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Abstract

During the past five years the Bayesian deep learn-

ing community has developed increasingly accu-

rate and efficient approximate inference proce-

dures that allow for Bayesian inference in deep

neural networks. However, despite this algo-

rithmic progress and the promise of improved

uncertainty quantification and sample efficiency

there are—as of early 2020—no publicized de-

ployments of Bayesian neural networks in indus-

trial practice. In this work we cast doubt on

the current understanding of Bayes posteriors in

popular deep neural networks: we demonstrate

through careful MCMC sampling that the pos-

terior predictive induced by the Bayes posterior

yields systematically worse predictions compared

to simpler methods including point estimates ob-

tained from SGD. Furthermore, we demonstrate

that predictive performance is improved signifi-

cantly through the use of a “cold posterior” that

overcounts evidence. Such cold posteriors sharply

deviate from the Bayesian paradigm but are com-

monly used as heuristic in Bayesian deep learn-

ing papers. We put forward several hypotheses

that could explain cold posteriors and evaluate

the hypotheses through experiments. Our work

questions the goal of accurate posterior approx-

imations in Bayesian deep learning: If the true

Bayes posterior is poor, what is the use of more

accurate approximations? Instead, we argue that

it is timely to focus on understanding the origin

of the improved performance of cold posteriors.
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Figure 1. The “cold posterior” effect: for a ResNet-20 on CIFAR-

10 we can improve the generalization performance significantly by

cooling the posterior with a temperature T ≪ 1, deviating from

the Bayes posterior p(θ|D) ∝ exp(−U(θ)/T ) at T = 1.

1. Introduction

In supervised deep learning we use a training dataset

D = {(xi, yi)}i=1,...,n and a probabilistic model p(y|x,θ)
to minimize the regularized cross-entropy objective,

L(θ) := − 1

n

n
∑

i=1

log p(yi|xi,θ) + Ω(θ), (1)

where Ω(θ) is a regularizer over model parameters. We

approximately optimize (1) using variants of stochastic gra-

dient descent (SGD), (Sutskever et al., 2013). Beside being

efficient, the SGD minibatch noise also has generalization

benefits (Masters & Luschi, 2018; Mandt et al., 2017).

1.1. Bayesian Deep Learning

In Bayesian deep learning we do not optimize for a single

likely model but instead want to discover all likely models.

To this end we approximate the posterior distribution over

model parameters, p(θ|D) ∝ exp(−U(θ)/T ), where U(θ)
is the posterior energy function,

U(θ) := −
n
∑

i=1

log p(yi|xi,θ)− log p(θ), (2)

and T is a temperature. Here p(θ) is a proper prior density

function, for example a Gaussian density. If we scale U(θ)
by 1/n and set Ω(θ) = − 1

n log p(θ) we recover L(θ) in (1).

Therefore exp(−U(θ)) simply gives high probability to

models which have low loss L(θ). Given p(θ|D) we predict

on a new instance x by averaging over all likely models,

p(y|x,D) =

∫

p(y|x,θ) p(θ|D) dθ, (3)

https://github.com/google-research/google-research/tree/master/cold_posterior_bnn
https://github.com/google-research/google-research/tree/master/cold_posterior_bnn
https://github.com/google-research/google-research/tree/master/cold_posterior_bnn
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where (3) is also known as posterior predictive or Bayes

ensemble. Solving the integral (3) exactly is not possi-

ble. Instead, we approximate the integral using a sample

approximation, p(y|x,D) ≈ 1
S

∑S
s=1 p(y|x,θ(s)), where

θ
(s), s = 1, . . . , S, is approximately sampled from p(θ|D).

The remainder of this paper studies a surprising effect shown

in Figure 1, the “Cold Posteriors” effect: for deep neural

networks the Bayes posterior (at temperature T = 1) works

poorly but by cooling the posterior using a temperature T <
1 we can significantly improve the prediction performance.

Cold Posteriors: among all temperized posteriors the

best posterior predictive performance on holdout data

is achieved at temperature T < 1.

1.2. Why Should Bayes (T = 1) be Better?

Why would we expect that predictions made by the ensemble

model (3) could improve over predictions made at a single

well-chosen parameter? There are three reasons: 1. The-

ory: for several models where the predictive performance

can be analyzed it is known that the posterior predictive (3)

can dominate common point-wise estimators based on the

likelihood, (Komaki, 1996), even in the case of misspecifi-

cation, (Fushiki et al., 2005; Ramamoorthi et al., 2015); 2.

Classical empirical evidence: for classical statistical mod-

els, averaged predictions (3) have been observed to be more

robust in practice, (Geisser, 1993); and 3. Model averaging:

recent deep learning models based on deterministic model

averages, (Lakshminarayanan et al., 2017; Ovadia et al.,

2019), have shown good predictive performance.

