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ABSTRACT

Many platforms deploy data collected from users for a multitude of purposes. While some are 
beneficial to users, others are costly to their privacy. The presence of these privacy costs means 
that platforms may need to provide guarantees about how and to what extent user data will be 
harvested for activities such as targeted ads, individualized pricing, and sales to third parties. In 
this paper, we build a multi-stage model in which users decide whether to share their data based 
on privacy guarantees. We first introduce a novel mask-shuffle mechanism and prove it is Pareto 
optimal—meaning that it leaks the least about the users’ data for any given leakage about the 
underlying common parameter. We then show that under any mask-shuffle mechanism, there 
exists a unique equilibrium in which privacy guarantees balance privacy costs and utility gains 
from the pooling of user data for purposes such as assessment of health risks or product 
development. Paradoxically, we show that as users’ value of pooled data increases, the 
equilibrium of the game leads to lower user welfare. This is because platforms take advantage of 
this change to reduce privacy guarantees so much that user utility declines (whereas it would have 
increased with a given mechanism). Even more strikingly, we show that platforms have 
incentives to choose data architectures that systematically differ from those that are optimal from 
the user’s point of view. In particular, we identify a class of pivot mechanisms, linking individual 
privacy to choices by others, which platforms prefer to implement and which make users 
significantly worse off.
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1 Introduction

Online platforms have proliferated over the last two decades, and many of them now obtain a
significant part of their revenue from harvesting user data. Users directly benefit from some of
the activities enabled by data collection. For example, they receive better recommendations or
customization for products or services, and pooled data are deployed for learning about health
conditions for the population, their group, or directly for themselves. Yet, other data-intensive
activities, such as targeted digital ads, individualized pricing, and data sales to third parties, may
be costly, annoying, or privacy-violating for users. The willingness of users to share their data
typically depends on guarantees that there will be limits to these practices that are costly to them.

In this paper, we build a model to study these issues. We consider a set of users who have a
utility consisting of two terms. The first attaches a positive value, with weight α, to the precision
of society’s (or the platform’s) estimate of an underlying common state, θ, based on pooled user
data. The second attaches a negative value, with weight β, to the decline in the mean squared
error about the individual’s own type, which is used by the platform for pricing or ad targeting.
For concreteness, we could consider the state θ to correspond to the prevalence of a virus in the
population, such as COVID- 19, while the individual type may be whether the user herself has
been infected, which she may wish to keep private. We assume that the platform receives positive
returns from acquiring more information on both components.

The key decision for users is whether to share their data (or participate in the platform). If the
potential cost of privacy violations is large enough, they will choose not to do so, unless adequate
privacy guarantees are provided by the platform.

The game between the platform and the users is conceptualized as follows. First, the platform
commits to a mechanism for partially preserving user privacy. Second, users decide individually
whether to share their data. Then the platform uses the data according to the chosen mechanism,
and utilities are realized. We look for a (Bayesian) Stackelberg equilibrium of this game, whereby
the platform optimally chooses the mechanism, anticipating the following Bayesian Nash equilib-
rium.

What makes this game interesting and difficult is the fact that the space of mechanisms that
provide privacy guarantees is vast, including partial anonymization, limits on what data can be
used for, various ways of adding noise to the data, and differential privacy and related mecha-
nisms.

Formally, we define a mechanism as a mapping from the users’ data to an output and consider
the following pair of quantities in the space of all possible mechanisms: leaked information about
the underlying common parameter and the sum of leaked information about each user’s private
data. We then ask the following question:

In the space of all mechanisms, is there a mechanism that achieves the Pareto frontier (i.e., leaks
the most about the underlying common parameter and the least about users’ data)? What is
that mechanism?
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One of our main results is that a mask-shuffle mechanism achieves the Pareto frontier defined
above. This proves that from the viewpoint of the users, this mechanism provides the optimal
trade-off between the positive and the negative uses of data. Specifically, according to this opti-
mal mechanism, the platform should commit to a probability with which a user’s data will be fully
anonymized (will be shuffled across users). This type of mask-shuffle is attractive from the users’
viewpoint because it maintains information about the underlying state but implies that the plat-
form learns much less about the individual. By choosing the probability of shuffling, the platform
can fine-tune the privacy guarantees to users.

Our second result characterizes the (unique and Bayesian) Stackelberg equilibrium under any
mask-shuffle mechanism. Additionally, we provide a number of comparative statics of this equi-
librium, showing how the extent to which users and the platform care about privacy affects the
degree of anonymity. Our comparative statics is more subtle and surprising, highlighting the para-
dox of platform-provided privacy guarantees. When α (the weight attached to the positive use of
pooled data in order to learn the state θ) increases, user utility increases given any mask-shuffle
mechanism, and users become more willing to share their data so that it can be pooled with those
of others to obtain better estimates of θ. Greater α, however, also means that the platform now
chooses lower privacy guarantees. The paradoxical result is that this platform response is power-
ful enough that, under some conditions we characterize, users end up worse off than they would
have been with lower α. We interpret this result as suggesting that platform-provided privacy
guarantees are highly imperfect and often insufficient.

Our final result turns to the implications of user privacy preferences on platform choices of
data architecture. We prove that the platform has an incentive to deviate from the user-optimal
mask-shuffle mechanisms. In particular, we identify a set of pivot mechanisms that make individual
privacy on the choices of other users, for example, by linking the decision of how much of a user’s
data to utilize on the sharing decision of other users. We establish that the platform can exploit
user preferences towards the underlying common state, θ, by designing a pivot mechanism that
commits to not utilizing any user data if any one of the users does not share her data. This pivot
mechanism makes every user “pivotal” at the margin, meaning that if she decides not to share
her data, nothing is learned about θ. Because the user values social learning about θ, the effective
cost of not sharing her data increases significantly, and this allows the platform to violate her
privacy. We also show that more continuous versions of pivot mechanisms can achieve the same
outcome. This result further amplifies our interpretation that self-regulation by platforms is often
insufficient to ensure sufficient user privacy.

1.1 Related literature

Our paper relates to a large and growing literature on privacy. Several papers consider the design
of mechanisms for collecting data from privacy-aware users, including Ghosh and Roth [2011],
Ligett and Roth [2012], Nissim et al. [2014], Cummings et al. [2015], Chen et al. [2018], Chen and
Zheng [2019], and Fallah et al. [2022a]. For example, Ghosh and Roth [2011] study a setting in
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which each user has a private bit and a heterogeneous privacy loss parameter and the platform
wants to design a dominant strategy truthful mechanism to learn the sum of user’s data. On the
other hand, Cummings et al. [2015] consider a model in which users charge the platform based
on the accuracy level of the data that they provide, and the platform decides on the level of accu-
racy that she purchases. Finally, Fallah et al. [2022a] and Fallah et al. [2022b] focus on designing
Bayesian optimal schemes to collect data from strategic users with heterogeneous privacy sensi-
tivities under local and central privacy architectures. We differ from these papers by explicitly
modeling the game between the platform and users, and we focus on a setting in which there are
no explicit prices, but the costs and benefits of the services provided by the platform have to con-
vince users to take part in data sharing. Specifically, in our model, as in Cummings et al. [2022]
and Fallah et al. [2022a], users benefit from the quality of the estimate about the underlying state.
However, these papers do not study the design of optimal platform mechanisms with strategic
users, either.1

Even more closely related is the emerging literature on the social dimension of data and online
platform behavior, for example, Acemoglu et al. [2022] and Bergemann et al. [2020]. Bergemann
et al. [2020] consider a setting in which a (trusted) data intermediary collects users’ data and resells
them to a platform. They show that data externalities, whereby a user’s data is predictive of
others, can reduce the intermediary’s cost of acquiring the data. Acemoglu et al. [2022] consider
a more general, though reduced-form, data externality and establish that this externality reduces
the value of data to both users and the platform. As a result, data externalities depress data
prices and amplify inefficiencies. Relatedly, Ichihashi [2020] studies the interactions between a
privacy-concerned user and a platform, where the user’s activity reveals private information (see
also Fainmesser et al. [2022] for a similar model). These papers do not consider general privacy-
preserving mechanisms.

More broadly, our work is also related to the literature on data collection and sharing. Hörner
and Skrzypacz [2016] study the design of mechanisms for selling data, while Goldfarb and Tucker
[2011], Bergemann and Bonatti [2015], Montes et al. [2019], and Jagabathula et al. [2020] investigate
how individual private information can be used to improve resource allocation. Competition im-
plications of online data sharing and technologies have been explored in, among others, Bimpikis
et al. [2021] and Gur et al. [2019]. Bergemann and Bonatti [2015] study the problem of selling
cookies for targeted advertisement and study how the price of data changes with the reach of the
dataset and the fragmentation of data sales. Fu et al. [2022] study data collection and privacy in
recommendation systems. Other works on information-sharing and market structure include Li
[2002], Li and Zhang [2008], Ha and Tong [2008], Shang et al. [2015], Foster et al. [2016], Lobel and
Xiao [2017], Bimpikis et al. [2019], Candogan and Drakopoulos [2020], Immorlica et al. [2020], Hu
et al. [2020], Ashlagi et al. [2020], Anunrojwong et al. [2021], Besbes and Mouchtaki [2021], and
Ashlagi et al. [2021] (see Bergemann and Bonatti [2019] for a survey).

1Motivated by applications in which users grant permission to use their data to platforms, we do not consider the
issue of misreporting of data. The issue of misreporting is studied in Perote and Perote-Pena [2003], Dekel et al. [2010],
Meir et al. [2012], Ghosh et al. [2014], Cai et al. [2015], and Liu and Chen [2016, 2017], among others.
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The rest of the paper proceeds as follows. Section 2 presents the users’ and the platform’s
utility and establishes the optimality of the mask-shuffle mechanism. In Section 3, we introduce
the equilibrium concept and establish its existence. In Section 4, we characterize the equilibrium
of the game among the users and the platform and provide some comparative statics for it. In
Section 5, we establish that the platform has incentives to use mechanisms other than mask-shuffle
as opposed to the users. Section 6 concludes, while the Appendix presents the omitted proofs.

2 Environment

We consider a platform that wishes to collect data from n privacy-aware users denoted by N =

{1, . . . , n}. User i’s data is represented by Xi = θ + Zi where θ ∼ N (0, 1) is a common parameter
and Zi ∼ N (0, 1) is user i’s private type. We assume both users and the platform drive higher
utility from having access to a better estimation of θ. The private type of user i, Zi, can be used
for the platform’s benefit, and therefore the platform gains from a better estimation of it while the
user suffers a privacy loss. Users and the platform connect through a mechanism. Formally, a
mechanism M : Rn → X , for some set X , is a randomized algorithm whose input is the users’
data, i.e., x1, · · · , xn, and its output is received by the platform. The mechanism output is used
by the platform to estimate θ. The mechanism output contains information about the underlying
parameter θ which leads to a better estimation of this parameter and benefits both the users and
the platform. It also reveals information about the private type of users zi for i ∈ N which benefits
the platform but harms the users.

