
Scientific Programming 11 (2003) 81–93 81
IOS Press

How good is OpenMP

Timothy G. Mattson
Intel Corporation, 2800 Center Drive, Mail Stop DP2-226, DuPont, WA 98327, USA

Tel.: +1 253 371 7094

Abstract. The OpenMP standard defines an Application Programming Interface (API) for shared memory computers. Since its

introduction in 1997, it has grown to become one of the most commonly used API’s for parallel programming. But success in

the market doesn’t necessarily imply successful computer science. Is OpenMP a “good” programming environment? What does

it even mean to call a programming environment good? And finally, once we understand how good or bad OpenMP is; what can

we do to make it even better? In this paper, we will address these questions.

1. Introduction

OpenMP [1] is an Application Programming Inter-

face for writing multithreaded programs. It is not a

replacement for low-level thread libraries. These li-

braries are well optimized for writing system level and

middleware software. Programmers who need max-

imum control over the details of how multithreaded

software executes should avoid OpenMP and continue

to use thread libraries. The overwhelming majority of

applications programmers, however, don’t need to con-

trol the low level details of how threads execute. They

need portability and maintainability coupled with con-

venience so they can hit tight delivery schedules. These

people want applications that run fast, give the right

answers, and can be affordably coded and maintained.

These people are the target audience for OpenMP.

Since its introduction in 1997, OpenMP has grown

to become one of the top four API’s for expressing

concurrency in programs (the others are MPI, POSIX

threads, and the threads API used with Microsoft Op-

erating systems). This is a major improvement over the

early to mid 90’s when there were dozens of program-

ming environments to choose between. Now, one only

needs to consider one of the four main environments

and can move directly to the job of writing parallel

software.

It is interesting that all four parallel programming

API’s are explicit. In other words, a programmer tells

the computer precisely where to introduce parallelism

and in most cases, how that parallelism is to be ex-

ploited. OpenMP sets itself apart from the other mod-

ern parallel programming API’s, however, in that the

constructs in OpenMP are for the most part semanti-

cally neutral compiler directives. This is a key feature

of OpenMP. Since a non-OpenMP compiler can just

ignore the OpenMP directives without changing a pro-

gram’s semantics, a programmer can adopt a discipline

where the OpenMP program is sequentially equivalent;

i.e. it is identical semantically to the original sequential

code. This feature is one of the reasons OpenMP has

been so successful.

While OpenMP has been successful commercially,

however, there is much that could be improved. In this

paper, we will look at a handful of improvements under

consideration for OpenMP. But first, we will review

the history of OpenMP and describe the mechanisms

in place to drive new ideas into the language. We will

then present an informal framework to be used in un-

derstanding the models behind OpenMP and how they

help us understand the quality of OpenMP. In partic-

ular, we will provide an answer to the question “how

good is OpenMP”.

2. The historical roots of OpenMP

OpenMP was born from necessity. It all started in

1996. SGI had acquired Cray Research Inc. and needed

to unify compiler directives for multithreaded program-

ming across the two product lines. At about the same

time, Kuck and Associates Inc. (KAI) completed work

ISSN 1058-9244/03/$8.00 2003 – IOS Press. All rights reserved

82 T.G. Mattson / How good is OpenMP

on a suite of software tools for directive-driven paral-
lel programming of shared memory machines. These
tools were based on their earlier work with the Parallel
Computing Forum (PCF) and later the ANSI X3H5 [2]
committees. KAI was a small software company and
to get the most from these new tools, they needed large
markets for their products; ideally spanning the shared
memory computing market.

Meanwhile, the scientists within the U.S. Depart-
ment of Energy’s ASCI program at Lawrence Liver-
more national laboratory were becoming increasingly
frustrated. Every time they bought a new shared mem-
ory computer, they had to invest time moving to new
directive sets. Codes became littered with “ifdefs” and
maintenance costs soared. They needed a single API so
they could write one code that would run on all shared
memory machines.

The ASCI scientists urged SGI (a major vendor to
the ASCI program at that time) to standardize com-
piler directives. SGI joined with KAI and together
they started what eventually became OpenMP. Draw-
ing heavily from ANSI X3H5, they created a straw-
man proposal for OpenMP. With the proposal in hand,
they invited other vendors involved with shared mem-
ory computing. Intel, IBM, and DEC agreed to join
and by late 1997, the full group had created the first
version of OpenMP; OpenMP version 1.0 for Fortran.

OpenMP was practically guaranteed to succeed from
the beginning. Vendors responsible for the majority of
the shared memory computing market were involved
with its creation. Within two years, OpenMP grew
to become the standard API for programming shared
memory computers. Today, it is difficult to find a shared
memory computer for which an OpenMP compliant
compiler is not available.

From the beginning, it was recognized that OpenMP
should be a living language. As hardware changes and
new programmers work with the language, OpenMP
would need to evolve. To manage the long-term evo-
lution of OpenMP, the OpenMP Architecture Review
Board (ARB) was created. At the time this paper is
being written, the members of the ARB include ASCI
(DOE), Compaq, EPCC, Fujitsu, HP, IBM, Intel, KAI,
NEC, SUN, and an OpenMP users group called Com-
punity.

The ARB agreed upon a collection of goals to guide
work on new OpenMP specifications. It is important to
keep these in mind anytime extensions to OpenMP are
considered. The goals are:

– To produce API specifications that let program-
mers write portable, efficient, and well understood
parallel programs for shared memory systems.

– To produce specifications that can be readily im-

plemented in robust commercial products. i.e. we

want to standardize common or well understood

practices, not chart new research agendas.

