is also important in order to

avoid mistaking a non-flat Universe for an indication of an evolving

dark energy density (see e.g. Knox, Song & Zhan 2006, Clarkson,

Cortes & Bassett 2007, Virey et al. 2008).

In this paper, we address the capability of future CMB and bary-

onic acoustic oscillation (BAO) observations to constrain curvature,

both from the point of view of parameter constraints and from the

perspective of a three-way Bayesian model comparison. We are

primarily interested in the accuracy that can be achieved using the

acoustic scale as a standard ruler, although complementary observa-

tions [e.g. supernova Type Ia (SNIa) or weak lensing observations]

will help to break existing degeneracies between curvature and the

dark energy equation of state (Clarkson et al. 2007), thereby im-

proving the statistical power. A fundamental limit to our ability

to determine curvature is set by the order of magnitude of local

fluctuations in the spatial curvature, ��tot ∼ 10−5. We investigate

how this translates in terms of model selection and, crucially, model

confusion, and show that the size of the fluctuations means that the

question of curvature becomes statistically undecidable for |�κ | �

10−4, i.e. about one order of magnitude above the naive expectation,

and this is regardless of the amount of data gathered.

This paper is organized as follows. In Section 2, we introduce the

data we use and our forecast procedure, while we briefly review rel-

evant aspects of Bayesian model selection in Section 3, where our

prior choices are discussed. We present the evidence from current

data in Section 4, while Section 5 gives the results of our fore-

cast for future probes and discusses model confusion. We give our

conclusions in Section 6.

2 SE T U P A N D M E T H O D O L O G Y

2.1 Measuring the acoustic scale

The acoustic peaks in the CMB power spectrum measure the pro-

jected sound horizon at recombination. The comoving sound hori-

zon at decoupling is given by

rs(zdec) =
c

H0

∫ ∞

zdec

cs

H (z)
dz, (1)

where H0 is the Hubble constant today, zdec is the redshift of de-

coupling and cs is the sound speed of the coupled photon-baryon

fluid,

cs =
1

√
3(1 + R)

, (2)

with R = 3ρb/ργ ≈ [670/(1 + z)](�bh
2/0.022). Here, ρb and ργ

are the time-dependent energy densities of baryons and photons,

respectively, while �b is the energy density parameter for baryons

today. The function H(z) is given by

H 2(z) =

[

�m(1 + z)3 + �r(1 + z)4 + �κ (1 + z)2

+ �de exp

(

3

∫ z

0

1 + w(x)

1 + x
dx

)

]

,
(3)

where the dark energy time evolution is described by the present-

day dark energy density in units of the critical density, �de, and

by its equation of state, w(z). The energy density parameter for

radiation (photons and neutrinos, taken here to be massless) is �r =
π

2

15
[1 + (21/8)(4/11)4/3]T 4

CMB/h2 ≈ 4.13 × 10−5/h2, while

�κ = −
κc2

a2
0H

2
0

(4)

is the curvature parameter (a0 is the scale factor today). The curva-

ture constant κ determines the geometry of spatial sections: κ = 0

for a flat Universe, κ = +1 for a closed Universe and κ = −1 for

an open Universe.

The comoving distance to an object at redshift z is given by

χ (z) =
c

H0a0

∫ z

0

dx

H (x)
. (5)

Given knowledge of the comoving length λ of an object at redshift z,

a measurement of the angle subtended by it on the sky, θ , determines

its angular diameter distance, DA(z)

DA(z) =
λ(a/a0)

θ
=

a0Sκ (χ )

1 + z
, (6)

where Sκ (y) is y, sin(y) or sinh(y) for κ = 0, +1, −1, respectively. A

number of authors (Bond, Efstathiou & Tegmark 1997; Melchiorri

& Griffiths 2001; Bowen et al. 2002; Kosowsky, Milosavljevic &

Jimenez 2002; Jimenez et al. 2004) have pointed out that the mor-

phology of the acoustic peaks in the CMB power spectrum is largely

controlled by the baryon density �b h2 and by two ‘shift parameters’

la ≡ πχ (zdec)/rs(zdec), (7)

R ≡
√

�mH 2
0 χ (zdec)/c. (8)

In the context of the recent interest in dark energy, the usefulness of

employing both shift parameters (and their correlations) as a handy

summary of CMB constraints has been brought into sharp focus by

Wang & Mukherjee (2007). In this work, we follow their method

of employing ‘distance priors’ as constraints on (la, R, zdec) for a

summary of the information given by the CMB on the expansion

history of the Universe.

At lower redshift, the acoustic signature has been recently

detected in the distribution of galaxies (Eisenstein et al. 2005;

Percival et al. 2007; Gaztanaga, Cabre & Hui 2008), thereby pro-

viding further constraints on the recent expansion history of the
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Universe. Future large galaxy surveys are expected to considerably

improve present-day accuracy, by simultaneously determining the

angular diameter distance and the Hubble function H(z), which can

be obtained by measuring the acoustic scale in the radial direction

if spectroscopic data are available. This is because the radial extent

of a feature along the line of sight is related to the redshift range �z

by

r‖ =
c�z

H (z)
, (9)

hence a measurement of r‖ allows a direct reconstruction of H(z).

2.2 Parameters and data sets

In this paper, we consider cosmologies containing baryons, cold

dark matter, dark energy and a possible curvature term. The radi-

ation density is fixed to the appropriate value for three families of

massless neutrinos throughout. Dark energy is taken to be either

in the form of a cosmological constant, w = −1, or is described

in terms of an effective equation of state weff 	= −1, which is

taken to be constant with redshift. Of course, more complex pa-

rameterizations are possible, and in particular one could consider

an evolving dark energy equation of state which changes with red-

shift (for constraints on such models, see e.g. Zunckel & Trotta

2007). A particularly popular phenomenological parameterization

of a time-evolving dark energy is to describe the equation of state

as w(z) = w0 + z

1+z
wa , with two free parameters (w0, wa). We

comment below on the impact that adopting such a more general

dark energy model would have on our results.

We employ a Metropolis–Hastings Markov chain Monte Carlo

procedure to derive the posterior distribution for the parameters

in our model. We take flat priors on the following quantities:

�mh2, �b h2, la, R, weff (whenever the latter is not fixed to −1).

The prior bounds on the first three parameters are irrelevant, as the

posterior is well constrained within the prior. For weff , we take a

prior range −2 ≤ weff ≤ −1/3, with the lower bound cutting off

some of the posterior for some of our data combinations (see be-

low). Finally, the choice of the prior for �κ is fundamental for the

model comparison part, and we discuss it in detail in Section 3.2.

When considering present-day data, we include the WMAP

5-year data (Dunkley et al. 2008) via their constraints on the shift

parameters and the baryon density, following the method employed

in Komatsu et al. (2009). We also include the Sloan Digital Sky

Survey (SDSS) baryonic acoustic scale measurement as an addi-

tional datum at redshift z = 0.35 by adding a Gaussian distributed

measurement of the quantity

A =
[

χ 2(zbao)
czbao

H (zbao)

]1/3
√

�mH 2
0

czbao

, (10)

where zbao = 0.35. We employ the mean value A = 0.474 with

standard deviation σ A = 0.017 (Eisenstein et al. 2005). We also

add the Hubble Key Project determination of the Hubble constant

today, as a Gaussian datum with mean H 0 = 72 km s−1 Mpc−1 and

standard deviation σH0
= 8 km s−1 Mpc−1 (Freedman et al. 2001).

SNIa data are included in the form of the Supernovae Legacy Survey

(SNLS) sample (Astier et al. 2006).

2.3 Future data

We now turn to describe our procedure for simulating constraints

from future CMB and BAO observations.

2.3.1 CMB data: Planck and CVL experiment

We consider two types of future CMB measurements, one from the

Planck satellite (due for launch early in 2009), which will measure

the temperature power spectrum with cosmic variance accuracy up

to ℓ ∼ 2000, and will considerably improve current precision in the

ET and EE power spectra. We also consider a hypothetical cosmic

variance limited (CVL) experiment, which would measure the TT,

EE and ET spectra with cosmic variance precision up to ℓ = 2000.