Before introducing the utility of the users and the platform we introduce our measure of re-
vealed information. Throughout the paper, we use lower case letters to denote the realization of ran-
dom variables. Notice that platform’s prior on θ and Zi is π0 = N (0, 1). We denote the platform’s
posterior on θ and Zi after observing the mechanism’s output by πθ(M) and πZi(M), respectively.
It can be seen that the best estimator of θ and Zi’s with respect to the mean-squared error, given the
mechanism’s output, is the mean of the posterior distributions. We define revealed information as
the reduction in the mean-squared error from the prior to the posterior, formalized next.2

Definition 1 (Revealed information). For any mechanism M, revealed information about θ is the reduc-
tion in the mean-squared error of θ, i.e.,

I(θ | M) = E
[
(θ − Eθ∼π0 [θ])

2
]
− E

[(
θ − Eθ∼πθ(M) [θ]

)2]
,

where the expectations are over the randomness in data and the mechanism. Similarly, for any i ∈ N ,
revealed information about Zi is the reduction in the mean-squared error of Zi, i.e.,

I(Zi | M) = E
[
(Zi − EZi∼π0 [Zi])

2
]
− E

[(
Zi − EZi∼πZi

(M) [Zi]
)2]

.

2In our setting, privacy is ensured when the disclosed information, as defined below, is small. This guarantee
is based on an average-case scenario, which differs from the worst-case guarantees provided by differential privacy
Dwork et al. [2014].
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Given the above definition of revealed information, the expected utility of user i is given by

Ui(M) := α I(θ | M)− β I(Zi | M). (1)

The first term captures the gain of user i from a better estimation of the underlying parameter
θ. For instance, in the context of a medical study, the user gains from a better estimation by the
hospital, leading to a more effective drug. The second term captures the loss of learning user
i’s private data Zi. Again, in the context of a medical study, the user wants to keep her medical
record private. We use parameters α and β that are non-negative as constants to scale the impact
of learning the underlying parameter and the user’s private data, respectively. In the context of a
medical study, again, they capture the relative weight that users assign to a more effective drug
versus their privacy loss. The expected platform’s utility is given by

Uplatform(M) := I(θ | M) + δ

n∑
i=1

I(Zi | M), (2)

where the first and second terms correspond to the platform’s gain from learning θ and users’
private type, respectively. Notice that, without loss of generality, we have normalized the impact
of learning θ in platform’s utility to one and use a non-negative constant δ to scale the impact of
learning users’ private data in the platform’s utility.

2.1 Mask-shuffle mechanism and its optimality

The space of mechanisms includes all possible mappings from users’ data to an arbitrary space.
In principle, this class includes a rich set of mechanisms. Nevertheless, we now establish that
user-optimal mechanisms take a relatively simple form, which we call mask-shuffle mechanisms.
In particular, we prove that the mask-shuffle mechanism achieves the minimum sum of revealed
information about private user types, the Zi’s, for a given revealed information about θ.

Definition 2 (Mask-shuffle mechanism). A mask-shuffle mechanism is a pair (q, µ) ∈ [0, 1]n+1 such
that:

1. The data of each user i ∈ N is completely hidden from the platform with probability 1 − qi (denoted
by NA) and is kept with probability qi.

2. Letting Yi denote the user i’s data after this randomized mapping, the mechanism directly releases
each Yi with an independent probability 1−µ and shuffles the rest and releases a permutation of these
shuffled Yi’s (i.e., Yiσ(1)

, . . . , Yiσk for some random permutation σ where k is the number of Yi’s that
are shuffled).

Figure 1a illustrates the mask-shuffle mechanism that includes a partial shuffler that shuffles
each user’s data with probability µ. Figure 1b further depicts this partial shuffling element.
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(a) (b)

Figure 1: (a) the mask-shuffle mechanism (b) the partial shuffler.

Before establishing the optimality of a mask-shuffle mechanism, we explicitly characterize the
revealed information in terms of the shuffling parameter µ and the users’ action profile q. In what
follows, we use the following notation: for any v ∈ [0, 1]k and j ∈ {1, · · · , k}, we define

Sj(v) :=
∑

B⊆{1,··· ,k}
|B|=j

∏
ℓ∈B

vℓ
∏
ℓ/∈B

(1− vℓ). (3)

This function is also known as the probability density function of Poisson binomial distribution,
which is the number of heads after k independent coin tosses when the probability of head for
coin ℓ is vℓ (see, e.g., Wang [1993]).

Proposition 1. For a given µ ∈ [0, 1] and q ∈ [0, 1]n, revealed information about θ can be written as

I(θ | q, µ) =
n∑

j=0

j

1 + j
Sj(q).

In addition, revealed information about Zi can be written as

I(Zi | q, µ) = (1− µi)qi

(
1−

n∑
k=1

Sk−1(q−i)
1

1 + k

)
(4)

+
n∑

k=1

∑
B⊆N

i∈B,|B|=k

k∑
j=1

n−k∑
r=0

(∏
ℓ∈B

µℓ

)∏
ℓ̸∈B

(1− µℓ)

Sr(qN\B)
q2i S

2
j−1(qB\i)

Sj(qB)

1 + r

j(1 + (j + r))

where qB := (qℓ)ℓ∈B .

This result shows that revealed information about θ does not depend on the shuffling param-
eter µ because irrespective of whether a user’s data is shuffled or not the platform can extract the
relevant information about θ in this user’s data. Revealed information about Zi, however, depends
on the shuffling parameter. In fact, the first term on the right-hand side of (4) captures revealed
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information about Zi when the data of user i is not shuffled, and the second term corresponds to
the case that data of user i is shuffled. It is worth highlighting that, to derive the second term, we
first need to characterize the platform’s belief on which one of the shuffled data belongs to user i.

We next establish that for a given desired level of revealed information about the common pa-
rameter θ, the mask-shuffle mechanism achieves the lowest possible sum of revealed information
regarding private types Zi’s. Let us formalize this notion of optimality. Let

P =

{
(A,B) : A = I(θ | M), B =

n∑
i=1

I(Zi | M) for some mechanism M

}

be the set of all pairs of revealed information about θ and revealed information about Zi’s achieved
by any mechanism. Let us denote the smallest and largest possible values of A by A and Ā,
respectively. For any A ∈ [A, Ā], the Pareto frontier of P is defined as

{
(A,PF (A)) : A ∈ [A, Ā]

}
where PF (A) = inf {B : (A,B) ∈ P} . (5)

We next prove that the mask-shuffle mechanism achieves the Pareto frontier of all possible mech-
anisms.

Theorem 1. For any A ∈ [A, Ā], there exists a mask-shuffle mechanism M = (q, 1), for some q ∈ [0, 1],
for which

I(θ | M) = A and
n∑

i=1

I(Zi | M) = PF (A).

Theorem 1 has two consequences. First, by varying the probability of sharing q from zero to
one, revealed information about θ goes from zero to the highest possible level of revelation among
all mechanisms. Moreover, for any given revealed information about θ in this range, the lowest
possible leakage of users’ private information is achieved by a mask-shuffle mechanism with a
certain sharing probability q.

In closing, we should highlight that various forms of shuffling have been studied in the differ-
ential privacy literature as a technique to boost the provided privacy guarantees (see, e.g., Bittau
et al. [2017] and Cheu [2021]). First, our mask-shuffle mechanism is different from simply shuffling
all data points as it involves randomly masking some of the user data points and then partially
and randomly shuffling them. Second, our analysis reveals the Pareto optimality of a mask-shuffle
mechanism in our setting which gives it an important operational justification, unlike shuffling for
the purpose of boosting privacy guarantees.

2.2 Proof of Theorem 1

Here, we present three key lemmas that together establish Theorem 1. Let us first provide the
roadmap of the proof:
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• We first prove that for any mechanism, the sum of the revealed information about θ and Zi’s
is lower bounded by (a constant fraction of) the revealed information about

∑n
i=1Xi. Intu-

itively, this holds because if a mechanism reveals too much about
∑n

i=1Xi = nθ +
∑n

i=1 Zi,
then it must be the case that it reveals information about either θ or Zi’s.

• We then establish that the revealed information about
∑n

i=1Xi is (a constant multiple of)
the revealed information about θ. Intuitively, this holds because the conditional distribution
of θ given (X1, · · · , Xn) depends on X1, · · · , Xn only through

∑n
i=1Xi. Putting these two

lemmas together, we establish a lower bound on the sum of the revealed information about
Zi’s in terms of the revealed information about θ. This lower bound characterizes the Pareto
frontier of P , defined in (5).

• We finally prove that our mask-shuffled mechanism achieves this Pareto frontier.

We next state and prove the above results formally.

Lemma 1. For any mechanism M, we have

I(θ | M) +

n∑
i=1

I(Zi | M) ≥
I (
∑n

i=1Xi | M)

n2 + n
(6)

and the equality holds for a mask-shuffle mechanism M = (q, 1) with any q = (q, . . . , q).

Proof sketch: We briefly describe the proof idea of Lemma 1 and relegate the details to the
Appendix. To show this result, we first establish a relation between the revealed information of
a random variable and the square of its expectation conditioned on the mechanism M’s output.
Using this derivation, our analysis requires bounding the square of the conditional expectation of∑n

i=1Xi = nθ +
∑n

i=1 Zi by the square of the conditional expectation of θ and Zi’s. To prove such
a bound, we use Cauchy-Schwarz inequality and carefully tailor the weight we assign to each
conditional expectation to obtain the tightest bound. We also prove that the equality case of the
Cauchy-Schwarz inequality holds for our mask-shuffling mechanism by explicitly characterizing
the conditional expectations in that case. ■

Lemma 1 establishes a relation among the revealed information about the underlying state
θ, the users’ type Zi, and the users’ data Xi. We are interested to find a relation between the
revealed information about θ and Zi’s. Therefore, the next natural step is to show how the revealed
information about

∑n
i=1Xi relates to the revealed information about θ, which is proved in our

second lemma.

Lemma 2. For any mechanism M, we have

I

(
n∑

i=1

Xi | M

)
= (n+ 1)2 I(θ | M). (7)
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Proof sketch: As stated in the previous proof sketch, we know that the revealed information
about θ is closely related to the conditional expectation of θ given the mechanism M’s output. To
establish the desired result, we show that the conditional expectation of θ and

∑n
i=1Xi only differ

by a constant factor. Deriving this result uses two main observations: (i) the Markov property of
the mechanism: given X1, · · · , Xn, the output of the mechanism M is independent of θ, and (ii)
the conditional distribution of θ given (X1, · · · , Xn) only depends on

∑n
i=1Xi (the detailed proof

is given in the Appendix). ■
The proof of Theorem 1 follows from plugging the relation of Lemma 1 into the bound given

by Lemma 2. In particular, this proves that for any mechanism M : Rn → X , we have

n∑
i=1

I(Zi | M) ≥ I(θ | M)

n
. (8)

Moreover, equality holds for mask-shuffle mechanism M = (q, 1) for any q = (q, . . . , q). There-
fore, there is an inevitable minimum leakage of users’ private information when a mechanism
learns θ, and this minimum leakage increases as the mechanism reveals more about θ. Further-
more, the mask-shuffle mechanism has this minimum leakage, i.e., the mask-shuffle mechanism
has the lowest possible leakage among all mechanisms that reveal equally about θ. This theorem
proves the optimality of the mask-shuffle mechanism from the users’ perspective.