– To whatever extent makes sense, deliver consis-

tency between programming languages. The spec-

ification should map cleanly and predictably be-

tween C, Fortran, and C++.

– We want OpenMP to be just large enough to ex-

press important, control-parallel, shared memory
programs - but no larger. OpenMP needs to stay

“lean and mean”.

– Legal programs under an older version of an

OpenMP specification should continue to be legal

under newer specifications.

– To whatever extent possible, we will produce spec-

ifications that are sequentially consistent. If se-

quential consistency is violated, there should be

documented reasons for doing so.

The specifications produced so far are outlined in Ta-
ble 1. All specifications are available from the OpenMP

web site, www.openmp.org.

The most recent ARB member, Compunity, is an

OpenMP users group and deserves special comment.

The original membership in the OpenMP ARB was de-

liberately stacked in favor of vendors. We wanted ARB

members to have a stake in OpenMP as a business. We

hoped that by doing so, our specifications would be

more likely to focus on products that could be immedi-

ately implemented rather than research agendas.
History has shown that we made the right decision.

For each OpenMP specification, a conforming imple-

mentation was available within months of releasing the

specification. Letting vendors dominate the ARB, how-

ever, created the impression that the ARB is closed and

not open to input from the research community. In part,

as a response to this criticism, we helped create the

Compunity OpenMP users group. Compunity is not

just a passive participant in the ARB. They are a full-

fledged member of the organization with a full vote in

ARB matters. Through Compunity, the academic com-
munity and other organizations unwilling to join the

ARB can have a hand in shaping the future of OpenMP.

3. What is a “good” programming environment

The computer science literature is full of claims

about how good various programming environments

are. In most cases, claims of “goodness” are driven by

engineering arguments:

T.G. Mattson / How good is OpenMP 83

Table 1

History of OpenMP specifications

Specification Year Description

OpenMP 1.0 Fortran 1997 The first OpenMP specification based closely on the work from X3H5 [2].

OpenMP 1.0 C/C++ 1998 A mapping of the original OpenMP 1.0 Fortran specification onto C/C++

OpenMP 1.1 Fortran 1999 An update to the Fortran specification including bug fixes and clarifications. Responds to insights about

OpenMP gained during the writing of the C/C++ specification.

OpenMP 2.0 Fortran 2000 A major upgrade of OpenMP to better meet the needs of Fortran95 and to correct some oversights from the

earlier specs. The rationale behind OpenMP 2.0 is described in [17]
OpenMP 2.0 C/C++ 2002 A major upgrade of the C/C++ specifcation with the goal of making it consistent with the OpenMP Fortran

2.0 specification and ANSI C 1999.

We designed it, we built it, and it worked. Therefore,

it’s good.

These types of arguments are of little value for ad-

vancing computer science. We need a more concrete

set of criteria to objectively analyze the quality of a

parallel programming environment.

Parallel computing is primarily concerned with per-

formance, so most arguments of “goodness” emphasize

performance to the exclusion of programmability. But

performance should not be the primary criteria. With

the advances in computer hardware over the last few

decades, attaining the desired performance, while im-

portant, is no longer the supreme issue. Rather, the key

issue is the ease with which a programmer can use an

API to create high quality software.

This is especially the case for OpenMP. Essentially,

for a well-written OpenMP program, the performance

is largely determined by underlying threading runtime

system. There are differences in particular algorithms

used to implement an OpenMP runtime library, but

these differences are issues of engineering quality. The

best way to address performance issues in OpenMP

is by using market forces to pressure the providers of

OpenMP technology. This is best done by using bench-

mark suites such as the EPCC microbenchmark suite

[3] or the more recent SPEComp2001 benchmark [4].

Therefore, we avoid performance based arguments in

this paper. Instead, we focus on the more difficult issue

of the quality of the programming API itself. What

makes one programming API “bad” while another one

is ”good”? The issue comes down to the programming

itself. In other words:

The quality of a programming environment is given

by its ability to help programmers write high quality,

correct code with the least effort.

Programmability is largely avoided in the computer

science literature since it is hard to quantify. While

quantitative metrics are desirable, we can understand

a great deal about the “goodness” of a programming

environment qualitatively. Hence, we will move for-

ward with this argument using a qualitative framework

to help us answer the question “what makes a program-

ming environment good”.

We start with the simple fact that all known pro-

grammers are human. The complex process of creating

software is fundamentally tied to what goes on inside

a programmer’s head. So our framework must derive

from our understanding of the human computer inter-

face as it applies to software development. In other

words, we are interested in the psychology of program-

ming and what it tells us about the quality of different

programming environments.

The body of research in the psychology of program-

ming is small. One can come up to speed in this field

by reading two short books [5,6] and by studying the

proceedings from a series of workshops in which em-

pirical techniques in clinical psychology are applied

to understanding programming [7]. Space constraints

don’t permit us to review the literature here. Instead,

we will just describe the results we will use and leave

their development to the referenced literature.

Research in cognitive psychology has given us a

clear picture of human reasoning. People understand

the world by comparing their observations against a set

of internally held models. These models are usually

informal and change as understanding evolves. One of

the benefits of model-based cognition is its support for

reasoning from incomplete information. Once enough

observations have been acquired to fix the right model

and define how a problem maps onto that model, hu-

mans are able to reach conclusions even if the available

information is incomplete.

Constructing models is an innate human characteris-

tic, and for the most part we are not aware that it is tak-

ing place. When trying to bring order to a new field of

study, however, or when trying to deepen understand-

ing of an old one, it can be useful to make the models

explicit.

In programming, we construct models of a problem

and then map them onto abstract models of a compu-

tation. These models allow us to address the key is-

sues at each stage of the programming process while

84 T.G. Mattson / How good is OpenMP

abstracting away non-essential details. Programmers

push their models even further and apparently conduct

simulations with their models as they design software

[8] and choose alternative solutions.

