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HOW GOOD IS THE CHORD ALGORITHM?∗

CONSTANTINOS DASKALAKIS† , ILIAS DIAKONIKOLAS‡ , AND MIHALIS YANNAKAKIS§

Abstract. The Chord algorithm is a popular, simple method for the succinct approximation of
curves, which is widely used, under different names, in a variety of areas, such as multiobjective and
parametric optimization, computational geometry, and graphics. We analyze the performance of the
Chord algorithm, as compared to the optimal approximation that achieves a desired accuracy with
the minimum number of points. We prove sharp upper and lower bounds, both in the worst case
and average case settings.
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1. Introduction. Consider a typical design problem with more than one objec-
tive (design criteria). For example, we may want to design a network that provides
the maximum capacity with the minimum cost, or we may want to design a radia-
tion therapy for a patient that maximizes the dose to the tumor and minimizes the
dose to the healthy organs. In such multiobjective (or multicriteria) problems there
is typically no solution that optimizes simultaneously all the objectives, but rather a
set of so-called Pareto optimal solutions, i.e., solutions that are not dominated by any
other solution in all the objectives. The trade-off between the different objectives is
captured by the trade-off or Pareto curve (surface for three or more objectives), the
set of values of the objective functions for all the Pareto optimal solutions.

Multiobjective problems are prevalent in many fields, e.g., engineering, economics,
management, healthcare, etc. There is extensive research in this area published in
different fields; see [Ehr, EG, FGE, Mit, RW] for some books and surveys. In a
multiobjective problem, we would ideally like to compute the Pareto curve and present
it to the decision maker to select the solution that strikes the “right” balance between
the objectives according to his/her preferences (and different users may prefer different
points on the curve). The problem is that the Pareto curve has typically an enormous
number of points, or even an infinite number for continuous problems (with no closed
form description), and thus we cannot compute all of them. We can only compute a
limited number of solutions (points), and of course we want the computed points to
provide a good approximation to the Pareto curve so that the decision maker can get
a good sense of the range of possibilities in the design space.
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812 C. DASKALAKIS, I. DIAKONIKOLAS, AND M. YANNAKAKIS

We measure the quality of the approximation provided by a computed solution
set using a (multiplicative) approximation ratio, as in the case of approximation al-
gorithms for single-objective problems. Assume (as is usual in approximation algo-
rithms) that the objective functions take positive values. A set of solutions S is an
ǫ-Pareto set if the members of S approximately dominate within 1 + ǫ every other
solution, i.e., for every solution s there is a solution s′ ∈ S such that s′ is within
a factor 1 + ǫ or better of s in all the objectives [PY1]. Often, after computing a
finite set S of solutions and their corresponding points in objective space (i.e., their
vectors of objective values), we “connect the dots,” taking, in effect, also the convex
combinations of the solution points. In problems where the solution points form a
convex set (examples include multiobjective flows, linear programming, convex pro-
gramming), this convexification is justified and provides a much better approximation
of the Pareto curve than the original set S of individual points. A set S of solutions
is called an ǫ-convex Pareto set if the convex hull of the solution points corresponding
to S approximately dominates within 1 + ǫ all the solution points [DY2]. Even for
applications with nonconvex solution sets, sometimes solutions that are dominated by
convex combinations of other solutions are considered inferior, and one is interested
only in solutions that are not thus dominated, i.e., in solutions whose objective values
are on the (undominated) boundary of the convex hull of all solution points, the so-
called convex Pareto set. Note that every instance of a multiobjective problem has a
unique Pareto set and a unique convex Pareto set, but in general it has many differ-
ent ǫ-Pareto sets and ǫ-convex Pareto sets, and furthermore these can have drastically
different sizes. It is known that for every multiobjective problem with a fixed number
d of polynomially computable objective functions, there exists an ǫ-Pareto set (and
also ǫ-convex Pareto set) of polynomial size, in particular of size O((mǫ )

d−1), where
m is the bit complexity of the objective functions (i.e., the functions take values in
the range [2−m, 2m]) [PY1]. Whether such approximate sets can be constructed in
polynomial time is another matter: Necessary and sufficient conditions for polynomial
time constructibility of ǫ-Pareto and ǫ-convex Pareto sets are given, respectively, in
[PY1, DY2].

The most common approach to the generation of Pareto points (called the weighted-
sum method) is to give nonnegative weights wi to the different objective functions fi
(assume for simplicity that they are all minimization objectives) and then optimize
the linear combining function

∑

iwifi; this approach assumes availability of a subrou-
tine Comb that optimizes such linear combinations of the objectives. For any set of
nonnegative weights, the optimal solution is clearly in the Pareto set, actually in the
convex Pareto set. In fact, the convex Pareto set is precisely the set of optimal solu-
tions for all possible such weighted linear combinations of the objectives. Of course,
we cannot try all possible weights; we must select carefully a finite set of weights, so
that the resulting set of solutions provides a good approximation, i.e., is an ǫ-convex
Pareto set for a desired small ǫ. It is shown in [DY2] that a necessary and sufficient
condition for the polynomial time constructibility of an ǫ-convex Pareto set is the
availability of a polynomial time Comb routine for the approximate optimization of
nonnegative linear combinations.

In a typical multiobjective problem, the Comb routine is a nontrivial piece of
software, each call takes a substantial amount of time, thus we want to make the best
use of the calls to achieve as good a representation of the solution space as possible.
Ideally, we would like to achieve the smallest possible approximation error ǫ with the
fewest number of calls to the Comb routine. That is, given ǫ > 0, compute an ǫ-convex
Pareto set for the instance at hand using as few Comb calls as possible. (In [DY2]
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A RIGOROUS ANALYSIS OF THE CHORD ALGORITHM 813

we study a different cost metric; we explain the difference at the end of this section,
and we note that both metrics are relevant for different aspects of decision making in
multiobjective problems.)

We measure the performance of an algorithm by the ratio of its cost, i.e., the num-
ber of calls that it makes, to the minimum possible number required for the instance
at hand (as is usual in approximation algorithms). Let OPTǫ(I) be the number of
points in the smallest ǫ-convex Pareto set for an instance I. Clearly, every algorithm
that computes an ǫ-convex Pareto set needs to make at least OPTǫ(I) calls. The
performance (competitive) ratio of an algorithm A that computes an ǫ-convex Pareto

set using A(I) calls for each instance I is supI
A(I)

OPTǫ(I)
. An important point that

should be stressed here is that, as in the case of online algorithms, the algorithm does
not have complete information about the input, i.e., the (convex) Pareto curve is not
given explicitly, but can only be accessed indirectly through calls to the Comb routine;
in fact, the whole purpose of the algorithm is to obtain an approximate knowledge of
the curve.

In this paper we investigate the performance of the Chord algorithm, a simple,
natural greedy algorithm for the approximate construction of the Pareto set. The
algorithm and variants of it have been used often, under various names, for multiob-
jective problems [AN, BHR, CCS, CHSB, FBR, RF, Ro, YG] as well as several other
types of applications involving the approximation of curves, which we will describe
later on. We focus on the biobjective case; although the algorithm can be defined
(and has been used) for more objectives, most of the literature concerns the biobjec-
tive case, which is already rich enough, and covers also most of the common uses of
the algorithm.

We now briefly describe the algorithm. (See section 2.2 for a formal description
and Table 1 for a detailed pseudocode.) Let f1, f2 be the two objectives (say min-
imization objectives for concreteness), and let P be the (unknown) convex Pareto
curve. First optimize f1 and f2 separately (i.e., call Comb for the weight tuples (1, 0)
and (0, 1)) to compute the leftmost and rightmost points a, b of the curve P . The
segment (a, b) is a first approximation to P ; its quality is determined by a point q ∈ P
that is least well covered by the segment. It is easy to see that this worst point q
is a point of the Pareto curve P that minimizes the linear combination f2 + λabf1,
where λab is the absolute value of the slope of (a, b), i.e., it is a point of P with a
supporting line parallel to the “chord” (a, b). Compute such a worst point q; if the
error is at most ǫ, then terminate, otherwise add q to the set S to form an approx-
imate set {a, q, b} and recurse on the two intervals (a, q) and (q, b). In section 2 we
give a more detailed formal description (for example, in some cases one can determine
from previous information that the maximum possible error in an interval is upper
bounded by ǫ and do not need to call Comb).

The algorithm is quite natural, it has been often reinvented, and is commonly
used for a number of other purposes. As pointed out in [Ro], an early application was
by Archimedes who used it to approximate a parabola for area estimation [Ar]. In the
area of parametric optimization, the algorithm is known as the “Eisner–Severance”
method after [ES]. Note that parametric optimization is closely related to biobjective
optimization. For example, in the parametric shortest path problem, each edge e has
cost ce + λde that depends on a parameter λ. The length of the shortest path is a
piecewise linear function of λ whose pieces correspond to the vertices of the convex
Pareto curve for the biobjective shortest path problem with cost vectors c, d on the
edges. A call to the Comb routine for the biobjective problem corresponds to solving
the parametric problem for a particular value of the parameter.
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814 C. DASKALAKIS, I. DIAKONIKOLAS, AND M. YANNAKAKIS

The Chord algorithm is also useful for the approximation of convex functions and
for the approximation and smoothening of convex and even nonconvex curves. In
the case of functions, an appropriate measure of distance between the function f and
the approximation is the vertical distance, while for curves a natural measure is the
Hausdorff distance; note that for a given curve and approximating segment ab, the
same point q of the curve with supporting line parallel to ab also maximizes the above
distances. In the context of smoothening and compressing curves and polygonal lines
for graphics and related applications, the Chord algorithm is known as the Ramer–
Douglas–Peucker algorithm, after [Ra, DP] who independently proposed it.

Previous work has analyzed the Chord algorithm (and variants) for achieving an ǫ-
approximation of a function or curve with respect to vertical and Hausdorff distances,
and proved bounds on the cost of the algorithm as a function of ǫ: For all convex
curves of length L (under some technical conditions on the derivatives), the algorithm
uses at most O(

√

L/ǫ) calls to construct an ǫ-approximation, and there are curves

(for example, a portion of a circle) that require Ω(
√

L/ǫ) calls [Ro, YG].
Note however that these results do not tell us what the performance ratio is,

because for many instances, the optimal cost OPTǫ may be much smaller than
√

L/ǫ,
perhaps even a constant. For example, if P is a convex polygonal line with few
vertices, then the Chord algorithm will perform very well for ǫ = 0; in fact, as shown
by [ES] in the context of parametric optimization, if there are N breakpoints, then
the algorithm will compute the exact curve after 2N − 1 calls. (The problem is of
course that in most biobjective and parametric problems, the number N of vertices
is huge, or even infinite for continuous problems, and thus we have to approximate.)

In this paper we provide sharp upper and lower bounds on the performance (com-
petitive) ratio of the Chord algorithm, both in the worst case and in the average case
setting. Consider a biobjective problem where the objective functions take values in
[2−m, 2m]. We prove that the worst-case performance ratio of the Chord algorithm for

computing an ǫ-convex Pareto set is Θ( m+log(1/ǫ)
logm+log log(1/ǫ) ). The upper bound implies in

particular that for problems with polynomially computable objective functions and
a polynomial time (exact or approximate) Comb routine, the Chord algorithm runs
in polynomial time in the input size and 1/ǫ. We show furthermore that there is
no algorithm with constant performance ratio. In particular, every algorithm (even
randomized) has performance ratio at least Ω(logm+ log log(1/ǫ)).