The last remaining piece to finish the proof of Theorem 1 is to show that mask-shuffle mecha-
nisms of the form M = (q, 1) achieve all possible values of revealed information about θ. to see
this, notice that by varying q from 0 to 1, the revealed information about θ by M = ((q, · · · , q), 1),
i.e., I(θ | q, µ) goes from zero to n

n+1 . The following lemma proves that no other mechanism can
reveal more about θ.

Lemma 3. The minimum (i.e., A) and the maximum (i.e., Ā) of I(θ | M) over all mechanisms are 0 and
n

n+1 , respectively. Moreover, these bounds are achievable for a mask-shuffle mechanism M = (q, 1) for
some q ∈ [0, 1].

Combining Lemmas 1, 2, and 3 proves Theorem 1, establishing that the mask-shuffle mecha-
nism achieves the Pareto frontier of revealed information about θ and revealed information about
Zi’s.

2.3 The Game Between the Platform and Users

As we have seen, a mask-shuffle mechanism consists of a shuffling parameter µ ∈ [0, 1] and a
vector of sharing probabilities (q1, . . . , qn). Since users own their data, we assume that they directly
choose the probability with which their data will be shared with the platform, i.e., each user i ∈ N
chooses qi. We refer to q as the users’ action profile. The shuffling parameter µ, on the other hand,
is the platform’s action: the platform commits to shuffle the data of each user who shares her data
with probability µ ∈ [0, 1]. The timing of the game is as follows:
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1. The platform chooses her action µ, specifying the shuffling parameter.

2. Knowing the platform’s shuffling parameter, all users simultaneously choose their action,
specifying the probability with which they share their information with the shuffler.

The platform and the users choose their actions in an equilibrium that we introduce next.

3 Equilibrium

We use the notion of symmetric (Bayesian) Stackelberg equilibrium as our solution concept. Let
us first define the user equilibrium for a given platform’s action µ.

Definition 3 (user equilibrium). For a given platform’s action µ ∈ [0, 1], a user action profile q =

(q, . . . , q) is a symmetric Bayesian Nash equilibrium if

Ui(q, µ) ≥ Ui((q−i, qi = q′), µ) for all i ∈ N , q′,

where q−i = (q1, . . . , qi−1, qi+1, . . . , qn).

We use the notion of symmetric equilibrium to simplify the analysis and to rule out the exis-
tence of unintuitive user equilibria. In the rest of the paper, we adopt the following assumption.

Assumption 1. α ≥ β, where α and β are the weight of the revealed information about the common
parameter θ and User data, respectively, in the user’s utility (given in (1)).

Assumption 1 focuses on the part of the parameter space where there is sufficient value in
increasing information about the underlying common state θ. In particular, it rules out the case in
which all users choose not to share their information, as we show next:

Proposition 2. Suppose Assumption 1 holds.

1. For any platform’s action µ < 1, there exists N(µ) such that for n ≥ N(µ) any symmetric user
equilibrium is of the form q = (q, . . . , q), with q = c

n +O( 1
n2 ), where c is the unique solution of

α
1− (c+ 1)e−c

c2
= β(1− µ)

(
1− 1

c

(
1− 1− e−c

c

))
.

2. For platform’s action µ = 1, there exists N such that for n ≥ N , we have the following cases:

2.1. If α
β ≤ 2, then any intermediary symmetric user equilibrium is of the form q = (q, . . . , q),

where q = α
2β +O

(
log(n)

n

)
. Also, q = (1, . . . , 1) is a user equilibrium.

2.2. If α
β > 2, then q = (1, . . . , 1) is the unique symmetric user equilibrium.
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To characterize the symmetric user equilibrium (q, · · · , q), we let user 1 share her data with
probability q1 and other users share their data with probability q. For (q, · · · , q) to be a symmetric
user equilibrium, we must have that user 1’s utility U1(q, µ) as a function of q1 is maximized by
choosing q1 = q. We solve for such q by considering the first-order conditions and also checking
the boundary cases. There are a few points worth mentioning. First, Assumption 1 rules out qi = 0

for all i ∈ N as an equilibrium. Second, Proposition 2 characterizes the users’ equilibrium action
with a 1/n2 precision. Although characterizing the exact constant of the 1/n2 term is demanding,
in what follows, we prove that this term only affects the lower order terms in the utility functions
of the users and the platform.

We next define the Stackelberg equilibrium of the game.

Definition 4 (Stackelberg equilibrium). A pair of (qe, µe) is a symmetric Stackelberg equilibrium if
qe = (qe, . . . , qe) is a symmetric user equilibrium for µe and

Uplatform(q
e, µe) ≥ Uplatform(q

′, µ′),

for any µ′ and q′ such that q′ is a symmetric user equilibrium for µ′.

Theorem 2. Suppose Assumption 1 holds. There exists a symmetric Stackelberg equilibrium (µe, qe).

Theorem 2 proves the existence of a symmetric Stackelberg equilibrium. In general, such an
equilibrium may not be unique. However, in what follows, we prove the properties of the game
among the users and the platform that holds for any symmetric Stackelberg equilibrium.

4 Characterization

In this section, we characterize the equilibrium and then provide some comparative statics.
Our next theorem proves that for a sufficiently large number of users if α (i.e., the weight of the

revealed information about the common parameter θ in the user’s utility) is small enough, then the
platform’s equilibrium shuffling probability is close to 1 (i.e., the platform shuffles almost all the
unmasked data points). Conversely, if α is large enough, then the platform’s equilibrium shuffling
decision is close to 0 (i.e., the platform shuffles almost none of the unmasked data points).

Theorem 3. Suppose δ ≤ 1 and Assumption 1 holds. For any ϵ > 0, there exists α and ᾱ in [β,∞) and
N e(ϵ), such that for n ≥ N e(ϵ) we have:

1. If α ≤ α, then µe ≥ 1− ϵ.

2. If α ≥ ᾱ, then µe ≤ ϵ.

The proof of this theorem relies on the following steps. From Proposition 2, for any ϵ there
exists N(ϵ) such that the derivation of Proposition 2 holds for n ≥ N(ϵ) and µ ≤ 1− ϵ. Therefore,
to find the optimal choice of µe for the platform, we consider two intervals [0, 1− ϵ) and [1− ϵ, 1]

11



separately. In particular, we characterize the user equilibrium for any µ ∈ [0, 1 − ϵ) by invoking
Proposition 2, and we find the best choice of shuffling probability for the platform. We also upper
bound the platform’s utility when the platform chooses µ ∈ [1 − ϵ, 1]. Putting these two results
together, we complete the proof of Theorem 3.

To understand the intuition for Theorem 3, let us consider what happens when the platform
increases the shuffling parameter µ. There are two opposing forces that shape equilibrium de-
cisions. First, for a given user action profile q, the choice of the shuffling parameter µ does not
directly change revealed information about θ (as shown in Proposition 1) but decreases revealed
information about the users’ data. Second, increasing the shuffling parameter µ incentivizes the
users to share with a higher probability, which increases the platform’s utility because it increases
both revealed information about θ and about users’ data. Theorem 3 establishes that for small
enough α, the second force dominates and the platform’s equilibrium choice is to increase the
shuffling parameter very close to 1. For large enough α, on the other hand, the first force dom-
inates and the platform’s equilibrium choice is to decrease the shuffling parameter very close to
0.

We next establish our main comparative static result that establishes as α (the weight users
attach to information about the underlying, common state θ) increases, they may become worse
off. Recall that, holding the privacy mechanism constant, a higher α leads to greater user utility.
The next theorem is therefore a paradoxical result on the response of the platform by varying the
extent of privacy guarantees.

Theorem 4. Suppose δ ≤ 1 and Assumption 1 holds. Then, there exists an interval (αL, αH) such that
the user’s utility at equilibrium as a function of α is decreasing over it for sufficiently large n, i.e., for any
α1 < α2 in (αL, αH), there exists N such that for any n ≥ N the user’s utility at equilibrium is larger for
α = α1 compared to α = α2.

We prove that this phenomenon happens when the shuffling probability µe at equilibrium
starts to decrease from one to zero by increasing α. More precisely, as α increases, the platform
takes advantage of the fact that users care more about learning the underlying common state and
decreases the probability of shuffling, knowing that users will still share their data. However,
the main challenge is that, at the same time, the user’s gain from learning the underlying state
increases. Nevertheless, we prove that the users’ loss from the reduction of the shuffling parameter
(and hence the increase of revealed information about their private types Zi’s) dominates their
gain from learning the state θ, and hence, the total utility of users decreases.

5 Platform choice of mechanism: pivot vs. mask-shuffle mechanisms

In this section, we characterize the platform’s optimal choice of mechanism and establish that
platforms will in general choose mechanisms quite different from the mask-shuffle mechanism
that is user-optimal, as shown above. Recall that the action of each user such as user i is her
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sharing probability qi, and

Yi =

Xi with probability qi

NA with probability 1− qi

is the input of the platform. The platform’s action is a mapping from (Y1, . . . , Yn) to X for some
set X . The output of the platform’s action will then be used to estimate the underlying state θ as
well as the private users’ data Zi.

The mask-shuffle mechanism is one particular platform’s action, but the space of all platform’s
actions is vast. Nevertheless, we next establish that the optimal platform’s action belongs to the
following class:

Definition 5 (Pivot mechanism). A pivot mechanism is defined based on a function σ : N → R+ such
that: when k users share their data, the platform adds a Gaussian noise with zero mean and variance σ2(k)

to all users who have shared.

Intuitively, we refer to these mechanisms as “pivot mechanisms” because they increase the
pivotal role of each user, as their sharing decision influences whether the platform can use the
data shared by others. A special case of the pivot mechanism that is optimal from the platform’s
perspective is given next.

Theorem 5. Suppose σ(.) satisfies the following condition:

σ2(k − 1) ≥ α

α− β

(
σ2(k) + k + 1

)
and σ(n) = 0. (9)

Then, the only symmetric user equilibrium under the pivot mechanism is qi = 1 for all i. Furthermore, the
platform’s utility under this equilibrium is the maximum platform’s utility over all possible mechanisms.

Let us first understand user behavior given such a pivot mechanism. Intuitively, inequality (9)
ensures that without the user in question sharing her data there will be so much noise added to
the data of other users who have shared that estimating the underlying common state, θ, becomes
close to impossible for the platform. This is the sense in which the pivot mechanism makes each
user pivotal: by refusing to share her data, the user makes it impossible to estimate this underlying
state. If α is sufficiently large, as implied by condition (9), this is very costly for the user, and she
will be convinced to sacrifice her privacy in order to allow the estimation of θ. Given this user
behavior, the platform then has a strong incentive to deviate from the user-optimal mask-shuffle
mechanism towards such a pivot mechanism.

To clarify the implications of this theorem, we next consider a simple form of this pivot mech-
anism as a corollary.
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Corollary 1. For a pivot mechanism with

σ(k) =

0 k = n

∞ k < n,
(10)

the unique symmetric user equilibrium is qi = 1 for all i and the platform’s utility is n(nδ+1)
n+1 , which is the

maximum utility over all possible mechanisms.