Programming is a complex process. A single model

applied over a simple domain cannot address the full

range of issues that arise during software develop-

ment. Hence, researchers investigating this field typi-

cally work in terms of a hierarchy of models:

– The top layer of the hierarchy is a specification

model, which is a high-level, abstract view of a

problem for use by the algorithm. This model

implies an overall structure for the algorithm.

– The next layer is a programming model, which

is used to map an algorithm onto the constructs

of a programming language. In other words, a

programmingmodel abstracts how a programming

environment presents the parallel computation to

the programmer.

– The next layer is a computational model, which

provides an abstract view of how a computation

takes place on a computer system. It must be gen-

eral enough to support a wide range of algorithms,

but simple enough to support informal mental sim-

ulations during the design process.

– The bottom layer is a cost model that incorporates

the detailed execution characteristics of real ma-

chines. This is the level in the hierarchy where,

for example, the costs of access data across levels

in a memory hierarchy are addressed.

This hierarchy of models is related to the work of

[9] with additional influence from [10] and [11]. It

is important to note, however, that there is no single

“correct” way to organize the models we use in software

engineering.

Theses layers of abstraction and how they relate to

the fundamental domains addressed during the pro-

gramming process are shown in Fig. 1. A programmer

begins in the “problem domain”. The objects resid-

ing in this domain are directly related to the objects in

the actual problem being solved. For example, for a

molecular modeling problem, the objects in the prob-

lem domain would be atomic coordinates and molec-

ular forces. We map from the problem domain into

the algorithm domain using the specification model.

This high level, problem-dependent and usually infor-

mal model is used as we translate the mathematics of

the problem into high-level data structures, an overall

algorithm structure, and collections of software com-

ponents.

As we translate those components into code, we need
an abstraction of the parallel computation as supported
by the target API. This is the job of the programming
model. As with the all of our models, they are used
during the reasoning process as we bridge from one
domain to another - in the case, the algorithm domain
into source code.

As the programmer writes code, numerous tradeoffs
must be made between different constructs. At this
point, some concept of how the program will execute
must be addressed. Delving into low level details too
early compromises portability, so a good programmer
first considers an abstract view of the machine that maps
across the full range of intended systems. This abstract
view of the machine is handled with the computational
model.

As some point in the software development process,
the programmer needs to specialize their program to
actual systems. In some cases, this is carried out as a
separate optimization step at a later date or even by a
different team of programmers. Expert programmers,
however, consider these low level decisions throughout
the software design process. This is done with a low
level abstraction called the cost model. Specific per-
formance characteristics of classes of machines or even
specific systems are included in these models.

Understanding the models used when designing soft-
ware and how they fit together provides much of what
we need to understand the programming process. To
finish the picture, we need to understand the strategy
used by expert programmers as they work with these
models.

As programmers move from the specification of the
original problem, to source code, to optimization; they
need to make progress at each level of the hierarchy.
We are taught that good programmers work sequen-
tially from top to bottom, starting at the specifica-
tion level and working through the abstractions to the
cost model. Empirical studies of actual programmers,
however, show that a completely different approach is
used [12]. It is well established in the literature that
programmers bounce around between levels working
at which ever level is most productive at a given time.
This is called the Opportunistic refinement strategy of
software development.

With our models and a core strategy in place, we
can now state what distinguishes a good programming
environment from poor one. The quality of an appli-
cation programming interface is given by how well it
supports effective programming for the target program-
ming community. In our case, we will evaluate an API
in terms of:

T.G. Mattson / How good is OpenMP 85

Fig. 1. The problem domains and how the models used in programming relate to them.

1. The models associated with the API must be
accessible-to and helpful-for the target program-
ming audience.

2. Transitions between models must be convenient,
and clear; i.e. abstract the machine, don’t hide it.

3. The programmer must be in control of where they
are working within the in the hierarchy of models
at a given time [13].

4. An API should make commonly used program-
ming idioms convenient, but without cluttering
the language.

4. Levels of abstraction in OpenMP

Now that we’ve established our framework for un-
derstanding API’s, we’ll apply it to OpenMP. We will
start at the top (the specification model) and work our

way to the lowest level layer (the cost model).
Specification model: OpenMP does not formally de-

fine a single specification model. OpenMP is a general
API and hence supports a range of specifications mod-
els. However, we did have a couple broad specifica-
tion models in mind as we created OpenMP. OpenMP
was first and foremost targeted to array-drivenscientific
and engineering applications. Hence, we envisioned
a task parallel specification model for which the tasks
would correspond to loop iterations. While not our
original target, it is clear that OpenMP is also effective
for SPMD or Single Program Multiple Data or SPMD

models [14].
Programming model: OpenMP is based on a

fork/join programming model. This is displayed in

Fig. 2. An OpenMP program begins life as a regular

sequential program. This single thread of control is

called the master thread. At some point in the pro-

gram’s execution, the master thread encounters tasks

that can execute concurrently. At this point, the execut-

ing program forks a number of threads. These threads

constitute a team and they execute in parallel across a

set of statements called a parallel region. At the end

of the parallel region, the team of threads terminates

(joins) and the original, master thread continues.

Later on, additional opportunities to exploit concur-

rency might arise. At these points, the OpenMP pro-

grammer can cause additional teams to fork and ex-

ecution across parallel regions proceeds much as we

described before.

The fork/join programming model is the only model

explicitly defined in the OpenMP specification. Other

models are involved with OpenMP, but these models

are implied.