This is meant to represent the ultimate precision obtainable from

measurements of the acoustic scale at recombination (although of

course extra information on the expansion history will be available,

e.g. via the integrated Sachs–Wolfe effect or CMB lensing. As

mentioned above, we are concerned with the accuracy achievable

by ‘geometric’ means alone.)

We start by choosing a fiducial value of the cosmological param-

eters around which to generate simulated CMB data. We employ

�b h2 = 0.02268, �cdm h2 = 0.1081, �κ = 0, weff = −1, which are

in good agreement with the current best-fit from WMAP and other

CMB observations (the values of the spectral tilt and perturbation

normalization are irrelevant for our analysis as we only employ

effective distance measures to the last scattering surface from the

CMB). The corresponding CMB power spectra are computed using

the CAMB code (Lewis, Challinor & Lasenby 2000). We then add

noise according to the procedure described in Lewis (2005), with

noise levels appropriate for either Planck or the CVL experiment

(which has no noise up to ℓ = 2000). Finally, a modified version of

COSMOMC (Lewis & Bridle 2002) is employed to fit the resulting

noisy power spectra and to recover the covariance matrix for the

parameters (R, la, zdec), following the method described in Komatsu

et al. (2009), which shows that constraints on this set of parame-

ters are essentially equivalent to constraints on (R, la, �bh
2). Li

et al. (2008) have analysed in detail the loss of information in-

volved in going from the full CMB data analysis to the use of the

constraints on the set (R, la, zdec) and have found that the covariance

matrix method represents accurately the information contained in

the CMB. Mukherjee et al. (2008) investigated the application of

this formalism to Planck priors, and found a significant correlation

between the shift parameters and the spectral tilt, nS. In this work,

we do not include the tilt in the description of Planck data, on the

basis that we never use Planck data alone to derive our constraints

on the curvature parameter. Thus, the degeneracy between nS and

the shift parameters can be assumed to be effectively broken when

including non-CMB observations, in particular data on the matter

power spectrum which, by extending very considerably the lever

arm of the CMB, are expected to be able to reduce the uncertainty

on nS to a level which does no longer impact on the accuracy of the

shift parameters.

The fiducial values for our reference choice of parameters are (R,

la, zdec) = (302.06, 1.709, 1090.46). The corresponding covariance

matrices for Planck and the CVL experiment are given in Table 1.

In obtaining the covariance matrix for Planck and the CVL ex-

periment, the curvature parameter has been allowed to vary (with a

flat prior over a suitably large range so that the posterior is much

narrower than the prior), in order to obtain errors that correctly

account for degeneracies in �κ . On the other hand, the equation

of state parameter has been fixed at w = −1 when computing the

covariance matrix. This is expected to be irrelevant as the whole

point of using CMB ‘distance priors’ of this sort is precisely that

they are largely independent of the assumed dark energy model (at

least as long as the contribution of dark energy in the early Universe

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 397, 431–444
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434 M. Vardanyan, R. Trotta and J. Silk

Table 1. Covariance matrices for the distance parameters (la,

R, zdec) for Planck (top) and the CVL experiment (bottom).

Planck

la R zdec

la 5.96 · 10−3 1.96 · 10−4 1.02 · 10−2

R 2.15 · 10−5 1.06 · 10−3

zdec 6.90 · 10−2

Cosmic variance limited (CVL)

la R zdec

la 8.12 · 10−4 3.89 · 10−5 1.35 · 10−3

R 6.23 · 10−6 2.52 · 10−4

zdec 1.47 · 10−2

is negligible, which is the case here since we never fit evolving dark

energy models).

This covariance matrix is then used as the CMB high-redshift con-

straint. Note that although the simulated data are obtained around a

flat fiducial model, we can safely use the resulting covariance matrix

to represent CMB distance priors even when the fiducial model is

slightly changed to �κ 	= 0 (as long as the change is not too large as

to radically modify degeneracy directions), as we do below, where

we employ fiducial models with |�κ | ≤ 5 × 10−3.

2.3.2 BAO data: WFMOS and SKA-like experiment

Regarding future BAO measurements, we adopt two benchmark

experiments. One is the Wide-Field Multi-Object Spectrograph

(WFMOS), a proposed instrument for the 8-m Subaru telescope

which will employ a fibre-fed spectrograph to carry out a low

(z ∼ 1) and a deep (z ∼ 3) survey to determine the acoustic os-

cillation scale both in the transverse and in the radial direction

(Bassett, Nichol & Eisenstein 2005). WFMOS could be operating

around 2015. We also consider a more futuristic type of measure-

ment of the kind that could be delivered by the Square Kilometer

Array (SKA) radiotelescope around 2020 by performing a full-sky

survey of HI emission.

In modelling the accuracy of these observations, we closely fol-

low the treatment of Blake et al. (2006), to which we refer for full

details. In summary, we employ the following fitting formula for

the fractional accuracy of the determination of the transverse and

radial acoustic scale:

x = x0

√

V0

V

[

1 +
neff

n

D(z0)2

b2
0D(z)2

]

f (x), (11)

with f (z) = (zm/z)γ for z < zm and f (z) = 1 otherwise. Here, x is

the fractional accuracy in the determination of either χ (z)/r s(zdec)

(transversal direction) or cH (z)−1/r s(zdec) (radial direction) which

can be obtained by a spectroscopic survey of volume V , measuring

a galaxy density n at redshift z. In the above equation, D(z) is the

growth factor, (V 0, z0, b0) are the values for a reference survey while

(x0, neff , zm, γ ) are fitted parameters obtained via a simulation study

by Blake et al. (2006), which depend on whether one is considering

a measurement of the acoustic scale in the radial or tangential direc-

tion. We employ the values given in table 1 of Blake et al. (2006) for

a spectroscopic survey, as appropriate for WFMOS and the SKA. In

equation (11), we recognize a term ∝ 1/
√

V representing the scal-

ing of the number of available Fourier modes with volume, a term

∝ 1/(nD2) representing shot noise and a redshift-dependent cut-

off term ∝ 1/zγ below zm = 1.4 that suppresses non-linear modes

[which, however, might also be included in a full non-linear anal-

ysis, thereby considerably increasing the BAO constraining power

(see e.g. Crocce & Scoccimarro 2008].

The WFMOS parameters are taken from the results of the detailed

optimization study by Parkinson et al. (2007). Although Parkinson

et al. (2007) optimized WMFOS experimental parameters for dark

energy constraints in a flat Universe, we expect that their general

preference for a low redshift bin with as large as possible an area

would still hold true even in an optimization scenario where curva-

ture is allowed to vary. For definiteness, we adopt the values given

in table 2, column B of Parkinson et al. (2007). This gives a wide bin

at low redshift, covering an area of Alow = 5600 deg2 at a median

redshift zlow = 1.08, a redshift width �zlow = 0.35 and a number

density of galaxies nlow = 7.1 × 104 (h3 Mpc−3). The high-redshift

bin has parameters Ahigh = 150 deg2, zhigh = 3.15, �zhigh = 0.13

and nlow = 0.13 × 104 (h3 Mpc−3). We have found that essentially

all of the constraining power of this configuration comes from the

z ∼ 1 bin, in agreement with the results of other studies.

The SKA is still in the design phase, hence its precise perfor-

mance is somewhat uncertain at the moment (see e.g. Blake et al.

2004 for an overview). We choose to represent its capabilities by

assuming measurements of both the transverse and radial acoustic

scales equally spaced in four redshift bins at z = 1, 2, 3, 4, each of

width �z = 0.4. We further assume that the SKA will survey the

whole sky (A = 20 000 deg2) and that the density of galaxies will

be large enough as to be able to neglect the shot noise term (i.e.

nP > 3, where P is the power of the fluctuations). Some of these

choices are somewhat optimistic, and further detailed modelling is

required in order to be able to verify the capability of the SKA to

achieve these specifications. However, we have taken here the SKA

to represent a sort of ‘ultimate’ BAO measurement, which provides

with a flavour of what the ultimate level of accuracy of the method

might be.

Of course, we are only dealing with statistical uncertainties here,

and the issue of systematics will at some point have to be addressed

in detail, as the statistical error becomes smaller. However, BAOs

are particularly promising in this respect, thanks to the very low

level of systematics expected (e.g. Trotta & Bower (2006)).