Under the above pivot mechanism, the platform does not add any noise to users’ data so long
as they all share. Conversely, the platform “throws away” all users’ data even if one of them does
not share.

The implications for user utility are dire, however. To see this, we next characterize user wel-
fare under the pivot mechanisms favored by the platform.

Proposition 3. Suppose σ(.) satisfies condition (9) so that the unique user equilibrium under the pivot
mechanism is qi = 1 for all i. The utility of each user is

(α− β)
n

n+ 1
.

6 Conclusion

Many platforms deploy data collected from users for a multitude of purposes. Some of these are
beneficial to users, for example, when the routine sharing of their data enables platforms or others
to learn more about underlying health conditions or provide better, objective recommendations to
them. However, other consequences of extensive data harvesting are potentially costly for users.
Some of those will directly violate their privacy and others will lead to intensive target digital
ads. In the extreme, the unregulated sale of individualized data to third parties could be highly
problematic for users.

When privacy costs are substantial, users may not be willing to share their data and even shy
away from participation in platforms that do not provide explicit guarantees on privacy. This
has motivated many platforms to introduce guidelines on how they will treat user data and offer
various privacy guarantees. Despite the growing importance of this problem, we are not aware of
any studies that explore how these guarantees are determined and to what extent they serve user
or platform objectives.

This paper has taken a first step in this direction. We build specific a multi-stage model in
which users decide whether to share their data based on the privacy-deserving mechanism choices
of platforms. Our model captures several salient features of the data-related relationships between
platforms and users but is still highly tractable. As a result, we are able to establish several novel
results that are of both theoretical interests and provide guidance on the faultiness that exists in
private data markets.
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Our first result establishes that mask-shuffle mechanism, whereby the user data is fully anonymized
with some probability, is Preto optimal, meaning it achieves the minimum information leakage
about users’ data for any given revealed information about the underlying common parameter.
This also implies that it is optimal from the viewpoint of users. With mask-shuffle mechanisms,
there exists a unique equilibrium in which the mechanism offered by the platform balances the
utility gains from the desirable uses of data with privacy costs for users.

Our second result characterizes the (Bayesian) Stackelberg equilibrium of the game between
the platform and the users. This equilibrium concept takes into account that the platform acts
first by choosing (committing to) a particular mechanism for privacy preservation (and hence acts
like a “Stackelberg leader’ as in the game-theoretic analysis of oligopolistic markets). The label
Bayesian refers to the fact that individuals make inferences about how much information will leak
about the underlying state and their individual types to the user.

Third and somewhat paradoxically, we show that when the potential utility gains from data
pooling increases for users (for example, because data can reveal information about underlying
health conditions), users can become worse off. This result is because platforms take advantage of
such changes to reduce privacy guarantees so much that user utility declines. This result should
be contrasted with what would have happened if the privacy-preserving mechanism was held
constant: in this case, user utility would have unambiguously increased because users would have
benefited from better deployment of data. The intuition for this paradoxical result is rooted in the
fact that the platform can exploit the change in user preferences to reduce privacy guarantees.
Our interpretation is that this result highlights the fragility of platform-provided (self-regulated)
privacy guarantees.

Finally, we explore the implications of the same forces for platform choice of data architecture.
Here, we find that, even more strikingly, platforms have strong incentives to deviate from user-
optimal mask-shuffle mechanisms. The reason for this finding is instructive: the platform designs
a mechanism (which we refer to as a pivot mechanism) that links whether it can use other users’
data to the decision of a marginal user about whether to share her own data. This makes each user
pivotal: if they refuse to share their data, it becomes impossible for the platform to use the data
of others to estimate the underlying common state (which is valuable for all users). With such
pivotal mechanisms, the platform convinces users to sacrifice their privacy, but with significant
costs to the welfare of users. This result further amplifies our conclusion that self-regulated pri-
vacy guarantees are unlikely to be sufficient for users to obtain high levels of benefit from online
platform data architectures.

We view this paper as a first step in the analysis of dynamic data markets, when data can be
put to a multitude of uses. Several interesting areas remain for future study. First, we assumed
that the platform can fully commit to a mechanism, whereas in practice platforms can create ambi-
guity about how data will be used and deviate from certain promises. The analysis of these issues
is more challenging, as it requires an explicit modeling of platform reputation. Second, greater
heterogeneity and more diverse uses of data can be introduced into our framework. Third, users
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typically participate in online platforms over many periods, and thus issues of dynamic data shar-
ing are important in practice. These are also interesting areas for future study. Last but not least,
it is important to empirically assess how users react to the prevailing privacy-preserving mecha-
nisms and test some of the implications of this type of approach.
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A Proofs

This Appendix includes the omitted proofs from the text and additional results.

Properties of the revealed information measure

Here, for the sake of subsequent analysis, we first generalize the definition of revealed informa-
tion, provided in Definition 1. With slight abuse of notation, we use I(.) in this case as well.

Definition 6. For any real-valued random variable W and any σ-Field F , the revealed information about
W given F is defined as

I(W | F) = Variance(W )− min
W̃ is

F−measurable

E
[(

W − W̃
)2]

, (A1)

where the minimization is taken over all random variables W̃ that are F-measurable. In addition, for a
random variable H , I(W |H) is defined as I(W | σ(H)), where σ(H) denotes the σ-field generated by H .

It is known [Durrett, 2019, Theorem 4.1.15] that minimum in (A1) is achieved by choosing
W̃ = E[W | F ]. We next use this fact to characterize I(W | F).

Lemma A1. Suppose E[W 2] < ∞. Then,

I(W | F) = E
[
E[W | F ]2

]
− E[W ]2.

Proof of Lemma A1: Given that minimum in (A1) is achieved by choosing W̃ = E[W | F ], we
should substitute W̃ by E[W | F ] in (A1). By doing so, we obtain

I(W | F) = E[W 2]− E[W ]2 − E
[
(W − E[W | F ])2

]
= 2E [W E[W | F ]]− E

[
E[W | F ]2

]
− E[W ]2

= E
[
E[W | F ]2

]
− E[W ]2,

where the last equality follows from the following property of conditional expectation: for any
F-measurable random variable H , we have E[WH] = E [E[W | F ] H] . Here we use it with H =

E[W | F ]. ■
As a consequence, the following lemma holds.

Lemma A2. Suppose W is a zero-mean random variable with E[W 2] < ∞. Then, for a discrete random
variable H , we have

I(W | H) =
∑

h∈supp(H)

P(H = h)I(W | H = h).

Proof of Lemma A2: Using Lemma A1, and since W is zero-mean, we have I(W |H) = E
[
E[W | σ(H)]2

]
,

where the outer expectation is taken over H . Using the linearity of this expectation, we obtain the
desired result. ■
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Proof of Proposition 1

For θ, note that indices of data points do not matter, since all Xi’s have identical distribution.
Hence, shuffling does not have any effect on the estimation of θ. More formally, using Lemma A2,
we have

I(θ | q,µ) =
n∑

j=1

∑
B⊆{1,··· ,n}

|B|=j

∏
ℓ∈B

qℓ
∏
ℓ/∈B

(1− qℓ) I(θ | (Xk)k∈B)

=
n∑

j=1

∑
B⊆{1,··· ,n}

|B|=j

∏
ℓ∈B

qℓ
∏
ℓ/∈B

(1− qℓ) E
[
E[θ | (Xk)k∈B)]

2
]
, (A2)

where the second equation follows from Lemma A1. Next, we derive E
[
E[θ | (Xk)k∈B)]

2
]

for any
B ⊆ {1, · · · , n}. Note that θ and (Xk)k∈B are jointly Gaussian, where the mean of their joint
distribution is 0 and the covariance matrix of their joint distribution is given by

1 1 · · · 1

1 2 · · · 1
...

...
. . .

...
1 1 · · · 2

 . (A3)

Hence, the distribution of θ given (Xk)k∈B is Gaussian, and its mean is given by

E[θ | (Xk)k∈B)] = [1 · · · 1]


2 · · · 1
...

. . .
...

1 · · · 2


−1

[Xk]
⊤
k∈B. (A4)

Using the Sherman-Morrison formula for the inverse of rank-1 perturbation of a matrix, we can
write 

1 + 1 · · · 1
...

. . .
...

1 · · · 1 + 1


−1

=


1− 1/ν · · · −1/ν

...
. . .

...
−1/ν · · · 1− 1/ν

 , (A5)

with ν = |B|+ 1. Plugging this into (A4), yields

E[θ | (Xk)k∈B)] =

(
1− |B|

ν

)
[1 · · · 1][Xk]

⊤
k∈B =

1

|B|+ 1

∑
k∈B

Xk. (A6)
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Therefore, we have

E
[
E[θ | (Xk)k∈B)]

2
]
=

(
1

|B|+ 1

)2

E

(∑
k∈B

Xk

)2


=

(
1

|B|+ 1

)2 (
|B|2 + |B|

)
=

|B|
|B|+ 1

. (A7)

Substituting (A7) into (A2) implies

I(θ | q,µ) =
n∑

j=1

∑
B⊆{1,··· ,n}

|B|=j

∏
ℓ∈B

qℓ
∏
ℓ/∈B

(1− qℓ)
j

1 + j
, (A8)

which gives us the desired result.
Next, we focus on I(Zi | q,µ). Using Lemma A2, we can write

I(Zi | q,µ) = (1− µi)qi

n∑
k=1

Sk−1(q−i)

I(Zi | q,µ,user i data is shared and not shuffled, k − 1 other data points are shared)

+

n∑
k=1

∑
B⊆N

i∈B,|B|=k

k∑
j=1

n−k∑
r=0

(∏
ℓ∈B

µℓ

)∏
ℓ ̸∈B

(1− µℓ)

Sr(qN\B)Sj(qB)

I(Zi | q,µ, data of set B is shuffled, j data points in B and r data points in N \B are shared),
(A9)

where the terms of the first summation correspond to the case that the data of user i is not shuffled,
and therefore the revealed information about Zi is non-zero only if user i shares her data. Each
term of the summation corresponds to having k − 1 other data points shared (as we show next,
only the number of shared data points matters in the revealed information and not their identity).
The second term corresponds to the case that the data of user i is shuffled. In this case, we let B
be the set of shuffled data points and we condition the events to having j data points in B and r

data points in N \B being shared. We next find the revealed information in each of these cases.
Finding I(Zi | q,µ,user i data is shared and not shuffled, k − 1 other data points are shared):
Using Lemma A1, we need to find the conditional expectation of Zi. Without loss of generality,
we next find the conditional expectation of Z1 given X1, . . . , Xk. Notice that the joint distribution
of Z1, X1, . . . , Xk is normal with covariance matrix

1 1 · · · 0

1 2 · · · 1
...

...
. . .

...
0 1 · · · 2

 .
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Therefore, we have

E[Z1 | X1, . . . , Xk] =(1, 0, . . . , 0)


2 · · · 1
...

. . .
...

1 · · · 2


−1

(X1, . . . , Xk)
T

=(1, 0, . . . , 0)


1− 1

νk
· · · − 1

νk
...