Computational model: OpenMP implies a very sim-

ple computational model. OpenMP assumes that the

machines OpenMP programs run on are symmetric

multiprocessors. In other words, the OpenMP pro-

gramming model assumes the computer consists of

a single, shared address space that is available to

each thread with equal-time access from each proces-

sor. OpenMP programmers usually assume sequen-

tially consistent memory, but the specifications don’t

require this or any other specific memory consistency

model.

Note that it is possible to map OpenMP programs

onto non-uniform address spaces [15] or even clusters

86 T.G. Mattson / How good is OpenMP

Fig. 2. OpenMP Programming model showing master thread running in sequential regions and parallel regions with multiple concurrent threads.

[16]. But this is done with extensions to the specifica-

tion or severe performance restrictions the programmer

must manage.

Cost Model: OpenMP does not define an abstract

machine or how that machine maps onto real systems.

Omitting a cost model was not due to laziness on

the part of the language designers. In order to map

OpenMP programs onto the largest range of systems

without providing undue advantage to any one archi-

tecture, the language definition intentionally omitted a

cost model.

5. How good is OpenMP?

Now that we understand the models used in OpenMP,

we can ask the question, “how good is OpenMP?” We

will do this by considering the criteria presented ear-

lier.

– The models associated with the API must be

accessible-to and helpful-for the target program-

ming audience.

The target audience for OpenMP is general-purpose

application programmers. In particular, we wanted

to reach programmers who would not use lower level

API’s such as Pthreads or MPI. For the models we de-

fine within OpenMP – the programming and compu-

tational models – we were successful. They are in-

deed simple, accessible and helpful to our target pro-

grammers. The fork-join programming model, based

on success teaching OpenMP over the last five years, is

easy to learn and easy to apply when understanding a

parallel algorithm. The shared memory model of com-

putation implied by OpenMP is also an effective model

that is familiar to most programmers.

Weaknesses for OpenMP emerge, however, when

you consider the models we don’t define. For example,

we didn’t define a cost model. Programmers must con-

struct these models on their own – even if they only do

so informally. Second, OpenMP’s specification mod-

els are not general enough. For the loop-based codes

common in scientific programming, OpenMP is highly

effective. But for more general algorithms based, for

example, on pointer-following or more complex struc-

tures, the OpenMP specification model is too narrow.

Finally, the memory consistency model is ill defined in

OpenMP. This leads to a great deal of confusion con-

cerning the flush construct and when it must be used.

We consider the next two criteria together.

– Transitions between models must be convenient

and clear; i.e. abstract the machine, don’t hide it.

– The programmer must be in control of where they

are working within the hierarchy of models at a

given time.

Mapping from the fork-join model to the OpenMP

model of computation is immediate and takes little ef-

fort on the part of the programmer. This is one of the

major reason’s OpenMP is so easy to learn. A pro-

grammer familiar with modern multithreaded operat-

ing systems has no problem understanding how to map

the fork-join model onto the standard computational

model for shared memory systems.

When a programmer’s problem fits the OpenMP

specification model, mapping onto the OpenMP pro-

gramming model is straightforward as well. Once

again, the biggest problem is with the cost model. Since

OpenMP doesn’t define a cost model, transitions onto

this model is challenging and requires substantial effort

on the part of the programmer.

– An API should make commonly used program-

ming idioms convenient, but without cluttering the

language.

In scientific applications, loop level parallelism is

a very common programming idiom. OpenMP was

specifically designed to handle these algorithm struc-

T.G. Mattson / How good is OpenMP 87

tures. With a simple, semantically neutral direc-

tive/pragma, an OpenMP programmer can create a

team of threads and schedule loop iterations onto those

threads. The solution in OpenMP is elegant and syn-

tactically minimal.

The OpenMP specification also works well for

SPMD programs [14]. The programming idioms re-

quired by SPMD programs are sparse; essentially all

you need is the concept of a thread ID combined and a

way to discover how many threads are present. The key

to enabling SPMD programs is orphaning; the embed-

ding of OpenMP constructs in compilation units that do

not contain a surrounding parallel construct. Orphan-

ing lets the programmer put a Parallel construct at the

top of a program, an end parallel construct at the end

of the program, and all other OpenMP constructs lit-

tered across multiple compilation units. In many cases,

only minimal restructuring of the sequential code is

required.

As you move away from loop structured codes or

SPMD programs, however, OpenMP becomes increas-

ingly difficult to apply. For example, OpenMP has a

tough time with simple pointer following algorithms.

While OpenMP supports loop-structured programs that

use a simple for loop, while loops or for loops with dy-

namic loop indices are not easily handled in OpenMP.

Putting all these comments together, we see that the

quality of OpenMP is mixed. For the algorithm struc-

tures we anticipated, OpenMP is a very effective pro-

gramming environment, i.e. “it is good”. For opti-

mization, where you need to map onto a cost model,

OpenMP is weak.

6. Making OpenMP even better

The OpenMP community is steadily working to im-

prove OpenMP. We have two major venues for iden-

tifying improvements to the language. First, we hold

workshops on OpenMP each year at locations around

the world (go to www.compunity.org to learn more

about future OpenMP workshops). We include an open

discussion on the future of OpenMP at these work-

shops. Another source of input to OpenMP’s evolution

is the ARB futures committee. This committee of ARB

members meets regularly to work out the details for

changes to the OpenMP language.

In this section, we will discuss some of the changes

that have been considered for OpenMP. The sources

for these ideas are not always listed since much of this

comes from random conversations over the last few

years.

We will divide these changes into the following cat-

egories:

– Changes to make OpenMP more convenient for

our target programmers.

– Increasing the range of the specification models

supported by OpenMP.