Similar results hold for the approximation of convex curves with respect to the
Hausdorff distance. That is, the performance ratio of the Chord algorithm for approx-

imating a convex curve of length L within Hausdorff distance ǫ is Θ( log(L/ǫ)
log log(L/ǫ)). Fur-

thermore, every algorithm has a worst-case performance ratio at least Ω(log log(L/ǫ)).
We also analyze the expected performance of the Chord algorithm for some nat-

ural probability distributions. Given that the algorithm is used in practice in various
contexts with good performance, and since worst-case instances are often pathological
and extreme, it is interesting to analyze the average case performance of the algorithm.
Indeed, we show that the performance on the average is exponentially better. Note
that Chord is a simple natural greedy algorithm, and is not tuned to any particular
distribution. We consider instances generated by a class of product distributions that
are “approximately” uniform and prove that the expected performance ratio of the
Chord algorithm is Θ(logm + log log(1/ǫ)) (upper and lower bound). Again similar
results hold for the Hausdorff distance.

Related work. There is extensive work on multiobjective optimization, as well as
on approximation of curves in various contexts. We have discussed already the main
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related references. The problem addressed by the Chord algorithm fits within the
general framework of determining the shape by probing [CY]. Most of the work in
this area concerns the exact reconstruction, and the analytical works on approximation
(e.g., [LB, Ro, YG]) compute only the worst-case cost of the algorithm in terms of ǫ
(showing bounds of the form O(

√

L/ǫ)). There does not seem to be any prior work
comparing the cost of the algorithm to the optimal cost for the instance at hand,
i.e., the approximation ratio, which is the usual way of measuring the performance of
approximation algorithms.

The closest work in multiobjective optimization is our prior work [DY2] on the
approximation of convex Pareto curves using a different cost metric. Both of the
metrics are important and reflect different aspects of the use of the approximation
in the decision making process. Consider a problem, say with two objectives, where
suppose we make several calls, say N , to the Comb routine, compute a number of
solution points, connect them, and present the resulting curve to the decision maker
to visualize the range of possibilities, i.e., get an idea of the true convex Pareto
curve. (The process may not end there, e.g., the decision maker may narrow the
range of interest, followed by computation of a better approximation for the nar-
rower range, and so forth). In this scenario, we want to achieve as small an error ǫ
as possible, using as small a number N of calls as we can, ideally, as close as pos-
sible to the minimum number OPTǫ(I) that is absolutely needed for the instance.
In this setting, the cost of the algorithm is measured by the number of calls (i.e.,
the computational effort); this is the cost metric that we study in this paper, and
the performance ratio is as usual the ratio of the cost to the optimum cost. Con-
sider now a scenario where the decision maker does not just visually inspect the
curve, but will look more closely at a set of solutions to select one; for instance
a physician in the radiotherapy example will consider carefully a small number of
possible treatments in detail to decide which one to follow. Since human time is
much more limited than computational time (and more valuable, even small con-
stant factors matter a lot), the primary metric in this scenario is the number n of
selected solutions that is presented to the decision maker for closer investigation (we
want n to be as close as possible to OPTǫ(I)), while the computational time, i.e.,
the number N of calls, is less important and can be much larger (as long as it is
feasible of course). This second cost metric (the size n of the selected set) is stud-
ied in [DY2] for the convex Pareto curve (and in [VY, DY] in the nonconvex case).
Among other results, it is shown there that for all biobjective problems with an ex-
act Comb routine and a continuous convex space, an optimal ǫ-convex Pareto set
(i.e., one with OPTǫ(I) solutions) can be computed in polynomial time using O(m/ǫ)
calls to Comb in general, (though more efficient algorithms are obtained for specific
important problems such as biobjective linear programs). For discrete problems, a
2-approximation to the minimum size can be obtained in polynomial time, and the
factor 2 is inherent. As remarked above, both cost metrics are important for different
stages of the decision making. Recall also that, as noted earlier, the Chord algorithm
runs in polynomial time, and furthermore, one can show that its solution set can
be postprocessed to select a subset that is an ǫ-convex Pareto set of size at most
2OPTǫ(I).

Structure of the paper. The rest of the paper is organized as follows: Section 2
describes the model and states our main results, section 3 concerns the worst-case
analysis, and section 4 the average case analysis. Section 5 concludes the paper and
suggests the most relevant future research directions.
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2. Model and statement of results. This section is structured as follows:
After giving basic notation, in section 2.1 we describe the relevant definitions and
framework from multiobjective optimization. In section 2.2 we provide a formal de-
scription of the Chord algorithm in tandem with an intuitive explanation. Finally, in
section 2.3 we state our results on the performance of the algorithm as well as our
general lower bounds.

Notation. We start by introducing some notation used throughout the paper.
For n, i, j ∈ Z+, we will denote [n] := {1, 2, . . . , n} and [i, j] := {i, i + 1, . . . , j}. For
p, q, r ∈ R

2, we denote by pq the line segment with endpoints p and q, (pq) denotes
its length, △(pqr) is the triangle defined by p, q, r, and ∠(pqr) is the internal angle of
△(pqr) formed by pq and qr.

We will use x and y as the two coordinates of the plane. If p is a point on the
plane, we use x(p) and y(p) to denote its coordinates; that is, p = (x(p), y(p)). We will
typically use the symbol λ to denote the (absolute value of the) slope of a line, unless
otherwise specified. Sometimes we will add an appropriate subscript, i.e., we will use
λpq to denote the slope of the line defined by p and q. For a Lebesgue measurable set
A ⊆ R

2 we will denote its area by S(A).

2.1. Definitions and background. We describe the general framework of a
biobjective problem Π to which our results are applicable. A biobjective optimization
problem has a set of valid instances, and every instance has an associated set of
feasible solutions, usually called the solution or decision space. There are two objective
functions, each of which maps every instance–solution pair to a real number. The
problem specifies for each objective whether it is to be maximized or minimized.

Consider the plane whose coordinates correspond to the two objectives. Every
solution is mapped to a point on this plane. We denote the objective functions by x
and y and we use I to denote the objective space (i.e., the set of 2-vectors of objective
values of the feasible solutions for the given instance). As is usual in approximation,
we assume that the objective functions are polynomial time computable and take val-
ues in [2−m, 2m], i.e., I ⊆ [2−m, 2m]2, where m is polynomially bounded in the size
of the input. Note that this framework covers all discrete combinatorial optimization
problems of interest (e.g., shortest paths, spanning tree, matching, etc), but also con-
tains many continuous problems (e.g., linear and convex programs, etc). Throughout
this paper we assume, for the sake of concreteness, that both objective functions x
and y are to be minimized. All our results also hold for the case of maximization or
mixed objectives.

Let p, q ∈ R
2
+. We say that p dominates q if p ≤ q (coordinatewise). We say

that p ǫ-covers q (ǫ ≥ 0) if p ≤ (1 + ǫ)q. Let A ⊆ R
2
+. The Pareto set of A, denoted

by P(A), is the set of all undominated points in A (i.e., p ∈ P(A) iff p ∈ A and no
other point in A dominates p). The convex Pareto set of A, denoted by CP(A), is
the minimum subset of A whose convex combinations dominate (every point in) A.
We also use the term lower envelope of A to denote the Pareto set of its convex hull,
i.e., LE(A) = P(CH(A)). In particular, if A is convex its lower envelope is identified
with its Pareto set. If A is finite, its lower envelope is a convex polygonal chain with
vertices the points of CP(A). Note that, for any set A, the lower envelope LE(A) is
a convex and monotone decreasing planar curve. For p, q ∈ LE(A) we will denote by
LE(pq) the subset of LE(A) with endpoints p, q.

An ǫ-convex Pareto set of A (henceforth ǫ-CP) is a subset CPǫ(A) of A whose
convex combinations ǫ-cover (every point in) A. Note that such a set need not contain
points dominated by convex combinations of other points, as they are redundant. If
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a set contains no redundant points, we call it nonredundant. Let S = {si}ki=1 ⊆ R
2
+,

x(si) < x(si+1) and y(si) > y(si+1), be a nonredundant set. By definition, S is an
ǫ-CP for A iff the polygonal chain LE(S) = 〈s1, . . . , sk〉 ǫ-covers CP(A).

We define the ratio distance from a point p to a point q as RD(p, q) =
max{x(q)/x(p) − 1, y(q)/y(p) − 1, 0}. (Note the asymmetry in the definition.) In-
tuitively, it is the minimum value of ǫ ≥ 0 such that q ǫ-covers p. We also de-
fine the ratio distance between sets of points. If S1, S2 ⊆ R

2
+, then RD(S1, S2) =

supq1∈S1
infq2∈S2 RD(q1, q2). As a corollary of this definition, the set S ⊆ A is an

ǫ-CP for A iff RD(LE(A),LE(S)) = RD(CP(A),LE(S)) ≤ ǫ.
The above definitions apply to any set A ⊆ R

2
+. Let Π be a biobjective opti-

mization problem in the aforementioned framework. For an instance of Π, the set
A corresponds to the objective space I (for the given instance). We do not assume
that the objective space I is convex; it may well be discrete or a continuous non-
convex set. It should be stressed that the objective space is not given explicitly, but
rather implicitly through the instance. In particular, we access the objective space
I of Π via an oracle Comb that (exactly or approximately) minimizes nonnegative
linear combinations y + λx of the objectives. That is, the oracle takes as input a
parameter λ ∈ R+ and outputs a point q ∈ I (i.e., a feasible point) that (exactly or
approximately) minimizes the combined objective function hλ(x, y) = y+λx. We use
the convention that, for λ = +∞, the oracle minimizes the x objective.

Formally, for λ ∈ R+, we denote by Comb(λ) the problem of optimizing the com-
bined objective hλ(x, y) over I. Let δ ∈ R+ be an accuracy parameter. Then, for λ ∈
R+, we will denote by Combδ(λ) a routine that returns a point q ∈ I that optimizes
hλ up to a factor of (1 + δ), i.e., hλ(q) ≤ (1 + δ) ·min{hλ(p) | p ∈ I}. In other words,
the Combδ routine is an “approximate optimization oracle” for the objective space I.
We say that the Comb problem has a polynomial time approximation scheme (PTAS)
if for any instance of Π and any δ > 0 there exists a routine Combδ(λ) (as specified
above) that runs in time polynomial in the size of the instance. As shown in [DY2],
for any biobjective problem in the aforementioned framework, there is a PTAS for
constructing an ǫ-convex Pareto set iff there is a PTAS for the Comb problem.

We now provide a geometric characterization of Combδ(λ) that will be crucial
throughout this paper. Consider the point q ∈ I returned by Combδ(λ) and the
corresponding line ℓ(q, λ) through q with slope −λ, i.e.,

ℓ(q, λ) = {(x, y) ∈ R
2 | hλ(x, y) = hλ(q)}.

Then there exists no solution point (i.e., no point in I) below the line (1 + δ)−1 ·
ℓ(q, λ)

def
= {(x, y) ∈ R

2 | hλ(x, y) = hλ(q)/(1 + δ)}. Geometrically, this means
that we sweep a line of absolute slope λ, until it touches (exactly or approximately)
the undominated boundary (lower envelope) of the objective space I. For δ = 0,
the routine returns a point on the lower envelope LE(I), while for δ > 0 it returns
a (potentially) dominated point of I “close” to the boundary (where the notion of
“closeness” is quantitatively defined by the aforementioned condition). See Figure 1
for an illustration.

If q is the (feasible) point in I returned by Combδ(λ), then we write q = Combδ(λ).
We assume that either δ = 0 (i.e., we have an exact routine), or we have a PTAS.
For δ = 0, i.e., when the optimization is exact, we omit the subscript and denote the
Comb routine simply by Comb(λ).

