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ABSTRACT

Finding a good join order is crucial for query performance. In this

paper, we introduce the Join Order Benchmark (JOB) and exper-

imentally revisit the main components in the classic query opti-

mizer architecture using a complex, real-world data set and realistic

multi-join queries. We investigate the quality of industrial-strength

cardinality estimators and find that all estimators routinely produce

large errors. We further show that while estimates are essential for

finding a good join order, query performance is unsatisfactory if

the query engine relies too heavily on these estimates. Using an-

other set of experiments that measure the impact of the cost model,

we find that it has much less influence on query performance than

the cardinality estimates. Finally, we investigate plan enumera-

tion techniques comparing exhaustive dynamic programming with

heuristic algorithms and find that exhaustive enumeration improves

performance despite the sub-optimal cardinality estimates.

1. INTRODUCTION
The problem of finding a good join order is one of the most stud-

ied problems in the database field. Figure 1 illustrates the classical,

cost-based approach, which dates back to System R [36]. To obtain

an efficient query plan, the query optimizer enumerates some subset

of the valid join orders, for example using dynamic programming.

Using cardinality estimates as its principal input, the cost model

then chooses the cheapest alternative from semantically equivalent

plan alternatives.

Theoretically, as long as the cardinality estimations and the cost

model are accurate, this architecture obtains the optimal query plan.

In reality, cardinality estimates are usually computed based on sim-

plifying assumptions like uniformity and independence. In real-

world data sets, these assumptions are frequently wrong, which

may lead to sub-optimal and sometimes disastrous plans.

In this experiments and analyses paper we investigate the three

main components of the classical query optimization architecture

in order to answer the following questions:

• How good are cardinality estimators and when do bad esti-

mates lead to slow queries?
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Figure 1: Traditional query optimizer architecture

• How important is an accurate cost model for the overall query

optimization process?

• How large does the enumerated plan space need to be?

To answer these questions, we use a novel methodology that allows

us to isolate the influence of the individual optimizer components

on query performance. Our experiments are conducted using a real-

world data set and 113 multi-join queries that provide a challeng-

ing, diverse, and realistic workload. Another novel aspect of this

paper is that it focuses on the increasingly common main-memory

scenario, where all data fits into RAM.

The main contributions of this paper are listed in the following:

• We design a challenging workload named Join Order Bench-

mark (JOB), which is based on the IMDB data set. The

benchmark is publicly available to facilitate further research.

• To the best of our knowledge, this paper presents the first

end-to-end study of the join ordering problem using a real-

world data set and realistic queries.

• By quantifying the contributions of cardinality estimation,

the cost model, and the plan enumeration algorithm on query

performance, we provide guidelines for the complete design

of a query optimizer. We also show that many disastrous

plans can easily be avoided.

The rest of this paper is organized as follows: We first discuss

important background and our new benchmark in Section 2. Sec-

tion 3 shows that the cardinality estimators of the major relational

database systems produce bad estimates for many realistic queries,

in particular for multi-join queries. The conditions under which

these bad estimates cause slow performance are analyzed in Sec-

tion 4. We show that it very much depends on how much the

query engine relies on these estimates and on how complex the

physical database design is, i.e., the number of indexes available.

Query engines that mainly rely on hash joins and full table scans,
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are quite robust even in the presence of large cardinality estima-

tion errors. The more indexes are available, the harder the problem

becomes for the query optimizer resulting in runtimes that are far

away from the optimal query plan. Section 5 shows that with the

currently-used cardinality estimation techniques, the influence of

cost model errors is dwarfed by cardinality estimation errors and

that even quite simple cost models seem to be sufficient. Sec-

tion 6 investigates different plan enumeration algorithms and shows

that—despite large cardinality misestimates and sub-optimal cost

models—exhaustive join order enumeration improves performance

and that using heuristics leaves performance on the table. Finally,

after discussing related work in Section 7, we present our conclu-

sions and future work in Section 8.

2. BACKGROUND AND METHODOLOGY
Many query optimization papers ignore cardinality estimation

and only study search space exploration for join ordering with ran-

domly generated, synthetic queries (e.g., [32, 13]). Other papers

investigate only cardinality estimation in isolation either theoreti-

cally (e.g., [21]) or empirically (e.g., [43]). As important and in-

teresting both approaches are for understanding query optimizers,

they do not necessarily reflect real-world user experience.

The goal of this paper is to investigate the contribution of all rele-

vant query optimizer components to end-to-end query performance

in a realistic setting. We therefore perform our experiments using a

workload based on a real-world data set and the widely-used Post-

greSQL system. PostgreSQL is a relational database system with

a fairly traditional architecture making it a good subject for our

experiments. Furthermore, its open source nature allows one to in-

spect and change its internals. In this section we introduce the Join

Order Benchmark, describe all relevant aspects of PostgreSQL, and

present our methodology.

2.1 The IMDB Data Set
Many research papers on query processing and optimization use

standard benchmarks like TPC-H, TPC-DS, or the Star Schema

Benchmark (SSB). While these benchmarks have proven their value

for evaluating query engines, we argue that they are not good bench-

marks for the cardinality estimation component of query optimiz-

ers. The reason is that in order to easily be able to scale the bench-

mark data, the data generators are using the very same simplifying

assumptions (uniformity, independence, principle of inclusion) that

query optimizers make. Real-world data sets, in contrast, are full

of correlations and non-uniform data distributions, which makes

cardinality estimation much harder. Section 3.3 shows that Post-

greSQL’s simple cardinality estimator indeed works unrealistically

well for TPC-H.

Therefore, instead of using a synthetic data set, we chose the

Internet Movie Data Base1 (IMDB). It contains a plethora of in-

formation about movies and related facts about actors, directors,

production companies, etc. The data is freely available2 for non-

commercial use as text files. In addition, we used the open-source

imdbpy3 package to transform the text files into a relational database

with 21 tables. The data set allows one to answer queries like

“Which actors played in movies released between 2000 and 2005

with ratings above 8?”. Like most real-world data sets IMDB is full

of correlations and non-uniform data distributions, and is therefore

much more challenging than most synthetic data sets. Our snap-

shot is from May 2013 and occupies 3.6 GB when exported to CSV

1
http://www.imdb.com/

2
ftp://ftp.fu-berlin.de/pub/misc/movies/database/

3
https://bitbucket.org/alberanid/imdbpy/get/5.0.zip

movie_info_idx

movie_companies

title

info_type

company_type

company_name kind_type

movie_info

info_type

Figure 2: Typical query graph of our workload

files. The two largest tables, cast info and movie info have

36 M and 15 M rows, respectively.

2.2 The JOB Queries
Based on the IMDB database, we have constructed analytical

SQL queries. Since we focus on join ordering, which arguably is

the most important query optimization problem, we designed the

queries to have between 3 and 16 joins, with an average of 8 joins

per query. Query 13d, which finds the ratings and release dates for

all movies produced by US companies, is a typical example:

SELECT cn.name, mi.info, miidx.info

FROM company_name cn, company_type ct,

info_type it, info_type it2, title t,

kind_type kt, movie_companies mc,

movie_info mi, movie_info_idx miidx

WHERE cn.country_code =’[us]’

AND ct.kind = ’production companies’

AND it.info = ’rating’

AND it2.info = ’release dates’

AND kt.kind = ’movie’

AND ... -- (11 join predicates)

Each query consists of one select-project-join block4. The join

graph of the query is shown in Figure 2. The solid edges in the

graph represent key/foreign key edges (1 : n) with the arrow head

pointing to the primary key side. Dotted edges represent foreign

key/foreign key joins (n : m), which appear due to transitive join

predicates. Our query set consists of 33 query structures, each with

2-6 variants that differ in their selections only, resulting in a total

of 113 queries. Note that depending on the selectivities of the base

table predicates, the variants of the same query structure have dif-

ferent optimal query plans that yield widely differing (sometimes

by orders of magnitude) runtimes. Also, some queries have more

complex selection predicates than the example (e.g., disjunctions

or substring search using LIKE).