– Making the cost model more visible in portable

OpenMP programs.

We will consider each of these in the following sub-

sections.

6.1. Making OpenMP more convenient

Ease of use is a high priority in OpenMP. Software

engineers need to write quality software under tight

schedules. If we want them to write parallel programs,

then we need API’s that are convenient to use and fit

in well with good practices in software engineering.

To address this goal, we went to great pains to make

the constructs in OpenMP easy to understand. Most

interactions between OpenMP constructs are straight-

forward and easy to explain.

Another goal with OpenMP is to minimize the num-

ber of source-code transformations when parallelizing a

program. The bulk of OpenMP consists of semantically

neutral compiler directives. In most cases, OpenMP

programmers can write programs that are identical for

sequential and concurrent readings.

6.2. Parallelize loop nests:

When dividing the iterations of a loop among many

threads, it is important to have a large enough number

of loop-iterations to (1) provide enough concurrency

to support the number of concurrent threads and (2) to

compensate for the parallel computing overhead. Many

algorithms include nested loops that span a grid or some

other regular data structure. In some cases, a single

loop has too few iterations, but if the nested loops were

merged into a single larger loop, there would be plenty

of parallelism.

This is a common trick in parallel computing called

loop coalescing. A programmer can do this by hand as

shown in Fig. 3. In the first block of code in figure 3

we have two loops over N. Assume N is modest in size

relative to the number of threads. If the body of the loop

is independent in both loop indices, a programmer can

rewrite the two loops into a single, much larger loop.

88 T.G. Mattson / How good is OpenMP

 #pragma omp parallel for private (i,j)

 for(i = 0, i< N, i++) {

 for (j = 0; i<N; j++) {

 ! loop body that uses i and j

 }

 }

 #pragma omp parallel for private(ij, i, j)

 for(ij = 0; ij< N*N; ij++){

 i = ij / N;

 j = ij% N;

 ! loop body that uses i and j

 }

 #pragma omp parallel for private(i,j) collapse(2)

 for(i = 0, i< N, i++) {

 for (j = 0; i<N; j++) {

 ! loop body that uses i and j

 }

 }

Fig. 3. Proposed constructs to coalesce loops; top panel, original code; second panel, transformation by hand; third panel, a proposed construct

to coalesce the loops and share the loop-iterations among a team of threads.

This is shown in the second block of code in Fig. 3.
Every time a programmer makes a chance to a program,
there is a chance of errors being introduced. Hence,
it would be nice if this program could be parallelized
without any re-write at all.

This is the case for the third version of the program.
We’ve added an extra clause,

collapse(2)

This clause tells the compiler to introduce the loop
coalescing transformation over the immediately follow-
ing two loops. This approach is very similar to that
used in the compilers from SGI. In this case, the loops
to be coalesced are indicated by a list of the indices that
will be merged:

nest(i,j)

Further work is needed to decide how far we can push
this construct. We believe transformations are well
defined so compilers can handle triangular loop nests.
Imperfectly nested loops, however, in which interven-
ing statements occur between the loop statements, are
more difficult to handle. In order to avoid complex
rules for when imperfect nesting can be supported, we
might initially drop support for this case. After we have
more experience with nesting loops, we may figure out
how to deal with imperfectly nested loops. In that case,
we’d add support for imperfectly nested loops at a later
date. This is typical of our approach to OpenMP speci-
fications. It’s much easier to extend a construct than to
fix a poorly defined one. We’d rather go slow and get it
right, then move too fast and clutter the language with
awkward constructs.

6.3. Automatic scooping:

One of the most error-prone steps in creating an

OpenMP program is deciding which data should be pri-

vate and which data should be shared. For large blocks

of code split between multiple compilation units, the

analysis required to correctly determine the scope of

data can be very difficult. If an error is made, the result-

ing program could contain race conditions. When there

is a race condition, the program will produce differ-

ent results depending on the scheduling of the threads.

The program may work some of the time if the threads

happen to be scheduled in the “correct” order. At other

times with different thread schedules, however, the pro-

gram may give erroneous results. This unpredictability

makes race conditions particularly dangerous.

It has been proposed that the OpenMP specification

be amended to include constructs that let programmers

ask a compiler to automatically decide how data should

be shared [18]. The idea is to add a new clause to

OpenMP:

default(automatic)

If the compiler can safely decide how to share data,

the compiler will do so and activate the OpenMP con-

struct in question. If the compiler cannot safely deter-

mine the appropriate scope of the variables, the con-

struct would be serialized (i.e. executed with one

thread).

For example, consider the SPEComp’2001 bench-

mark AMMP [4]. A pragma taken from this program

is shown in the first panel in Fig. 4. The chances of

T.G. Mattson / How good is OpenMP 89

#pragma omp parallel for private (n27ng0, nng0, ing0, i27ng0, \

 natoms, ii, a1, a1q, a1serial, inclose, ix, iy, iz, inode, \

 nodelistt, r0, r, xt, yt, zt, xt2, yt2, zt2, xt3, yt3, zt3, \

 xt4, yt4, zt4, c1, c2, c3, c4, c5, k, a1VP , a1dpx , a1dpy, \

 a1dpz , a1px, a1py, a1pz, a1qxx , a1qxy , a1qxz ,a1qyy , \

 a1qyz , a1qzz, a1a, a1b, iii, i, a2, j, k1, k2 ,ka2, kb2, \

 v0, v1, v2, v3, kk, atomwho, ia27ng0, iang0, o) schedule(guided)

#pragma omp parallel for scope(automatic) schedule (guided)

Fig. 4. The proposed Automatic scope clause. The top panel is a parallel for construct from the AMMP program; a molecular dynamics code

from the Spec OMP benchmark suite [4].

producing such a complex private-list without intro-
ducing errors is slim. In the second panel, we show

what the code could look like given a compiler that can
automatically decide data scope.