. . .
...

− 1
νk

· · · 1− 1
νk


−1

(X1, . . . , Xk)
T

=

(
1− 1

νk

)
X1 −

k∑
ℓ=2

1

νk
Xℓ, (A10)

where νk = k + 1. Therefore, we have

I(Zi | q,µ,user i data is shared and not shuffled, k − 1 other data points are shared)

= E

((1− 1

νk

)
X1 −

k∑
ℓ=2

1

νk
Xℓ

)2
 = 1− 1

1 + k
. (A11)

Finding I(Zi | q,µ, data of set B is shuffled, j data points in B and r data points in N\B are shared):
Using Lemma A1, we need to find the conditional expectation of Zi. We can write

E [Zi | data of set B is shuffled, j data points in B and r data points in N \B are shared]
(a)
= P(i ∈ B is among those that have shared)

E [Zi | data of set B is shuffled, j data points including i in B and r data points in N \B are shared]
(b)
= P(i ∈ B is among those that have shared)
j∑

ℓ=1

1

j
E [Zi | data of set B is shuffled, j data points in B and r data points in N \B are shared, ℓ-th one is i]

(c)
= P(i ∈ B is among those that have shared)

j∑
ℓ=1

1

j

(1− 1

νj+r

)
X̃ℓ −

j+r∑
t=1,t ̸=ℓ

1

νj+r
X̃t


(d)
= P(i ∈ B is among those that have shared)

1

j

 j∑
ℓ=1

(
1− j

νj+r

)
X̃ℓ −

j+r∑
ℓ=j+1

j

νj+r
X̃ℓ


(e)
=

qiSj−1(qB\i)

Sj(qB)

1

j

 j∑
ℓ=1

(
1− j

νj+r

)
X̃ℓ −

j+r∑
ℓ=j+1

j

νj+r
X̃ℓ

 , (A12)

where (a) holds because if user i does not share, then the revealed information about Zi is zero,
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(b) follows from the fact that the shuffled data points have no label and therefore i can be any of
them with a uniform probability, (c) follows from a similar argument to that of (A10), (d) follows
from rearranging the terms, and (e) follows from the definition of Sk(q). Therefore, we have

I(Zi | q,µ, data of set B is shuffled, j data points in B and r data points in N \B are shared)

=
q2i S

2
j−1(qB\i)

S2
j (qB)

1

j2
E

 j∑
ℓ=1

(
1− j

νj+r

)
X̃ℓ −

j+r∑
ℓ=j+1

j

νj+r
X̃ℓ

2
=

q2i S
2
j−1(qB\i)

S2
j (qB)

1 + r

j(1 + (j + r))
. (A13)

By using (A11) and (A13) in (A9), we obtain

I(Zi | q,µ) = (1− µi)qi

n∑
k=1

Sk−1(q−i)

(
1− 1

1 + k

)

+

n∑
k=1

∑
B⊆N

i∈B,|B|=k

k∑
j=1

n−k∑
r=0

(∏
ℓ∈B

µℓ

)∏
ℓ ̸∈B

(1− µℓ)

Sr(qN\B)Sj(qB)
q2i S

2
j−1(qB\i)

S2
j (qB)

1 + r

j(1 + (j + r))
.

This completes the proof of Proposition 1. ■

Proof of Lemma 1

By using Lemma A1, for any mechanism M, we have

I(
n∑

i=1

Xi | M) = E

(E[ n∑
i=1

Xi | M

])2
 , I(θ | M) = E

[
(E [θ | M])2

]
,

and
I(Zi | M) = E

[
(E [Zi | M])2

]
for all i.

We next evaluate each term of the above expectations. We can write

E

[
n∑

i=1

Xi | M

]2
=E

[
nθ +

n∑
i=1

Zi | M

]2

=

(
nE [θ | M] +

n∑
i=1

E [Zi | M]

)2

(a)

≤

(
E [θ | M]2 +

n∑
i=1

E [Zi | M]2
)
(n2 +

n∑
i=1

1)
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where (a) follows from Cauchy-Schwarz inequality. Taking expectation over the randomness in
M gives us the desired bound. We next prove that equality holds when

1

n
E [θ | M] = E [Zi | M] for all i,

which is the case for M = ((q, . . . , q), 1) for any q. To see this, we show that when the mechanism
returns k shuffled datapoints X1, · · · , Xk, we have

E[θ | (Xℓ)
k
ℓ=1] =

1

k + 1

k∑
ℓ=1

Xℓ and (A14)

E[Zi | (Xℓ)
k
ℓ=1] =

1

n(k + 1)

k∑
ℓ=1

Xℓ. (A15)

Let us prove (A14) as (A15) can be established similarly. To see why (A14) holds, note that θ and
(Xℓ)

k
ℓ=1 are jointly Gaussian, where the mean of their joint distribution is 0, and the covariance

matrix of their joint distribution is given by
1 1 · · · 1

1 2 · · · 1
...

...
. . .

...
1 1 · · · 2

 . (A16)

Hence, the distribution of θ given (Xℓ)
k
ℓ=1 is Gaussian, and its mean is given by

E[θ | (Xℓ)
k
ℓ=1] = [1 · · · 1]


2 · · · 1
...

. . .
...

1 · · · 2


−1

[X1, · · · , Xk]
⊤. (A17)

Using the Sherman-Morrison formula for the inverse of rank-1 perturbation of a matrix, we can
write 

1 + 1 · · · 1
...

. . .
...

1 · · · 1 + 1


−1

=


1− 1

k+1 · · · − 1
k+1

...
. . .

...
− 1

k+1 · · · 1− 1
k+1

 . (A18)

Plugging this into (A17), yields

E[θ | (Xℓ)
k
ℓ=1] =

(
1− k

k + 1

)
[1 · · · 1][X1, · · · , Xk]

⊤ =
1

k + 1

k∑
ℓ=1

Xℓ. (A19)

This completes the proof. ■
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Proof of Lemma 2

By using Lemma A1, for any mechanism M that has access to some random variable Y which is
a function of X1, . . . , Xn, we have

I(θ | M) = E
[
(E [θ | Y ])2

]
=

∫
y
fy(y)

(∫
θ
θfθ|y(θ | y)dθ

)2

dy

(a)
=

∫
y

1

fy(y)

(∫
θ
θfθ,y(θ, y)dθ

)2

dy. (A20)

where (a) follows from Bayes’ rule. Similarly, we can write

I(
n∑

i=1

Xi | M) =

∫
y

1

fy(y)

(∫
x1:n

(
n∑

i=1

xi

)
fx1:n,y(x1:n, y)dx1:n

)2

dy. (A21)

We next compare each term of the above expressions and in particular prove that for any y,

∫
θ
θfθ,y(θ, y)dθ =

1

n+ 1

∫
x1:n

(
n∑

i=1

xi

)
fx1:n,y(x1:n, y)dθ

that together with equations (A20) and (A21), completes the proof. We can write∫
θ
θfθ,y(θ, y)dθ

(a)
=

∫
θ
θ

∫
x1:n

fx1:n,θ,y(x1:n, θ, y)dx1:ndθ

(b)
=

∫
θ
θ

∫
x1:n

fθ(θ)fx1:n|θ(x1:n | θ)fy|x1:n,θ(y | x1:n, θ)dx1:ndθ

(c)
=

∫
θ
θ

∫
x1:n

fx1:n(x1:n)fθ|x1:n
(θ | x1:n)fy|x1:n

(y | x1:n)dx1:ndθ

(d)
=

∫
x1:n

(∫
θ
θfθ|x1:n

(θ | x1:n)dθ
)
fx1:n(x1:n)fy|x1:n

(y | x1:n)dx1:n

=

∫
x1:n

E [θ | x1:n] fx1:n,y(x1:n, y)dx1:n

(e)
=

∫
x1:n

∑n
i=1 xi

n+ 1
fx1:n,y(x1:n, y)dx1:n,

where (a) follows from the law of total probability, (b) follows from Bayes’ rule, (c) follows from
the fact that the mechanism has access to X1, . . . Xn and not θ and, therefore, conditional on
X1, . . . , Xn, Y and θ are independent, and (e) follows from (A17) established in the proof of
Lemma 1. It is also worth mentioning that we do a change of integration in (d). To see why
we are allowed to do so, note that

E [E[|θ| | Y ]] ≤ E[|θ|] < ∞,
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and hence E[|θ| | Y ] is almost surely bounded, i.e.,

E[|θ| | Y = y] =

∫
θ

∫
x1:n

|θ| fx1:n,θ|y(x1:n, θ | y)dx1:ndθ < ∞ a.s.

Therefore, ∫
θ

∫
x1:n

|θ| fx1:n,θ,y(x1:n, θ, y)dx1:ndθ < ∞ a.s.

Thus, by Fubini’s theorem, we are allowed to change the order of integrals. This completes the
proof. ■

Proof of Lemma 3

Among all estimators, we know that the estimator that achieves the minimum mean-squared error
is the conditional expectation E[θ | X1, · · · , Xn]. Furthermore, the error of this estimator is equal
to the error mask-shuffle mechanism ((1, · · · , 1), 1), and hence the proof is complete. ■

Proof of Proposition 2

To find the symmetric the user equilibrium, for a fixed µ, suppose user 1 plays q1 and users 2, · · · , n
play q, i.e., q = (q1, q, · · · , q). The symmetric user equilibrium must be such that the maximum
of user 1’s utility U1(q, µ) as a function of q1 is attained for q1 = q. To find such q, we find the
maximizer of U1(q, µ) as a function of q1 by using first order condition and then finding q such
that the maximizer is q1 = q. We also check the boundary cases q = 0 and q = 1 at the end.

Characterizing dI(θ | q,µ)
d q1

∣∣∣∣∣
q1=q

: With action profile q = (q1, q, · · · , q), we have

Sj(q) = q1

(
n− 1

j − 1

)
qj−1(1− q)n−j + (1− q1)

(
n− 1

j

)
qj(1− q)n−1−j . (A22)

Therefore, using Proposition 1, we have

I(θ | q, µ) =
n∑

j=1

j

1 + j

(
q1

(
n− 1

j − 1

)
qj−1(1− q)n−j + (1− q1)

(
n− 1

j

)
qj(1− q)n−1−j

)
. (A23)

Hence, we have

dI(θ | q, µ)
d q1

=
n∑

j=1

j

1 + j

(
n− 1

j − 1

)
qj−1(1− q)n−j −

n−1∑
j=1

j

1 + j

(
n− 1

j

)
qj(1− q)n−1−j

=

n−1∑
j=0

j + 1

j + 2

(
n− 1

j

)
qj(1− q)n−1−j −

n−1∑
j=0

j

1 + j

(
n− 1

j

)
qj(1− q)n−1−j
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= 1− E j∼Bin(n−1,q)

[
1

j + 2

]
− 1 + E j∼Bin(n−1,q)

[
1

1 + j

]
= E j∼Bin(n−1,q)

[
1

1 + j
− 1

j + 2

]
= E j∼Bin(n−1,q)

[
1

(j + 2)(j + 1)

]
. (A24)

The above expression becomes (Chao and Strawderman [1972])

dI(θ | q, µ)
d q1

=
1− (1 + nq)(1− q)n

n(n+ 1)q2
. (A25)

Characterizing dI(Z1 | q,µ)
d q1

∣∣∣∣∣
q1=q

: Next, we consider the revealed information of Z1 given this ac-

tion profile. By Proposition 1, we have

I(Z1 | q, µ) = A1 +A2, (A26)

where

A1 =(1− µ)q1

n∑
k=1

Sk−1(q−i)

(
1− 1

1 + k

)
,

A2 =
n∑

k=1

∑
B⊆N

1∈B,|B|=k

k∑
j=1

n−k∑
r=0

µk(1− µ)n−kSr(qN\B)Sj(qB)
q21S

2
j−1(qB\1)

S2
j (qB)

1 + r

j(1 + (j + r))
.