We will denote by OPTǫ(I) the size of an optimum ǫ-convex Pareto set for the
given instance, i.e., an ǫ-convex Pareto set with the minimum number of points. Note
that, obviously every algorithm that constructs an ǫ-CP, must certainly make at the
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818 C. DASKALAKIS, I. DIAKONIKOLAS, AND M. YANNAKAKIS

Fig. 1. A geometric interpretation of the Combδ(λ) routine. The shaded region represents the
objective space I. The routine guarantees that there exist no solution points strictly below the dotted
line.

very least OPTǫ(I) calls to Comb, just to get OPTǫ(I) points—which are needed at
a minimum to form an ǫ-CP; this holds even if the algorithm somehow manages to
always be lucky and call Comb with the right values of λ that identify the points of
an optimal ǫ-CP. Having obtained the points of an optimal ǫ-CP, another OPTǫ(I)
many calls to Comb with the slopes of the edges of the polygonal line defined by the
points, suffice to verify that the points form an ǫ-CP. Hence, the “offline” optimum
number of calls is at most 2 ·OPTǫ(I).

Let CHORDǫ(I) be the number of Comb calls required by the Chord algorithm
on instance I. The worst-case performance ratio of the algorithm is defined to be

supI
CHORDǫ(I)
OPTǫ(I) . If the inputs are drawn from some probability distribution D, then

we will use the expected performance ratio EI∼D[
CHORDǫ(I)
OPTǫ(I) ] as a measure (note that

we shall omit the subscript “I ∼ D” when the underlying distribution over instances
will be clear from the context).

While the main focus of this paper is on approximation of multiobjective opti-
mization problems, our analysis also applies (with minor modifications) to related
settings (in which the the Chord algorithm has been used). Consider for example the
following classical curve simplification problem: Given a convex curve C of length (at
most L) on the plane, find the minimum number of points on C so that the corre-
sponding convex polygonal chain Cǫ approximates the curve C within distance error
ǫ. A popular distance measure in this setting is the Hausdorff distance of Cǫ from C,
i.e., the maximum euclidean distance of a point in the actual curve from the approx-
imating curve. Note that the Hausdorff distance is invariant under translation, while
our ratio distance is invariant under scaling.

We remark that our upper and lower bounds for the performance of the Chord
algorithm w.r.t. the ratio distance apply with minor modifications for the Hausdorff
distance. This can be seen as follows: A curve of length L located anywhere on the
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Table 1

Pseudocode for Chord algorithm.

Chord Algorithm (Input: I, ǫ)

a = Comb(+∞);

b = Comb(0);

c = (x(a), y(b));

Return Q = Chord ({a, b, c}, ǫ).

Routine Chord (Input: {l, r, s}, ǫ)

If RD(s, lr) ≤ ǫ return {l, r};

λlr = absolute slope of lr; q = Comb(λlr);
If RD(q, lr) ≤ ǫ return {l, r};

ℓ(q) := line parallel to lr through q;
sl = ls ∩ ℓ(q); sr = rs ∩ ℓ(q);

Ql = Chord({l, q, sl}, ǫ); Qr = Chord({q, r, sr}, ǫ);

Return Ql ∪Qr.

plane can be scaled down by L and translated to the unit square [1, 2]2. By definition,
approximating the original curve within Hausdorff distance ǫ is equivalent to approxi-
mating the new curve within Hausdorff distance error ǫ/L. A simple calculation shows
that for a convex curve in the unit square [1, 2] the two metrics (Hausdorff and ratio
distances) are within a constant factor of each other. Hence, the upper and lower
bounds on the approximation w.r.t. ratio distance give immediately corresponding
bounds w.r.t. Hausdorff distance.

We also define the horizontal distance. We use this distance as an intermediate
tool for our lower bound construction in section 3.2. The horizontal distance from
a point p to a point q is defined as ∆x(p, q) = max{x(q) − x(p), 0}. The horizontal
distance from p to a line ℓ (that is not horizontal) is ∆x(p, ℓ) = ∆x(p, pℓ), where pℓ
is the y-projection of p on ℓ (i.e., the point that a horizontal line from p intersects ℓ).

Remark 1. All the upper bounds of this paper on the performance of the Chord
algorithm hold under the assumption that we have a PTAS for the Comb problem.
On the other hand, our lower bounds apply even for the special case that an exact
routine is available. For the clarity of the exposition, we describe the Chord algorithm
and prove our upper bounds for the case of an exact Comb routine. We then describe
the simple modifications in the algorithm and analysis for the case of an approximate
routine.

2.2. The chord algorithm. We have set the stage to formally describe the al-
gorithm. Let Π be a biobjective problem with an efficient exact Comb routine. Given
ǫ > 0 and an instance I of Π (implicitly via Comb), we would like to construct an
ǫ-CP for I using as few calls to Comb as possible. As mentioned in the introduc-
tion, a popular algorithm for this purpose is the Chord algorithm that is the main
object of study in this paper. In Table 1 we describe the algorithm in detailed pseu-
docode. The pseudocode corresponds exactly to the description of the algorithm in
the introduction.

The (recursively defined) routine Chord is called from the main algorithm and
returns a set of points Q ⊆ I that is an ǫ-CP for I. The recursive description of the
algorithm is quite natural and will be useful in the analysis.

Let us proceed to explain the notation used in the pseudocode in tandem with
some intuitive understanding of the algorithm. First, the feasible points a, b ∈ I
minimize the x-objective and y-objective, respectively. (Note that these points may
be dominated, i.e., are not necessarily the extreme points of CP(I); however, this
does not affect our analysis.) By monotonicity and convexity, the lower envelope is
contained in the right triangle △(acb), i.e., LE(I) ⊆ △(acb). (Note that the point c is
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820 C. DASKALAKIS, I. DIAKONIKOLAS, AND M. YANNAKAKIS

Fig. 2. Illustration of one iteration of the Chord routine.

not a feasible point, but is solely defined for the purpose of “sandwiching” the lower
envelope.)

The Chord routine takes as input (i) the desired error tolerance ǫ, and (ii) the
ordered 3-set of points {l, r, s}. In every recursive call of the Chord routine, the points
l (left) and r (right) are (feasible) points of the lower envelope, i.e., l, r ∈ I ∩ LE(I).
Moreover, the point s is a (not necessarily feasible) point and the following conditions
are satisfied:

• The point s lies to the right of l, to the left of r, and below the line segment lr.
In particular, this implies that the triangle △(lsr) is either right or obtuse,
i.e., ∠(lsr) ∈ [π/2, π).

• The subset of the lower envelope (convex curve) with endpoints l and r is
contained in △(lsr), i.e., LE(lr) ⊆ △(lsr).

See Figure 2 for an illustration. The red curve represents the lower envelope
between the points l and r, i.e., the unknown curve we want to approximate. (Note
that the feasible points l, r are the results of previous recursive calls.) The point q =
Comb(λlr) is the feasible point in LE(I) computed in the current iteration (recursive
call). We remark that this point is at the maximum ratio distance from the “chord”
lr—among all points of LE(lr). The Chord routine will recurse on the triangles
△(lslq) and △(qsrr). Note that, by construction, the line slsr is parallel to lr.

During the execution of the algorithm, we “learn” the objective space in an “on-
line” fashion. After a number of iterations, we have obtained information that imposes
an “upper” and a “lower” approximation to LE(I). In particular, the computed so-
lution points define a polygonal chain that is an upper approximation to LE(I) and
the supporting lines at these points define a lower approximation. As the number of
iterations increases, these bounds become more and more refined, hence, we obtain a
better approximation to the curve.

Consider for example Figure 2. Before the current iteration of the Chord routine,
the only information available to the algorithm is that the lower envelope (between
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points l and r) lies in △(lsr), i.e., lr is an upper approximation and the polygonal
chain 〈l, s, r〉 is a lower approximation. Given the information the algorithm has
at this stage, the potential error of this initial approximation is the ratio distance
RD(s, lr). (If this distance is at most ǫ, then the segment lr ǫ-covers the subset of
the lower envelope between l, r and the routine terminates. Otherwise, the point q is
computed and the approximation is refined, if necessary, as explained above.) After
the current iteration, the upper approximation is refined to be 〈l, q, r〉 and the lower
approximation is 〈l, sl, sr, r〉 . The potential error given the available information now
is max{RD(sl, lq),RD(sr, qr)} < RD(s, lr). By applying these arguments recursively,
we get that the Chord algorithm always terminates and, upon termination, it outputs
an ǫ-CP for I (see Theorem 8 for a rigorous proof).

Consider the recursion tree built by the Chord algorithm. Every node of the tree
corresponds to a triangle △(lsr) (input to the Chord routine at the corresponding
recursive call). In the analysis, we shall use the following convention: There is no
node in the recursion tree if, at the corresponding step, the routine terminates without
calling Comb (i.e., if RD(s, lr) ≤ ǫ in the aforementioned description).

The pseudocode of Table 1 is specialized for the ratio distance, but one may use
other metrics based on the application. In the context of convex curve simplification,
our upper and lower bounds for the Chord algorithm also apply for the Hausdorff
distance (i.e., the maximum euclidean distance of a point in the actual curve from the
approximate curve).

2.3. Our results. We are now ready to state our main results. (We remind
the reader that ǫ denotes the approximation error and m is such that the objective
space lies in the square [2−m, 2m]2.) Our first main result is an analysis of the Chord
algorithm on worst-case instances that is tight up to constant factors. In particular,
for the ratio distance we prove the following.

Theorem 2. The worst-case performance ratio of the Chord algorithm (w.r.t. the

ratio distance) is Θ( m+log(1/ǫ)
logm+log log(1/ǫ)).

The lower bound on the performance of the Chord algorithm is proved in sec-
tion 3.2. In section 3.2.2, we also prove a general lower bound of Ω(logm+log log(1/ǫ))
on the performance ratio of any algorithm in the Comb-based model, as well as lower
bounds for approximating with respect to the horizontal (resp., vertical) distance.

In section 3.3 we give a proof of the upper bound. In section 3.3.1 we start by
presenting the slightly weaker upper bound of O(m + log(1/ǫ)); this result has the
advantage that its proof is simple and intuitive. The proof of the asymptotically tight
upper bound requires a more careful analysis and is presented in section 3.3.2.

Remark 3. It turns out that the Hausdorff distance behaves very similarly to
the ratio distance. In particular, by essentially identical proofs, it follows that the
performance ratio of the Chord algorithm for approximating a convex curve of length

L within Hausdorff distance ǫ is Θ( log(L/ǫ)
log log(L/ǫ)). Furthermore, every algorithm has a

worst-case performance ratio at least Ω(log log(L/ǫ)).

In the process, we also analyze the Chord algorithm with respect to the horizontal
distance metric (or by symmetry the vertical distance). We show that in this setting
the performance ratio of the algorithm is unbounded. In fact, we can get a strong
lower bound in this case: Any algorithm with oracle access to Comb has an unbounded
performance ratio (Theorem 15), even on instances that lie in the unit square and the
desired accuracy is a constant.
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Our second main result is an asymptotically tight analysis of the Chord algorithm
in an average case setting (w.r.t. the ratio distance). Our random instances are drawn
from standard distributions that have been widely used for the average case analysis
of geometric algorithms in a variety of settings. In particular, we consider (i) a Poisson
point process (PPP) on the plane and (ii) n points drawn from an “unconcentrated”
product distribution. We now formally define these distributions.

Definition 4. A (spatial, homogeneous) PPP of intensity ν on a bounded subset
S ⊆ R

2 is a collection of random variables {N(A) | A ⊆ S is Lebesgue measurable}
(representing the number of points occurring in every subset of S), such that (i) for any
Lebesgue measurable A, N(A) is a Poisson random variable with parameter ν · S(A);
(ii) for any collection of disjoint subsets A1, . . . , Ak the random variables {N(Ai), i ∈
[k]} are mutually independent.