3 C U RVAT U R E A N D BAY E S I A N M O D E L

C O M PA R I S O N

Determining whether the Universe is flat or not is one of the most

interesting questions in modern cosmology. This is, however, not a

problem of parameter constraints, but rather of model comparison.

In this section, we briefly describe Bayesian model comparison and

its use in forecasting the power of future observations (for more

details, see e.g. Trotta 2008; Trotta et al. 2008). We then discuss

the choice of priors on �κ and motivate it in the light of theoretical

considerations.

3.1 Model comparison

From Bayes’ theorem, the probability of modelM given the data,

p(M|d), is related to the Bayesian evidence (or model likelihood)

p(d|M) by

p(M|d) =
p(d|M)p(M)

p(d)
, (12)

where p(M) is the prior belief in model M, p(d) =
∑

i p(d|Mi)p(Mi) is a normalization constant and

p(d|Mi) =
∫

dθ p(d|θ,Mi)p(Mi) (13)
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How flat can you get? 435

Table 2. Empirical scale for evaluating the strength of evidence

when comparing two models,M0 versusM1 (so-called ‘Jeffreys’

scale’). The right-most column gives our convention for denoting

the different levels of evidence above these thresholds.

|ln B01 | Odds Strength of evidence

<1.0 �3:1 Inconclusive

1.0 ∼3:1 Weak evidence

2.5 ∼12:1 Moderate evidence

5.0 ∼150:1 Strong evidence

is the Bayesian evidence. Given two competing modelsM1,M2,

the Bayes factor B01 is the ratio of the models’ evidence

B01 ≡
p(d|M0)

p(d|M1)
, (14)

where large values of B01 denote a preference for M0, whereas

small values of B01 denote a preference for M1. The ‘Jeffreys’

scale’ (Table 2) gives an empirical scale for translating the values

of ln B01 into strengths of belief [following the prescription given

in Gordon & Trotta (2007) for denoting the different levels of ev-

idence]. Recently, the framework of model comparison has been

extended to include the possibility of ‘unknown models’ discovery

(Starkman, Trotta & Vaudrevange 2008).

Given two or more models, it is straightforward (although often

computationally challenging) to compute the Bayes factor. Several

numerical algorithms are available today to compute the Bayesian

evidence. Recently, a very effective algorithm, called ‘nested sam-

pling’ (Skilling 2004, 2006), has become available, which has been

implemented in the cosmological context by Bassett, Corasaniti

& Kunz (2004), Mukherjee, Parkinson & Liddle (2006), Shaw,

Bridges & Hobson (2007), Feroz & Hobson (2008) and Bridges

et al. (2007). Here, we are interested in the simpler scenario where

the two models are nested, i.e. where the more complicated model

reduces to the simpler one for a specific choice of the extra param-

eter. In our case, the extra parameter is the curvature, �κ , with a

curved Universe reverting to a flat one for �κ = 0. Writing for the

extended model parameters θ = (ψ , �κ ), where the simpler (flat)

modelM0 is obtained by setting �κ = 0, and assuming further that

the prior is separable (which is the case here), i.e. that

p(ψ,�κ |M1) = p(�κ |M1)p(ψ |M0), (15)

the Bayes factor can be written in all generality as

B01 =
p(�κ |d,M1)

p(�κ |M1)

∣

∣

∣

∣

�κ = 0

. (16)

This expression is known as the Savage–Dickey density ratio

(SDDR; see Verdinelli & Wasserman 1995, and references therein).

For cosmological applications, see Trotta (2007a). The numerator

is simply the marginal posterior for �κ , evaluated at the flat Uni-

verse value, �κ = 0, while the denominator is the prior density for

the model with �κ 	= 0, evaluated at the same point. This tech-

nique is particularly useful when testing for one extra parameter

at a time, because then the marginal posterior p(�κ |d,M1) is a

one-dimensional function, and normalizing it to unity probability

content only requires an one-dimensional integral, which is com-

putationally simple to do.

3.2 A three-way model comparison

We consider each possible choice of the curvature parameter κ as

defining a separate model. This means that we perform a three-

way model comparison between a flat (κ = 0), an open (κ = −1)

and a closed (κ = +1) Universe. It is obvious that we might want

to distinguish between a flat Universe and non-flat alternatives.

However, it is also convenient to separate the positive and negative

curvature scenarios as two different models. This will allow us

to make statements on the probability that the Universe is finite

(corresponding to the closed case), and also to consider in a natural

way a prior on �κ that is flat in the log of the curvature parameter,

as motivated below.

For the prior probability assigned to each of the three possible

geometries, we make a non-committal choice of assigning equal

probabilities to each, i.e. p(Mi) = 1/3 (i = −1, 0, +1), where the

labels of the models give in each case the value of κ . Of course,

different choices are possible: for example, if one feels that inflation

strongly motivates an almost flat Universe, this might be reflected by

increasing the value of p(M0) (we comment further on this below).

It is straightforward to include such a theoretical preference by

recalibrating our results if one wanted to.

From the definition of the model’s posterior probability (equation

12) and as a consequence of our assumption of equal prior prob-

abilities for our models, we obtain for the posterior probability of

the flat model the handy expression

p(M0|d) =
1

1 + B−1
01 + B−1

0−1

. (17)

The posterior probabilities of the κ 	= 0 models can easily be ob-

tained by suitably exchanging the indexes of the Bayes factors.

Each one of the models is described by a six-parameter vanilla

�CDM model (or a seven-parameter dark energy model with weff 	=
−1). In principle, we need to specify the priors on these parameters

too, but since they are common parameters to all models, their priors

effectively cancel, as shown above by equation (16). Whenever we

include the extra parameter weff 	= −1, we always add it to all

models at the same time, therefore the model comparison is always

only about the curvature.

Model selection relies on a choice of prior for the extra parameter

in the more complex model, which controls the strength of the

Occam’s razor effect, in our case �κ . Such a choice should be

motivated by physical considerations, ideally stemming from the

theoretical properties of the model under scrutiny (see Efstathiou

2008 for a critical view). We, therefore, need to consider carefully

the prior distribution for the value of the parameter describing the

curvature of spatial sections for the non-flat models.

3.3 Priors on the curvature parameter

A possible parameterization of the spatial curvature is given by the

curvature parameter today (equation 4). A flat Universe (�κ = 0)

would, therefore, appear to be a point null hypothesis, to be tested

against a more complex alternative model (with �κ 	= 0). In the

context of inflation, however, the geometry need not be exactly

flat. Indeed, the whole point of inflation is precisely to provide a

mechanism to avoid such an implausible fine tuning. For κ 	= 0,

inflation ensures that the curvature scale tends to zero:

|�κ | ≈ exp(−2Nb), (18)

where Nb is the number of e-folds before our current comoving

Hubble volume exited the horizon (see e.g. Tegmark 2005). If we

had a measure for the parameter space of inflationary potentials

(e.g. from string theory), we could in principle convert the proba-

bility distribution for the potential into a prior on Nb, and from here

into a prior on �κ . This is not necessary in practice, because local
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436 M. Vardanyan, R. Trotta and J. Silk

fluctuations in our Hubble volume limit the precision to which we

can observe deviations from �κ = 0 to ∼10−5 [see Waterhouse &

Zibin (2008) for a more rigorous motivation of this result]. There-

fore, provided N b � 5.8, inflationary predictions are observationally

indistinguishable from a flat Universe. Given that Nb could be any-

thing between 0 and ∞, it appears to be a reasonable approximation

to neglect models with N b < 5.8 [see Tegmark (2005) for a justi-

fication], although such cases could be considered as a particular

class of models if one wanted. For definiteness, in the following we

will take the inflationary prediction to correspond to |�κ | < 10−5,

thereby extending the point null hypothesis that κ = 0 to include

such small values of the curvature parameter. Because of the fun-

damental limitation of cosmic variance, we argue that it is pointless

to consider the prior distribution of �κ below the threshold value of

10−5.