We next evaluate A1 and A2. Note that Sk−1(q−1) is given by

Sk−1(q−1) =

(
n− 1

k − 1

)
qk−1(1− q)n−k.

Thus, by using (A22), (A28), and
∑n

k=1 Sk−1(q−1) = 1 we can write

A1 = (1− µ)q1

(
1−

n∑
k=1

(
n− 1

k − 1

)
qk−1(1− q)n−k 1

1 + k

)
. (A27)

The above expression becomes

(1− µ)q1

(
1− 1

nq

(
1− 1− (1− q)n+1

(n+ 1)q

))
whose derivative is

d

dq1
A1 = (1− µ)

(
1− 1

nq

(
1− 1− (1− q)n+1

(n+ 1)q

))
.
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We next evaluate derivative of A2 with respect to q1 at q. We first upper bound it in general, and
then derive its exact form for the special case µ = 1.

Note that Sj−1(qB\1) is given by

Sj−1(qB\1) =

(
k − 1

j − 1

)
qj−1(1− q)k−j . (A28)

Thus, by using (A22), (A28), 1+r
1+(j+r) ≤ 1, and

∑n−k
r=0 Sr(qN\B) = 1 we can write

d

dq1
A2 ≤

d

dq1

n∑
k=1

∑
B⊆N

1∈B,|B|=k

µk(1− µ)n−k
k∑

j=1

q21Sj−1(qB\1)
2

jSj(qB)

=
d

dq1

n∑
k=1

∑
B⊆N

1∈B,|B|=k

µk(1− µ)n−k
k∑

j=1

q21

((
k−1
j−1

)
qj−1(1− q)k−j

)2
j
(
q1
(
k−1
j−1

)
qj−1(1− q)k−j + (1− q1)

(
k−1
j

)
qj(1− q)k−1−j

)
=

d

dq1

n∑
k=1

∑
B⊆N

1∈B,|B|=k

µk(1− µ)n−k
k∑

j=1

q21
(
k−1
j−1

)
qj−1(1− q)k−j+1

(jq1(1− q) + (k − j)(1− q1)q)
.

Therefore, to compute d
dq1

A2 at q1 = q, we need to characterize

d

dq1

q21
jq1(1− q) + (k − j)(1− q1)q

(A29)

at q1 which is given by

d

dq1

q21
jq1(1− q) + (k − j)(1− q1)q

∣∣∣∣∣
q1=q

=

(
2q1

jq1(1− q) + (k − j)(1− q1)q
− (j − kq)q21

(jq1(1− q) + (k − j)(1− q1)q)2

) ∣∣∣∣∣
q1=q

=
2

k(1− q)
− j − kq

k2(1− q)2
=

2k − kq − j

k2(1− q)2
. (A30)

As a consequence, we have

d

d q1
A2

∣∣∣∣∣
q1=q

≤
n∑

k=1

∑
B⊆N

1∈B,|B|=k

µk(1− µ)n−k
k∑

j=1

(
k − 1

j − 1

)
qj−1(1− q)k−j 2k − kq − j

k2(1− q)

=
n∑

k=1

∑
B⊆N

1∈B,|B|=k

µk(1− µ)n−k 2k − 1

k2
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=

n∑
k=1

(
n− 1

k − 1

)
µk(1− µ)n−k 2k − 1

k2

=
1

n

n∑
k=1

(
n

k

)
µk(1− µ)n−k 2k − 1

k
= O(

1

n
).

For the special case µ = 1, we have

d

d q1
A2 =

n∑
i=1

(
n− 1

j − 1

)
qj−1(1− q)n−j 2n− nq − j

n2(1 + j)

=
2n2q + 2nq − 2n− 1 + (1− q)n(2n+ 1− nq)

n3(n+ 1)q2
. (A31)

Having these characterizations, we next derive the user equilibrium.

Case µ < 1: In this case, we first argue qn is bounded. Let define x := qn. Setting the derivative
of U1(q1,q−1) evaluated at q1 = q equal to zero implies

∣∣∣α(1− (1 + x)(1− x

n
)n
)
− β(1− µ)

(
x(x− 1) + 1− (1− x

n
)n
)∣∣∣ ≤ κx2

n
, (A32)

for some constant κ. Note that the left-hand side grows as a quadratic function with a leading
coefficient β(1− µ) while the right-hand is a quadratic with a leading coefficient κ/n. Hence, and
since µ < 1, for sufficiently large n, x is bounded. Therefore, we can cast q as c/n. In this case,
(A25) is equal to

1− (c+ 1)e−c

c2
+O(

1

n
).

Also, derivative of A1 is equal to

d

dq1
A1 = (1− µ)

(
1− 1

c

(
1− 1− e−c

c

))
+O(

1

n
).

Therefore, the derivative of U1(q1,q−1) evaluated at q1 = q = c
n becomes

α
1− (c+ 1)e−c

c2
= β(1− µ)

(
1− 1

c

(
1− 1− e−c

c

))
+O(

1

n
).

We next show that without the O( 1n) term there exists a unique c∗ that satisfies the above equation
and that the derivative of the difference between the left-hand side and the right-hand side at c∗ is
away from zero, proving that the fixed point of the above equation is c∗ +O( 1n), proving that the
symmetric equilibrium is given by q = c∗

n +O( 1
n2 ).
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Case µ < 1; Proof of uniqueness of c: notice that the function

α
1− (c+ 1)e−c

c2
− β(1− µ)

(
1− 1

c

(
1− 1− e−c

c

))
is decreasing in c. Moreover, for c = 0, it becomes

α
1

2
− β(1− µ)

1

2
> 0,

where the inequality follows from Assumption 1, implying that α ≥ β. For c → ∞, it becomes

−β(1− µ) < 0,

and thus, for µ < 1, for sufficiently large n, this equation has a unique solution c∗.
Proof of boundedness of the derivative: the derivative of

α
1− (c+ 1)e−c

c2
− β(1− µ)

(
1− 1

c

(
1− 1− e−c

c

))
is

α
e−c(2 + c(c+ 2)− 2ec)

c3
− β(1− µ)

e−c(2 + c+ (c− 2)ec)

c3
.

Evaluating the above expression at c = c∗ results in

αe−c

c3

(
(2 + c(c+ 2)− 2ec)− (2 + c+ (c− 2)ec)

1− (c+ 1)e−c

c2 − c+ 1− e−c

)
which is strictly positive for any c > 0. Finally, notice that c∗ is strictly positive because α1

2 −β(1−
µ)12 > 0 and therefore c = 0 cannot be a solution.

Case µ = 1: In this case, using (A31), we can write the first order condition as

α (1− (1 + nq)(1− q)n) = β

(
2q +

2q − 2

n
− 1

n2
+ (1− q)n

2n+ 1− nq

n2

)
. (A33)

If α > 2β, then one can verify that, for sufficiently large n, this equation has no solution. On the
other hand, for α ≤ 2β, its solution is in the form of α

2β +O(log(n)/n).

Boundary cases q = 0 and q = 1: Finally, we investigate when (0, 0, · · · , 0) and (1, 1, · · · , 1) are
equilibria.

• First, suppose q = 0, and the question is when q1 = 0 is the best response of user one. In this
case, we have

I(θ | q, µ) = q1
2
, I(Z1 | q, µ) =

q1
2
. (A34)
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Hence, (0, 0, · · · , 0) is an equilibrium if and only if α ≤ β which is ruled out by Assumption
1.

• Now, suppose suppose q = 1, and the question is when q1 = 1 is the best response of user
one. In this case, we have

I(θ | q, µ) = n− 1

n
+

q1
n(n+ 1)

,

I(Z1 | q, µ) = q1

(
n

n+ 1
+

1− (1− µ)n

n
− µ

)
.

Thus, one could verify that (1, 1, · · · , 1) is an equilibrium if and only if

α

β
≥ 1 + (1− µ)(n2 − 1), (A35)

and so, for µ < 1 we can choose N(µ) such that this equilibrium is ruled out. For µ = 1, however,
(1, 1, · · · , 1) is an equilibrium. ■

Proof of Theorem 2

The proof simply follows from the fact that the platform’s utility is a continuous function and that
the set of platform’s actions is the interval [0, 1]. ■

Proof of Theorem 3

We make use of the following two lemmas.

Lemma A3. Suppose Assumption 1 holds. Then, for any n and any µ < 1, any intermediary symmetric
user equilibrium q = (q, . . . , q) satisfies

q ≤ 1

n

(√
α

β(1− µ)
+ 1

)
.

Proof of Lemma A3: Recall from the proof of Proposition 2 that any intermediary equilibrium
q = (q, · · · , q) satisfies

α
1− (1 + nq)(1− q)n

n(n+ 1)q2
= β

(
(1− µ)

(
1− 1

nq

(
1− 1− (1− q)n+1

(n+ 1)q

))
+

d

dq1
A2

)
, (A36)

where A2 is given in the proof of Proposition 2. It is straightforward to verify d
dq1

A2 ≥ 0, and
hence, we have

α
1− (1 + nq)(1− q)n

n(n+ 1)q2
≥ β(1− µ)

(
1− 1

nq

(
1− 1− (1− q)n+1

(n+ 1)q

))
.
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Simplifying both sides and using the bound 1 ≥ 1− (1 + nq)(1− q)n yields

α

β(1− µ)
≥ n(n+ 1)q2 − nq + 1− q − (1− q)n+1 ≥ (nq)2 − nq.

If nq ≤ 1, Lemma A3 trivially holds. Otherwise, we can lower bound the right-hand side by
(nq)2 − 2(nq) + 1 to obtain the desired bound. ■

We next provide an explicit expression for revealed information about the underlying common
state θ and private types Zi’s under a symmetric action profile by users.