Definition 5. Let A be a bounded Lebesgue measurable subset of R2, and let D
be a distribution over A. The distribution D is called γ-balanced, γ ∈ [0, 1), if for all

Lebesgue measurable subsets A′ ⊆ A, D(A′) ∈ [(1− γ) · U(A′), U(A′)
(1−γ) ], where U is the

uniform distribution over A.

We assume that γ is an absolute constant and we omit the dependence on γ in
the performance ratio below. We prove the following theorem.

Theorem 6. For the aforementioned classes of random instances, the expected
performance ratio of the Chord algorithm (w.r.t. the ratio distance) is

Θ(logm+ log log(1/ǫ)).

The upper bound proof is given in section 4.1 and the lower bound one in sec-
tion 4.2. We first present detailed proofs for the case of PPP and then present the
(more involved) case of product distributions. (We note that similar results apply
also for approximation under the Hausdorff distance.)

3. Worst–case analysis.

3.1. Algorithm correctness. We start by proving correctness, i.e., we show
that, upon termination, the Chord algorithm computes an ǫ-CP set for the given
instance I. This statement may be quite intuitive, but it requires a proof. The
following claim formally states some basic properties of the algorithm.

Claim 7. Let Ti = △(aibici) be the triangle processed by the Chord algorithm at
some recursive step. Then the following conditions are satisfied: (i) ai, bi ∈ I∩LE(I),
in particular, ai = Comb(λaici) and bi = Comb(λbici); (ii) x(ai) ≤ x(ci) ≤ x(bi),
y(ai) ≥ y(ci) ≥ y(bi), and ci lies below the line aibi; and (iii) LE(aibi) ⊆ Ti.

That is, whenever the Chord routine is called with parameters {l, r, s} (see Ta-
ble 1), the points l and r are feasible solutions of the lower envelope and the segment
of the lower envelope between them is entirely contained in the triangle △(lsr).

Proof. Consider the node (corresponding to) Ti in the recursion tree built by the
algorithm. We will prove the claim by induction on the depth of the node. The
base case corresponds to either an empty tree or a single node (root). The Chord
routine is initially called for the triangle T1 = △(abc). Conditions (i) and (ii) are thus
clearly satisfied. It follows from the definition of the Comb routine that there exist no
solution points strictly to the left of a and strictly below b. Hence, by monotonicity
and convexity, we have LE(I) = LE(ab) ⊆ △(acb), i.e., condition (iii) is also satisfied.
This establishes the base case.
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For the induction step, suppose the claim holds true for every node up to depth
d ≥ 0. We will prove it for any node of depth d + 1. Indeed, let T be a depth
d + 1 node and let Ti = △(aibici) be T ’s parent node in the recursion tree. By the
induction hypothesis, we have that (i) ai, bi ∈ I ∩ LE(I), ai = Comb(λaici), and
bi = Comb(λbici); (ii) x(ai) ≤ x(ci) ≤ x(bi), y(ai) ≥ y(ci) ≥ y(bi), and ci lies below
the line aibi; and (iii) LE(aibi) ⊆ Ti. We want to show the analogous properties
for T .

We can assume without loss of generality that T is Ti’s left child (the other
case being symmetric). Then, it follows by construction (see Table 1) that T =
△(aiqia

′
i), where qi = Comb(λaibi). We claim that qi ∈ Ti. Indeed, note that

λaici > λaibi > λbici (as follows from property (ii) of the induction hypothesis). By
monotonicity and convexity of the lower envelope, combined with property (iii) of
the induction hypothesis, the claim follows. Now note that a′i ∈ aici and a′iqi ‖ aibi.
Hence, property (i) of the inductive step is satisfied. Since aici has nonpositive slope
(as follows from (ii) of the inductive hypothesis), ai lies to the left and above a′i ;
similarly, since aibi has negative slope, a′i lies to the left and above qi. We also have
that λaici = λaia′

i
≥ λaiqi ≥ λa′

iqi
= λaibi , where the first inequality follows from

the fact that qi ∈ Ti. Property (ii) follows from the aforementioned. By definition of
the Chord routine, we have a′iqi ‖ aibi and there are no solution points below a′iqi.
By convexity, we get that LE(aiqi) lies below aiqi. Hence, property (iii) also follows.
This proves the induction and the claim.

By exploiting the above claim, we can prove correctness.

Theorem 8. The set of points Q computed by the Chord algorithm is an ǫ-CP
set.

Proof. Let Q = {a =: q0, q1, q2, . . . , qr, qr+1 := b} be the set of feasible points in
LE(I) output by the algorithm, where the points of Q are ordered in increasing order
of their x-coordinate (decreasing order of their y-coordinate). Note that all the qi’s
are in convex position. We have that

RD(LE(I), 〈q0, . . . , qr+1〉) =
r

max
i=0

RD(LE(qiqi+1), qiqi+1).

So, it suffices to show that, for all i, RD(LE(qiqi+1), qiqi+1) ≤ ǫ.
Since the algorithm terminates with the set Q, it follows that, for all i, the Chord

routine was called by the algorithm for the adjacent feasible points {qi, qi+1} and
returned without adding a new feasible point between them. Let ci be the corre-
sponding third point (argument to the Chord routine). Then, by Claim 7, we have
that ci is between qi and qi+1 in both coordinates and below the segment qiqi+1 and
moreover LE(qiqi+1) ⊆ △(qiqi+1ci). Since the Chord routine returns without adding
a new point on input ({qi, qi+1, ci}, ǫ), it follows that either RD(ci, qiqi+1) ≤ ǫ or
the point q′ = Comb(λqiqi+1) satisfies RD(q′, qiqi+1) ≤ ǫ. In the former case, since
LE(qiqi+1) ⊆ △(qiqi+1ci), we obtain RD(LE(qiqi+1), qiqi+1) ≤ RD(ci, qiqi+1) ≤ ǫ as
desired. In the latter case, we have RD(LE(qiqi+1), qiqi+1) = RD(q′, qiqi+1) ≤ ǫ.
That is, we claim that q′ is a point of LE(qiqi+1) (by Claim 7) with maximum ratio
distance from qiqi+1. Since the feasible points in LE(qiqi+1) lie between qiqi+1 and its
parallel line through q′, the claim follows. This completes the proof of Theorem 8.

3.2. Lower bounds. In section 3.2.1 we prove a tight lower bound for the Chord
algorithm for the ratio distance metric. In section 3.2.2 we show our general lower
bounds, both for the ratio distance and the horizontal distance.
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3.2.1. Lower bound for the Chord algorithm. Our main result in this sec-
tion is a proof of the lower bound statement in Theorem 2. In fact, we show a stronger
statement that also rules out the possibility of constant factor bicriteria approxima-
tions, i.e., it applies even if the Chord algorithm is allowed (ratio distance) error Ω(ǫ)
and we compare it against the optimal ǫ-CP set.

Theorem 9. Let µ ≥ 1 be an absolute constant. Let ǫ > 0 be smaller than
a sufficiently small constant and m > 0 be large enough. There exists an instance
ILB = ILB(ǫ,m, µ) such that OPTǫ(ILB) ≤ 3 and

CHORDµ·ǫ(ILB) = Ω((1/µ) · m+ log(1/ǫ)

logm+ log log(1/ǫ)
).

The rest of this section is devoted to the proof of Theorem 9. We start by providing
an intuitive explanation of the argument followed by a formal proof of correctness.
For the analysis we will require a number of intermediate claims and lemmas.

Intuition for the construction. The lower bound applies even if an exact Comb
routine is available, hence, we restrict ourselves to this case. Before we proceed with
the formal proof, we give an explanation of our construction for the case µ = 1 and
m = 1. The rough intuition is that the algorithm can perform poorly when the
input instance is “skewed,” i.e., we have a triangle △(abc), where (ac) ≫ (bc). For
such instances one can force the algorithm to select many “redundant” points (hence,
perform many calls to Comb) to obtain a certificate it has found an ǫ-CP set, even
when few points (calls) suffice.

For the special case under consideration, the “hard” instance has endpoints a =
(1, 2) and b = (1 + 2ǫ, 1), where ǫ is sufficiently small (to be specified later). Initially,
the only available information to the algorithm is that the convex Pareto set for the
given instance lies in the right triangle △(acb), where c = (1, 1). Observe that, for an
instance with these endpoints, the initial errorRD(c, ab) is roughly equal to 2ǫ and one
intermediate point q∗ together with the rightmost point of the curve always suffices
to form an ǫ-CP set, i.e., the optimal size is no more than 2. Our construction will
define a sequence of points {q1, . . . , qj} (ordered in increasing x-coordinate) which will
form the convex Pareto set for the corresponding instance and that force the Chord
algorithm to select all the qi’s (in order of increasing i), until it finds q∗ = qj . That
is, the Chord algorithm will monotonically converge to the optimal point by visiting
all the vertices of the instance in order (in increasing x-coordinate).

Let λab = 1/(2ǫ) be the slope of ab. The algorithm starts by calling Comb(λab) to
find a solution point at maximum ratio distance from the chord ab. Our construction
guarantees that q1 = Comb(λab). That is, if ℓ(q1) is the line parallel to ab through q1,
ℓ(q1) supports the objective space. The point q1 is selected on the line segment ac so
that (q1c) = (ac)/k, i.e., it is obtained by subdividing (the length of) ac geometrically
with ratio k—for an appropriate k (to be specified next).

Consider the point q∗1 = ℓ(q1)∩bc. The error of the approximation {a, q1, b} equals
RD(q∗1 , q1b) (note that the error to the left of q1 is 0). If k ≤ 2, we are already done,
since x(q∗1) ≥ 1+ ǫ, which implies RD(q∗1 , q1b) ≤ ǫ. On the other hand, if k ≥ 1/ǫ, we
are also done since y(q1) ≤ 1 + ǫ, hence, RD(q∗1 , q1b) ≤ ǫ. If ω(1) ≤ k ≤ o(1/ǫ), it is
not hard to show that

RD(q∗1 , q1b) ≈ ∆x(q∗1 , q1b) = (q∗1b) = 2ǫ · (1− 1/k).

Hence, after the first call to Comb, the error has decreased by an additive of 2ǫ/k ≪ ǫ
and the algorithm will recurse on the triangle △(q1q

∗
1b).
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Note that λq1b = λab/k = (2ǫ)−1/k. The algorithm proceeds by calling Comb(λq1b)
and this call will return the point q2. Let ℓ(q2) be the (supporting) line parallel to q1b
through q2. Similarly, ℓ(q2) supports the objective space. The point q2 is selected by
repeating our “geometric subdivision trick.” Recall that there are no feasible points
below the line q1q

∗
1 . Let q′2 be the projection of q2 on ac. We select q2 on the seg-

ment q1q
∗
1 so that (q′2c) = (q1c)/k. The error of the approximation {a, q1, q2, b} equals

RD(q∗2 , q2b), where q∗2 = ℓ(q2) ∩ bc. If (q′2c) = (ac)/k2 ≫ ǫ, we have that

RD(q∗2 , q2b) ≈ ∆x(q∗2 , q2b) = (q∗2b) ≈ 2ǫ · (1− 2/k),

i.e., after the second step of the algorithm, the error has decreased by another additive
2ǫ/k and the algorithm will recurse on the triangle △(q2q

∗
2b).

We can repeat this process iteratively, where (roughly) in step i we select qi on
the line qi−1q

∗
i−1, so that the length of the projection satisfies (q′ic) = (q′i−1c)/k. This

iterative process can continue as long as (q′ic) ≫ ǫ. Also note that the number j of
iterations cannot be more than ≈ k/2 because x(qi) ≈ 1+ i · (2ǫ/k) and x(q∗) ≤ 1+ ǫ.
Since, (q′ic) = 1/ki it turns out that the optimal choice of parameters is 2j ≈ k ≈

log(1/ǫ)
log log(1/ǫ) .