Our queries are “realistic” and “ad hoc” in the sense that they

answer questions that may reasonably have been asked by a movie

4Since in this paper we do not model or investigate aggregation,
we omitted GROUP BY from our queries. To avoid communica-
tion from becoming the performance bottleneck for queries with
large result sizes, we wrap all attributes in the projection clause
with MIN(...) expressions when executing (but not when es-
timating). This change has no effect on PostgreSQL’s join order
selection because its optimizer does not push down aggregations.
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enthusiast. We also believe that despite their simple SPJ-structure,

the queries model the core difficulty of the join ordering problem.

For cardinality estimators the queries are challenging due to the sig-

nificant number of joins and the correlations contained in the data

set. However, we did not try to “trick” the query optimizer, e.g., by

picking attributes with extreme correlations. Also, we intention-

ally did not include more complex join predicates like inequalities

or non-surrogate-key predicates, because cardinality estimation for

this workload is already quite challenging.

We propose JOB for future research in cardinality estimation and

query optimization. The query set is available online:

http://www-db.in.tum.de/˜leis/qo/job.tgz

2.3 PostgreSQL
PostgreSQL’s optimizer follows the traditional textbook archi-

tecture. Join orders, including bushy trees but excluding trees with

cross products, are enumerated using dynamic programming. The

cost model, which is used to decide which plan alternative is cheaper,

is described in more detail in Section 5.1. The cardinalities of base

tables are estimated using histograms (quantile statistics), most com-

mon values with their frequencies, and domain cardinalities (dis-

tinct value counts). These per-attribute statistics are computed by

the analyze command using a sample of the relation. For com-

plex predicates, where histograms can not be applied, the system

resorts to ad hoc methods that are not theoretically grounded (“magic

constants”). To combine conjunctive predicates for the same table,

PostgreSQL simply assumes independence and multiplies the se-

lectivities of the individual selectivity estimates.

The result sizes of joins are estimated using the formula

|T1 ⊲⊳x=y T2| =
|T1||T2|

max(dom(x), dom(y))
,

where T1 and T2 are arbitrary expressions and dom(x) is the do-

main cardinality of attribute x, i.e., the number of distinct values of

x. This value is the principal input for the join cardinality estima-

tion. To summarize, PostgreSQL’s cardinality estimator is based on

the following assumptions:

• uniformity: all values, except for the most-frequent ones, are

assumed to have the same number of tuples

• independence: predicates on attributes (in the same table or

from joined tables) are independent

• principle of inclusion: the domains of the join keys overlap

such that the keys from the smaller domain have matches in

the larger domain

The query engine of PostgreSQL takes a physical operator plan

and executes it using Volcano-style interpretation. The most im-

portant access paths are full table scans and lookups in unclustered

B+Tree indexes. Joins can be executed using either nested loops

(with or without index lookups), in-memory hash joins, or sort-

merge joins where the sort can spill to disk if necessary. The de-

cision which join algorithm is used is made by the optimizer and

cannot be changed at runtime.

2.4 Cardinality Extraction and Injection
We loaded the IMDB data set into 5 relational database sys-

tems: PostgreSQL, HyPer, and 3 commercial systems. Next, we

ran the statistics gathering command of each database system with

default settings to generate the database-specific statistics (e.g., his-

tograms or samples) that are used by the estimation algorithms. We

then obtained the cardinality estimates for all intermediate results

of our test queries using database-specific commands (e.g., using

the EXPLAIN command for PostgreSQL). We will later use these

estimates of different systems to obtain optimal query plans (w.r.t.

respective systems) and run these plans in PostgreSQL. For exam-

ple, the intermediate results of the chain query

σx=5(A) ⊲⊳A.bid=B.id B ⊲⊳B.cid=C.id C

are σx=5(A), σx=5(A) ⊲⊳ B, B ⊲⊳ C, and σx=5(A) ⊲⊳ B ⊲⊳ C.

Additionally, the availability of indexes on foreign keys and index-

nested loop joins introduces the need for additional intermediate

result sizes. For instance, if there exists a non-unique index on the

foreign key A.bid, it is also necessary to estimate A ⊲⊳ B and

A ⊲⊳ B ⊲⊳ C. The reason is that the selection A.x = 5 can only

be applied after retrieving all matching tuples from the index on

A.bid, and therefore the system produces two intermediate results,

before and after the selection. Besides cardinality estimates from

the different systems, we also obtain the true cardinality for each

intermediate result by executing SELECT COUNT(*) queries5.

We further modified PostgreSQL to enable cardinality injection

of arbitrary join expressions, allowing PostgreSQL’s optimizer to

use the estimates of other systems (or the true cardinality) instead

of its own. This allows one to directly measure the influence of

cardinality estimates from different systems on query performance.

Note that IBM DB2 allows a limited form of user control over the

estimation process by allowing users to explicitly specify the se-

lectivities of predicates. However, selectivity injection cannot fully

model inter-relation correlations and is therefore less general than

the capability of injecting cardinalities for arbitrary expressions.

2.5 Experimental Setup
The cardinalities of the commercial systems were obtained using

a laptop running Windows 7. All performance experiments were

performed on a server with two Intel Xeon X5570 CPUs (2.9 GHz)

and a total of 8 cores running PostgreSQL 9.4 on Linux. Post-

greSQL does not parallelize queries, so that only a single core was

used during query processing. The system has 64 GB of RAM,

which means that the entire IMDB database is fully cached in RAM.

Intermediate query processing results (e.g., hash tables) also easily

fit into RAM, unless a very bad plan with extremely large interme-

diate results is chosen.

We set the memory limit per operator (work mem) to

2 GB, which results in much better performance due to the

more frequent use of in-memory hash joins instead of ex-

ternal memory sort-merge joins. Additionally, we set the

buffer pool size (shared buffers) to 4 GB and the size

of the operating system’s buffer cache used by PostgreSQL

(effective cache size) to 32 GB. For PostgreSQL it is gen-

erally recommended to use OS buffering in addition to its own

buffer pool and keep most of the memory on the OS side. The de-

faults for these three settings are very low (MBs, not GBs), which

is why increasing them is generally recommended. Finally, by in-

creasing the geqo threshold parameter to 18 we forced Post-

greSQL to always use dynamic programming instead of falling

back to a heuristic for queries with more than 12 joins.