In summary, we describe a generic inflationary prediction as

being |�κ | < 10−5 (with no free parameters) and a prior model

probability p(M0) = 1/3. The latter assignment could of course

be amended if one felt that inflation is compellingly motivated by

its ability to solve other problems such as the homogeneity and

monopole problems, in which case the prior probabilities for non-

inflationary models would have to be correspondingly reduced.2

However, this is not essential for what follows, as we will mostly

quote Bayes factors which give the change in degree of relative

belief between two models in the light of the data. This means

that the model’s prior specification has no influence on the Bayes

factor. In any case, it is straightforward to propagate a change in the

models’ prior probability to the model posterior probabilities that

we give below.

The model comparison is then fully defined once we choose a

prior pdf for the extra parameter in the curved models, for values

|�κ | > 10−5. The prior should reflect our state of belief on the pos-

sible values of the relevant parameter before we see the data. We

adopt two different prior choices for deviations from flatness, repre-

senting two different states of beliefs about the locus of possibilities

for the geometry of the Universe.

3.3.1 Flat prior on �κ : the ‘astronomer’s prior’

This prior is motivated by considerations of consistency with mildly

informative observations on the properties of the Universe. Re-

quiring that the Universe is not empty gives �κ > −1, barring

the exotic case of a negative cosmological constant. The age of a

Universe containing only matter can be approximated by t0H 0 =
(1 + �0.6

tot /2)−1, which means that a positively curved Universe is

increasingly at odds with the age of the oldest objects, requiring

t0 � 10 Gyr. A positive cosmological constant helps to solve the

age problem, but if �tot � 2, then t0 � 8h Gyr even in a de Sitter

Universe. So unless h ≫ 1, a Universe with �κ � 1 is too young

even in the presence of �. The lower limit for the curvature pa-

rameter is given by |�κ | = 10−5 as discussed above. However, on

a linear scale this is effectively equivalent to setting the lower limit

2 An important point is that we are here neglecting the possibility of in-

flationary models predicting, for example, closed Universes with sizeable

values of the curvature parameter (see e.g. Lasenby & Doran 2005 for such

a model). So what we describe as a generic inflationary prediction is re-

ally only a subclass of possible inflationary scenarios. It would be simple

to extend the model comparison to include other subclasses of inflationary

models if one wanted to.

to 0. These considerations, therefore, lead to the prior choice:

pA(�κ |M1) = 1 for −1 ≤ �κ ≤ 0 (19)

and

pA(�κ |M−1) = 1 for 0 ≤ �κ ≤ 1, (20)

where the subscript A denotes that this prior is based on the astro-

nomical considerations sketched above

3.3.2 Flat prior on ln �κ : the ‘curvature scale prior’

Alternatively, we might consider the curvature scale today:

a0 =
c

H0

[

κ

�tot − 1

]1/2

. (21)

Clearly, a flat prior on �κ does not correspond to a flat prior on a0,

as the two pdfs are related by

p(a0) = p(�κ )

⏐

⏐

⏐

⏐

d�κ

da0

⏐

⏐

⏐

⏐

. (22)

Hence, a flat prior on �κ gives an informative prior on the curvature

scale, p(a0) ∝ a−3
0 , which prefers more strongly curved Universes.

A flat prior on ln �κ represents a state of belief which is indifferent

with respect to the order of magnitude of the curvature parameter.

It is easy to see that this implies a similar state of indifference on

the order of magnitude of the curvature scale, since a flat prior

on ln �κ is flat on ln a0 as well. Furthermore, such a prior is also

flat in the number of e-folds, as a consequence of equation (18).

The upper cut-off for the prior can be established by requiring that

the curvature scale be larger than the Hubble horizon radius, H−1
0 .

Furthermore, we are free to choose the basis in which the logarithm

is taken, and in the following we shall employ base 10 logarithms.

We thus define the variable

oκ ≡ log10 |�κ |. (23)

These considerations lead to the prior choice

pC(oκ |Mκ ) = 1/5 for −5 ≤ oκ ≤ 0 (24)

for κ = −1, 1 and where the subscript C denotes that this prior is

based on a state of indifference with respect to the curvature scale.

When employing the SDDR to evaluate the Bayes factor between

a flat and a curved model for the curvature scale prior, we evaluate

the marginal posterior and the prior of equation (16) at the value

oκ = −5 (corresponding to |�κ | = 10−5), since this is the value at

which the curved models revert to a flat Universe for our choice of

priors.

Other choices of parameterization for curvature (and the associ-

ated priors) are certainly possible and might be well motivated from

a theoretical point of view. For example, Adler & Overduin (2005)

introduce a constant flatness parameter ǫ given by the ratio of two

fundamental constants determining the dynamics of the expansion,

and show that the value of ǫ is in many ways a better indicator of

‘fine tuning’ than |�κ |. Again, if one had access to the distributional

properties of the fundamental constants and from there to the distri-

bution of ǫ, one could imagine building a physically motivated prior

on that quantity instead. However, since presently we are unable to

predict from first principles the distributional properties of such

quantities, we prefer to adopt a semiphenomenological approach,

informed by the physical reasoning sketched above.
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3.4 Implications for the number of Hubble spheres

and the size of the Universe

For closed Universes (i.e. forM1), it is interesting to translate the

probability distribution for �κ or oκ into the corresponding posterior

for the number of particle horizon volumes that fit into the current

spatial slice. Following Scott & Zibin (2006), we thus define

NU ≡
2π

2χ − sin(2χ )
(25)

as the ratio of the present volume of the spatial slice to the apparent

particle horizon (assuming radiation domination into the infinite

past), where χ is the comoving radial distance defined in equation

(5), and for closed models 0 ≤ χ ≤ π. Given our choice of priors,

we can easily translate the results of the previous section into the

posterior for NU. Clearly, under either the flat or open models (M0

orM−1), the volume of the spatial slice is infinite and hence NU goes

to infinity. In the Bayesian framework, we can give the probability

that this is the case, namely that we live in an infinite Universe. For

our choice of model priors, it follows that

p(NU = ∞|d) = p(M0|d) + p(M−1|d) (26)

= p(M0|d)

(

1 +
1

B0−1

)

, (27)

where p(M0|d) is given by equation (17). For other choices of

model priors (e.g. p(M0) ≫ 1/3, representing a stronger degree of

theoretical prejudice in favour of inflation), one should rescale the

posteriors accordingly.

3.5 Model comparison forecasting

When considering the capability of future probes, it is custom-

ary to quantify their expected performance in terms of a ‘figure

of merit’ (FOM). Several FOMs exist, but they mostly focus on

the parameter constraint capabilities of future observations (e.g.

Bassett 2005). However, many (and indeed perhaps most) questions

of interest are actually about model comparison: for example, deter-

mining whether dark energy is a cosmological constant, or whether

the Universe is flat are clearly model comparison problems. FOMs

geared for parameter constraint capabilities do not necessarily re-

flect the model comparison potential of a future probe (see Liddle

et al. 2007 for details).

A few techniques have been put forward to assess the model

comparison capability of future observations: Trotta (2007b) has

introduced a technique called PPOD, which computes the probability

distribution of the outcome of a future model comparison; Pahud

et al. (2006, 2007) have looked at the ability of Planck to obtain a

decisive model selection result regarding the spectral index; Liddle

et al. (2006) have applied a similar technique to the problem of

distinguishing between an evolving dark energy and a cosmological

constant.

Here, we adopt a procedure similar in spirit to Liddle et al.

(2006). We want to quantify the ability of future CMB and BAO

measurements to obtain a correct model selection outcome about the

geometry of the Universe. We, therefore, simulate data as explained

above for three different fiducial values of �κ : for a flat model,

�∗
κ = 0, and for two different closed models, �∗

κ = −10−3 and

�∗
κ = −5 × 10−3. From the posterior distribution obtained from

simulated data, one can compute the corresponding Bayes factor

via the SDDR, equation (16). Once interpreted against the Jeffreys’

scale, the future Bayes factor then allows us to determine whether

the experiment will be accurate enough to correctly identify the true

model, and if so with what strength of evidence. Our procedure is

thus similar to the one adopted in Pahud et al. (2007, 2006).

In principle, one could repeat the forecast for several other val-

ues of �∗
κ , thus more densely covering the range of possible fiducial

values. However, we found that these three cases are representative

of three interesting possibilities. The case �κ = −5 × 10−3 has

been chosen because it lies just below current combined limits from

CMB, BAO and SNIa, and within reach of the next generation of

CMB and BAO probes. The case �κ = −10−3 is a factor of 5 below,

and still a factor of 100 above the absolute lower limit of �κ ∼ 105.