We stress that the actual construction is more elaborate than the one presented
in the intuitive explanation above. Also, to show a bicriterion lower bound, we need
to add one more point qj+1 so that the Chord algorithm selects {q1, . . . , qj} until it
forms a (µ · ǫ)-CP, while the point qj+1 (along with the rightmost point b) suffice to
form an ǫ-CP.

The formal proof comes in two steps. We first analyze the Chord algorithm with
respect to the horizontal distance metric. We show that the performance ratio of
the algorithm is unbounded in this setting (this statement also holds for the vertical
distance by symmetry). In particular, for every k ∈ N, there exists an instance IG
(lying entirely in the unit square) so that the Chord algorithm (applied for additive
error 1/2) has performance ratio k . We then show that, for an appropriate setting of
the parameters in IG, we obtain the instance ILB that yields the desired lower bound
with respect to the ratio distance.

Step 1: The instance IG(H,L, k, j) lies in the triangle △(abc), where a =
(1, 1 + H), b = (1 + L, 1), and c = (1, 1). The points a and b are (the extreme)
vertices of the convex Pareto set. We introduce two additional parameters. The first
one, k ∈ N, is the ratio used in the construction to geometrically subdivide the length
of the line ac in every iteration. The second one, j ∈ N with j ∈ [1, k − 1], is the
number of iterations and equals the number of vertices in the instance.

We define a set of points Q = {qi}j+2
i=0 ordered in increasing x-coordinate and

decreasing y-coordinate. Our instance will be the convex polygonal line with vertices
the points of Q. We set q0 = a and qj+2 = b. The set of points {q1, . . . , qj+1} is
defined recursively as follows:

1. The point q1 has x(q1) = x(a) and y(q1) = y(c) +
(

y(a)− y(c)
)

/k.
2. For i ∈ [2, j + 1] the point qi is defined as follows: Let ℓ(qi−1) denote the

line parallel to qi−2b through qi−1. The point qi is the point of this line with
y(qi) = y(c) +

(

y(qi−1)− y(c)
)

/(k + i− 1).
The algorithm is applied on this instance with desired horizontal distance error

ǫL(L, k, j)
def
= L · k − 1

k + j − 1
.
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Fig. 3. Illustration of the lower bound construction. The figure depicts the case j = k = 4. The
subdivision in the y-axis is geometric with ratio Θ(1/k), as described in the recursive construction

above, namely,
y(qi−1)−y(c)

y(qi)−y(c)
= k + i− 1.

Also denote

ǫ′L(L, k, j)
def
= L · k − 1

k
· j

k + j − 1
= (j/k) · ǫL.

Note that ǫ′L < ǫL.
See Figures 3 and 4 for a graphic illustration of the worst-case instances for the

Chord algorithm. We would like to stress that the figures are not drawn to scale. In
particular, in the figures below we have H = L, while the actual lower bound for the
ratio distance applies for H ≫ L; in particular, for H = 2m and L = O(ǫ).

We show the following.

Lemma 10. The Chord algorithm applied to the instance IG and error bound ǫL
w.r.t. horizontal distance selects the sequence of points 〈q1, q2, . . . , qj〉, while the set
{a, qj+1, b} attains error ǫ′L < ǫL.

Proof. For i ∈ [j − 1], let q∗i be the intersection of the line ℓ(qi)—the line par-
allel to qi−1b through qi—with bc. The error of {a, qj+1, b} is exactly ∆x(q1, aqj+1).
Observe that ∆x(q1, aqj+1) < ∆x(q1, aq

∗
j ). By a simple geometric argument we ob-

tain ∆x(q1, aq
∗
j ) = ǫ′L, which yields the second statement. For the first statement,
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Fig. 4. Illustration of definitions for the counterexample illustrated in Figure 3.

we show inductively that the recursion tree built by the algorithm for IG is a path
of length j − 1 and at depth i − 1, for i ∈ [j], the Chord subroutine selects point
qi. The proof amounts to noting that the error of the approximation {q1, . . . , qi} is
∆x(q∗i , qib), which is > ǫL for i < j and = ǫL for i = j.

To provide the details we need some notation. For i ∈ [j], we denote ∆xi
def
=

∆x(qi, qi−1b). Let pi be the y-projection of qi on qi−1b, so that ∆xi = (qipi). Recall
that q∗i denotes the intersection of the line ℓ(qi)—the line parallel to qi−1b through
qi—with bc. If p∗i is the y-projection of q1 on aq∗i , we have ∆x(q1, aq

∗
i ) = (q1p

∗
i ). (See

Figure 4 for an illustration of these definitions.) We start with the following claim.

Claim 11. For all i ∈ [j], we have ∆xi = L · (k − 1)/(k + i− 1).

Proof of Claim 11. By induction on i. For the induction basis (i = 1), we observe
that the triangles △(aq1p1) and △(acb) are similar, hence,

∆x1

(bc)
=

(aq1)

(ac)

which yields
∆x1 = (bc) · (1− 1/k) = L · (k − 1)/k

as desired.
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Suppose that the claim is true for i ∈ [j−1]. We will prove it for i+1. We similarly
exploit the similarity of the triangles △(qiq

∗
i b) and △(qiqi+1pi+1), from which we get

(1)
∆xi+1

(q∗i b)
=

(qiqi+1)

(qiq∗i )
=

y(qi)− y(qi+1)

y(qi)− y(c)
,

where the second equality follows from the collinearity of qi, qi+1, q
∗
i . Observe that

the third term in (1) is equal to (k + i − 1)/(k + i) by construction. Now note that,
because of the parallelogram (qipibq

∗
i ), we have (q∗i b) = ∆xi. Hence, (1) and the

induction hypothesis imply

∆xi+1 = ∆xi ·
k + i− 1

k + i
= L · k − 1

k + i− 1
· k + i− 1

k + i
= L · k − 1

k + i

which completes the proof of the claim.

Since (q∗i b) = ∆xi (as noted in the proof of Claim 11), it follows that for all
i ∈ [j − 1] we have

(2) x(q∗i ) = 1 + L · i

k + i− 1
.

We will start by showing that the set {a, qj+1, b} is an ǫ′L-convex Pareto under the
horizontal distance. First, note that the error to the right of qj+1, i.e., the distance of
the lower envelope from qj+1b is in fact zero (since qj+1b is the rightmost edge of the
lower envelope). It suffices to bound from above the error to its left. Since aqj+1 has
absolute slope larger than ab, the unique point (of the lower envelope) at maximum
distance from aqj+1 is q1. Thus, we have that ∆x(q1, aqj+1) < ∆x(q1, aq

∗
j ). From the

similarity of the triangles △(caq∗j ) and △(q1ap
∗
j ) we get

∆x(q1, aq
∗
j ) = (1−1/k)·(cq∗j ) = (1−1/k)·(x(q∗j )−x(c)) = L·(1−1/k)· j

k + j − 1
= ǫ′L.

Hence, ∆x(q1, aqj+1) < ǫ′L as desired.
We now proceed to analyze the behavior of the Chord algorithm. We will show

that the algorithm selects the points q1, q2, . . . , qj (in this order) till it terminates.
Formally, we consider the recursion tree built by the algorithm for the instance IG
and prove that it is a path of length j− 1. In particular, for all i ∈ [j], at depth i− 1,
the Chord subroutine selects point qi.

We prove the aforementioned statement by induction on the depth d of the tree.
Recall that the Chord algorithm initially finds the extreme points a and b. For d = 0
(first recursive call), the algorithm selects a point of the lower envelope with maximum
horizontal distance from ab. By construction, all the points (of the lower envelope)
in the line segment q1q2 have the same (maximum) distance from ab (since q1q2 is
parallel to ab). Hence, any of those points may be potentially selected. Since Comb
is a black-box oracle, we may assume that indeed q1 is selected.1 The maximum error
after q1 is selected equals ∆x(q∗1 , q1b) = x(b)− x(q∗1) = L · (1− 1/k) > ǫL. Hence, the
algorithm will not terminate after it has selected q1.

1This simplifying assumption is only used for the sake of the exposition. We can slightly perturb
the instance so that the absolute slope of q1q2 is “slightly” smaller than λab, so that the effect on
the actual distances is negligible. By doing so, the point q1 will be the “unique minimizer” for
Comb(λab).
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For the inductive step, we assume that the recursion tree is a path up to depth
d ∈ [j − 2] and the algorithm selected the points {q1, q2, . . . , qd+1} up to this depth.
We analyze the algorithm at depth d + 1. At depth d + 1 the information available
to the algorithm is that (i) the error to the left of qd+1 is 0 and (ii) the error to
its right is ∆x(q∗d+1, qd+1b) = L · (k − 1)/(k + d) > ǫL (since d ≤ j − 2). Hence,
the algorithm does not terminate and it calls Comb to find a point between qd+1

and b at maximum distance from qd+1b. By construction, the points of maximum
distance are those belonging to the line qd+2qd+3 (which is parallel to qd+1b); similarly,
we can assume qd+2 is selected. At this point of the execution the algorithm has
the information that the error to the left of qd+2 is 0 and the error to its right is
∆x(q∗d+2, qd+2b) = L · (k − 1)/(k + d+ 1) > ǫL, unless d = j − 2. This completes the
induction and the proof of Lemma 10.

Step 2: The instance ILB is obtained from IG(H,L, k, j) by appropriately setting
the four relevant parameters. In particular,

1. fix H∗ := 2m − 1, L∗ := (µ + 1) · ǫ, j∗ := Θ((1/µ) · log(H∗/ǫ)
log log(H∗/ǫ)) and k∗ :=

µ · j∗ + 1;
2. set ILB(ǫ,m, µ) := IG(H∗, L∗, k∗, j∗);
3. also, define ǫL

∗ := ǫL(L
∗, k∗, j∗) and ǫ′∗L := ǫ′L(L

∗, k∗, j∗).
Observe that, under this choice of parameters, we have ǫL

∗ ≥ µ · ǫ and ǫ′L
∗
< ǫ. Our

main lemma for this step is the following.

Lemma 12. The Chord algorithm applied to ILB and error bound ǫL
∗ w.r.t. the

ratio distance selects (a superset of) the points {q1, . . . , qj∗/8}, while the set {a, qj∗+1, b}
forms an ǫ′L

∗-convex Pareto set.

Proof. The main idea of the proof is that for the particular instance under con-
sideration, the horizontal distance metric is a very good approximation to the ratio
distance. As a consequence, one can show that the behavior of the Chord algorithm
in both metrics is similar. The reason we “lose” a constant factor in the number
of points (i.e., the Chord algorithm selects j∗/8 points under the ratio distance as
opposed to j∗ under the horizontal distance) is due to the error term in the approx-
imation between the metrics. (The factor of 8 is not important; any constant factor
bigger than 1 would suffice.)

We now proceed with the details. Consider the set Q = {qi}j
∗+2

i=0 defining the
instance ILB. We will need the following lemma that quantifies the closeness of the
two metrics in our setting.

Lemma 13. Let a = (1, 1 +H), b = (1 + L, 1), and c = (1, 1). Consider a point
s1 in △(abc) and let λ be the absolute slope of s1b. If c′ is the x-projection of s1 on
bc, then for any point s2 in △(s1c

′b) we have

(3) RD(s2, s1b) < ∆x(s2, s1b) ≤ RD(s2, s1b) + L2 + L/λ.

Proof of Lemma 13. The proof, though elementary, requires some careful calcu-
lations. Let c′ = (1 + δ, 1) be the x-projection of s1 on the segment bc, that is
x(s1) = 1 + δ. Clearly, 0 ≤ δ ≤ L. If λ is the absolute slope of s1b, we have that

y(s1) = 1 + λ · (L− δ).