In order for this to be acceptable as an OpenMP
construct, we must provide well-defined semantics so

compilers that cannot determine variable-scope can still
conform to the specification. We believe it will be

sufficient to allow a compiler to serialize the constructs
in this case. When this happens, however, we expect
high quality compilers to list the variables that didn’t

permit automatic data scope assignment.
Another common pattern is for all the scalar variables

in a loop to be private while all arrays are shared. We
could handle this case with a new clause:

default(mixed)

Unlike the automatic scope case, this construct is
explicit and it would be up to the programmer to make
sure this is a safe choice.

6.4. Expanding the range of specification models

OpenMP has been very successful for problems
that map onto the loop-level parallelism specification

model. This case is common for the array-dominated
algorithms found in many scientific and engineering

codes.
As you move away from scientific computing, how-

ever, a larger range of algorithms are encountered.
Codes may loop over linked lists or have recursive
structures. These codes do not map well onto OpenMP.

If OpenMP is to have impact outside science and engi-
neering, the specification must grow to include a larger

range of algorithm structures.
We are concerned about keeping OpenMP simple

and are hesitant to let it grow too rapidly. Hence,
we only have one construct under consideration that

expands the range of specification models.

6.5. Work queues:

The work queue is a flexible way to define work to

be shared between a team of threads. In a work queue,

the work to be carried out is packaged up into a task.

These tasks are placed on a queue. The threads in a

team pull tasks off the queue as the threads become

free, carry out the indicated work, and then go back to

the queue for additional tasks. This continues until the

queue is empty and no more tasks are being placed on

the queue.

How these tasks are defined is extremely flexible.

Unlike iterative worksharing constructs, the creation of

the work on the queue does not constrain the format of a

loop’s structure. Unlike a sections clause, the creation

of the work can be dynamic: changing dramatically as

the runtime conditions shift. If we are very careful,

it should even be possible to use a work queue model

with recursive programs.

There is broad agreement within the OpenMP com-

munity that some sort of work queue construct is re-

quired. As you move beyond this simple high-level

model, however, the agreement ends. How should the

work queue function with orphaning? Should it be pos-

sible to nest work queues (i.e. place work queues inside

work queues)? How much new syntax do we need to

support this concept?

We will consider the work queue proposal from

KAI [19] in this paper. This construct was imple-

mented within the C version of KAP/Pro from KAI

and is currently available in the C compiler from In-

tel (http://developer.intel.com/). This existence of ref-

erence implementations is important to the OpenMP

ARB. With very few exceptions, we will only standard-

ize constructs for which reference implementations ex-

ist.

The work queue construct has two components:

taskq and task. This is directly analogous to the famil-

90 T.G. Mattson / How good is OpenMP

iar OpenMp construct sections and section. When a

team of threads encounters a taskq construct, the pro-

gram shifts to “single thread” semantics. This means

that the statements execute as if one thread from the

team is executing. When this single thread encounters

a task construct, the structured block within that con-

struct defines a unit of work that is placed on the queue.

The single thread continues execution; encountering

task constructs and filling the queue until the end of the

taskq construct is encountered.

Meanwhile, the other threads in the team wait un-

til work appears in the queue. As work appears, the

threads on the team pull work off the queue and con-

tinue until the queue is empty and closed.

An example will clarify the operation of these con-

structs. In the top panel of Fig. 5, we show a sim-

ple pointer following loop. We assume a linked list

has been created the elements of which are of type
∗nodeptr. The members of nodeptr include a link to

the next element of the list and two links to values that

define a computation. Assume these calculations are

completely independent.

In the second panel of Fig. 5, we show how this loop

can be parallelized with a work queue. The first pragma

forks the team of threads and creates the task queue. In

most OpenMP constructs, all threads participate in the

execution of program statements. The taskq construct,

however, is different. In this case, the program executes

with single thread semantics. One thread executes the

code within the taskq outside of the enqueued tasks

themselves. Hence, one thread executes the for-loop to

traverse the linked list. When this thread encounters the

task construct, the included structured block is placed

as a unit of work on the task queue. This single thread

continues execution until the end of the task queue

construct is reached.

As work appears on the task queue, the other threads

in the team pull a task off the queue, they do the as-

signed work, and then return to the queue for addi-

tional tasks. The data environment can be complicated.

Basically, the taskq defines the environment for the

threads. Any data modified within a unit of work must

be shared among the team of threads or private to each

task. Working with data private to a thread could result

in race conditions since there is no control over which

threads process which tasks.

When threads finish their work and the queue is

empty, they wait on a barrier at the end of the taskq. As

with any workshare construct, nowait clauses can be

used to turn off this barrier and allow threads to proceed

immediately beyond the end of the task queue.

This approach for the work queue construct is

straightforward and deceptively simple. If it were really

this simple, however, work queues would have made it

into an earlier OpenMP specification. When you look

more deeply into work queues, there are a number of

tough issues that must be resolved.

– The tasks are placed in the queue with no con-

cept of order. This may limit algorithms where a

precedence relation exists between the tasks.

– For recursive programs, should there be one global

task queue with orphaned task constructs within

the recursive call tree? Or should tasks be required

to occur lexically within a task queue with a hi-

erarchy of task queues spanning the recursive call

tree?

– Should we represent the work queue semantics by

extending the syntax of the SECTIONS/SECTION

construct? Or should we create syntactic elements

to represent work queues?

These questions and more are under active discussion

within the OpenMP ARB futures committee. It is likely

that consensus on the ARB will be reached and this

construct will appear in the next OpenMP specification.