Note that a large body of work in the area of Bayesian deep

learning in the last five years is motivated by the assertion

that predicting using (3) is desirable. We will confront

this assertion through a simple experiment to show that

our understanding of the Bayes posterior in deep models is

limited. Our work makes the following contributions:

• We demonstrate for two models and tasks (ResNet-

20 on CIFAR-10 and CNN-LSTM on IMDB) that the

Bayes posterior predictive has poor performance com-

pared to SGD-trained models.

• We put forth and systematically examine hypotheses

that could explain the observed behaviour.

• We introduce two new diagnostic tools for assess-

ing the approximation quality of stochastic gradient

Markov chain Monte Carlo methods (SG-MCMC) and

demonstrate that the posterior is accurately simulated

by existing SG-MCMC methods.

2. Cold Posteriors Perform Better

We now examine the quality of the posterior predictive for

two simple deep neural networks. We will describe details
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Figure 2. Predictive performance on the CIFAR-10 test set for a

cooled ResNet-20 Bayes posterior. The SGD baseline is separately

tuned for the same model (Appendix A.2).
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Figure 3. Predictive performance on the IMDB sentiment task test

set for a tempered CNN-LSTM Bayes posterior. Error bars are ±
one standard error over three runs. See Appendix A.4.

of the models, priors, and approximate inference methods

in Section 3 and Appendix A.1 to A.3. In particular, we

will study the accuracy of our approximate inference and

the influence of the prior in great detail in Section 4 and

Section 5.2, respectively. Here we show that temperized

Bayes ensembles obtained via low temperatures T < 1
outperform the true Bayes posterior at temperature T = 1.

2.1. Deep Learning Models: ResNet-20 and LSTM

ResNet-20 on CIFAR-10. Figure 1 and 2 show the test

accuracy and test cross-entropy of a Bayes prediction (3) for

a ResNet-20 on the CIFAR-10 classification task.1 We can

clearly see that both accuracy and cross-entropy are signifi-

cantly improved for a temperature T < 1/10 and that this

trend is consistent. Also, surprisingly this trend holds all the

way to small T = 10−4: the test performance obtained from

an ensemble of models at temperature T = 10−4 is superior

to the one obtained from T = 1 and better than the perfor-

mance of a single model trained with SGD. In Appendix G

we show that the uncertainty metrics Brier score (Brier,

1950) and expected calibration error (ECE) (Naeini et al.,

2015) are also improved by cold posteriors.

1A similar plot is Figure 3 in (Baldock & Marzari, 2019) and
another is in the appendix of (Zhang et al., 2020).
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CNN-LSTM on IMDB text classification. Figure 3 shows

the test accuracy and test cross-entropy of the tempered pre-

diction (3) for a CNN-LSTM model on the IMDB sentiment

classification task. The optimal predictive performance is

again achieved for a tempered posterior with a temperature

range of approximately 0.01 < T < 0.2.

2.2. Why is a Temperature of T < 1 a Problem?

There are two reasons why cold posteriors are problematic.

First, T < 1 corresponds to artificially sharpening the pos-

terior, which can be interpreted as overcounting the data by

a factor of 1/T and a rescaling2 of the prior as p(θ)
1

T . This

is equivalent to a Bayes posterior obtained from a dataset

consisting of 1/T replications of the original data, giving

too strong evidence to individual models. For T = 0, all

posterior probability mass is concentrated on the set of max-

imum a posteriori (MAP) point estimates. Second, T = 1
corresponds to the true Bayes posterior and performance

gains for T < 1 point to a deeper and potentially resolvable

problem with the prior, likelihood, or inference procedure.

2.3. Confirmation from the Literature

Should the strong performance of tempering the posterior

with T ≪ 1 surprise us? It certainly is an observation that

needs to be explained, but it is not new: if we comb the

literature of Bayesian inference in deep neural networks we

find broader evidence for this phenomenon.

Related work that uses T < 1 posteriors in SG-MCMC.

The following table lists work that uses SG-MCMC on deep

neural networks and tempers the posterior.3

Reference Temperature T

(Li et al., 2016) 1/
√
n

(Leimkuhler et al., 2019) T < 10−3

(Heek & Kalchbrenner, 2020) T = 1/5

(Zhang et al., 2020) T = 1/
√
50000

Related work that uses T < 1 posteriors in Variational

Bayes. In the variational Bayes approach to Bayesian neu-

ral networks, (Blundell et al., 2015; Hinton & Van Camp,

1993; MacKay et al., 1995; Barber & Bishop, 1998) we op-

timize the parameters τ of a variational distribution q(θ|τ)
2E.g., using a Normal prior with temperature T results in a

Normal distribution with scaled variance by a factor of T .
3For (Li et al., 2016) the tempering with T = 1/