3. CARDINALITY ESTIMATION
Cardinality estimates are the most important ingredient for find-

ing a good query plan. Even exhaustive join order enumeration and

a perfectly accurate cost model are worthless unless the cardinal-

ity estimates are (roughly) correct. It is well known, however, that

5For our workload it was still feasible to do this naı̈vely. For larger
data sets the approach by Chaudhuri et al. [7] may become neces-
sary.
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Figure 3: Quality of cardinality estimates for multi-join queries in comparison with the true cardinalities. Each boxplot summarizes

the error distribution of all subexpressions with a particular size (over all queries in the workload)

median 90th 95th max

PostgreSQL 1.00 2.08 6.10 207

DBMS A 1.01 1.33 1.98 43.4

DBMS B 1.00 6.03 30.2 104000

DBMS C 1.06 1677 5367 20471

HyPer 1.02 4.47 8.00 2084

Table 1: Q-errors for base table selections

cardinality estimates are sometimes wrong by orders of magnitude,

and that such errors are usually the reason for slow queries. In this

section, we experimentally investigate the quality of cardinality es-

timates in relational database systems by comparing the estimates

with the true cardinalities.

3.1 Estimates for Base Tables
To measure the quality of base table cardinality estimates, we

use the q-error, which is the factor by which an estimate differs

from the true cardinality. For example, if the true cardinality of

an expression is 100, the estimates of 10 or 1000 both have a q-

error of 10. Using the ratio instead of an absolute or quadratic

difference captures the intuition that for making planning decisions

only relative differences matter. The q-error furthermore provides

a theoretical upper bound for the plan quality if the q-errors of a

query are bounded [30].

Table 1 shows the 50th, 90th, 95th, and 100th percentiles of the

q-errors for the 629 base table selections in our workload. The

median q-error is close to the optimal value of 1 for all systems,

indicating that the majority of all selections are estimated correctly.

However, all systems produce misestimates for some queries, and

the quality of the cardinality estimates differs strongly between the

different systems.

Looking at the individual selections, we found that DBMS A and

HyPer can usually predict even complex predicates like substring

search using LIKE very well. To estimate the selectivities for base

tables HyPer uses a random sample of 1000 rows per table and

applies the predicates on that sample. This allows one to get ac-

curate estimates for arbitrary base table predicates as long as the

selectivity is not too low. When we looked at the selections where

DBMS A and HyPer produce errors above 2, we found that most

of them have predicates with extremely low true selectivities (e.g.,

10−5 or 10−6). This routinely happens when the selection yields

zero tuples on the sample, and the system falls back on an ad-hoc

estimation method (“magic constants”). It therefore appears to be

likely that DBMS A also uses the sampling approach.

The estimates of the other systems are worse and seem to be

based on per-attribute histograms, which do not work well for many

predicates and cannot detect (anti-)correlations between attributes.

Note that we obtained all estimates using the default settings af-

ter running the respective statistics gathering tool. Some commer-

cial systems support the use of sampling for base table estimation,

multi-attribute histograms (“column group statistics”), or ex post

feedback from previous query runs [38]. However, these features

are either not enabled by default or are not fully automatic.

3.2 Estimates for Joins
Let us now turn our attention to the estimation of intermediate

results for joins, which are more challenging because sampling or

histograms do not work well. Figure 3 summarizes over 100,000

cardinality estimates in a single figure. For each intermediate re-

sult of our query set, we compute the factor by which the estimate

differs from the true cardinality, distinguishing between over- and

underestimation. The graph shows one “boxplot” (note the legend

in the bottom-left corner) for each intermediate result size, which

allows one to compare how the errors change as the number of joins

increases. The vertical axis uses a logarithmic scale to encompass

underestimates by a factor of 108 and overestimates by a factor of

104.

Despite the better base table estimates of DBMS A, the overall

variance of the join estimation errors, as indicated by the boxplot,

is similar for all systems with the exception of DBMS B. For all

systems we routinely observe misestimates by a factor of 1000 or

more. Furthermore, as witnessed by the increasing height of the

box plots, the errors grow exponentially (note the logarithmic scale)
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as the number of joins increases [21]. For PostgreSQL 16% of the

estimates for 1 join are wrong by a factor of 10 or more. This per-

centage increases to 32% with 2 joins, and to 52% with 3 joins.

For DBMS A, which has the best estimator of the systems we com-

pared, the corresponding percentages are only marginally better at

15%, 25%, and 36%.

Another striking observation is that all tested systems—though

DBMS A to a lesser degree—tend to systematically underestimate

the results sizes of queries with multiple joins. This can be deduced

from the median of the error distributions in Figure 3. For our query

set, it is indeed the case that the intermediate results tend to de-

crease with an increasing number of joins because more base table

selections get applied. However, the true decrease is less than the

independence assumption used by PostgreSQL (and apparently by

the other systems) predicts. Underestimation is most pronounced

with DBMS B, which frequently estimates 1 row for queries with

more than 2 joins. The estimates of DBMS A, on the other hand,

have medians that are much closer to the truth, despite their vari-

ance being similar to some of the other systems. We speculate that

DBMS A uses a damping factor that depends on the join size, sim-

ilar to how many optimizers combine multiple selectivities. Many

estimators combine the selectivities of multiple predicates (e.g., for

a base relation or for a subexpression with multiple joins) not by

assuming full independence, but by adjusting the selectivities “up-

wards”, using a damping factor. The motivation for this stems from

the fact that the more predicates need to be applied, the less certain

one should be about their independence.

Given the simplicity of PostgreSQL’s join estimation formula

(cf. Section 2.3) and the fact that its estimates are nevertheless com-

petitive with the commercial systems, we can deduce that the cur-

rent join size estimators are based on the independence assumption.

No system tested was able to detect join-crossing correlations. Fur-

thermore, cardinality estimation is highly brittle, as illustrated by

the significant number of extremely large errors we observed (fac-

tor 1000 or more) and the following anecdote: In PostgreSQL, we

observed different cardinality estimates of the same simple 2-join

query depending on the syntactic order of the relations in the from

and/or the join predicates in the where clauses! Simply by swap-

ping predicates or relations, we observed the estimates of 3, 9, 128,

or 310 rows for the same query (with a true cardinality of 2600)6.

Note that this section does not benchmark the query optimizers

of the different systems. In particular, our results do not imply

that the DBMS B’s optimizer or the resulting query performance is

necessarily worse than that of other systems, despite larger errors

in the estimator. The query runtime heavily depends on how the

system’s optimizer uses the estimates and how much trust it puts

into these numbers. A sophisticated engine may employ adaptive

operators (e.g., [4, 8]) and thus mitigate the impact of misestima-

tions. The results do, however, demonstrate that the state-of-the-art

in cardinality estimation is far from perfect.