Yet we will demonstrate that this scenario already presents very

considerable challenges in terms of model confusion. Finally, the

flat case allows us to investigate whether future probes can correctly

determine (in a model selection sense) if the inflationary prediction

is correct. In the following, we focus on the closed Universe case,

because this has the added interest of a finite Universe, and, there-

fore, it allows to investigate the question of whether the Universe’s

spatial extent is infinite or not. In terms of parameters constraints

and model selection outcomes, the conclusions are expected to hold

almost unchanged for the case of fiducial Universes with �κ > 0,

i.e. for the open case.

4 R ESULTS

4.1 Current evidence for flatness

In this section, we present our model comparison analysis from

present-day data. Our results (obtained using a modified version

of the COSMOMC code; Lewis & Bridle 2002) are presented in

Table 3.

Starting with the astronomer’s prior case, we find moderate evi-

dence for a flat Universe when compared with a closed model (ln

B01 ≈ 4 for all cases but the WMAP5 + BAO data combination

with w 	= −1, which is discussed below). This corresponds to pos-

terior odds of about 54:1. The evidence in favour of a flat model is

stronger when it is compared with the open case, as a consequence

of the fact that the posterior for �κ is slightly skewed towards values

�κ < 0, giving odds of the order of 200:1 in favour of the flat ver-

sus the open model. When compared against each other, the closed

model is preferred over the open model with odds of about 4:1. Al-

though the odds in favour of a flat Universe versus a closed one are

of the same order as found in previous works [e.g. Kunz et al. (2006)

found odds of 48:1 from WMAP 3-year data and other constraints],

one has to bear in mind that we are performing a three-way model

comparison, while previous analyses have compared the flat model

with arbitrarily curved ones (both open and closed). If we use the

same priors as Kunz et al. (2006), we find a Bayes factor between

the flat and curved models ln B = 4.4 (ln B = 4.6), for w = −1

(weff 	= −1). This translates in odds of approximately 90:1 in favour

of flatness when compared with a generic curved model. Thus, the

latest data have improved the model comparison outcome roughly

by a factor of 2. The posterior probability for an inflationary, infinite

Universe is about 98 per cent, up from the initial 33 per cent from

our prior choice. The above results hold true even if one relaxes the

assumption of a cosmological constant for the most constraining

data combination, namely the one including SNIa. However, the

evidence is favour of flatness weakens considerably if one only em-

ploys WMAP5, SNIa and BAO while at the same time allowing for

a non-constant dark energy equation of state (ln B01 = 1.0). This

is because the inclusion of BAO data skews the posterior for �κ

to considerably negative values, thus preferring a closed Universe.
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Table 3. Outcome of a three-way Bayesian model selection for the curvature of the Universe from current data and two choices of priors.

For a prior choice motivated by astronomical considerations (astronomer’s prior), the posterior probability for a flat, infinite inflationary

model (p(M0|d) column) increases from the initial 33 per cent to about 98 per cent for the most constraining data combination, even if the

assumption of a cosmological constant is dropped. On the contrary, the ‘curvature scale prior’ returns an inconclusive model comparison,

because in this case the Occam’s razor effect is much reduced. The column p(NU = ∞|d) gives the probability of the Universe being

infinite.

Data sets and models ln B01 ln B0−1 p(M0|d) p(NU = ∞|d) Notes

Astronomer’s prior (flat in �κ )

WMAP5 + BAO (w = −1) 4.1 5.3 0.98 0.98 Moderate evidence for a flat, infinite Universe

WMAP5 + BAO + SNIa (w = −1) 4.2 5.3 0.98 0.98 Moderate evidence for a flat, infinite Universe

WMAP5 + BAO (w 	= −1) 1.0 6.1 0.74 0.74 Weak evidence for flatness

WMAP5 + BAO + SNIa (w 	= −1) 3.9 5.3 0.98 0.98 Moderate evidence for flatness

Curvature scale prior (flat in oκ )

WMAP5 + BAO (w = −1) 0.4 0.6 0.45 0.69 Inconclusive

WMAP5 + BAO + SNIa (w = −1) 0.4 0.6 0.45 0.69 Inconclusive

WMAP5 + BAO (w 	= −1) −0.8 0.5 0.26 0.42 Inconclusive

WMAP5 + BAO + SNIa (w 	= −1) 0.3 0.6 0.44 0.67 Inconclusive

Note that for this prior the probability of a flat Universe (p(M0|d))

and of an infinite Universe (p(NU = ∞|d) ) essentially coincide, for

the Occam’s razor effect acts strongly against open models, as we

have seen, and therefore most of the models’ posterior probability

is concentrated in the flat Universe.

If instead we consider the case of the curvature scale prior (flat

in oκ ), then the Occam’s razor effect penalizing non-flat models

is much weaker. This comes about because the posterior becomes

flat for oκ � −2 and stays flat all the way to oκ = −5, since

for such small values of the curvature parameter, present-day data

do not provide any constraint. Therefore, this prior choice can be

seen as more conservative in that it presents a reduced Occam’s

razor penalty for non-flat models. From the results in Table 3, we

see that for this prior choice the preference for flatness is much

reduced, although ln B01 remains mostly positive, thus signalling

a preference for the flat case. For example, the odds in favour of

flatness versus closed (open) models are reduced to the order of 3:2

(9:5), barring the case of w 	= −1 and WMAP5, SNIa and BAO.

However, these values are now below even the ‘weak evidence’

threshold, and therefore the model comparison is inconclusive with

this prior. Indeed, the posterior probability for the inflationary model

(i.e.M0) is now only about 45 per cent (up from 33 per cent from

the prior), while the probability of us living in an infinite Universe

remains almost unchanged at 69 per cent (from about 67 per cent in

the prior). This happens because in the light of the data, the models’

probability is redistributed in such a way that the sum of the flat

and open models’ probability remains almost constant, despite the

fact that the flat model’s probability has risen and the open model’s

probability has been reduced (down to about 24 per cent from the

initial 33 per cent).

4.2 Constraints on the number of Hubble spheres

For values NU < ∞ (i.e. for closed models), the posterior probabil-

ity distribution p(NU|d,M1) is shown in Fig. 1 for both choices of

priors as a function of log10(NU). Within the class of closed models,

we read off Fig. 1 that the number of Hubble spheres is constrained

to lie below NU ∼ 106 for the astronomer’s prior and less than

NU ∼ 107 for the curvature scale prior. The sharp drop in the proba-

bility density for large values of NU is a reflection of the lower cut-off

value chosen for the priors, |�κ | > 10−5, while the difference in the

upper limit is a consequence of the different volume of parameter

Figure 1. Posterior probability distribution (normalized to the peak) for the

number of Hubble spheres contained in a spatial slice (for a closed Universe)

from present-day CMB + BAO + SNIa data, for the more conservative case

weff 	= −1 and assuming the astronomer’s prior (solid) or the curvature scale

prior (dashed).

space enclosed by the two priors. The exact value of the 99 per cent

lower limit slightly depends on the prior, as different priors allocate

a different probability mass to low curvature, i.e. to large NU. For

the astronomer’s prior, we find a 99 per cent lower limit (one-tail)

NU � 4.8, while for the curvature scale prior this slightly increases

to NU � 6.2 (both figures for the more conservative case where

weff 	= −1). So we conclude that, at the 99 per cent level, the value

NU � 5 can be taken to be a robust lower limit to the number of

Hubble spheres in the Universe. This is in good agreement with the

results of the simpler analysis presented in Scott & Zibin (2006),

which estimated NU � 10.

One could also report model-averaged constraints on NU, by

taking into account the spread of posterior probability between the

three models:

p(NU|d) = p(M1|d)p(NU|d,M1), (28)
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where the closed model probability, p(M1|d), can be computed

from the Bayes factors reported in Table 3, using the relationship

p(M1|d) =
1

1 + B01 + B−1
0−1

. (29)

For the astronomer’s prior, we obtain p(M1|d) = 0.02 while for

the curvature scale prior p(M1|d) = 0.35 for the most constraining

data combination (and allowing for w 	= −1). Because the bulk of

the model probability lies with the models where the Universe is

infinite, we expect that model-averaged lower limits on NU would

be more stringent than the robust limit we reported above, but also

more strongly prior dependent [A similar effect is observed for

model-averaged constraints on the dark energy equation of state

by Liddle et al. (2006).] For this reason, we prefer not to report

model-averaged limits in this case.