√
n arises due

to an implementation mistake. For (Heek & Kalchbrenner, 2020)
we communicated with the authors, and tempering arises due to
overcounting data by a factor of 5, approximately justified by
data augmentation, corresponding to T = 1/5. For (Zhang et al.,
2020) the original implementation contains inadvertent tempering,
however, the authors added a study of tempering in a revision.

by maximizing the evidence lower bound (ELBO),

Eθ∼q(θ|τ)

[

n
∑

i=1

log p(yi|xi,θ)

]

−λDKL(q(θ|τ)‖p(θ)).(4)

For λ = 1 this directly minimizes DKL(q(θ|τ) ‖ p(θ|D))
and thus for sufficiently rich variational families will closely

approximate the true Bayes posterior p(θ|D). However,

in practice researchers discovered that using values λ < 1
provides better predictive performance, with common values

shown in the following table.4

Reference KL term weight λ in (4)

(Zhang et al., 2018) λ ∈ {1/2, 1/10}
(Bae et al., 2018) tuning of λ, unspecified

(Osawa et al., 2019) λ ∈ {1/5, 1/10}
(Ashukha et al., 2020) λ from 10−5 to 10−3

In Appendix E we show that the KL-weighted ELBO (4)

arises from tempering the likelihood part of the posterior.

From the above list we can see that the cold posterior

problem has left a trail in the literature, and in fact we

are not aware of any published work demonstrating well-

performing Bayesian deep learning at temperature T = 1.

We now give details on how we perform accurate Bayesian

posterior inference in deep learning models.

3. Bayesian Deep Learning in Practice

In this section we describe how we achieve efficient and

accurate simulation of Bayesian neural network posteriors.

This section does not contain any major novel contribution

but instead combines existing work.

3.1. Posterior Simulation using Langevin Dynamics

To generate approximate parameter samples θ ∼ p(θ | D)
we consider Langevin dynamics over parameters θ ∈ R

d

and momenta m ∈ R
d, defined by the Langevin stochastic

differential equation (SDE),

dθ = M
−1

m dt, (5)

dm = −∇θU(θ) dt− γm dt+
√

2γT M
1/2 dW. (6)

Here U(θ) is the posterior energy defined in (2), and T > 0
is the temperature. We use W to denote a standard multi-

variate Wiener process, which we can loosely understand as

a generalized Gaussian distribution (Särkkä & Solin, 2019;

Leimkuhler & Matthews, 2016). The mass matrix M is a

preconditioner, and if we use no preconditioner then M = I ,

such that all M-related terms vanish from the equations. The

4For (Osawa et al., 2019) scaling with λ arises due to their use
of a “data augmentation factor” ρ ∈ {5, 10}.
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friction parameter γ > 0 controls both the strength of cou-

pling between the moments m and parameters θ as well as

the amount of injected noise (Langevin, 1908; Leimkuhler

& Matthews, 2016). For any friction γ > 0 the SDE (5–6)

has the same limiting distribution, but the choice of friction

does affect the speed of convergence to this distribution.

Simulating the continuous Langevin SDE (5–6) produces a

trajectory distributed according to exp(−U(θ)/T ) and the

Bayes posterior is recovered for T = 1.

3.2. Stochastic Gradient MCMC (SG-MCMC)

Bayesian inference now corresponds to simulating the above

SDE (5–6) and this requires numerical discretization. For

efficiency stochastic gradient Markov chain Monte Carlo

(SG-MCMC) methods further approximate ∇θU(θ) with

a minibatch gradient (Welling & Teh, 2011; Chen et al.,

2014). For a minibatch B ⊂ {1, 2, . . . , n} we first compute

the minibatch average gradient G̃(θ),

∇θG̃(θ) := − 1

|B|
∑

i∈B

∇θ log p(yi|xi,θ)−
1

n
∇θ log p(θ),

(7)

and approximate ∇θU(θ) with the unbiased estimate

∇θŨ(θ) = n∇θG̃(θ). Here |B| is the minibatch size and

n is the training set size; in particular, note that the log prior

scales with 1/n regardless of the batch size.

The SDE (5–6) is defined in continuous time (dt), and in

order to solve the dynamics numerically we have to dis-

cretize the time domain (Särkkä & Solin, 2019). In this

work we use a simple first-order symplectic Euler discretiza-

tion, (Leimkuhler & Matthews, 2016), as first proposed

for (5–6) by (Chen et al., 2014). Recent work has used

more sophisticated discretizations, (Chen et al., 2015; Shang

et al., 2015; Heber et al., 2019; Heek & Kalchbrenner, 2020).