Fix a point s2 = (1 + δx, 1 + δy) ∈ △(s1c
′b). We want to show that ∆x(s2, s1b), the

horizontal distance of s2 from s1b, is a good approximation to the corresponding ratio
distance RD(s2, s1b) when λ is large. (See Figure 5 for an illustration.)
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Fig. 5. Illustration of the relation between the horizontal and the ratio distance.

We first calculate the horizontal distance ∆x(s2, s1b). Observe that

∆x(s2, s1b) = (s2q) = (pq)− (ps2),

where p is the y-projection of s2 on s1c
′, i.e., x(p) = x(c′) and y(p) = y(s2). It is clear

that

(ps2) = x(s2)− x(p) = x(s2)− x(c′) = δx − δ.

From the similarity of the triangles △(s1pq) and △(s1c
′b) it follows

(pq)

(c′b)
=

(s1p)

(s1c′)
.

Since (c′b) = L− δ, (s1c
′) = λ · (L− δ), and (s1p) = (s1c

′)− (pc′) = (s1c
′)− δy we get

(pq) = (L− δ) ·
(

1− δy
λ · (L− δ)

)

.

Therefore,

∆x(s2, s1b) = (L− δ) ·
(

1− δy
λ · (L− δ)

)

− (δx − δ) = L− δx − δy
λ
.

The ratio distance r
def
= RD(s2, s1b) by definition is such that s′2 = (1 + r) · s2 ∈ s1b.

We thus get

(1 + r) · y(s2) + λ(1 + r) · x(s2) = y(b) + λx(b)

or equivalently

r =
λ
(

x(b)− x(s2)
)

−
(

y(s2)− y(b)
)

y(s2) + λx(s2)
.
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Substitution yields that

r =
λ(L − δx)− δy

1 + δy + λ(1 + δx)
=

L− δx − δy
λ

1 + δx +
1+δy
λ

.

Observe that the numerator of the above fraction equals ∆x(s2, s1b) and the denom-
inator is bigger than 1. Hence, RD(s2, s1b) < ∆x(s2, s1b). For the other inequality
we can write

∆x(s2, s1b)−RD(s2, s1b) =

(

L− δx − δy
λ

)

·
(

1− 1

1 + δx +
1+δy
λ

)

=

(

L− δx − δy
λ

)

·
(

δx + 1
λ +

δy
λ

1 + δx + 1
λ +

δy
λ

)

(4)

≤ L · (L+ 1/λ) = L2 + L/λ(5)

as desired. To obtain (5), we bound each term in (4) separately. The first term is
clearly at most L. As for the second term, first note that the denominator is at least 1.
To bound the numerator from above, we claim that δx +

δy
λ ≤ L. To see this we use

our assumption that s2 lies in △(s1c
′b). In particular, this implies that s2 lies below

(or on) the line segment s1b, i.e.,

y(s2) + λx(s2) ≤ y(b) + λx(b)

which gives

δx +
δy
λ

≤ L

as desired. This completes the proof of Lemma 13.

We may now proceed with the proof of Lemma 12. By Lemma 10, the set
{a, qj∗+1, b} attains horizontal distance error at most ǫ′L

∗
. By the first inequality

of (3), the ratio distance error of {a, qj∗+1, b} is at most as big, hence, the second
statement of Lemma 12 follows.

By Lemma 10, the Chord algorithm under the horizontal distance metric selects all
the points {q1, . . . , qj∗} in order until it guarantees an ǫ∗L-approximation. In paricular,
after the algorithm has selected the subset {q1, . . . , qi}, for i ∈ [j∗], the horizontal
approximation error is

(6) ∆x(q∗i , qib) = L∗ · (k∗ − 1)/(k∗ + i− 1).

We remark that the error term E(L, λ) = L2+L/λ in the right-hand side (RHS) of (3)
leads to the “constant factor loss,” i.e., the fact that the Chord algorithm under the
ratio distance picks j∗/8 (as opposed to j∗) points. (Also note that, since the ratio
distance is a lower bound for the horizontal distance, the Chord algorithm under the
former metric will select at most j∗ points.)

Suppose we invoke the Chord algorithm with desired error of 0, i.e., we want to
reconstruct the lower envelope exactly. Then the algorithm will select the points qi
in order of increasing i. It is also clear that the error of the approximation decreases
monotonically with the number of calls to Comb. Hence, to complete the proof, it
suffices to show that after the algorithm has selected {q1, . . . , qj∗/8}, the ratio distance
error will be bigger than ǫ∗L. To do this, we appeal to Lemma 13.
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The ratio distance error of the set {q1, . . . , qj∗/8} is RD(q∗j∗/8, qj∗/8b). An appli-

cation of (the second inequality of) (3) for s1 = qj∗/8, s2 = q∗j∗/8 gives

RD(q∗j∗/8, qj∗/8b) ≥ ∆x(q∗j∗/8, qj∗/8b)− E(L∗, λqj∗/8b).

For the first term of the RHS, it follows from (6) by substitution that

∆x(q∗j∗/8, qj∗/8b) = L∗ · µ

µ+ 1/8

and we similarly get ǫ∗L = L∗ · µ
µ+1 . Hence,

∆x(q∗j∗/8, qj∗/8b) = ǫ∗L + Γ,

where Γ = L∗ · Ω(1/µ).
Consider the error term E(L∗, λqj∗/8b) = (L∗)2 + L∗/λqj∗/8b. We will show that

E(L∗, λqj∗/8b) < Γ which concludes the proof. The first summand (L∗)2 = (µ+1)2 ·ǫ2
is negligible compared to L∗/µ, as long as ǫ = o(1/µ2). To bound the second summand
from above we need a lower bound on the slope λqj∗/8b.

Recall ((2) in Lemma 10) that x(q∗i ) = 1 + L∗ · i/(k∗ + i− 1). It is also not hard
to verify that

∣

∣x(qi)− x(q∗i−1)
∣

∣ = O
(

L∗/(k∗)i
)

.

Also recall that

y(qi) = 1 +
H∗

∏i
j=1(k

∗ + j − 1)
> 1 +

H∗

(2k∗)i
.

Hence,

λqib =
y(qi)− y(b)

x(b) − x(qi)
>

(

H∗

L∗

)

· (2k∗)−i.

It is straightforward to check that for the chosen values of the parameters, λqj∗/8b ≫ µ,
hence, the second summand will also be significantly smaller than L∗/µ. In conclusion,
RD(q∗j∗/8−1, qj∗/8−1b) > ǫ∗L and Lemma 12 follows.

This also completes the proof of Theorem 9.

3.2.2. General lower bounds. We can show an information–theoretic lower
bound against any algorithm that uses Comb as a black box with respect to the
ratio distance metric. Even though the bound we obtain is exponentially weaker than
that attained by the Chord algorithm, it rules out the possibility of a constant factor
approximation in this model. In particular, we show the following.

Theorem 14. Any algorithm (even randomized) with oracle access to a Comb
routine, has performance ratio Ω (logm+ log log(1/ǫ)) with respect to the ratio dis-
tance.

Proof. Let A be a general algorithm with oracle access to Comb. The algorithm
is given the desired error ǫ, and it wants to compute an ǫ-CP set. To do this, it queries
the Comb routine on a sequence of (absolute) slopes {λi}ki=1 and terminates when it
has obtained a “certificate” that the set of points ∪k

i=1Comb(λi) forms an ǫ-CP set.
The queries to Comb can be adaptive, i.e., the ith query λi of the algorithm A

can depend on the information (about the input instance) the algorithm has obtained
from the previous queries λ1, . . . , λi−1. On the other hand, the adversary also specifies
the input instance adaptively, based on the queries made by the algorithm.

We will define a family of instances Q and an error ǫ > 0 with the following
properties:
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(1) Each instance I ∈ Q has OPTǫ(I) ≤ 3.
(2) In order for an algorithm A to have a certificate it found an ǫ-CP set for an

(adversarially chosen) instance I ∈ Q, it needs to make at least

Ω (logm+ log log(1/ǫ))

calls to Comb.
Our construction uses the lower bound example for the Chord algorithm from

section 3.2.1 essentially as a black box. Consider the instance ILB(ǫ,m, µ := 1) (note
that for µ = 1 we have that ǫ∗L = ǫ and ǫ′∗L < ǫ) and let Q = {qi}j+1

i=0 be the corre-

sponding set of points, where q0 = a and qj+1 = b and j = j∗/8 = Ω( m+log(1/ǫ)
logm+log log(1/ǫ) ).

Our family of input instancesQ consists of all “prefixes” of Q, i.e., Q = {Ii}ji=1, where
Ii = {a ≡ q0, q1, . . . , qi, qj+1 ≡ b}, i ∈ [j].

By the properties of Q, each Ii defines a convex monotone decreasing polygonal
curve, i.e., all its points are vertices of the corresponding convex Pareto. Moreover,
the set {a, qi, b} is an ǫi-CP set for Ii, where ǫi = RD(q1, aqi). Note that ǫi < ǫi+1,
i ∈ [j], and that

ǫj+1 < ∆x(q1, aqj+1) < ∆x(q1, aq
∗
j ) ≤ ǫ′

∗
L < ǫ,

where the first inequality holds from (3), and the rest follow by construction. This
proves property (1) above.

We now proceed to prove (2). We claim that, given an arbitrary (unknown)
instance I ∈ Q, in order for an algorithm A to have a certificate it discovered an ǫ-CP
set, A must uniquely identify the instance I. In turn, this task requires Ω(log |Q|) =
Ω(log j) Comb calls.

Indeed, consider an unknown instance I ∈ Q and let qi be the rightmost point of I
(excluding b) the algorithm A has discovered up to the current point of its execution.
At this point, the information available to the algorithm is that I ∈ {Iℓ}ℓ≥i. Hence,
the error the algorithm can guarantee for its current approximation is

RD(qi+1, qib) ≥ ∆x(qi+1, qib)− E(L∗, λqib) > ǫ∗L ≥ ǫ.

The first inequality above follows from Lemma 13. Also note that the term in the
RHS is minimized for i = j and (by the same analysis as in Lemma 12) the minimum
value is bigger than ǫ∗L.

It remains to show that an adversary can force any algorithm to make at least
Ω(log |Q|) queries to Comb until it has identified an unknown instance of Q. Clearly,
identifying an unknown instance I ∈ Q, i.e., finding the index ℓ such that I = Iℓ, is
equivalent to identifying qℓ—the rightmost point of I to the left of b. First, we can
assume the algorithm is given the extreme points a, b beforehand. A general algorithm
A is allowed to query the Comb routine for any slope λ ∈ [0,+∞). Suppose that
I = Iℓ. Then, for λ ∈ Λi := [λqi−1qi , λqiqi+1), the Comb routine returns (i) qi if ℓ ≥ i,
(ii) qℓ if ℓ = i − 1, and (iii) b if ℓ < i − 1.2 That is, the information obtained from a
query λ ∈ Λi is whether ℓ ≥ i, ℓ = i − 1, or ℓ < i − 1. So, for our class of instances,
a general deterministic algorithm A is equivalent to a ternary decision tree with the
corresponding structure. The tree has |Q| many leaf nodes and there are at most

2Strictly speaking, if ℓ ≥ i and λ = λqi−1qi , the Comb routine can return any point of the
edge qi−1qi. However, if Comb(λqi−1qi ) returns qi it can only help the algorithm (for our class of
instances). Hence, we can make this assumption for the purposes of our lower bound.
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2d−1 leaves at depth d. Every internal node of the tree corresponds to a query to the
Comb routine, hence, the depth measures the worst-case number of queries made by
the algorithm. It is straightforward that any such tree has depth Ω(log |Q|) and the
theorem follows. (If we allow randomization, the algorithm is a randomized decision
tree. By using the fact that a randomized algorithm is a probability distribution
over deterministic algorithms, it follows that the expected depth of any randomized
decision tree remains Ω(log |Q|). Hence, the theorem holds for randomized algorithms
as well.)