5 FUTURE PROSPECTS

We now turn to the investigation of the accuracy that future CMB

and BAO probes will achieve on �κ , both from the point of view

of parameter constraints and, crucially, from the model selection

perspective. Many studies have recently evaluated observational

prospects using a variety of probes (Knox 2006; Knox et al. 2006;

Mao et al. 2008). Here, we improve on past works by analysing the

results from a Bayesian model comparison viewpoint.

We assume three different fiducial values for �κ : a flat Uni-

verse (�∗
κ = 0) and two possibilities for a closed Universe, namely

�∗
κ = −10−3 (about one order of magnitude below current con-

straints) and a more optimistic �∗
κ = −5 × 10−3. We then simulate

future CMB and BAO observations as described above. An impor-

tant point is that we simulate data around the true value of the fiducial

model’s parameters. This is consistent with what one would expect

to obtain from the average of many data realizations, and analogous

to what is usually assumed with Fisher matrix forecasts. However,

from the point of view of performance prediction and model com-

parison, it is important to stress that this choice is optimistic, in that

it ignores the extra uncertainty due to the realization noise of the

specific data realization that one happens to observe.

5.1 How flat can you get?

We first focus on the flat fiducial model, in which case no devia-

tion from flatness should be observed (with the important caveat

of realization uncertainty given above) and future probes will fur-

ther tighten constraints around �κ = 0. In Table 4, we report the

projected posterior 1σ constraint on �κ as well as the 99 per cent

Figure 2. Future constraints on curvature and the dark energy effective

equation of state from various combinations of future probes, for the as-

tronomer’s prior. Contours delimit 68 and 95 per cent joint credible regions,

the cross gives the fiducial value.

(2.58σ ) one-tail lower limit on �κ . This quantity would be the

appropriate figure to report in the case that no deviation from flat-

ness is found and one wanted to constrain positively closed models

at the 99 per cent level. This limit can also be translated into the

corresponding 99 per cent lower bound on the number of Hubble

spheres, NU, which is also given in Table 4. Combination of future

CMB data with WFMOS BAO determinations will constrain cur-

vature at the ∼10−3 level, with the degradation in accuracy coming

from dropping the assumption of a cosmological constant being

about a factor of 2. Interestingly, once Planck data are available,

there is not much to be gained in terms of curvature constraints

from a CVL CMB experiment. An SKA-like BAO experiment will

further tighten constraints by a factor of about 5, and reduce the

dependency of the marginal curvature accuracy on the assumptions

about the dark energy equation of state. Constraints in the (�κ ,

weff) plane for the flat prior case are depicted in Fig. 2, showing

how SKA will essentially eliminate the correlation between the two

parameters, leading to independent constraints on the curvature and

the effective dark energy equation of state.

This result could potentially be weakened if one allowed for a

more general dark energy time dependence than we have consid-

ered here. However, Knox et al. (2006) showed that WFMOS BAO

constraints on �κ are remarkably robust even if one allows for an

Table 4. Posterior constraints on the curvature parameter �κ from future CMB and BAO probes, taking a fiducial value �
∗
κ = 0 and for a flat prior on �κ .

Probe 1σ error on �κ 99 per cent one-tail lower limit

�κ NU

w = −1

Planck + WFMOS 1.76 · 10−3 −4.17 · 10−3 392

CVL + WFMOS 1.60 · 10−3 −3.85 · 10−3 443

Planck + SKA 5.64 · 10−4 −1.34 · 10−3 1970

CVL + SKA 4.58 · 10−4 −1.07 · 10−3 2732

w 	= −1

Planck + WFMOS 2.22 · 10−3 −4.58 · 10−3 284

CVL + WFMOS 2.08 · 10−3 −4.40 · 10−3 293

Planck + SKA 6.38 · 10−4 −1.50 · 10−3 1676

CVL + SKA 4.58 · 10−4 −1.05 · 10−3 2723
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Table 5. Outcome of Bayesian model selection from future data,

generated from a flat Universe. The table gives values of ln B01, the

Bayes factor between a flat and a closed model, using a flat prior

on �κ (astronomer’s prior) or a flat prior on oκ (curvature scale

prior). The analysis with a flat prior on �κ gives strong evidence in

favour of the flat model even when the assumption of a cosmological

constant is relaxed (w 	= −1 column), while using a flat prior on oκ

the strength of evidence is just above the ‘weak’ threshold even for

the most powerful probe (CVL + SKA).

(�
∗
κ = 0.0) Astronomer’s prior

Curvature scale

prior

Probe w = −1 w 	= −1 w = −1 w 	= −1

Planck + WFMOS 6.0 5.9 0.7 0.7

CVL + WFMOS 6.2 5.9 0.8 0.7

Planck + SKA 7.1 6.2 1.0 1.0

CVL + SKA 7.5 6.3 1.1 1.1

evolving dark energy of the form w(z) = w0 + wa
z

1+z
. This is

mainly due to the extra constraining power coming from the high-

redshift bin, which in our analysis played a subdominant role since

we assumed that the effective equation of state is constant with red-

shift. Even for the more general (w0, wa) parameterization, Knox

et al. (2006) found that WFMOS-like constraints on �κ are only

degraded by about 50 per cent w.r.t. our result (see below for further

comments about the impact on model confusion). We note that our

forecast for SKA-like BAO data is of the same order of the accuracy

that could be achieved by a combination of weak lensing and BAO

observations by the Large Synoptic Survey Telescope (LSST) when

marginalizing over a more general (w0, wa) (Zhan 2006). However,

if one models the dark energy equation of state as a continuous func-

tion, then constraints on curvature are very considerably degraded.

Even a combination of weak lensing and BAO observations by the

LSST will only achieve a relatively modest accuracy ∼0.017 on �κ

(Zhan, Knox & Tyson 2009).

In terms of constraining the number of Hubble spheres, WFMOS

data would increase the current lower limit NU � 5 by almost

two orders of magnitude to NU � 300–400, while SKA-like BAO

observations would further improve this by one order of magnitude

to NU � 2000–3000 (all figures are given before model-averaging).

We now turn to the model selection question of whether future

experiments will be able to determine unambiguously that the Uni-

verse is flat, should this be the case. Results are shown in Table 5,

which gives value of ln B01, the Bayes factor between the (correct)

flat model and the closed model (recall that ln B01 > 0 favours the

flat model). The values of ln B0−1 are within a few percent from the

ones given in the table, and hence are not displayed (the small differ-

ence comes from the fact that the dependency of the observables is

not precisely symmetric in �κ around �κ = 0). Our findings show

that all of the experiments will be able to return strong evidence

(ln B01 > 5) for the case of a flat prior on �κ . This results holds true

even if we relax the assumption that dark energy is in the form of a

cosmological constant.

However, the strength of evidence is much reduced if instead

one employs a prior that is flat on oκ , as shown in the right-hand

side of Table 5 (curvature scale prior). Even the most constraining

experiments (CVL + SKA) will struggle to gather weak evidence

(ln B01 > 1.0) in favour of flatness. This comes about for two rea-

sons. First, evidence accumulates only proportionally to the inverse

error on the parameter of interest, hence in the Bayesian framework

it is much easier to disprove a model (where the evidence goes ex-

ponentially in the number of sigma discrepancy with the prediction)

Figure 3. Normalized posterior on oκ assuming a fiducial value �∗
κ = 0,

reconstructed using a flat prior on oκ and assuming w = −1, for different

combinations of future data. From right to left: Planck + WFMOS (solid),

CVL + WFMOS (dotted), Planck + SKA (short-dashed), CVL + SKA

(long-dashed).

than to confirm it. Second, the Occam’s razor effect penalizing non-

flat models is much reduced under the assumption of a flat prior

in oκ , as the net result of two opposite effects. Fig. 3 shows the

posterior pdf on oκ for the different probes (assuming w = −1). It

is clear that for values of oκ ≪ −3 the posterior becomes essentially

flat, reflecting the inability of the experiment to measure a curvature

value much below that threshold. At the same time, the volume of

parameter space enclosed by a prior flat in log space is increased

with respect to the case of a linear scale. This ought to favour the

simpler (flat) model. But the posterior volume is also increased,

and therefore the net effect is to reduce the overall Occam’s razor

penalty term (which goes as the log of the ratio between the two

volumes), hence the strength of evidence in favour of flatness is

reduced.