Applying the symplectic Euler scheme to (5–6) gives the

discrete time update equations,

m
(t) = (1− hγ)m(t−1) − hn∇θG̃(θ(t−1)) (8)

+
√

2γhT M
1/2

R
(t), (9)

θ
(t) = θ

(t−1) + hM−1
m

(t), (10)

where R
(t) ∼ Nd(0, Id) is a standard Normal vector.

In (8–10), the parameterization is in terms of step size h
and friction γ. These quantities are different from typi-

cal SGD parameters. In Appendix B we establish an ex-

act correspondence between the SGD learning rate ℓ and

momentum decay parameters β and SG-MCMC parame-

ters. For the symplectic Euler discretization of Langevin

dynamics, we derive this relationship as h :=
√

ℓ/n, and

γ := (1− β)
√

n/ℓ, where n is the total training set size.

3.3. Accurate SG-MCMC Simulation

In practice there remain two sources of error when following

the dynamics (8–10):

• Minibatch noise: ∇θŨ(θ) is an unbiased estimate of

∇θU(θ) but contains additional estimation variance.

• Discretization error: we incur error by following a

continuous-time path (5–6) using discrete steps (8–10).

We use two methods to reduce these errors: preconditioning

and cyclical time stepping.

Layerwise Preconditioning. Preconditioning through a

choice of matrix M is a common way to improve the behav-

ior of optimization methods. Li et al. (2016) and Ma et al.

(2015) proposed preconditioning for SG-MCMC methods,

and in the context of molecular dynamics the use of a matrix

M has a long tradition as well, (Leimkuhler & Matthews,

2016). Li’s proposal is an adaptive preconditioner inspired

by RMSprop, (Tieleman & Hinton, 2012). Unfortunately,

using the discretized Langevin dynamics with a precondi-

tioner M(θ) that depends on θ compromises the correctness

of the dynamics.5 We propose a simpler preconditioner that

limits the frequency of adaptating M: after a number of it-

erations we estimate a new preconditioner M using a small

number of batches, say 32, but without updating any model

parameters. This preconditioner then remains fixed for a

number of iterations, for example, the number of iterations it

takes to visit the training set once, i.e. one epoch. We found

this strategy to be highly effective at improving simulation

accuracy. For details, please see Appendix D.

Cyclical time stepping. The second method to improve

simulation accuracy is to decrease the discretization step

size h. Chen et al. (2015) studied the consequence of both

minibatch noise and discretization error on simulation ac-

curacy and showed that the overall simulation error goes

to zero for h ց 0. While lowering the step size h to a

small value would also make the method slow, recently

Zhang et al. (2020) propose to perform cycles of iterations

t = 1, 2, . . . with a high-to-low step size schedule h0 C(t)
described by an initial step size h0 and a function C(t) that

starts at C(1) = 1 and has C(L) = 0 for a cycle length of

L iterations. Such cycles retain fast simulation speed in the

beginning while accepting simulation error. Towards the

end of each cycle however, a small step size ensures an ac-

curate simulation. We use the cosine schedule from (Zhang

et al., 2020) for C(t), see Appendix A.

We integrate these two techniques together into a practical

SG-MCMC procedure, Algorithm 1. When no precondition-

ing and no cosine schedule is used (M = I and C(t) = 1
in all iterations) and T (t) = 0 this algorithm is equivalent

5Li et al. (2016) derives the required correction term, which
however is expensive to compute and omitted in practice.
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Algorithm 1: Symplectic Euler Langevin scheme.

1 Function SymEulerSGMCMC(G̃, θ(0), ℓ, β,n,T)

Input: G̃ : Θ→ R mean energy function estimate;

θ
(0) ∈ R

d initial parameter; ℓ > 0 learning
rate; β ∈ [0, 1) momentum decay; n total
training set size; T (t) ≥ 0 temperature
schedule

Output: Sequence θ
(t), t = 1, 2, . . .

2 h0 ←
√

ℓ/n // SDE time step

3 γ ← (1− β)
√

n/ℓ // friction

4 Sample m
(0) ∼ Nd(0, Id)

5 M← I // Initial M

6 for t = 1, 2, . . . do
7 if new epoch then

8 mc ←M
−1/2

m
(t−1)

9 M← EstimateM(G̃,θ(t−1))

10 m
(t−1) ←M

1/2
mc

11 h← C(t)h0 // Cyclic modulation

12 Sample R
(t) ∼ Nd(0, Id) // noise

13 m
(t) ← (1− hγ)m(t−1) − hn∇θG̃(θ(t−1)) +
√

2γhT (t)M1/2
R

(t)

14 θ
(t) ← θ

(t−1) + hM
−1

m
(t)

15 if end of cycle then

16 yield θ
(t) // Parameter sample

to Tensorflow’s SGD with momentum (Appendix C).