We next show that, for the horizontal distance metric (or vertical distance by
symmetry), any algorithm in our model has an unbounded performance ratio, even
for instances that lie in the unit square and for desired error 1/2.

Theorem 15. Any algorithm with oracle access to a Comb routine has an un-
bounded performance ratio with respect to the horizontal distance, even on instances
that lie in the unit square and for approximation error 1/2.

Proof. Let A be an algorithm that, given the desired error ǫ, computes an ǫ-
approximation with respect to the horizontal distance. Fix k ∈ Z+. We show that an
adaptive adversary can force the algorithm to make Ω(k) queries to Comb even when
O(1) queries suffice. That is, the performance ratio of the algorithm is Ω(k); since k
can be arbitrary the theorem follows.

Our family of (adversarially constructed) instances all lie in the unit square and
are obtained by a modification of the lower bound instance IG(H := 1, L := 1, 2k, j := k)
for Chord under the horizontal distance (see Step 1 in section 3.2.1). Since the hori-
zontal distance is invariant under translation, we can shift our instances so that the
points a = (0, 1) and b = (1, 0) are the leftmost and rightmost points of the convex
Pareto set. After this shift, the point c is identified with the origin.

Consider the initial triangle △(acb), where a = (0, 1), b = (1, 0), and c = (0, 0),
and let λ1 > 0 be the first query made by the algorithm. Given the value of λ1, the
adversary adds a vertex q1 to the instance so that q1 = Comb(λ1). The strategy of the
adversary is the following: The point q1 belongs to ac, i.e., x(q1) = 0. If λ1 ≥ λab = 1,
then the point q1 has y(q1) = 1/(2k).Otherwise, y(q1) = λ1/(2k). Let ℓ(q1) be the line
with slope λ1 through q1 and q∗1 be its intersection with cb. The current information
available to the algorithm is that the point q1 is a feasible point and that there are
no points below the line ℓ(q1). Hence, the horizontal distance error it can certify is
∆x(q∗1 , q1b) = (q∗1b) = 1− (cq∗1). On the other hand, if the true convex Pareto set was
CP1 = {a, q1, q∗1 , b}, the set {a, q∗1 , b} would attain error ∆x(q1, aq

∗
1) < (cq∗1). Note

that (cq∗1) = y(q1)/λ1 ≤ 1/(2k).
After its first query, the algorithm knows that the error to the left of q1 is 0,

hence, it needs to focus on the triangle △(q1q
∗
1b). Therefore, it is no loss of generality

to assume that λ2 < λq1q∗1
= λ1. Given λ2, the adversary adds a vertex q2 to the

instance so that q2 = Comb(λ2). Its strategy is to place q2 on q1q
∗
1 and to set

y(q2) = λq1b/(2k) if λ2 ≥ λq1b and y(q2) = λ2/(2k) otherwise. Let ℓ(q2) be the line
with slope λ2 through q2 and q∗2 be its intersection with cb. The information available
to the algorithm after its second query is that the point q2 is a feasible point and
that there are no points below the line ℓ(q2). Hence, the horizontal distance error
it can certify is ∆x(q∗2 , q2b) = (q∗2b) = 1 − (cq∗2). On the other hand, if the true
convex Pareto set was CP2 = {a, q1, q2, q∗2 , b}, the set {a, q∗2 , b} would attain error
∆x(q1, aq

∗
2) < (cq∗2). Similarly, (cq∗2) = (cq∗1) + (q∗1q

∗
2) ≤ 1/(2k) + y(q2)/λ2 ≤ 2/(2k).

The adversary argument continues by induction on i. The induction hypothesis is the
following: After its ith query, the algorithm has computed a set of points {q1, . . . , qi},
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Fig. 6. Illustration of general lower bound for horizontal distance.

qj = Comb(λj), j ∈ [i], where λj is the jth query and λj > λj+1. (The qj ’s are
vertices of the convex Pareto set of the corresponding instance ordered left to right).
Let ℓ(qi) be the line with slope λi through qi and q∗i be its intersection with cb. Then
(cq∗i ) = x(q∗i ) ≤ i/(2k).

We now prove the induction step. We start by noting that the error to the left of
qi is zero, so the algorithm needs to focus on the triangle △(qiq

∗
i b); this implies

that (without loss of generality) λi+1 < λqiq∗i
= λi. Given λi+1, the adversary

adds a vertex qi+1 such that qi+1 = Comb(λi+1). Similarly, the strategy of the
adversary is to place qi+1 on qiq

∗
i and to set y(qi+1) = λqib/(2k) if λi+1 ≥ λqib and

y(qi+1) = λi+1/(2k) otherwise. Let ℓ(qi+1) be the line with slope λi+1 through qi+1

and q∗i be its intersection with cb. The information available to the algorithm after
its (i + 1)th query is that the point qi+1 is a feasible point and that there are no
points below the line ℓ(qi+1). Hence, the horizontal distance error it can certify is
∆x(q∗i+1, qi+1b) = (q∗i+1b) = 1− (cq∗i+1). On the other hand, if the true convex Pareto
set was CPi+1 = {a, q1, q2, . . . , qi+1, q

∗
i+1, b}, the set {a, q∗i+1, b} would attain error

∆x(q1, aq
∗
i+1) < (cq∗i+1). Now note that

(cq∗i+1) = (cq∗i ) + (q∗i q
∗
i+1) ≤ i/(2k) + y(qi+1)/λi+1 ≤ (i+ 1)/(2k),

where the second inequality uses the inductive hypothesis and the definition of qi+1.
(See Figure 6 for an illustration; the figure depicts the case that λi+1 < λqib.) This
completes the induction.

The overall adversary argument is obtained from the above construction for
i = k − 1. That is, the adversarially constructed instance is the set CPk−1 =
{a, q1, q2, . . . , qk−1, q

∗
k−1, b}, where qi = Comb(λi) (recall that λi is the ith query).

The set {a, q∗k−1, b} has error

∆x(q1, aq
∗
k−1) < (cq∗k−1) ≤ 1/2− 1/(2k) < 1/2,

while the algorithm can certify error

∆x(q∗k−1, qk−1b) = (q∗k−1b) = 1− (cq∗k−1) = 1/2 + 1/(2k) > 1/2.

Thus, after k − 1 steps, the error of the algorithm remains more than 1/2, while 3
queries suffice to attain error < 1/2. This completes the proof of Theorem 15.

3.3. Upper bound. In this section we establish the upper bound statement
of Theorem 2, i.e., we show that the performance ratio of the Chord algorithm for
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the ratio distance is O( m+log(1/ǫ)
logm+log log(1/ǫ) ). For the sake of the exposition, we start

by showing the slightly weaker upper bound of O(m + log(1/ǫ)). The proof of the
asymptotically tight upper bound is more involved and builds on the understanding
obtained from the simpler argument presented first.

3.3.1. An O(m + log(1/ǫ)) upper bound. Before we proceed with the ar-
gument, some comments are in order. Perhaps the most natural approach to prove
an upper bound would be to argue that the error of the approximation constructed
by the Chord algorithm decreases substantially (say by a constant factor) in every
iteration (subdivision) or after an appropriately defined “epoch” of a few iterations.
This, if true, would yield the desired result—since the initial error cannot be more
than 2O(m). Unfortunately, such an approach badly fails, as implied by the con-
struction of Theorem 9. Recall that, in the simplest setting of that construction,
the initial error is 2ǫ and decreases by an additive 2ǫ/k in every iteration, where
k = Ω(log(1/ǫ)/ log log(1/ǫ)). Hence, the error decreases by a subconstant factor in
every iteration. In fact, we note that such an argument cannot hold for any algorithm
in our setting (i.e., given oracle access to Comb), as follows from our general lower
bound (Theorem 14).3

Our approach is somewhat indirect. We prove that the area between the (im-
plicitly constructed) upper and lower approximation decreases by a constant factor
in every iteration of the algorithm (Lemma 17). This statement can be viewed as a
“potential function type argument.” To obtain an upper bound on the performance
ratio, one additionally needs to relate the area to the ratio distance. Indeed, we show
that, when the area (between the upper approximation and the lower approximation)
has become “small enough” (roughly at most ǫ2/22m), the error of the approximation
(ratio distance of the lower approximation from the upper approximation) is at most
ǫ (Lemma 19). We combine the above with a simple charging argument (Lemma 18)
to get the desired performance guarantee. Formally, we prove the following theorem.

Theorem 16. Let T1 be the triangle at the root of the Chord algorithm’s recursion

tree, let S(T1) be its area, and denote α
def
= min{x(q), y(q) | q ∈ T1}. The algorithm

finds an ǫ-CP set after O (log (S(T1)/S0)) ·OPTǫ calls to Comb, where S0
def
= ǫ2 · α2.

The claimed upper bound on the performance ratio follows from the previous
theorem, since T1 ⊆ [2−m, 2m]2, which implies S(T1) ≤ 22m and α ≥ 2−m.

To prove Theorem 16 we will need a couple of lemmas.
Our first lemma quantifies the area shrinkage property. It is notable that this is

a statement independent of ǫ. (Recall that S(A) denotes the area of a measurable set
A ⊆ R

2.)

Lemma 17. Let Ti = △(aibici) be the triangle processed by the Chord algorithm at
some recursive step. Denote qi = Comb(λaibi). Let Ti,l = △(aia

′
iqi), Ti,r = △(bib

′
iqi)

be the triangles corresponding to the two new subproblems. Then, we have

S(Ti,l) + S(Ti,r) ≤ S(Ti)/4.

3In [RF] the authors—in essentially the same model as ours—propose a variant of the Chord
algorithm (that appropriately subdivides the current triangle into three subproblems). They claim
(Lemma 3 in [RF]) that the error reduces by a factor of 2 in every such subdivision. However, their
proof is incorrect. In fact, our counterexample from section 3.2 implies the same lower bound for
their proposed heuristic as for the Chord algorithm.
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Fig. 7. Illustration of the area shrinkage property of the Chord algorithm.

Proof. Let d′i, e
′
i be the projections of qi on bici and aici, respectively; see Figure 7

for an illustration. Let

(7) y
def
= (a′ici)/(aici) = (b′ici)/(bici) ∈ [0, 1],

where the equality holds because the triangles Ti and △(a′ib
′
ici) are similar (recalling

that a′ib
′
i ‖ aibi). Hence, we get

(8) S(△(a′ib
′
ici)) = y2S(Ti).

We have

S(Ti,l) + S(Ti,r) =
(

(aia
′
i) · (qie′i) + (bib

′
i) · (qid′i)

)

/2

= (1 − y) ·
(

(aici) · (qie′i) + (bici) · (qid′i)
)

/2(9)

= (1 − y) ·
(

S(△(aiciqi)) + S(△(biciqi))
)

= (1 − y) ·
(

S(Ti,l) + S(Ti,r) + S(△(a′ib
′
ici))

)

,

where (9) follows from (7). By using (8) and expanding we obtain

S(Ti,l) + S(Ti,r) = y · (1− y) · S(Ti) ≤ S(Ti)/4

as desired.

Our second lemma gives a convenient lower bound on the value of the optimum.

Lemma 18. Consider the recursion tree T built by the algorithm and let L′ be the
set of lowest internal nodes, i.e., the internal nodes whose children are leaves. Then
OPTǫ ≥ |L′|.