Lemma A4. For any symmetric action profile q = (q, · · · , q), we have

I(θ | q, µ) ≤ 1− 1

n+ 1
, (A37)

I(Zi | q, µ) ≤ (1− µ)q +
1

n(n+ 1)
+

1− µ

n
. (A38)

Furthermore, by setting q = c/n, we have

I(θ | q, µ) = 1− 1− e−c

c
+O

(
1

n

)
, (A39)

I(Zi | q, µ) =
(1− µ)c

n

(
1− e−c + c− 1

c2

)
+O(

1

n2
). (A40)

Proof of Lemma A4: To show (A37) and (A39), note that, for action profile q = (q, · · · , q), we
have

Sj(q) =

(
n

j

)
qj(1− q)n−j . (A41)

Thus, using Proposition 1, we have

I(θ | q, µ) =
n∑

j=1

j

1 + j

(
n

j

)
qj(1− q)n−j

= 1−
n∑

j=1

1

1 + j

(
n

j

)
qj(1− q)n−j

= 1− E j∼Bin(n,q)

[
1

1 + j

]
= 1− 1− (1− q)n+1

(n+ 1)q

where the last equation follows from derivation of negative moments of binomial distribution (see
Chao and Strawderman [1972] for the proof). Also, note that 1

1+j is decreasing in j, and hence,

E j∼Bin(n,q)

[
1

1+j

]
is decreasing in q. Thus, I(θ | q, µ) is increasing in q. Hence, setting q = 1 gives

us (A37). Also, setting q = c/n and using the fact that (1− c/n)n = ec +O(1/n) gives us (A39).
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To establish (A38) and (A40), it suffices to put q1 = q in (A26). More precisely, we have

I(Z1 | q, µ) = A1 +A2, (A42)

where

A1 =(1− µ)q
n∑

k=1

Sk−1(q−i)

(
1− 1

1 + k

)
,

A2 =
n∑

k=1

∑
B⊆N

1∈B,|B|=k

k∑
j=1

n−k∑
r=0

µk(1− µ)n−kSr(qN\B)Sj(qB)
q2S2

j−1(qB\1)

S2
j (qB)

1 + r

j(1 + (j + r))
.

Using (A27), with q1 = q, we can characterize A1 as

(1− µ)q

(
1− E k∼Bin(n−1,q)

[
1

k + 2

])
(A43)

= (1− µ)q

(
1− 1

nq

(
1− 1− (1− q)n+1

(n+ 1)q

))
, (A44)

which is bounded by (1− µ)q. Also, plugging q = c/n, we obtain

A1 =
(1− µ)c

n

(
1− e−c + c− 1

c2

)
+O(

1

n2
). (A45)

Therefore, it remains to bound A2:

Deriving (A38): Note that A2/µ is the revealed information regarding Z1, condition that data of
user one has been shuffled. From the definition of revealed information, it is immediate that this
term is increasing in q. Hence, we derive an upper bound for A2 by setting q = 1. To do so, note
that by simplifying A2 we have:

A2 =

n∑
k=1

k∑
j=1

n−k∑
r=0

(
n− 1

k − 1

)(
k − 1

j − 1

)(
n− k

r

)
µk(1− µ)n−kqj+r(1− q)n−j−r 1 + r

k(1 + j + r)
. (A46)

Setting q = 1, only the terms with j + r = n will be nonzero. This corresponds to r = n − k and
j = k. Hence, we have

A2 ≤
n∑

k=1

(
n− 1

k − 1

)
µk(1− µ)n−kn− k + 1

(n+ 1)k

= µ

(
Ek∼Bin(n−1,µ)

[
1

k + 1

]
− 1

n+ 1

)
=

1− (1− µ)n

n
− µ

n+ 1
(A47)
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≤ 1

n
− 1

n+ 1
+

1− µ

n+ 1

≤ 1

n(n+ 1)
+

1− µ

n
,

which completes the proof of (A38). It is worth noting that (A47) follows from the fact that (see
Chao and Strawderman [1972])

Ek∼Bin(n−1,µ)

[
1

k + 1

]
=

1− (1− µ)n

nµ
.

Deriving (A40): To do so, we bound the term 1+r
1+(j+r) ≤ 1 in A2 and using

∑n−k
r=0 Sr(qN\B) = 1 to

write

A2 ≤
n∑

k=1

∑
B⊆N

1∈B,|B|=k

k∑
j=1

µk(1− µ)n−kSj(qB)
q2S2

j−1(qB\1)

j S2
j (qB)

. (A48)

Next, using (A41), we simplify the second term on the right hand side:

A2 ≤
n∑

k=1

k∑
j=1

(
n− 1

k − 1

)(
k − 1

j − 1

)
µk(1− µ)n−kqj(1− q)k−j 1

k

=
n∑

k=1

1

k

(
n− 1

k − 1

)
µk(1− µ)n−k

k∑
j=1

(
k − 1

j − 1

)
qj(1− q)k−j . (A49)

Note that, we can write the inner sum as

k∑
j=1

(
k − 1

j − 1

)
qj(1− q)k−j = q. (A50)

Plugging this into (A49), we obtain

A2 ≤ q

n∑
k=1

1

k

(
n− 1

k − 1

)
µk(1− µ)n−k

= q

n−1∑
k=0

1

k + 1

(
n− 1

k

)
µk+1(1− µ)n−1−k

= qµ Ek∼Bin(n−1,µ)

[
1

k + 1

]
=

q (1− (1− µ)n)

n
, (A51)

Plugging (A51) into (A42) with q = c/n completes the proof of (A40). ■
We now proceed with the proof of the theorem. We choose N e(ϵ) > N(ϵ/2), with N(.) defined

in Proposition 2. Note that, by Proposition 2, for any n ≥ N(ϵ/2), and for any µ ≤ 1 − ϵ/2, user
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equilibrium is in the form of (c+O(1/n))/n where c satisfies

α
1− (c+ 1)e−c

c2
= β(1− µ)

(
1− 1

c

(
1− 1− e−c

c

))
. (A52)

We can rewrite this equation as

1− µ =
α

β

1− (c+ 1)e−c

c2 − c+ 1− e−c
. (A53)

Using Lemma A4 along with the fact that

1− e−c

c

is Lipschitz continuous as a function of c, platform’s problem can be cast as

max
µ

1− 1− e−c

c
+ δ(1− µ)c

(
1− e−c + c− 1

c2

)
+O

(
1

n

)
(A54a)

s.t. 1− µ =
α

β

1− (c+ 1)e−c

c2 − c+ 1− e−c
(A54b)

µ ≤ 1− ϵ/2. (A54c)

The second constraint (A54c) follows from the fact that this approximation is valid for µ ≤ 1− ϵ/2.
We also bound the platform’s utility for the case µ ∈ [1− ϵ/2, 1]. Using Lemma A4, we can write

sup
µ∈[1−ϵ/2,1]

Uplatform(qe(µ), µ) ≤ sup
µ∈[1−ϵ/2,1]

(
1− 1− δ

n+ 1
+ (1− µ)nq + 1− µ

)
≤ sup

µ∈[1−ϵ/2,1]

(
1 + (1− µ)(

√
α

β(1− µ)
+ 2)

)
(A55)

≤ 1 + ϵ+

√
αϵ

2β
, (A56)

where (A55) follows from Lemma A3. Next, note that

1− (c+ 1)e−c

c2 − c+ 1− e−c
(A57)

is a deceasing function of c which varies from 1 to 0 as c goes from 0 to ∞. Hence, we could replace
1− µ in (A54a) using (A54b) and replace (A54b) by the following constraint:

c ≤ c ≤ c̄, (A58)
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where c and c̄ are such that

1− (c+ 1)e−c

c2 − c+ 1− e−c

∣∣∣∣∣
c=c

=
β

α
,

1− (c+ 1)e−c

c2 − c+ 1− e−c

∣∣∣∣∣
c=c̄

=
ϵ

2

β

α
. (A59)

Using these quantities, we obtain

max
c

1− 1− e−c

c
+

αδ

β
.
1− (c+ 1)e−c

c
+O

(
1

n

)
(A60a)

s.t. c ≤ c ≤ c̄, (A60b)

where c and c̄ correspond to µ = 0 and µ = 1− ϵ/2, respectively. Next, note that we could choose
n large enough such that the solution of (A60) and the following optimization problem in which
we have removed the O

(
1
n

)
term from the objective function differ at most by ϵ/2.

max
c

1− 1− e−c

c
+

αδ

β
.
1− (c+ 1)e−c

c
(A61a)

s.t. c ≤ c ≤ c̄ (A61b)

Hence, it suffices to show there exists α and ᾱ in [β,∞) such that:

1. If α ≤ α, then c = c̄ which corresponds to µ = 1 − ϵ/2 being the solution of (A61). In this
case, we will have µe ≥ 1− ϵ.

2. If α ≥ ᾱ then c = c which corresponds to µ = 0 being the solution of (A61) and the platform’s
utility at c = c is greater than (A56). In this case, we will have µe ≤ ϵ/2.

To show (i), notice that the derivative of (A61a) with respect to c is given by

e−c

c2

(
(ec − c− 1)(1− δα

β
) + c2

δα

β

)
. (A62)

If β ≤ α ≤ β
δ , then this derivative is positive, meaning that c = c̄ is the solution of (A61). Thus, we

choose α = β
δ .

To show (ii), note that for α sufficiently large, we have

c ≥ 2,
ec − c− 1

ec − c2 − c− 1

∣∣∣∣∣
c=2

≤ δα

β
.

In this case, it is easy to verify that the derivative is negative over [c,∞), and hence, c = c is
the optimal solution of (A61). Furthermore, notice that the limit of (A61) when c goes to infinity
is one. Therefore, because the platform’s utility is decreasing over [c,∞), it must be larger than
one at c = c. Hence, using the bound (A56), we can see that for sufficiently small ϵ and large
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n, platform’s utility at c = c would be greater than the maximum of platform’s utility for any
µ ∈ [1− ϵ/2, 1]. This completes the proof. ■

Proof of Theorem 4

Recall the platform’s problem given in (A60). For any t ∈ [0, 1], we define c(t) as the solution of

f1(c) :=
1− (c+ 1)e−c

c2 − c+ 1− e−c
= t. (A63)

Using this change of variable, we can cast the platform’s problem as

max
t

c(t) + e−c(t) − 1

c(t)

(
1− δα

β
t

)
+

δα

β
tc(t) +O

(
1

n

)
(A64a)

s.t.
ϵ

2
.
β

α
≤ t ≤ β

α
, (A64b)

Note that (A63) is equivalent to

ec(t) =
c(t) + 1− t

1 + tc(t)− t− tc(t)2
. (A65)

Using this, we can rewrite the platform’s problem (A64) as

max
t

g(t,
δα

β
) +O

(
1

n

)
(A66a)

s.t.
ϵ

2

β

α
≤ t ≤ β

α
, (A66b)

where
g(t, r) :=

c(t)(1− t)

1 + c(t)− t
(1− rt) + rtc(t) = c(t)

1− t+ rtc(t)

1− t+ c(t)
(A67)

Also, note that, by using Lemma A4, the user’s utility is given by

α

(
1− 1− e−c(t)

c(t)

)
+O

(
1

n

)
=

β

δ
h(t,

δα

β
) +O

(
1

n

)
, (A68)

where
h(t, r) := r

c(t)(1− t)

1− t+ c(t)
. (A69)

Claim 1. For any r > 1, the function g(., r) : [0, 1] → R, defined in (A67), achieves its maximum over
[0, 1] at the unique t∗(r) that satisfies

∂

∂t
g(t, r)

∣∣∣∣∣
t=t∗(r)

= 0. (A70)

In addition, t∗(r) is an increasing function of r that satisfies limr→1+ t∗(r) = 0. Moreover, there exists
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r̄ > 1 such that h(t∗(r), r) is decreasing in r over (1, r̄).