5.2 The danger of model confusion

We now turn to the case where the fiducial model is closed, and

evaluate the resulting evidence from future data. In this case, a

successful model comparison should return a preference for the

closed model.

We start with the more optimistic case of a relatively large fidu-

cial value for the curvature parameter, �∗
κ = −5 × 10−3, roughly

a factor of 2 below present-day constraints. We give results in

Table 6, which show that the flat prior on oκ always returns the

correct model comparison (negative values of ln B01 in the table).

However, the astronomer’s prior incorrectly penalizes curved mod-

els when the constraining power of the data is insufficient to overturn

the Occam’s razor effect (positive values in the table). This ‘model

confusion’ effect is worse when the equation of state of dark energy

is allowed to change, in which case, for example, Planck + WFMOS

would incorrectly gather moderate evidence in favour of flatness.

With CMB and WFMOS data, the analysis is subject to model am-

biguity, i.e. the result depends on the choice of prior. In order to

recover the correct model selection outcome unambiguously, one
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Table 6. Outcome of Bayesian model selection from future data,

generated from a closed Universe, �
∗
κ = −5 × 10−3. The table

gives values of ln B01, the Bayes factor between a flat and a closed

Universe. Negative values correctly favour the closed case, while

positive values wrongly favour the flat case, giving rise to model

confusion. SKA-quality BAO data are required to overcome model

confusion independently of the choice of prior.

(�
∗
κ = −5 × 10−3) Astronomer’s prior

Curvature scale

prior

Probe w = −1 w 	= −1 w = −1 w 	= −1

Planck + WFMOS 1.3 2.6 −3.5 −1.7

CVL + WFMOS 0.4 2.0 −4.5 −2.0

Planck + SKA −34 −22 −50 −40

CVL + SKA −55 −50 −65 −58

Table 7. As in Table 6, but for a fiducial value �∗
κ = −10−3. For

such a small value of the curvature, only the CVL + SKA data com-

bination achieves the correct model selection (albeit with undecided

odds) and this only when employing the curvature scale prior. All

other cases are subject to model confusion.

(�∗
κ = −10−3) Astronomer’s prior

Curvature scale

prior

Probe w = −1 w 	= −1 w = −1 w 	= −1

Planck + WFMOS 5.6 5.5 0.6 0.6

CVL + WFMOS 5.6 5.2 0.4 0.6

Planck + SKA 5.0 5.2 0.0 0.1

CVL + SKA 4.4 4.4 −0.6 −0.6

needs SKA-quality BAO data to complement the CMB distance

probes (negative values of ln B01 for both priors).

The danger of model confusion becomes stronger, the smaller the

fiducial value one chooses for �∗
κ . We illustrate this by considering

our third fiducial model, namely a closed Universe with �∗
κ =

−10−3, which is about one order of magnitude below current limits

but still two orders of magnitudes above the fundamental fluctuation

limit. The model comparison outcome is given in Table 7, which

shows that this case results in widespread model confusion for

the astronomer’s prior, for which the flat Universe is incorrectly

preferred with moderate to strong evidence by all combinations of

probes. For the curvature scale prior, instead, the outcome is always

inconclusive, even though the CVL + SKA combination does reach

the correct conclusion, albeit with evidence which falls short even

of the ‘weak’ threshold.

Some comments are in order about the robustness of those re-

sults with respect to changes in the assumed dark energy model. In

particular, an evolving dark energy component could mimic to an

extent the effect of curvature (Clarkson et al. 2007), and this would

lead to increased uncertainty in the curvature parameter and thus

to increased model confusion. To estimate the impact of this effect,

we have repeated the analysis for a subset of the cases discussed

above, but marginalizing over a two-parameter dark energy equa-

tion of state of the form w(z) = w0 +wa
z

1+z
. In this case, the values

of ln B01 are reduced by ∼10–20 per cent with respect to the case

where a weff 	= −1 model was assumed. This change is not large

enough to modify in a significant way the outcome of model selec-

tion reported in Tables 5–7. Therefore, we conclude that assuming

a more general dark energy equation of state does not impact very

strongly on our results about the danger of model confusion.

5.3 Avoiding model confusion

In the light of the findings in the previous section, it is interesting to

estimate the required accuracy on �κ in order to ensure that future

probes will not be subject to model confusion. For a given fiducial

value of |�κ | > 10−5, we wish to estimate the accuracy needed so

that the model comparison correctly favours the closed model over

a flat one independently of the choice of prior.

This can be achieved by using a Gaussian approximation to the

future likelihood and employing the SDDR to estimate the Bayes

factor between the closed and open model that a future experiment

would obtain. We start by considering the case of the astronomer’s

prior. We assume that the marginal likelihood of �κ is approxi-

mately described by a Gaussian with mean �∗
κ (i.e. centred on the

fiducial value3) and variance �2. Then, adopting the astronomer’s

prior, the Bayes factor between the flat and the closed model is

given by, from equation (16),

ln B01 ≈ − ln
�

��
− fA(�∗

κ , �) −
1

2

(�∗
κ )2

�2
, (30)

where ��= 1 is the width of the astronomer’s prior on the curvature

parameter and the last term of the right-hand side is defined as

fA(�∗
κ , �) ≡ ln

√

π

2

[

Erf

(

�� − |�∗
κ |√

2�

)

+ Erf

(

|�∗
κ |√

2�

)]

(31)

and Erf(x) denotes the error function,

Erf(x) ≡
2

π

∫ x

0

exp(τ 2)dτ. (32)

The function f A accounts for the upper and lower limits in the

astronomer’s prior distribution when computing the evidence. It is

easy to see that when the posterior is sharply localized within the

prior, i.e. for �∗
κ/� ≫ 1 it follows that fA(�∗

κ , �) → 1

2
ln 2π. Thus,

in equation (30), the first two terms on the right-hand side represent

the Occam’s razor effect (note that −ln �/�� > 0, thus favouring

the flat model), while the last term describes the relative quality of fit

between the closed and flat model. We have checked the accuracy

of the approximation of equation (30) against the full numerical

results in Tables 6 and 7 adopting the error estimates given in

Table 4 and we have found it to be excellent, with an accuracy of a

few percent.

The result is plotted in Fig. 4, where the red, thick line is the con-

tour level ln B01 = 0 which separates the region where the model

comparison correctly favours a closed Universe (bottom right cor-

ner, in white) from the ‘model confusion’ region, where the flat

Universe is incorrectly preferred due to the Occam’s razor effect

(shaded region above the red line). For a given value of the cur-

vature parameter on the horizontal axis, the red line thus gives the

required marginal accuracy on �κ to avoid model confusion. We

will come back below to discussing what this means in terms of the

required discovery threshold. The unfilled contours below the red

line denote values ln B01 = −1.0, −2.5, −5.0 (weak, moderate and

strong evidence for curvature, respectively, from top to bottom in

the figure). Because the evidence against the null hypothesis of a flat

Universe grows exponentially in the tails of the distribution, those

contours are relatively close to the ln B01 = 0 threshold. This means

that a relatively modest increase in accuracy can lead to ‘strong’

3 As discussed above, this neglects the realization noise and is, therefore,

equivalent to an ensemble-averaged forecast, analogous to what is usually

done for Fisher matrix forecasts. However, numerical investigations suggest

that realization noise is a subdominant source of uncertainty in this context

(Andrew Liddle, private communication).
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Figure 4. Bayes factor from future data for the astronomer’s prior as a func-

tion of the true value of the curvature parameter �∗
κ and the future marginal

accuracy on �κ , �. The red, thick line separates regions of model confusion

(above the line, shaded, ln B01 > 0, wrongly favouring a flat Universe) from

regions of correct model selection (ln B01 < 0 white, correctly returning

a preference for a closed Universe). The contours denote increasing levels

of evidence, with values of ln B01 as labelled. The contours below the red

line delimit regions of weak, moderate and strong preference for the closed

Universe (from top to bottom).

evidence in favour of curvature. The situation is not symmetric with

respect to the null hypothesis: the evidence increases only linearly

with the accuracy in case of a null result, hence it takes a much

larger accuracy to accumulate evidence in favour of the null. This

is reflected by the larger spacing between the evidence contours in

the model confusion region.