Coming back to the Cold Posteriors effect, what could ex-

plain the poor performance at temperature T = 1? With

our Bayesian hearts, there are only three possible areas to

examine: the inference, the prior, or the likelihood function.

4. Inference: Is it Accurate?

Both the Bayes posterior and the cooled posteriors are all in-

tractable. Moreover, it is plausible that the high-dimensional

posterior landscape of a deep network may lead to difficult-

to-simulate SDE dynamics (5–6). Our approximate SG-

MCMC inference method further has to deal with minibatch

noise and produces only a finite sample approximation to

the predictive integral (3). Taken together, could the Cold

Posteriors effect arise from a poor inference accuracy?

4.1. Hypothesis: Inaccurate SDE Simulation

Inaccurate SDE Simulation Hypothesis: the SDE (5–

6) is poorly simulated.

To gain confidence that our SG-MCMC method simulates

the posterior accurately, we introduce diagnostics that previ-

ously have not been used in the SG-MCMC context:

• Kinetic temperatures (Appendix I.1): we report per-

variable statistics derived from the moments m. For

these so called kinetic temperatures we know the exact
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Figure 4. HMC (left) agrees closely with SG-MCMC (right) for

synthetic data on multilayer perceptrons. A star indicates the

optimal temperature for each model: for the synthetic data sampled

from the prior there are no cold posteriors and both sampling

methods perform best at T = 1.

sampling distribution under Langevin dynamics and

compute their 99% confidence intervals.

• Configurational temperatures (Appendix I.2): we re-

port per-variable statistics derived from 〈θ,∇θU(θ)〉.
For these configurational temperatures we know the

expected value under Langevin dynamics.

We propose to use these diagnostics to assess simulation

accuracy of SG-MCMC methods. We introduce the diag-

nostics and our new results in detail in Appendix I.

Inference Diagnostics Experiment: In Appendix J we re-

port a detailed study of simulation accuracy for both models.

This study reports accurate simulation for both models when

both preconditioning and cyclic time stepping are used. We

can therefore with reasonably high confidence rule out a

poor simulation of the SDE. All remaining experiments in

this paper also pass the simulation accuracy diagnostics.

4.2. Hypothesis: Biased SG-MCMC

Biased SG-MCMC Hypothesis: Lack of ac-

cept/reject Metropolis-Hastings corrections in SG-

MCMC introduces bias.

In Markov chain Monte Carlo it is common to use an ad-

ditional accept-reject step that corrects for bias in the sam-

pling procedure. For MCMC applied to deep learning this

correction step is too expensive and therefore omitted in

SG-MCMC methods, which is valid for small time steps

only, (Chen et al., 2015). If accept-reject is computation-

ally feasible the resulting procedure is called Hamiltonian

Monte Carlo (HMC) (Neal et al., 2011; Betancourt & Giro-

lami, 2015; Duane et al., 1987; Hoffman & Gelman, 2014).

Because it provides unbiased simulation, we can consider

HMC the gold standard, (Neal, 1995). We now compare

gold standard HMC against SG-MCMC on a small example

where comparison is feasible. We provide details of our

HMC setup in Appendix O.

HMC Experiment: we construct a simple setup using a
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multilayer perceptron (MLP) where by construction T = 1
is optimal; such Bayes optimality must hold in expectation

if the data is generated by the prior and model that we

use for inference, (Berger, 1985). Thus, we can ensure

that if the cold posterior effect is observed it must be due

to a problem in our inference method. We perform all

inference without minibatching (|B| = n) and test MLPs of

varying number of one to three layers, ten hidden units each,

and using the ReLU activation. As HMC implementation

we use tfp.mcmc.HamiltonianMonteCarlo from

Tensorflow Probability (Dillon et al., 2017; Lao et al., 2020):

Details for our data and HMC are in Appendix N–O.

In Figure 4 the SG-MCMC results agree very well with the

HMC results with optimal predictions at T = 1, i.e. no

cold posteriors are present. For the cases tested we conclude

that SG-MCMC is almost as accurate as HMC and the lack

of accept-reject correction cannot explain cold posteriors.

Appendix O further shows that SG-MCMC and HMC are

in good agreement when inspecting the KL divergence of

their resulting predictive distributions.

4.3. Hypothesis: Stochastic Gradient Noise

Minibatch Noise Hypothesis: gradient noise from

minibatching causes inaccurate sampling at T = 1.

Gradient noise due to minibatching can be heavy-tailed and

non-Gaussian even for large batch sizes, (Simsekli et al.,

2019). Our SG-MCMC method is only justified if the effect

of noise will diminish for small time steps. We therefore

study the influence of batch size on predictive performance

through the following experiment.