3.3 Estimates for TPC­H
We have stated earlier that cardinality estimation in TPC-H is

a rather trivial task. Figure 4 substantiates that claim by show-

ing the distributions of PostgreSQL estimation errors for 3 of the

larger TPC-H queries and 4 of our JOB queries. Note that in the

figure we report estimation errors for individual queries (not for

6 The reasons for this surprising behavior are two implementation
artifacts: First, estimates that are less than 1 are rounded up to 1,
making subexpression estimates sensitive to the (usually arbitrary)
join enumeration order, which is affected by the from clause. The
second is a consistency problem caused by incorrect domain sizes
of predicate attributes in joins with multiple predicates.
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Figure 4: PostgreSQL cardinality estimates for 4 JOB queries

and 3 TPC-H queries
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Figure 5: PostgreSQL cardinality estimates based on the de-

fault distinct count estimates, and the true distinct counts

all queries like in Figure 3). Clearly, the TPC-H query workload

does not present many hard challenges for cardinality estimators.

In contrast, our workload contains queries that routinely lead to se-

vere overestimation and underestimation errors, and hence can be

considered a challenging benchmark for cardinality estimation.

3.4 Better Statistics for PostgreSQL
As mentioned in Section 2.3, the most important statistic for join

estimation in PostgreSQL is the number of distinct values. These

statistics are estimated from a fixed-sized sample, and we have ob-

served severe underestimates for large tables. To determine if the

misestimated distinct counts are the underlying problem for cardi-

nality estimation, we computed these values precisely and replaced

the estimated with the true values.

Figure 5 shows that the true distinct counts slightly improve the

variance of the errors. Surprisingly, however, the trend to underes-

timate cardinalities becomes even more pronounced. The reason is

that the original, underestimated distinct counts resulted in higher

estimates, which, accidentally, are closer to the truth. This is an ex-

ample for the proverbial “two wrongs that make a right”, i.e., two

errors that (partially) cancel each other out. Such behavior makes

analyzing and fixing query optimizer problems very frustrating be-

cause fixing one query might break another.
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4. WHEN DO BAD CARDINALITY ESTI­

MATES LEAD TO SLOW QUERIES?
While the large estimation errors shown in the previous section

are certainly sobering, large errors do not necessarily lead to slow

query plans. For example, the misestimated expression may be

cheap in comparison with other parts of the query, or the relevant

plan alternative may have been misestimated by a similar factor

thus “canceling out” the original error. In this section we investi-

gate the conditions under which bad cardinalities are likely to cause

slow queries.

One important observation is that query optimization is closely

intertwined with the physical database design: the type and number

of indexes heavily influence the plan search space, and therefore

affects how sensitive the system is to cardinality misestimates. We

therefore start this section with experiments using a relatively ro-

bust physical design with only primary key indexes and show that

in such a setup the impact of cardinality misestimates can largely be

mitigated. After that, we demonstrate that for more complex con-

figurations with many indexes, cardinality misestimation makes it

much more likely to miss the optimal plan by a large margin.

4.1 The Risk of Relying on Estimates
To measure the impact of cardinality misestimation on query per-

formance we injected the estimates of the different systems into

PostgreSQL and then executed the resulting plans. Using the same

query engine allows one to compare the cardinality estimation com-

ponents in isolation by (largely) abstracting away from the different

query execution engines. Additionally, we inject the true cardinali-

ties, which computes the—with respect to the cost model—optimal

plan. We group the runtimes based on their slowdown w.r.t. the op-

timal plan, and report the distribution in the following table, where

each column corresponds to a group:

<0.9 [0.9,1.1) [1.1,2) [2,10) [10,100) >100

PostgreSQL 1.8% 38% 25% 25% 5.3% 5.3%

DBMS A 2.7% 54% 21% 14% 0.9% 7.1%

DBMS B 0.9% 35% 18% 15% 7.1% 25%

DBMS C 1.8% 38% 35% 13% 7.1% 5.3%

HyPer 2.7% 37% 27% 19% 8.0% 6.2%

A small number of queries become slightly slower using the true

instead of the erroneous cardinalities. This effect is caused by cost

model errors, which we discuss in Section 5. However, as expected,

the vast majority of the queries are slower when estimates are used.

Using DBMS A’s estimates, 78% of the queries are less than 2×
slower than using the true cardinalities, while for DBMS B this is

the case for only 53% of the queries. This corroborates the findings

about the relative quality of cardinality estimates in the previous

section. Unfortunately, all estimators occasionally lead to plans

that take an unreasonable time and lead to a timeout. Surprisingly,

however, many of the observed slowdowns are easily avoidable de-

spite the bad estimates as we show in the following.

When looking at the queries that did not finish in a reasonable

time using the estimates, we found that most have one thing in

common: PostgreSQL’s optimizer decides to introduce a nested-

loop join (without an index lookup) because of a very low cardinal-

ity estimate, whereas in reality the true cardinality is larger. As we

saw in the previous section, systematic underestimation happens

very frequently, which occasionally results in the introduction of

nested-loop joins.

The underlying reason why PostgreSQL chooses nested-loop joins

is that it picks the join algorithm on a purely cost-based basis. For

example, if the cost estimate is 1,000,000 with the nested-loop

default + no nested-loop join + rehashing
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Figure 6: Slowdown of queries using PostgreSQL estimates

w.r.t. using true cardinalities (primary key indexes only)

join algorithm and 1,000,001 with a hash join, PostgreSQL will

always prefer the nested-loop algorithm even if there is a equality

join predicate, which allows one to use hashing. Of course, given

the O(n2) complexity of nested-loop join and O(n) complexity of

hash join, and given the fact that underestimates are quite frequent,

this decision is extremely risky. And even if the estimates happen

to be correct, any potential performance advantage of a nested-loop

join in comparison with a hash join is very small, so taking this high

risk can only result in a very small payoff.

Therefore, we disabled nested-loop joins (but not index-nested-

loop joins) in all following experiments. As Figure 6b shows, when

rerunning all queries without these risky nested-loop joins, we ob-

served no more timeouts despite using PostgreSQL’s estimates.

Also, none of the queries performed slower than before despite

having less join algorithm options, confirming our hypothesis that

nested-loop joins (without indexes) seldom have any upside. How-

ever, this change does not solve all problems, as there are still a

number of queries that are more than a factor of 10 slower (cf., red

bars) in comparison with the true cardinalities.

When investigating the reason why the remaining queries still

did not perform as well as they could, we found that most of them

contain a hash join where the size of the build input is underesti-

mated. PostgreSQL up to and including version 9.4 chooses the

size of the in-memory hash table based on the cardinality estimate.

Underestimates can lead to undersized hash tables with very long

collisions chains and therefore bad performance. The upcoming

version 9.5 resizes the hash table at runtime based on the number

of rows actually stored in the hash table. We backported this patch

to our code base, which is based on 9.4, and enabled it for all re-

maining experiments. Figure 6c shows the effect of this change

in addition with disabled nested-loop joins. Less than 4% of the

queries are off by more than 2× in comparison with the true cardi-

nalities.