First, let us show how this claim gives us the result. Note that for any α > β/δ, g(t, δαβ ) achieves
its maximum at t∗( δαβ ). Also, by taking α → β/δ from right, t∗( δαβ ) → 0. Hence, we can choose
αL < αH and ϵ small enough such that:

1. β
δ < αL < αH < r̄.βδ and

2. t∗( δαβ ) ∈ [ ϵ2 .
β
α ,

β
α ] for any α ∈ (αL, αH).

Also, similar to the argument we provided in the proof of Theorem 3, we can choose ϵ small
enough such that, for α ∈ (αL, αH), the platform’s utility at t = t∗( δαβ ) be larger than the bound
given by (A56) in the proof of Theorem 3. This ensures that µe belongs to the interval [0, 1 − ϵ/2]

for α ∈ (αL, αH).
Now suppose α1 < α2 ∈ (αL, αH). Note that, since g(., δαi

β ) is increasing before its peak and
decreasing after that, we have that for any small enough η, there exists M(η), such that for any for
n > M(η) the solution of (A66) for α = α1 and α = α2 would be in at most η distance of t∗( δα1

β )

and t∗( δα2
β ), respectively.

Next, note that by the above claim, we have

h

(
t∗(

δα1

β
),
δα1

β

)
> h

(
t∗(

δα2

β
),
δα2

β

)
. (A71)

Notice that the user’s utility (A68) at equilibrium for α = αi with i ∈ {1, 2}, is evaluated at the
solution of (A66) which is η-close to t∗( δαi

β ). Hence, by choosing η small enough and n large
enough, and by using (A71), we can establish that the user’s utility at equilibrium is larger with
α = α1 compared to α = α2. This gives us the desired result. Therefore, it remains to prove the
claim.

Maximum of g(t, r) for r > 1: Note that g(t, r) can be rewritten as

g(t, r) = g1(c(t), r) where g1(c, r) = 1− 1− e−c

c
+ r

1− (c+ 1)e−c

c
, (A72)

and hence, we have
∂

∂t
g(t, r) =

∂

∂c
g1(c, r)c

′(t). (A73)

Also, note that, by inverse function theorem, c′(t) is given by

c′(t) =
1

f ′
1(c(t))

, (A74)

and therefore, c′(t) is negative over (0, 1). Moreover, ∂
∂cg1(c, r) is given by

∂

∂c
g1(c, r) =

e−c

c2
(
(ec − c− 1)(1− r) + c2r

)
. (A75)
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Setting the derivative of g1(c, r) with respect to c equal to zero for r > 1 gives

ec − c− 1

c2
=

r

r − 1
. (A76)

Notice that the left-hand side is an increasing function that goes from 1/2 to infinity as c goes from
zero to infinity. Hence, (A76) has a solution for any r > 1 which we denote it by c∗(r). Note that
f1(c

∗(r)) = t∗(r).
The derivative ∂

∂cg1(c, r) is positive for c < c∗(r) which means ∂
∂tg(t, r) is negative for t >

t∗(r)(because c′(t) is negative). In addition, ∂
∂cg1(c, r) is negative for c > c∗(r) which means

∂
∂tg(t, r) is positive for t ∈ (0, t∗(r)). In other words, g(t, r) is increasing over (0, t∗(r)) and de-
creasing over (t∗(r),∞), and thus, it achieves its maximum at t∗(r).

Also, by increasing r, r/(r − 1) decreases which means c∗(r) also decreases. But since f1 is a
decreasing function, t∗(r) increases. Also, by taking r → 1+, c∗(r) goes to infinity, which implies
t∗(r) → 0∗.

h(t∗(r), r) is decreasing in r over (1, r̄): Note that

d

dr
h(t∗(r), r) =

c(t∗(r))(1− t∗(r))

1− t∗(r) + c(t∗(r))
+ r

d

dr
t∗(r)

 d

dt

c(t)(1− t)

1− t+ c(t)

∣∣∣∣∣
t=t∗(r)

 . (A77)

Using the fact that
∂

∂t
g(t, r)

∣∣∣∣∣
t=t∗(r)

= 0,

we obtain
d

dt

c(t)(1− t)

1− t+ c(t)

∣∣∣∣∣
t=t∗(r)

= −
r
(
c(t) + tc′2c′(t)

)
(1− t) (1− t+ rtc(t))

.
c(t)(1− t)

1− t+ c(t)

∣∣∣∣∣
t=t∗(r)

. (A78)

Plugging this into (A77) implies

d

dr
h(t∗(r), r) =

c(t∗(r))(1− t∗(r))

1− t∗(r) + c(t∗(r))

1−
r2
(
c(t) + tc′2c′(t)

)
(1− t) (1− t+ rtc(t))

∣∣∣∣∣
t=t∗(r)

.
d

dr
t∗(r)

 . (A79)

We want to show this derivative is negative over the interval (1, r̄). Note that for r close to one,
r2

1−t∗(r) is close to one, and hence, if we show

c(t) + tc′2c′(t)

1− t+ rtc(t)

∣∣∣∣∣
t=t∗(r)

d

dr
t∗(r) (A80)

is very large when r is close to one, then we are done. We next show that this term goes to infinity
as r goes to one.
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Recall that t∗(r) = f1(c
∗(r)) and thus

d

dr
t∗(r) =

d

dc
f1(c

∗(r))
d

dr
c∗(r). (A81)

Notice that (A76) implies

r = κ(c) :=
ec − c− 1

ec − c2 − c− 1
. (A82)

Consequently, by inverse function theorem, we can rewrite (A81) as

d

dr
t∗(r) =

f ′
1(c

∗(r))

κ′∗(r))
. (A83)

Using this derivation along with the fact that c′(f1(c))) = 1/f ′
1(c), t = f1(c), and r = κ(c) , we can

rewrite (A80) as a function of c:

cf ′
1(c) + f1(c)− f1(c)

2

κ′(c) (1− f1(c) + cκ(c)f1(c))

∣∣∣∣∣
c=c∗(r)

,

which is equal to (
ec − 1− c− c2

)3
c (ec(c− 2) + c+ 2) (ec(c2 − c+ 1)− 1)

∣∣∣∣∣
c=c∗(r)

.

Recall that c∗(r) goes to infinity as r → 0+. Thus, this term goes to infinity as r goes to one. This
completes the proof of the claim and hence Theorem 4. ■

Proof of Theorem 5

We denote user’s i data after adding noise by X̃i, i.e., X̃i = Xi + Wi, where Wi ∼ N (0, σ2(k)) if
k users share their data. Suppose user one shares her data with probability q1 and users 2, · · · , n
share their data with probability q. Our goal is to show the optimal choice of q1 for user one is 1.
Note that, the utility of user 1 is given by

α

(
q1

n−1∑
k=0

(
n− 1

k

)
qk(1− q)n−1−k I(θ | k + 1 given users share data)

+(1− q1)
n−1∑
k=0

(
n− 1

k

)
qk(1− q)n−1−k I(θ | k given users share data)

)

− β q1

n−1∑
k=0

(
n− 1

k

)
qk(1− q)n−1−k I(θ | data of user 1 and k other given users is shared).

38



Therefore, to show this term is maximized at q1 = 1, we need to show the following inequality
holds for any k ∈ {0, · · · , n− 1}:

α I(θ | k + 1 given users share data) ≥ α I(θ | k given users share data)

+ β I(θ | data of user 1 and k other given users is shared).

To do so, without loss of generality, it suffices to show

α I(θ | (X̃i)
k+1
i=1 ) ≥ α I(θ | (X̃i)

k
i=1) + β I(θ | (X̃i)

k+1
i=1 ). (A84)

Note that θ and (X̃i)
k
i=1 are jointly Gaussian, where the mean of their joint distribution is 0 and

the covariance matrix of their joint distribution is given by
1 1 · · · 1

1 2 + σ2(k) · · · 1
...

...
. . .

...
1 1 · · · 2 + σ2(k)

 . (A85)

Therefore, by using Sherman-Morrison formula, we establish that

E[θ | (X̃i)
k
i=1] = [1 · · · 1]


2 + σ2(k) · · · 1

...
. . .

...
1 · · · 2 + σ2(k)


−1

[X1, · · · , Xk]
⊤

=
1

k + 1 + σ2(k)

k∑
i=1

X̃i. (A86)

As a consequence, we have

I(θ | (X̃i)
k
i=1) = E

[
E
[
θ | (X̃i)

k
i=1

]2]
=

k

k + 1 + σ2(k)
. (A87)

Next, notice that the joint distribution of Z1, X̃1, . . . , X̃k is normal with covariance matrix
1 1 · · · 0

1 2 + σ2(k) · · · 1
...

...
. . .

...
0 1 · · · 2 + σ2(k)

 .

Similar to the previous calculations, we show

E[Z1 | (X̃i)
k
i=1] =

1

1 + σ2(k)

(
k + σ2(k)

k + 1 + σ2(k)
X̃1 −

1

k + 1 + σ2(k)

k∑
i=2

X̃i

)
. (A88)
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Hence, we have

I(Z1 | (X̃i)
k
i=1) = E

[
E
[
Z1 | (X̃i)

k
i=1

]2]
=

k + σ2(k)

(k + 1 + σ2(k))(1 + σ2(k))
. (A89)

Plugging (A87) and (A89) into (A84), we need to show

α
k + 1

k + 2 + σ2(k + 1)
− β

k + 1 + σ2(k + 1)

(k + 2 + σ2(k + 1))(1 + σ2(k + 1))
≥ α

k

k + 1 + σ2(k)
. (A90)

Notice that we have

k + 1

k + 2 + σ2(k + 1)
≥ k + 1 + σ2(k + 1)

(k + 2 + σ2(k + 1))(1 + σ2(k + 1))
, (A91)

and thus, to show (A90), it suffices to show

(α− β)
k + 1

k + 2 + σ2(k + 1)
≥ α

k

k + 1 + σ2(k)
. (A92)

We aim to show a slightly stronger inequality by replacing k on the numerator of the left-hand
side by k + 1. In this case, k + 1 cancels out from both sides, and we need to show

k + 1 + σ2(k) ≥ α

α− β
(k + 2 + σ2(k + 1)). (A93)

Note that, the condition on σ(.) implies that σ2(k) by itself is weakly greater than the left-hand
side, completing the proof. ■

Proof of Corollary 1

By using (A87) and (A89), if everyone shares their data and σ(n) = 0, then

I(θ | all sharing) = I(Zi | all sharing) =
n

n+ 1
. (A94)

In this case, platform’s utility is given by

(nδ + 1)
n

n+ 1
.

This is the utility corresponding to the case in the mask-shuffle mechanism that all users fully
share and the platform offers no shuffling. This is the highest possible utility for the platform,
but it never happens under the mask-shuffle mechanism since (q, µ) = ((1, · · · , 1), 0) is never an
equilibrium under the mask-shuffle mechanism. ■

Proof of Proposition 3

The proof follows from Theorem 5 and (A94). ■
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