Batchsize Experiment: we repeat the original ResNet-

20/CIFAR-10 experiment at different temperatures for batch

sizes in {32, 64, 128, 256} and study the variation of the

predictive performance as a function of batch size. Figure 5

and Figure 6 show that while there is a small variation be-

tween different batch sizes T < 1 remains optimal for all

batch sizes. Therefore minibatch noise alone cannot explain

the observed poor performance at T = 1.

For both ResNet and CNN-LSTM the best cross-entropy is

achieved by the smallest batch size of 32 and 16, respec-

tively. The smallest batch size has the largest gradient noise.

We can interpret this noise as an additional heat source that

increases the effective simulation temperature. However, the

noise distribution arising from minibatching is anisotropic,

(Zhu et al., 2019), and this could perhaps aid generalization.

We will not study this hypothesis further here.
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Figure 5. Batch size dependence of the ResNet-20/CIFAR-10 en-

semble performance, reporting mean and standard error (3 runs):

for all batch sizes the optimal predictions are obtained for T < 1.

10−4 10−3 10−2 10−1 100

Temperature T

0.80

0.82

0.84

0.86

T
e
s
t 
a
c
c
u
ra

c
y

batch size 16

batch size 32

batch size 64

batch size 128

10−4 10−3 10−2 10−1 100

Temperature T

0.30

0.35

0.40

0.45

0.50

T
e
s
t 
c
ro

s
s
 e

n
tr

o
p
y

Figure 6. Batch size dependence of the CNN-LSTM/IMDB ensem-

ble performance, reporting mean and standard error (3 runs): for

all batch sizes, the optimal performance is achieved at T < 1.

4.4. Hypothesis: Bias-Variance Trade-off

Bias-variance Tradeoff Hypothesis: For T = 1 the

posterior is diverse and there is high variance between

model predictions. For T ≪ 1 we sample nearby

modes and reduce prediction variance but increase bias;

the variance dominates the error and reducing variance

(T ≪ 1) improves predictive performance.

If this hypothesis were true then simply collecting more

ensemble members, S → ∞, would reduce the variance

to arbitrary small values and thus fix the poor predictive

performance we observe at T = 1. Doing so would require

running our SG-MCMC schemes for longer—potentially for

much longer. We study this question in detail in Appendix F

and conclude by an asymptotic analysis that the amount of

variance cannot explain cold posteriors.

5. Why Could the Bayes Posterior be Poor?

With some confidence in our approximate inference proce-

dure what are the remaining possibilities that could explain

the cold posterior effect? The remaining two places to look

at are the likelihood function and the prior.

5.1. Problems in the Likelihood Function?

For Bayesian deep learning we use the same likelihood

function p(y|x,θ) as we use for SGD. Therefore, because

the same likelihood function works well for SGD it appears

an unlikely candidate to explain the cold posterior effect.

However, current deep learning models use a number of

techniques—such as data augmentation, dropout, and batch
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normalization—that are not formal likelihood functions.

This observations brings us to the following hypothesis.

Dirty Likelihood Hypothesis: Deep learning prac-

tices that violate the likelihood principle (batch normal-

ization, dropout, data augmentation) cause deviation

from the Bayes posterior.

In Appendix K we give a theory of “Jensen posteriors”

which describes the likelihood-like functions arising from

modern deep learning techniques. We report an experi-

ment (Appendix K.4) that—while slightly inconclusive—

demonstrates that cold posteriors remain when a clean like-

lihood is used in a suitably modified ResNet model; the

CNN-LSTM model already had a clean likelihood function.

5.2. Problems with the Prior p(θ)?

So far we have used a simple Normal prior, p(θ) = N (0, I),
as was done in prior work (Zhang et al., 2020; Heek &

Kalchbrenner, 2020; Ding et al., 2014; Li et al., 2016; Zhang

et al., 2018). But is this a good prior?

One could hope, that perhaps with an informed and struc-

tured model architecture, a simple prior could be sufficient

in placing prior beliefs on suitable functions, as argued

by Wilson (2019). While plausible, we are mildly cautious

because there are known examples where innocent looking

priors have turned out to be unintentionally highly informa-

tive.6 Therefore, with the cold posterior effect having a track

record in the literature, perhaps p(θ) = N (0, I) could have

similarly unintended effects of placing large prior mass on

undesirable functions. This leads us to the next hypothesis.

Bad Prior Hypothesis: The current priors used for

BNN parameters are inadequate, unintentionally infor-

mative, and their effect becomes stronger with increas-

ing model depths and capacity.

To study the quality of our prior, we study typical functions

obtained by sampling from the prior, as is good practice in

model criticism, (Gelman et al., 2013).