To summarize, being “purely cost-based”, i.e., not taking into

account the inherent uncertainty of cardinality estimates and the

asymptotic complexities of different algorithm choices, can lead to

very bad query plans. Algorithms that seldom offer a large benefit

over more robust algorithms should not be chosen. Furthermore,

query processing algorithms should, if possible, automatically de-

termine their parameters at runtime instead of relying on cardinality

estimates.

4.2 Good Plans Despite Bad Cardinalities
The query runtimes of plans with different join orders often vary

by many orders of magnitude (cf. Section 6.1). Nevertheless, when
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Figure 7: Slowdown of queries using PostgreSQL estimates

w.r.t. using true cardinalities (different index configurations)

the database has only primary key indexes, as in all in experiments

so far, and once nested loop joins have been disabled and rehashing

has been enabled, the performance of most queries is close to the

one obtained using the true cardinalities. Given the bad quality

of the cardinality estimates, we consider this to be a surprisingly

positive result. It is worthwhile to reflect on why this is the case.

The main reason is that without foreign key indexes, most large

(“fact”) tables need to be scanned using full table scans, which

dampens the effect of different join orders. The join order still

matters, but the results indicate that the cardinality estimates are

usually good enough to rule out all disastrous join order decisions

like joining two large tables using an unselective join predicate.

Another important reason is that in main memory picking an index-

nested-loop join where a hash join would have been faster is never

disastrous. With all data and indexes fully cached, we measured

that the performance advantage of a hash join over an index-nested-

loop join is at most 5× with PostgreSQL and 2× with HyPer. Ob-

viously, when the index must be read from disk, random IO may

result in a much larger factor. Therefore, the main-memory setting

is much more forgiving.

4.3 Complex Access Paths
So far, all query executions were performed on a database with

indexes on primary key attributes only. To see if the query opti-

mization problem becomes harder when there are more indexes,

we additionally indexed all foreign key attributes. Figure 7b shows

the effect of additional foreign key indexes. We see large perfor-

mance differences with 40% of the queries being slower by a factor

of 2! Note that these results do not mean that adding more indexes

decreases performance (although this can occasionally happen). In-

deed overall performance generally increases significantly, but the

more indexes are available the harder the job of the query optimizer

becomes.

4.4 Join­Crossing Correlations
There is consensus in our community that estimation of interme-

diate result cardinalities in the presence of correlated query predi-

cates is a frontier in query optimization research. The JOB work-

load studied in this paper consists of real-world data and its queries

contain many correlated predicates. Our experiments that focus on

single-table subquery cardinality estimation quality (cf. Table 1)

show that systems that keep table samples (HyPer and presumably

DBMS A) can achieve almost perfect estimation results, even for

correlated predicates (inside the same table). As such, the cardinal-

ity estimation research challenge appears to lie in queries where the

correlated predicates involve columns from different tables, con-

nected by joins. These we call “join-crossing correlations”. Such

correlations frequently occur in the IMDB data set, e.g., actors born

in Paris are likely to play in French movies.

Given these join-crossing correlations one could wonder if there

exist complex access paths that allow to exploit these. One exam-

ple relevant here despite its original setting in XQuery processing

is ROX [22]. It studied runtime join order query optimization in

the context of DBLP co-authorship queries that count how many

Authors had published Papers in three particular venues, out of

many. These queries joining the author sets from different venues

clearly have join-crossing correlations, since authors who publish

in VLDB are typically database researchers, likely to also publish in

SIGMOD, but not—say—in Nature.

In the DBLP case, Authorship is a n : m relationship that

links the relation Authors with the relation Papers. The op-

timal query plans in [22] used an index-nested-loop join, look-

ing up each author into Authorship.author (the indexed pri-

mary key) followed by a filter restriction on Paper.venue, which

needs to be looked up with yet another join. This filter on venue

would normally have to be calculated after these two joins. How-

ever, the physical design of [22] stored Authorship partitioned by

Paper.venue.7 This partitioning has startling effects: instead of

one Authorship table and primary key index, one physically has

many, one for each venue partition. This means that by accessing

the right partition, the filter is implicitly enforced (for free), before

the join happens. This specific physical design therefore causes

the optimal plan to be as follows: first join the smallish authorship

set from SIGMOD with the large set for Nature producing almost

no result tuples, making the subsequent nested-loops index lookup

join into VLDB very cheap. If the tables would not have been parti-

tioned, index lookups from all SIGMOD authors into Authorships

would first find all co-authored papers, of which the great majority

is irrelevant because they are about database research, and were not

published in Nature. Without this partitioning, there is no way to

avoid this large intermediate result, and there is no query plan that

comes close to the partitioned case in efficiency: even if cardinality

estimation would be able to predict join-crossing correlations, there

would be no physical way to profit from this knowledge.

The lesson to draw from this example is that the effects of query

optimization are always gated by the available options in terms of

access paths. Having a partitioned index on a join-crossing predi-

cate as in [22] is a non-obvious physical design alternative which

even modifies the schema by bringing in a join-crossing column

(Paper.venue) as partitioning key of a table (Authorship). The

partitioned DBLP set-up is just one example of how one particu-

lar join-crossing correlation can be handled, rather than a generic

solution. Join-crossing correlations remain an open frontier for

database research involving the interplay of physical design, query

execution and query optimization. In our JOB experiments we do

not attempt to chart this mostly unknown space, but rather charac-

terize the impact of (join-crossing) correlations on the current state-

of-the-art of query processing, restricting ourselves to standard PK

and FK indexing.

5. COST MODELS
The cost model guides the selection of plans from the search

space. The cost models of contemporary systems are sophisticated

7In fact, rather than relational table partitioning, there was a sep-
arate XML document per venue, e.g., separate documents for
SIGMOD, VLDB, Nature and a few thousand more venues. Stor-
age in a separate XML document has roughly the same effect on
access paths as partitioned tables.
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software artifacts that are resulting from 30+ years of research and

development, mostly concentrated in the area of traditional disk-

based systems. PostgreSQL’s cost model, for instance, is com-

prised of over 4000 lines of C code, and takes into account various

subtle considerations, e.g., it takes into account partially correlated

index accesses, interesting orders, tuple sizes, etc. It is interest-

ing, therefore, to evaluate how much a complex cost model actually

contributes to the overall query performance.

First, we will experimentally establish the correlation between

the PostgreSQL cost model—a typical cost model of a disk-based

DBMS—and the query runtime. Then, we will compare the Post-

greSQL cost model with two other cost functions. The first cost

model is a tuned version of PostgreSQL’s model for a main-memory

setup where all data fits into RAM. The second cost model is an ex-

tremely simple function that only takes the number of tuples pro-

duced during query evaluation into account. We show that, un-

surprisingly, the difference between the cost models is dwarfed by

the cardinality estimates errors. We conduct our experiments on a

database instance with foreign key indexes. We begin with a brief

description of a typical disk-oriented complex cost model, namely

the one of PostgreSQL.