6.6. Exposing cost models

The OpenMP standard does not define a formal cost

model. For SMP computers, this might be an accept-

able option. For computers that include memory or

processor hierarchies, the lack of a well-defined cost

model complicates program optimization.

Currently, programmers either tolerate diminished

performance or utilize system dependent (and hence,

non-portable) constructs to tune the program for a spe-

cific machine. This is a problem for OpenMP. A key

attraction of OpenMP is its portability. If non-portable

constructs are needed to make programs run efficiently,

portability is compromised and the effectiveness of

OpenMP is diminished.

It is not clear what should be done to address this

problem. There are many options – including leav-

ing the language alone and requiring the operating sys-

tem in partnership with the OpenMP runtime library

to make OpenMP programs run fast. It is most likely,

however, that some changes will be needed in the

OpenMP specifications. These changes involve expos-

ing the memory hierarchy and how threads map onto

that hierarchy. In other words, we need to (1) imply

a cost model that includes a memory and/or proces-

T.G. Mattson / How good is OpenMP 91

 nodeptr list;

 for (nodeptr p=list; p!=NULL; p=p->next){

 work(p->right);

 work(p->left);

 }

 nodeptr list;

 #pragma omp parallel taskq

 for (nodeptr p=list; p!=NULL; p=p->next){

 #pragma omp task

 work(p->right);

 #pragma omp task

 work(p->left);

 }

Fig. 5. The top panel shows a pointer following loop. Existing OpenMP specifications do not provide reasonable ways to parallelize such a loop

even if the processing of each member of the list can be carried out independently. The work queue proposal shown in the second panel is a

proposed mechanism to make processing of such loops easy to express within OpenMP.

sor hierarchy and (2) add constructs to the language to

support this model.

We will consider a minimalist solution to this prob-

lem. An informal cost model can be implied based on

an abstract view of a non-uniform memory architecture

(NUMA) computer. In a NUMA computer, processors

are organized around a memory hierarchy. The operat-

ing system provides a single address space accessible

to all processors. Memory locality is managed by the

operating system in terms of pages that can be mapped

around the machine.

Different machines use different mapping strategies

for the memory pages. Typically, they use a first touch

strategy in which the first processor to access a page

gains local access to that page. This strategy may be

amended to move pages on the next access, replicate

pages when multiple processors work with them, or

remap them when the processor most frequently ac-

cessing a page changes.

We can therefore address the needs for most ma-

chines if the programmer first “touches” data inside the

parallel region. By doing so, the first touch strategy

spreads the pages out among the processors. Well-

optimized programs can then be written if the process-

ing can be kept close to the pages it uses.

This strategy has been explored in the Nanos threads

project [20] and found to work quite well. To work

best, however, two extra constructs are needed in

OpenMP.

6.7. Thread affinity

To get the most performance, it is essential to max-

imize reuse of data close to a processor. This includes

data in processor caches as well as the pages in a NUMA

computer. For example, in scientific and engineering

applications, programmers go to great lengths to block

structure their algorithms to support better cache reuse.

On a shared memory system, however, the operating

system will migrate threads to optimize the load bal-

ancing for the system. Once a thread is migrated to a

different processor, all of a programmer’s hard work to

optimize data layout is wasted.

To address this problem, we need a portable way to

ask the system to turn on or off thread migration. Con-

sistent with existing OpenMP constructs to support dy-

namic mode or nesting of parallel regions, we need an

environment variable and two runtime library routines:

OMP THREAD AFFINITY

int omp get thread affinitiy()

int omp set thread affinitiy(int)

If set to “logical true” the OS will attempt to lock

threads to processors; i.e. thread migration will be

turned off. Also in line with the rest of the OpenMP

specification, if the OS is unable to provide this func-

tionality, it can silently fail to do so.

6.8. Reusable loop schedules

When using a “first touch” page migration strategy

to distribute the data at the beginning of a program, it is

important that the same thread access the same blocks

of data as the program moves from one loop to another.

To support this, you need the same schedule to be used

for each work-shared loop.

The Nanos project at UPC in Barcelona [20] has

proposed a number of options to support this tech-

92 T.G. Mattson / How good is OpenMP

Table 2

Summary of OpenMP enhancements discussed in this paper

Modification category Proposed extension to OpenMP

Make OpenMP more convenient Parallelize nested loops Automatic data scooping – default(auto) and default(mixed)

Expand range of Specification models used with OpenMP Work queues

Expose costs models in portable programs Thread Affinity Reusable Loop Schedules

nique. One particularly interesting technique is to name

a schedule and then in a later loop, reuse the sched-

ule. For example, the schedule clause could have an

additional argument to supply an optional name:

SCHEDULE(type, chunk) NAME(name)

Once defined, the programmer could specify that

other loops schedule loop iterations onto threads in the

same way by specifying:

SCHEDULE(name)

As long as the same threads continue to access the

same pages, the combination of turning off thread mi-

gration, touching data in parallel to distribute pages,

and then reusing schedules may provide enough infor-

mation about the underlying NUMA machine to meet

out needs.

7. Conclusion

How good is OpenMP? In this paper, we’ve dis-

cussed a framework to help us answer this question.

We did this by looking at the core models behind

OpenMP and how programmers use them as they de-

velop software. Our conclusion? For the target audi-

ence and target applications and systems that reason-

ably approximate a symmetric multiprocessor architec-

ture, the OpenMP models are well matched to program-

mer needs. Therefore, OpenMP is “good”. As you

move away from the target applications, however, or

the system has significant non-uniformities, OpenMP

has some serious problems.