Prior Predictive Experiment: for our ResNet-20 model

we generate samples θ
(i) ∼ p(θ) = N (0, I) and look at

the induced predictive distribution Ex∼p(x)[p(y|x,θ(i))] for

each parameter sample, using the real CIFAR-10 training

images. From Figure 7 we see that typical prior draws pro-

duce concentrated class distributions, indicating that the

N (0, I) distribution is a poor prior for the ResNet-20 likeli-

hood. From Figure 8 we can see that the average predictions

obtained from such concentrated functions remain close

6A shocking example in the Dirichlet-Multinomial model is
given by Nemenman et al. (2002). Importantly the unintended ef-
fect of the prior was not recognized when the model was originally
proposed by Wolpert & Wolf (1995).

to the uniform class distribution. Taken together, from a

subjective Bayesian view p(θ) = N (0, I) is a poor prior:

typical functions produced by this prior place a high prob-

ability the same few classes for all x. In Appendix L we

carry out another prior predictive study using He-scaling

priors, (He et al., 2015), which leads to similar results.

Prior Variance σ Scaling Experiment: in the previous ex-

periment we found that the standard Normal prior is poor.

Can the Normal prior p(θ) = N (0, σ) be fixed by using

a more appropriate variance σ? For our ResNet-20 model

we employ Normal priors of varying variances. Figure 12

shows that the cold posterior effect is present for all vari-

ances considered. Further investigations for known scaling

laws in deep networks is given in Appendix L. The cold

posterior effect cannot be resolved by using the right scaling

of the Normal prior.

Training Set Size n Scaling Experiment: the posterior en-

ergy U(θ) in (2) sums over all n data log-likelihoods but

adds log p(θ) only once. This means that the influence of

log p(θ) vanishes at a rate of 1/n and thus the prior will

exert its strongest influence for small n. We now study what

happens for small n by comparing the Bayes predictive un-

der a N (0, I) prior against performing SGD maximum a

posteriori (MAP) estimation on the same log-posterior.7

Figure 9 and Figure 10 show the predictive performance

for ResNet-20 on CIFAR-10 and CNN-LSTM on IMDB,

respectively. These results differ markedly between the two

models and datasets: for ResNet-20 / CIFAR-10 the Bayes

posterior at T = 1 degrades gracefully for small n, whereas

SGD suffers large losses in test cross-entropy for small n.

For CNN-LSTM / IMDB predictions from the Bayes poste-

rior at T = 1 deteriorate quickly in both test accuracy and

cross entropy. In all these runs SG-MCMC and SGD/MAP

work with the same U(θ) and the difference is between in-

tegration and optimization. The results are inconclusive but

somewhat implicate the prior in the cold posterior effect: as

n becomes small there is an increasing difference between

the cross-entropy achieved by the Bayes prediction and the

SGD estimate, for large n the SGD estimate performs better.

Capacity Experiment: we consider a MLP using a N (0, I)
prior and study the relation of the network capacity to the

cold posterior effect. We train MLPs of varying depth (num-

ber of layers) and width (number of units per layer) at dif-

ferent temperatures on CIFAR-10. Figure 11 shows that

for increasing capacity the cold posterior effect becomes

more prominent. This indicates a connection between model

capacity and strength of the cold posterior effect.

7For SGD we minimize U(θ)/n.
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Figure 7. ResNet-20/CIFAR-10 typical prior predictive distributions for 10 classes under

aN (0, I) prior averaged over the entire training set, Ex∼p(x)[p(y|x,θ(i))]. Each plot is

for one sample θ
(i) ∼ N (0, I) from the prior. Given a sample θ

(i) the average training

data class distribution is highly concentrated around the same classes for all x.
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Figure 8. ResNet-20/CIFAR-10 prior predic-

tive Ex∼p(x)[Eθ∼p(θ)[p(y|x,θ)]] over 10

classes, estimated using S = 100 prior sam-

ples θ(i) and all training images.
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Figure 9. ResNet-20/CIFAR-10 predictive performance as a func-

tion of training set size n. The Bayes posterior (T = 1) degrades

gracefully as n decreases, whereas SGD/MAP performs worse.
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Figure 10. CNN-LSTM/IMDB predictive performance as a func-

tion of training set size n. The Bayes posterior (T = 1) suffers

more than the SGD performance, indicating a problematic prior.

5.3. Inductive Bias due to SGD?

Implicit Initialization Prior in SGD: The inductive

bias from initialization is strong and beneficial for SGD

but harmed by SG-MCMC sampling.

Optimizing neural networks via SGD with a suitable initial-

ization is known to have a beneficial inductive bias leading

to good local optima, (Masters & Luschi, 2018; Mandt et al.,

2017). Does SG-MCMC perform worse due to decreasing

the influence of that bias? We address this question by the

following experiment. We first run SGD until convergence,

then switch over to SG-MCMC sampling for 500 epochs (10
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Figure 11. MLP of different capacities (depth and width) on

CIFAR-10. Left: we fix the width to 128 and vary the depth.