5.1 The PostgreSQL Cost Model
PostgreSQL’s disk-oriented cost model combines CPU and I/O

costs with certain weights. Specifically, the cost of an operator is

defined as a weighted sum of the number of accessed disk pages

(both sequential and random) and the amount of data processed in

memory. The cost of a query plan is then the sum of the costs

of all operators. The default values of the weight parameters used

in the sum (cost variables) are set by the optimizer designers and

are meant to reflect the relative difference between random access,

sequential access and CPU costs.

The PostgreSQL documentation contains the following note on

cost variables: “Unfortunately, there is no well-defined method

for determining ideal values for the cost variables. They are best

treated as averages over the entire mix of queries that a particular

installation will receive. This means that changing them on the ba-

sis of just a few experiments is very risky.” For a database adminis-

trator, who needs to actually set these parameters these suggestions

are not very helpful; no doubt most will not change these param-

eters. This comment is of course, not PostgreSQL-specific, since

other systems feature similarly complex cost models. In general,

tuning and calibrating cost models (based on sampling, various ma-

chine learning techniques etc.) has been a subject of a number of

papers (e.g, [42, 25]). It is important, therefore, to investigate the

impact of the cost model on the overall query engine performance.

This will indirectly show the contribution of cost model errors on

query performance.

5.2 Cost and Runtime
The main virtue of a cost function is its ability to predict which

of the alternative query plans will be the fastest, given the cardinal-

ity estimates; in other words, what counts is its correlation with the

query runtime. The correlation between the cost and the runtime of

queries in PostgreSQL is shown in Figure 8a. Additionally, we con-

sider the case where the engine has the true cardinalities injected,

and plot the corresponding data points in Figure 8b. For both plots,

we fit the linear regression model (displayed as a straight line) and

highlight the standard error. The predicted cost of a query corre-

lates with its runtime in both scenarios. Poor cardinality estimates,

however, lead to a large number of outliers and a very wide stan-

dard error area in Figure 8a. Only using the true cardinalities makes

PostgreSQL estimates true cardinalities
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Figure 8: Predicted cost vs. runtime for different cost models

the PostgreSQL cost model a reliable predictor of the runtime, as

has been observed previously [42].

Intuitively, a straight line in Figure 8 corresponds to an ideal

cost model that always assigns (predicts) higher costs for more ex-

pensive queries. Naturally, any monotonically increasing function

would satisfy that requirement, but the linear model provides the

simplest and the closest fit to the observed data. We can therefore

interpret the deviation from this line as the prediction error of the

cost model. Specifically, we consider the absolute percentage error

of a cost model for a query Q: ǫ(Q) =
|Treal(Q)−Tpred(Q)|

Treal(Q)
, where

Treal is the observed runtime, and Tpred is the runtime predicted by

our linear model. Using the default cost model of PostgreSQL and

the true cardinalities, the median error of the cost model is 38%.

5.3 Tuning the Cost Model for Main Memory
As mentioned above, a cost model typically involves parame-

ters that are subject to tuning by the database administrator. In a

disk-based system such as PostgreSQL, these parameters can be

grouped into CPU cost parameters and I/O cost parameters, with

the default settings reflecting an expected proportion between these

two classes in a hypothetical workload.

In many settings the default values are sub optimal. For example,

the default parameter values in PostgreSQL suggest that process-

ing a tuple is 400x cheaper than reading it from a page. However,

modern servers are frequently equipped with very large RAM ca-

pacities, and in many workloads the data set actually fits entirely
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into available memory (admittedly, the core of PostgreSQL was

shaped decades ago when database servers only had few megabytes

of RAM). This does not eliminate the page access costs entirely

(due to buffer manager overhead), but significantly bridges the gap

between the I/O and CPU processing costs.

Arguably, the most important change that needs to be done in the

cost model for a main-memory workload is to decrease the propor-

tion between these two groups. We have done so by multiplying the

CPU cost parameters by a factor of 50. The results of the workload

run with improved parameters are plotted in the two middle subfig-

ures of Figure 8. Comparing Figure 8b with d, we see that tuning

does indeed improve the correlation between the cost and the run-

time. On the other hand, as is evident from comparing Figure 8c

and d, parameter tuning improvement is still overshadowed by the

difference between the estimated and the true cardinalities. Note

that Figure 8c features a set of outliers for which the optimizer has

accidentally discovered very good plans (runtimes around 1 ms)

without realizing it (hence very high costs). This is another sign of

“oscillation” in query planning caused by cardinality misestimates.

In addition, we measure the prediction error ǫ of the tuned cost

model, as defined in Section 5.2. We observe that tuning improves

the predictive power of the cost model: the median error decreases

from 38% to 30%.

5.4 Are Complex Cost Models Necessary?
As discussed above, the PostgreSQL cost model is quite com-

plex. Presumably, this complexity should reflect various factors

influencing query execution, such as the speed of a disk seek and

read, CPU processing costs, etc. In order to find out whether this

complexity is actually necessary in a main-memory setting, we will

contrast it with a very simple cost function Cmm. This cost func-

tion is tailored for the main-memory setting in that it does not model

I/O costs, but only counts the number of tuples that pass through

each operator during query execution:

Cmm(T ) =



















τ · |R| if T = R ∨ T = σ(R)

|T |+ Cmm(T1) + Cmm(T2) if T = T1 ⊲⊳HJ T2

Cmm(T1)+ if T = T1 ⊲⊳INL T2,

λ · |T1| · max( |T1⊲⊳R|
|T1|

, 1) (T2 = R ∨ T2 = σ(R))

In the formula above R is a base relation, and τ ≤ 1 is a pa-

rameter that discounts the cost of a table scan in comparison with

joins. The cost function distinguishes between hash ⊲⊳HJ and index-

nested loop ⊲⊳INL joins: the latter scans T1 and performs index

lookups into an index on R, thus avoiding a full table scan of R.

A special case occurs when there is a selection on the right side of

the index-nested loop join, in which case we take into account the

number of tuple lookups in the base table index and essentially dis-

card the selection from the cost computation (hence the multiplier

max( |T1⊲⊳R|
|T1|

, 1)). For index-nested loop joins we use the constant

λ ≥ 1 to approximate by how much an index lookup is more ex-

pensive than a hash table lookup. Specifically, we set λ = 2 and

τ = 0.2. As in our previous experiments, we disable nested loop

joins when the inner relation is not an index lookup (i.e., non-index

nested loop joins).