Fortunately, the OpenMP language designers didn’t

“go away” after they created the specifications. The

group is continuously working to enhance OpenMP

and grow the range of applications that can use

OpenMP. This group is called the OpenMP Archi-

tecture Review Board (ARB). Interested parties can

suggest enhancements for OpenMP through the ARB

web site (www.openmp.org) and in person at OpenMP

workshops held around the world each year (see

www.compunity.org for information about OpenMP

workshops).

The ARB works on future enhancements to the lan-

guage through its futures committee. This committee

has a large number of new constructs under consid-

eration. We have not provided an exhaustive review

of the work of this committee in this paper. Rather,

we have discussed a handful of constructs and showed

how they mapped onto our framework for understand-

ing OpenMP. The constructs discussed in this paper are

summarized in Table 2.

In the future, we’d like to expand the approach used

in this paper and consider a more detailed framework

for accessing the quality of OpenMP. In particular, we

are interested in working with Green’s Cognitive di-

mensions Framework [21]. This framework was de-

signed to with visual programming environments in

mind. It would be interesting to amend the framework

for parallel programmingand apply it to OpenMP, MPI,

and Pthreads. The results from this analysis would

help us understand additional enhancements to future

versions of OpenMP.

Acknowledgements

The OpenMP enhancements described in this paper

emerged during discussions at the OpenMP workshops

held each year around the world and during meetings of

the OpenMP ARB futures committee. I couldn’t possi-

bly list everyone who contributed to these discussions.

Certain people, however, have had a major impact on

my thinking about the future of OpenMP and deserve

special mention: Sanjiv Shah and Paul Petersen of Intel

Corp., Larry Meadows of SUN Microsystems, Jesus

Labarta and Eduard Ayguade of UPC in Barcelona, and

Matthijs van Waveren of Fujitsu Ltd.

References

[1] All OpenMP specifications are available at www.openmp.org.

[2] American National Standards Institute, Parallel Extensions for

Fortran, Technical report X3H5/93-SDI revision M. Accred-

ited Standards Committee X3, April 1993.

[3] M. Bull, www.epcc.ed.ac.uk/research/openmpbench/.

T.G. Mattson / How good is OpenMP 93

[4] V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W.G. Jones

and B. Parady, SPEComp: A new Benchmark suite for Mea-

sureing Parallel computer Performance, In Proc. of WOMPAT

2001, Workshop on OpenMP applications and Tools, Lecture

Notes in Computer Science 2104 (July, 2001), 1–10.

[5] Psychology of Programming, edited by J.-M. Hoc, T.R.G.

Green, R. Samurcay and D.J. Gilmore, Academic press, 1990.
[6] F. Defienne, Software Design – Cognitive Aspects, Springer,

2002.

[7] Empirical Studies of Programmers, Proceedings usually pub-

lished by ACM Press. 1986, 1987, 1991, 1993, 1996, 1997.

[8] [Guindon90] R. Guindon, Knowledge exploited by experts

during software system design, Int. J. Man-machine Studies

33 (1990), 279–304.

[9] B.M. Maggs, L.R. Matheson, R.E. Tarjan, Models of Parallel
Computation: A Survey and Synthesis, Proceedings of the

29th Hawaii International Conference on system sciences 2

(1995), 61–70.

[10] D.K.G. Campbell and S.J. Turner. CLUMPS: A model of ef-

ficient general-purpose parallel computation, Proceedings of

the IEEE TENCON Conference 2 (1994), 723–727.

[11] W.F. McColl, Bulk Synchronous Parallel Computing, Second

Workshop on Abstract Models for Parallel Computation, Ox-
ford University Press, 1993

[12] W. Visser, More or less following a plan during design: Op-

portunistic deviations in specification, International Journal

of Man-machine studies, 1990.

[13] M. Petre, Expert Programmers and Programming Languages,

in: Psychology of Programming J.-M. Hoc. T.R.G. Green, R.

Samurcay and D.J. Gilmore, eds, Academic press, 1990.

[14] G. Krawezik, G. Alleon, and F Cappello, “APMD OpenMP

versus MPI on a IBM SMP for 3 Kernels of the NAS Bench-

Proceedings 4th International Symposium, ISHPC marks, in

2002, Springer Lecture Notes in Computer Science 2327 (May,

2002), Kansai City Japan.
[15] D.S. Nikolopoulos, T.S. Papatheodorou, C.D. Polychronopou-

los, J. Labarta and E. Ayguade, Is data distribution necessary

in OpenMP? Proceedings Supercomputing, IEEE Press, 2000.

[16] K. Kusano, S.Satoh and M. Sato, Performance Evaluation of

the Omni OpenMP Compiler, Proceedings 3rd International

Symposium on High Performance Computing, Lecture Notes

in Computer Science, Number 1940, Springer, 2000 pp. 403–

414, Tokyo Japan.
[17] T.G. Mattson, An Introduction to OpenMP 2.0, Proceed-

ings 3rd International Symposium on High Performance Com-

puting, Lecture Notes in Computer Science, Number 1940,

Springer, 2000, pp. 384–390, Tokyo Japan.

[18] Dieter an May, email proposal to the OpenMP ARB futures

committee, September 2001.

[19] Sanjiv Shah, Grant Haab, Paul Petersen, and Joe Throop, Flex-

ible Control Structures for Parallelism in OpenMP, Proceed-

ings of the First European Workshop on OpenMP, 1999.

[20] E. Ayguade and J. Labarta , www.cepba.upc.es/nanos

[21] T.R.G. Green and M. Petre, Usability Analysis of Visual Pro-

gramming Environments: a cognitive dimensions framework,

J. Visual Languages and Computing 7 (1996), 131–174.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