Right: we fix the depth to 3 and vary the width. Increasing capac-

ity lowers the optimal temperature.
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Figure 12. ResNet-20/CIFAR-10 predictive performance as a func-

tion of temperature T for different priors p(θ) = N (0, σ). The

cold posterior effect is present for all choices of the prior vari-

ance σ. For all models the optimal temperature is significantly

smaller than one and for σ = 0.001 the performance is poor for

all temperatures. There is no “simple” fix of the prior.

cycles), and finally switch back to SGD again. Figure 13

shows that SGD initialized by the last model of the SG-

MCMC sampling dynamics recovers the same performance

as vanilla SGD. This indicates that the beneficial initializa-

tion bias for SGD is not destroyed by SG-MCMC. Details

can be found in Appendix H.

6. Alternative Explanations?

Are there other explanations we have not studied in this

work?
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Masegosa Posteriors. One exciting avenue of future ex-

ploration was provided to us after submitting this work: a

compelling analysis of the failure to predict well under the

Bayes posterior is given by Masegosa (2019). In his analy-

sis he first follows Germain et al. (2016) in identifying the

Bayes posterior as a solution of a loose PAC-Bayes gener-

alization bound on the predictive cross-entropy. He then

uses recent results demonstrating improved Jensen inequal-

ities, (Liao & Berg, 2019), to derive alternative posteriors.

These alternative posteriors are not Bayes posteriors and in

fact explicitly encourage diversity among ensemble mem-

ber predictions. Moreover, the alternative posteriors can be

shown to dominate the predictive performance achieved by

the Bayes posterior when the model is misspecified. We

believe that these new “Masegosa-posteriors”, while not ex-

plaining cold posteriors fully, may provide a more desirable

approximation target than the Bayes posterior. In addition,

the Masegosa-posterior is compatible with both variational

and SG-MCMC type algorithms.

Tempered observation model? In (Wilson & Izmailov,

2020, Section 8.3) it is claimed that cold posteriors in one

model correspond to untempered (T = 1) Bayes posteriors

in a modified model by a simple change of the likelihood

function. If this were the case, this would resolve the cold

posterior problem and in fact point to a systematic way how

to improve the Bayes posterior in many models. However,

the argument in (Wilson & Izmailov, 2020) is wrong, which

we demonstrate and discuss in detail in Appendix M.

7. Related Work on Tempered Posteriors

Statisticians have studied tempered or fractional posteriors

for T > 1. Motivated by the behavior of Bayesian infer-

ence in misspecified models (Grünwald et al., 2017; Jansen,

2013) develop the SafeBayes approach and Bhattacharya

et al. (2019) develops fractional posteriors with the goal of

slowing posterior concentration. The use of multiple tem-

peratures T > 1 is also common in Monte Carlo simulation

in the presence of rough energy landscapes, e.g. (Earl &

Deem, 2005; Sugita & Okamoto, 1999; Swendsen & Wang,

1986). However, the purpose of such tempering is to aid in

accurate sampling at a desired target temperature, but not in

changing the target distribution. (Mandt et al., 2016) studies

temperature as a latent variable in the context of variational

inference and shows that models often select temperatures

different from one.

8. Conclusion

Our work has raised the question of cold posteriors but we

did not fully resolve nor fix the cause for the cold posterior

phenomenon. Yet our experiments suggest the following.
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Figure 13. Do the SG-MCMC dynamics harm a beneficial initial-

ization bias used by SGD? We first train a ResNet-20 on CIFAR-10

via SGD, then switch over to SG-MCMC sampling and finally

switch back to SGD optimization. We report the single-model test

accuracy of SGD and the SG-MCMC chain as function of epochs.

SGD recovers from being initialized by the SG-MCMC state.

SG-MCMC is accurate enough: our experiments (Sec-

tion 4–5) and novel diagnostics (Appendix I) indicate that

current SG-MCMC methods are robust, scalable, and accu-

rate enough to provide good approximations to parameter

posteriors in deep nets.

Cold posteriors work: while we do not fully understand

cold posteriors, tempered SG-MCMC ensembles provide

a way to train ensemble models with improved predictions

compared to individual models. However, taking into ac-

count the added computation from evaluating ensembles,

there may be more practical methods, (Lakshminarayanan

et al., 2017; Wen et al., 2019; Ashukha et al., 2020).

More work on priors for deep nets is needed: the exper-

iments in Section 5.2 implicate the prior p(θ) in the cold

posterior effect, although the prior may not be the only cause.

Our investigations fail to produce a “simple” fix based on

scaling the prior variance appropriately. Future work on suit-

able priors for Bayesian neural networks is needed, building

on recent advances, (Sun et al., 2019; Pearce et al., 2019;

Flam-Shepherd et al., 2017; Hafner et al., 2018).
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