The results of our workload run with Cmm as a cost function are

depicted in Figure 8e and f. We see that even our trivial cost model

is able to fairly accurately predict the query runtime using the true

cardinalities. To quantify this argument, we measure the improve-

ment in the runtime achieved by changing the cost model for true

cardinalities: In terms of the geometric mean over all queries, our

tuned cost model yields 41% faster runtimes than the standard Post-

greSQL model, but even a simple Cmm makes queries 34% faster
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Figure 9: Cost distributions for 5 queries and different index

configurations. The vertical green lines represent the cost of

the optimal plan

than the built-in cost function. This improvement is not insignifi-

cant, but on the other hand, it is dwarfed by improvement in query

runtime observed when we replace estimated cardinalities with the

real ones (cf. Figure 6b). This allows us to reiterate our main mes-

sage that cardinality estimation is much more crucial than the cost

model.

6. PLAN SPACE
Besides cardinality estimation and the cost model, the final im-

portant query optimization component is a plan enumeration algo-

rithm that explores the space of semantically equivalent join orders.

Many different algorithms, both exhaustive (e.g., [29, 12]) as well

as heuristic (e.g, [37, 32]) have been proposed. These algorithms

consider a different number of candidate solutions (that constitute

the search space) when picking the best plan. In this section we

investigate how large the search space needs to be in order to find a

good plan.

The experiments of this section use a standalone query optimizer,

which implements Dynamic Programming (DP) and a number of

heuristic join enumeration algorithms. Our optimizer allows the in-

jection of arbitrary cardinality estimates. In order to fully explore

the search space, we do not actually execute the query plans pro-

duced by the optimizer in this section, as that would be infeasible

due to the number of joins our queries have. Instead, we first run

the query optimizer using the estimates as input. Then, we recom-

pute the cost of the resulting plan with the true cardinalities, giving

us a very good approximation of the runtime the plan would have

in reality. We use the in-memory cost model from Section 5.4 and

assume that it perfectly predicts the query runtime, which, for our

purposes, is a reasonable assumption since the errors of the cost

model are negligible in comparison the cardinality errors. This ap-

proach allows us to compare a large number of plans without exe-

cuting all of them.

6.1 How Important Is the Join Order?
We use the Quickpick [40] algorithm to visualize the costs of

different join orders. Quickpick is a simple, randomized algorithm
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that picks joins edges at random until all joined relations are fully

connected. Each run produces a correct, but usually slow, query

plan. By running the algorithm 10,000 times per query and com-

puting the costs of the resulting plans, we obtain an approximate

distribution for the costs of random plans. Figure 9 shows density

plots for 5 representative example queries and for three physical

database designs: no indexes, primary key indexes only, and pri-

mary+foreign key indexes. The costs are normalized by the opti-

mal plan (with foreign key indexes), which we obtained by running

dynamic programming and the true cardinalities.

The graphs, which use a logarithmic scale on the horizontal cost

axis, clearly illustrate the importance of the join ordering problem:

The slowest or even median cost is generally multiple orders of

magnitude more expensive than the cheapest plan. The shapes of

the distributions are quite diverse. For some queries, there are many

good plans (e.g., 25c), for others few (e.g., 16d). The distribution

are sometimes wide (e.g., 16d) and sometimes narrow (e.g., 25c).

The plots for the “no indexes” and the “PK indexes” configurations

are very similar implying that for our workload primary key in-

dexes alone do not improve performance very much, since we do

not have selections on primary key columns. In many cases the

“PK+FK indexes” distributions have additional small peaks on the

left side of the plot, which means that the optimal plan in this index

configuration is much faster than in the other configurations.

We also analyzed the entire workload to confirm these visual ob-

servations: The percentage of plans that are at most 1.5× more

expensive than the optimal plan is 44% without indexes, 39% with

primary key indexes, but only 4% with foreign key indexes. The

average fraction between the worst and the best plan, i.e., the width

of the distribution, is 101× without indexes, 115× with primary

key indexes, and 48120× with foreign key indexes. These sum-

mary statistics highlight the dramatically different search spaces of

the three index configurations.

6.2 Are Bushy Trees Necessary?
Most join ordering algorithms do not enumerate all possible tree

shapes. Virtually all optimizers ignore join orders with cross prod-

ucts, which results in a dramatically reduced optimization time with

only negligible query performance impact. Oracle goes even fur-

ther by not considering bushy join trees [1]. In order to quantify

the effect of restricting the search space on query performance, we

modified our DP algorithm to only enumerate left-deep, right-deep,

or zig-zag trees.

Aside from the obvious tree shape restriction, each of these

classes implies constraints on the join method selection. We fol-

low the definition by Garcia-Molina et al.’s textbook, which is re-

verse from the one in Ramakrishnan and Gehrke’s book: Using

hash joins, right-deep trees are executed by first creating hash ta-

bles out of each relation except one before probing in all of these

hash tables in a pipelined fashion, whereas in left-deep trees, a new

hash table is built from the result of each join. In zig-zag trees,

which are a super set of all left- and right-deep trees, each join

operator must have at least one base relation as input. For index-

nested loop joins we additionally employ the following convention:

the left child of a join is a source of tuples that are looked up in the

index on the right child, which must be a base table.

Using the true cardinalities, we compute the cost of the optimal

plan for each of the three restricted tree shapes. We divide these

costs by the optimal tree (which may have any shape, including

“bushy”) thereby measuring how much performance is lost by re-

stricting the search space. The results in Table 2 show that zig-zag

trees offer decent performance in most cases, with the worst case

being 2.54× more expensive than the best bushy plan. Left-deep

PK indexes PK + FK indexes

median 95% max median 95% max

zig-zag 1.00 1.06 1.33 1.00 1.60 2.54

left-deep 1.00 1.14 1.63 1.06 2.49 4.50

right-deep 1.87 4.97 6.80 47.2 30931 738349

Table 2: Slowdown for restricted tree shapes in comparison to

the optimal plan (true cardinalities)

trees are worse than zig-zag trees, as expected, but still result in

reasonable performance. Right-deep trees, on the other hand, per-

form much worse than the other tree shapes and thus should not be

used exclusively. The bad performance of right-deep trees is caused

by the large intermediate hash tables that need to be created from

each base relation and the fact that only the bottom-most join can

be done via index lookup.

6.3 Are Heuristics Good Enough?
So far in this paper, we have used the dynamic programming

algorithm, which computes the optimal join order. However, given

the bad quality of the cardinality estimates, one may reasonably ask

whether an exhaustive algorithm is even necessary. We therefore

compare dynamic programming with a randomized and a greedy

heuristics.

The “Quickpick-1000” heuristics is a randomized algorithm that

chooses the cheapest (based on the estimated cardinalities) 1000

random plans. Among all greedy heuristics, we pick Greedy Op-

erator Ordering (GOO) since it was shown to be superior to other

deterministic approximate algorithms [11]. GOO maintains a set

of join trees, each of which initially consists of one base relation.

The algorithm then combines the pair of join trees with the lowest

cost to a single join tree. Both Quickpick-1000 and GOO can pro-

duce bushy plans, but obviously only explore parts of the search

space. All algorithms in this experiment internally use the Post-

greSQL cardinality estimates to compute a query plan, for which

we compute the “true” cost using the true cardinalities.