Turning now to the case of the curvature scale prior, the Bayes

factor can be computed in an analogous fashion, by replacing the

flat prior on �κ by the prior equivalent to a flat prior on oκ , namely

p(�κ ) = M/�κ (for −1 ≤ �κ ≤ −10−5) and M is a normalization

constant. The Bayes factor can then be computed numerically using

the SDDR (equation 16). The resulting outcome for model selection

is shown in Fig. 5, where the blue, thick line again separates region

of correct model selection from regions of model confusion, as a

function of the fiducial value for the curvature and of the marginal

accuracy. By comparing with Fig. 4, we note that the curvature

scale prior is less subject to model confusion than the astronomer’s

prior, since for the former the strength of evidence in favour of a

flat Universe is lower in the model confusion region and it barely

reaches the ‘moderate’ evidence threshold. Furthermore, the blue

line is always above the red line (see Fig. 6), which means that

model confusion for the curvature scale prior is avoided with less

stringent requirements on the marginal accuracy � than for the

astronomer’s prior.

5.4 Limits to the knowability of the geometry

The comparison between the two priors is further investigated in

Fig. 6, where we plot the contours separating the model confusion

region for both priors (red for the astronomer’s prior and blue for

the curvature scale prior). The dark shaded region labelled ‘model

confusion’ leads to an erroneous model comparison result for both

Figure 5. As in Fig. 4, but for the curvature scale prior. The blue, thick

line separates regions of model confusion (above the line) from regions of

correct model selection (ln B01 < 0). The shaded areas denote regions of

increasing model confusion, from light to dark.

Figure 6. The red (blue) line delimits regions of model confusion (above

the line) for the astronomer’s prior (curvature scale prior). The light-shaded

region between the red and blue lines is a zone of ‘model ambiguity’, where

the model comparison results depends on the prior. The diagonal, dotted lines

denote approximate regions of 3σ and 5σ (from top to bottom) discovery for

a given true value of the curvature parameter, �∗
κ . A 5σ discovery threshold

guarantees an ambiguity- and confusion-free model comparison outcome.

The horizontal lines give the expected accuracy of future CMB and BAO

probes.

priors, while the light shaded region between the two lines is a zone

of ‘model ambiguity’ – where the outcome of model comparison

depends on the choice of prior. In such a case, better data (i.e.

smaller �) are required in order to resolve the ambiguity. It is inter-

esting to investigate the accuracy necessary to obtain an ambiguity-

and confusion-free model selection. In Fig. 6, the diagonal, dashed
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Table 8. Required accuracy on the marginal error on �κ to avoid model confusion and to achieve different thresholds

of evidence in favour of a closed Universe for the two priors considered in the text (absolute value and relative number

of σ in parenthesis). A 5σ discovery threshold guarantees an ambiguity- and confusion-free model comparison

outcome down to �
∗
κ = 10−4.

True value Astronomer’s prior Curvature scale prior

Moderate evidence Strong evidence Moderate evidence Strong evidence

�
∗
κ = −5 × 10−3 1.23 × 10−3 (4.06σ ) 1.06 × 10−3 (4.66σ ) 1.57 × 10−3 (3.16σ ) 1.26 × 10−3 (3.95σ )

�
∗
κ = −10−3 2.23 × 10−4 (4.42σ ) 2.00 × 10−4 (4.97σ ) 3.12 × 10−4 (3.17σ ) 2.50 × 10−4 (3.95σ )

�
∗
κ = −10−4 2.00 × 10−5 (4.48σ ) 1.82 × 10−5 (4.93σ ) 2.79 × 10−5 (3.22σ ) 2.26 × 10−5 (3.99σ )

lines represent approximately 3 and 5σ detection thresholds (from

top to bottom). We can see that, except for fairly large values of

�∗
κ � 0.1, a 3σ ‘detection’ is subject to both model ambiguity and

model confusion. On the other hand, a 5σ detection leads to an

unambiguous and correct model choice all the way down to �∗
κ �

7 × 10−5.

This is further substantiated by the results tabulated in Table 8,

giving the required accuracy (both in absolute value and number

of σ discovery) to achieve moderate or strong evidence under both

priors, for a few representative choices of the fiducial curvature

value. Under the astronomer’s prior, moderate evidence in favour

of curvature requires a ∼4σ detection, while for strong evidence

a ∼5σ detection is necessary. As mentioned above, the curvature

scale prior is less demanding due to its reduced Occam’s razor effect:

moderate evidence is achieved with a ∼3.2σ detection threshold,

while strong evidence is obtained at ∼4σ . This of course comes at

the price of a much reduced evidence in favour of a flat Universe if

that is indeed the true model, as discussed in connection with the

results presented in Table 5.

In conclusion, our results imply that a 5σ detection threshold

ought to be recommended in order to obtain a secure and ambiguity-

free model selection. It is perhaps amusing that a full Bayesian

treatment of the problem concludes that the 5σ detection threshold

traditionally used in particle physics (with its frequentist frame-

work) ought to be employed.

Finally, we can revise the conclusion about the fundamental limit

to the knowability of the geometry of the Universe. It is usually

argued that this is of the order of |�κ | ∼ 10−5, because this is the

typical size of curvature fluctuations due to primordial inhomo-

geneities. However, Fig. 6 shows that model confusion sets in for

value of the curvature |�∗
κ | � 10−4, which means that if the true

value of the curvature is below this threshold, we will not be able

to gather evidence for it. We conclude that the fundamental limit to

our ability to detect the curvature of the Universe (if present) is of

the order of |�κ | ∼ 10−4, which is an order of the magnitude greater

than previous estimates. Below that value, the Occam’s razor argu-

ments inbuilt into Bayesian model selection imply that we ought to

revert to preferring a flat Universe. Therefore, if the curvature is in

the ‘undecidable interval’ 10−5 ≤ |�κ | � 10−4, no amount of data

will be able to determine that the Universe is non-flat.

6 C O N C L U S I O N S

We have subjected the geometry of the Universe to a detailed

scrutiny from a model comparison perspective, performing a three-

way model selection with two physically motivated priors. We found

that present-day data provide up to moderate evidence in favour of

flatness (maximum odds of 66:1) for a specific choice of prior (the

astronomer’s prior) and assuming that dark energy is a cosmological

constant. A curvature scale prior and a relaxation of the assump-

tion on the nature of dark energy weaken this result considerably,

giving only inconclusive odds of less than 3:2 in favour of flatness.

Correspondingly, the probability that the Universe is infinite lies in

the range from 67–98 per cent, depending on assumptions. If the

Universe is not infinite, we have found a robust lower limit to the

number of Hubble spheres, NU � 5.

We have discussed the prospects for future CMB and BAO probes

to determine with strong evidence the geometry of the Universe.

CMB data coupled with WFMOS BAO observations will achieve an

accuracy on �κ of the order of ∼1–2 × 10−3, while SKA-like BAO

data will further increase the accuracy to ∼4–6 × 10−4. Allowing

for the effective equation of state of dark energy to be different from

−1 (although constant in redshift) will not significantly decrease the

accuracy with which CMB + SKA data will determine �κ .

Finally, we have shown that a model selection perspective places

much more taxing requirements on the accuracy of future data

sets than one would naively assume. In particular, a 5σ detection

threshold is recommended in order to avoid both model confusion

and model ambiguity in the determination of the geometry. How-

ever, if the value of the curvature parameter is smaller than ∼10−4,

we found that no amount of observations will be able to decide on

the true geometry of the Universe. Achieving this lower limit will

require an improvement of another factor of 20 over what a CVL

CMB experiment with an SKA-like BAO probe will obtain. This

might be feasible once other, orthogonal data sets such as weak

lensing and SNIa observations are added to the likelihood, although

it will be a formidable challenge to control systematics at this level

of statistical accuracy.
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