Table 3 shows that it is worthwhile to fully examine the search

space using dynamic programming despite cardinality misestima-

tion. However, the errors introduced by estimation errors cause

larger performance losses than the heuristics. In contrast to some

other heuristics (e.g., [5]), GOO and Quickpick-1000 are not re-

ally aware of indexes. Therefore, GOO and Quickpick-1000 work

better when few indexes are available, which is also the case when

there are more good plans.

To summarize, our results indicate that enumerating all bushy

trees exhaustively offers moderate but not insignificant performance

benefits in comparison with algorithms that enumerate only a sub

set of the search space. The performance potential from good car-

dinality estimates is certainly much larger. However, given the ex-

istence of exhaustive enumeration algorithms that can find the opti-

mal solution for queries with dozens of relations very quickly (e.g.,

[29, 12]), there are few cases where resorting to heuristics or dis-

abling bushy trees should be necessary.

7. RELATED WORK
Our cardinality estimation experiments show that systems which

keep table samples for cardinality estimation predict single-table

result sizes considerably better than those which apply the inde-

pendence assumption and use single-column histograms [20]. We

think systems should be adopting table samples as a simple and ro-

bust technique, rather than earlier suggestions to explicitly detect
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PK indexes PK + FK indexes

PostgreSQL estimates true cardinalities PostgreSQL estimates true cardinalities

median 95% max median 95% max median 95% max median 95% max

Dynamic Programming 1.03 1.85 4.79 1.00 1.00 1.00 1.66 169 186367 1.00 1.00 1.00

Quickpick-1000 1.05 2.19 7.29 1.00 1.07 1.14 2.52 365 186367 1.02 4.72 32.3

Greedy Operator Ordering 1.19 2.29 2.36 1.19 1.64 1.97 2.35 169 186367 1.20 5.77 21.0

Table 3: Comparison of exhaustive dynamic programming with the Quickpick-1000 (best of 1000 random plans) and the Greedy

Operator Ordering heuristics. All costs are normalized by the optimal plan of that index configuration

certain correlations [19] to subsequently create multi-column his-

tograms [34] for these.

However, many of our JOB queries contain join-crossing cor-

relations, which single-table samples do not capture, and where

the current generation of systems still apply the independence as-

sumption. There is a body of existing research work to better esti-

mate result sizes of queries with join-crossing correlations, mainly

based on join samples [17], possibly enhanced against skew (end-

biased sampling [10], correlated samples [43]), using sketches [35]

or graphical models [39]. This work confirms that without ad-

dressing join-crossing correlations, cardinality estimates deterio-

rate strongly with more joins [21], leading to both the over- and

underestimation of result sizes (mostly the latter), so it would be

positive if some of these techniques would be adopted by systems.

Another way of learning about join-crossing correlations is by

exploiting query feedback, as in the LEO project [38], though there

it was noted that deriving cardinality estimations based on a mix of

exact knowledge and lack of knowledge needs a sound mathemat-

ical underpinning. For this, maximum entropy (MaxEnt [28, 23])

was defined, though the costs for applying maximum entropy are

high and have prevented its use in systems so far. We found that

the performance impact of estimation mistakes heavily depends on

the physical database design; in our experiments the largest impact

is in situations with the richest designs. From the ROX [22] dis-

cussion in Section 4.4 one might conjecture that to truly unlock

the potential of correctly predicting cardinalities for join-crossing

correlations, we also need new physical designs and access paths.

Another finding in this paper is that the adverse effects of cardi-

nality misestimations can be strongly reduced if systems would be

“hedging their bets” and not only choose the plan with the cheapest

expected cost, but take the probabilistic distribution of the estimate

into account, to avoid plans that are marginally faster than others

but bear a high risk of strong underestimation. There has been work

both on doing this for cardinality estimates purely [30], as well as

combining these with a cost model (cost distributions [2]).

The problem with fixed hash table sizes for PostgreSQL illus-

trates that cost misestimation can often be mitigated by making the

runtime behavior of the query engine more “performance robust”.

This links to a body of work to make systems adaptive to estima-

tion mistakes, e.g., dynamically switch sides in a join, or change

between hashing and sorting (GJoin [15]), switch between sequen-

tial scan and index lookup (smooth scan [4]), adaptively reordering

join pipelines during query execution [24], or change aggregation

strategies at runtime depending on the actual number of group-by

values [31] or partition-by values [3].

A radical approach is to move query optimization to runtime,

when actual value-distributions become available [33, 9]. However,

runtime techniques typically restrict the plan search space to limit

runtime plan exploration cost, and sometimes come with functional

restrictions such as to only consider (sampling through) operators

which have pre-created indexed access paths (e.g., ROX [22]).

Our experiments with the second query optimizer component be-

sides cardinality estimation, namely the cost model, suggest that

tuning cost models provides less benefits than improving cardi-

nality estimates, and in a main-memory setting even an extremely

simple cost-model can produce satisfactory results. This conclu-

sion resonates with some of the findings in [42] which sets out to

improve cost models but shows major improvements by refining

cardinality estimates with additional sampling.

For testing the final query optimizer component, plan enumera-

tion, we borrowed in our methodology from the Quickpick method

used in randomized query optimization [40] to characterize and vi-

sualize the search space. Another well-known search space visu-

alization method is Picasso [18], which visualizes query plans as

areas in a space where query parameters are the dimensions. Inter-

estingly, [40] claims in its characterization of the search space that

good query plans are easily found, but our tests indicate that the

richer the physical design and access path choices, the rarer good

query plans become.

Query optimization is a core database research topic with a huge

body of related work, that cannot be fully represented in this sec-

tion. After decades of work still having this problem far from re-

solved [26], some have even questioned it and argued for the need

of optimizer application hints [6]. This paper introduces the Join

Order Benchmark based on the highly correlated IMDB real-world

data set and a methodology for measuring the accuracy of cardinal-

ity estimation. Its integration in systems proposed for testing and

evaluating the quality of query optimizers [41, 16, 14, 27] is hoped

to spur further innovation in this important topic.

8. CONCLUSIONS AND FUTURE WORK
In this paper we have provided quantitative evidence for conven-

tional wisdom that has been accumulated in three decades of prac-

tical experience with query optimizers. We have shown that query

optimization is essential for efficient query processing and that ex-

haustive enumeration algorithms find better plans than heuristics.

We have also shown that relational database systems produce large

estimation errors that quickly grow as the number of joins increases,

and that these errors are usually the reason for bad plans. In con-

trast to cardinality estimation, the contribution of the cost model to

the overall query performance is limited.

Going forward, we see two main routes for improving the plan

quality in heavily-indexed settings. First, database systems can in-

corporate more advanced estimation algorithms that have been pro-

posed in the literature. The second route would be to increase the

interaction between the runtime and the query optimizer. We leave

the evaluation of both approaches for future work.

We encourage the community to use the Join Order Benchmark

as a test bed for further experiments, for example into the risk/re-

ward tradeoffs of complex access paths. Furthermore, it would be

interesting to investigate disk-resident and distributed databases,

which provide different challenges than our main-memory setting.
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