Proof. Recall that, by convention, there is no node in the tree if, for a triangle,
the Chord routine terminates without calling Comb. Each lowest internal node of
the tree corresponds to a triangle Ti = △(aibici) with the property that the ratio
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Fig. 8. Illustration of the proof of Lemma 19.

distance of the convex Pareto set from the line segment aibi is strictly greater than
ǫ (as otherwise, the node would be a leaf). Each such triangle must contain a point
q �∈ {ai, bi} of an optimal ǫ-CP set. Any two nodes of L′ are not ancestors of each
other, and therefore the corresponding triangles are disjoint (neighboring triangles
can only intersect at an endpoint). Thus, each one of them must contain a distinct
point of the optimal ǫ-CP set and, hence, the lemma follows.

Finally, we need a lemma that relates the ratio distance within a triangle to its
area. We stress that the lemma applies only to triangles Ti = △(aibici) considered
by the algorithm.

Lemma 19. Consider a triangle Ti = △(aibici) considered in some iteration of

the Chord algorithm such that Ti ⊆ T1. Let αi
def
= min{x(ci), y(ci)}. If S(Ti) ≤ ǫ2 ·α2

i ,
then RD(ci, aibi) ≤ ǫ.

Proof. The basic idea of the argument is that the worst case for the area-error
tradeoff is (essentially) when ci = (αi, αi), and the triangle Ti is right and isosceles
(i.e., (aici) = (cibi)). We now provide a formal proof. Let Ti = △(aibici) be a triangle
considered by the algorithm. The points ai, bi ∈ LE(I) and we have x(ai) ≤ x(ci) ≤
x(bi), y(ai) ≥ y(ci) ≥ y(bi), and the point ci lies below the line aibi. Note the latter
imply that ∠(aicibi) ≥ π/2. (See Figure 8.) We will relate the area S(Ti) to the ratio

distance r
def
= RD(ci, aibi).

Consider the intersection c′i of the lines aibi and Oci, where O denotes the origin.
Then we have that c′i = (1 + r)ci. From the definition of the ratio distance it follows
that for any point p ∈ aibi it holds RD(ci, p) ≥ r (in fact, c′i is the unique minimizer).
Let c′′i be the projection of ci on aibi. It follows that

(10) max{y(c′′i )/y(ci), x(c′′i )/x(ci)} ≥ 1 + r.

For the area we have that S(Ti) = (1/2)(aibi)(cic
′′
i ). Since Ti is either right or obtuse,

the length of its largest base is at least twice the length of the corresponding height,
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i.e., (aibi) ≥ 2(cic
′′
i ). Hence, S(Ti) ≥ (cic

′′
i )

2. By expanding and using (10), we get
S(Ti) ≥ r2 · α2

i and the lemma follows.

At this point we have all the tools we need to complete the proof of Theorem 16.

Proof of Theorem 16. Theorem 8 gives correctness. To bound the performance
ratio we proceed as follows: First, by Lemma 17, when a node of the tree is at depth
⌈log4(S(T1)/S0)⌉, the corresponding triangle will have area at most S0. Hence, by
Lemma 19 (noting that mini αi = α), it follows that the depth of the recursion tree
T is d = O(log(S(T1)/S0)). Every internal tree node is an ancestor of a node in L′.
The Chord algorithm makes one query for every node of the tree, hence, CHORDǫ ≤
O(d) · |L′|. Lemma 18 now implies that CHORDǫ ≤ O (log (S(T1)/S0)) ·OPTǫ, which
concludes the proof.

3.3.2. Tight upper bound. In this subsection, we prove the asymptotically

tight upper bound of O( m+log(1/ǫ)
logm+log log(1/ǫ)) on the worst-case performance ratio of the

Chord algorithm.
The analysis is more subtle in this case and builds on the intuition obtained from

the simple analysis of the previous subsection. The proof bounds in effect the length
of paths in the recursion tree that consist of nodes with a single child. It shows that if
we consider any ǫ-convex Pareto set CPǫ, the segment of the lower envelope between
any two consecutive elements of CPǫ cannot contain too many points of the solution
produced by the Chord algorithm.

Theorem 20. The worst-case performance of the Chord algorithm (w.r.t. the ra-

tio distance) is O( m+log(1/ǫ)
logm+log log(1/ǫ)).

Proof. We begin by analyzing the case OPTǫ = 3 (i.e., the special case that one
intermediate point suffices—and is required—for an ǫ-approximation) and then handle
the general case. It turns out that this special case captures most of the difficulty in
the analysis.

Let a (leftmost) and b (rightmost) be the extreme points of the convex Pareto
curve as computed by the algorithm. We consider the case OPTǫ = 3, i.e., (i) the
set {a, b} is not an ǫ-CP and (ii) there exists a solution point q∗ such that {a, q∗, b}
is an ǫ-CP. It follows by convexity that in this case the recursion tree of the Chord
algorithm is a path.

Fix k ∈ N with k = Θ( m+log(1/ǫ)
logm+log log(1/ǫ) ). We will prove that, for an appropriate

choice of the constant in the big-Theta, the Chord algorithm introduces at most k
points in either of the intervals [a, q∗], [q∗, b]. Suppose, for the sake of contradiction,
that the Chord algorithm adds more points than that in the segment aq∗ (the proof
for q∗b being symmetric).

We say that, in some iteration of the Chord algorithm, a triangle is active, if it
contains the optimal point q∗. In each iteration, the Chord algorithm has an active
triangle which contains the optimal point q∗. Outside that triangle, the algorithm has
constructed an ǫ-approximation. We note that the Chord algorithm may in principle
go back and forth between the two sides of q∗; i.e., in some iterations the line parallel
to the chord touches the lower envelope to the left of q∗ and in other iterations to the
right.

Let △(abc) be the initial triangle. We focus our attention on the (not necessarily
consecutive) iterations of the Chord algorithm that add points to the left of q∗. We
index these iterations in increasing order with i ∈ [1, k + 1]. Consider the “active”
triangle △(aicibi) generated in each such iteration, where ai is the new point of the

D
o
w

n
lo

ad
ed

 0
3
/0

2
/1

8
 t

o
 1

8
.5

1
.0

.2
4
0
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

840 C. DASKALAKIS, I. DIAKONIKOLAS, AND M. YANNAKAKIS

Fig. 9. Illustration of the proof of Theorem 20.

curve added in the iteration. We let △(a0b0c0) be the initial triangle △(abc). It is
clear that (i) ai+1 lies to the right of ai, (ii) bi+1 lies to the left of (or is equal to)
bi, and (iii) △(ai+1ci+1bi+1) ⊆ △(aicibi). Also, let us denote b′ := bk+1, that is b

′ is
the b-vertex (i.e., the vertex that lies to the right of q∗) of the active triangle in the
last iteration k + 1. Note that b′ could be equal to the point b (which would happen
if the Chord algorithm introduces points only to the left of q∗, i.e., proceeds towards
q∗ monotonically), but in general this will not be the case.

Let ei be the intersection point of the line aici with the line b′q∗; see Figure 9.
Note that, to the left of q∗ the convex Pareto curve has no points below the line b′q∗.
All the points of the convex Pareto curve that are to the left of q∗ and lie in the active
triangle △(aicibi) (these are the potentially not ǫ-covered points) are actually in the
triangle △(aieiq

∗). Consider the line that goes through ai and is parallel to ai−1b
′

and let di be its intersection with b′q∗. Note that the line aici is parallel to ai−1bi
(by construction of the algorithm, this is the line that added the point ai and formed
the active triangle △(aicibi)) and bi lies to the right of (or is equal to) b′, so the line
aidi is to the left of (or is equal to) aici, hence, di lies to the left of (or is equal to)
ei. Now, let fi be the intersection point of ai−1ai with the line b′q∗. Clearly, fi lies
to the left of di. Furthermore, fi lies to the right of (or is equal to) di−1. The reason
is that, below ai−1 the curve has no points (strictly) to the left of the line ai−1di−1,
so ai is to the right of the line (or on the line).

If a point p ∈ R
2
+ is above a line ℓ, in the sense that the segment connecting

p to the origin O intersects ℓ, say at some point q, then we define the excess ratio
distance of p from ℓ to be (pq)/(Oq), i.e., the ratio distance of q from p. Let Hi be
the excess ratio distance of ai from the line b′q∗ for i ≥ 0. Let Gi be the excess ratio
distance of b′ from the line aidi for i ≥ 1. Referring to Figure 9, Hi = (aisi)/(Osi)
and Gi = (b′ti)/(Oti). Let Pi = Hi/Hi−1 and let Ri = 1− Pi.
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By definition, we have Hi = Pi · Hi−1 for all i. Furthermore, H0 is the excess
ratio distance of a = a0 from the line b′q∗. Since the coordinates of the points are in
[2−m, 2m], it follows that H0 ≤ 22m. Thus, we get

Hk ≤ 22m ·
k
∏

i=1

Pi.

Claim 21. Pi =
(aifi)

(ai−1fi)
= (fidi)

(fib′)
and Ri =

(dib
′)

(fib′)
.

Proof of Claim 21. Let si be the intersection of the segment aiO with the line
b′q∗ and si−1 the intersection of ai−1O with b′q∗. By definition, Hi = (aisi)/(Osi)
and Hi−1 = (ai−1si−1)/(Osi−1). Let ui−1 be the intersection of ai−1O with the line
from ai parallel to b′q∗. From the similar triangles △(Osi−1si) and △(Oui−1ai),
we have Hi = (aisi)/(Osi) = (ui−1si−1)/(Osi−1). Therefore, Pi = Hi/Hi−1 =
(ui−1si−1)/(ai−1si−1). From the similar triangles △(ai−1si−1fi) and △(ai−1ui−1ai),
the latter ratio is equal to (aifi)/(ai−1fi), yielding the first equality for Pi in the claim.
The second equality follows from the similar triangles △(fiaidi) and △(fiai−1b

′),
since aidi is parallel to ai−1b

′. The second equality implies then the expression for
Ri = 1− Pi.

From the Claim we have, (dib
′) = Ri · (fib′) and since di−1 lies left of fi, we have

(dib
′) ≤ Ri · (di−1b

′). Therefore,

(dkb
′) ≤ (d1b

′) ·
k
∏

i=2

Ri.

Let ti, ti−1 be the intersections ofOb′ with the lines aidi and ai−1di−1 respectively;
see Figure 9. Clearly, (b′ti)/(b′ti−1) ≤ (b′di)/(b′di−1) and, hence, (b

′ti) ≤ Ri · (b′ti−1).

Thus, Gi =
(b′ti)
Oti

≤ Ri(b
′ti−1)

(Oti−1)
= Ri ·Gi−1. Therefore,

Gk ≤ G1 ·
k
∏

i=2

Ri.

Claim 22. Hk > ǫ and Gk > ǫ.

Proof of Claim 22. Since the last iteration of the Chord algorithm adds a new
point ak+1, the segment akb

′ does not ǫ-cover all the Pareto points to the left of q∗ in
the active triangle. These points are all in the triangle △(akdkb

′). The ratio distance
of any point in this triangle from akb

′ is upper bounded by both (aksk)/(Osk) = Hk

and by (b′tk)/(Otk) = Gk. It follows that Hk > ǫ and Gk > ǫ.

Thus, we get

(11)
k
∏

i=1

Pi > ǫ/22m

and

(12) G1 ·
k
∏

i=2

Ri > ǫ.

Claim 23.
∏k

i=2 Ri > 1/2.

Proof of Claim 23. If G1 ≤ 2ǫ then the claim follows from inequality (12). So
suppose that G1 > 2ǫ. The point a1 is at ratio distance at most ǫ from the line aq∗
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since {a, q∗, b} is an ǫ-convex Pareto set. Therefore, q∗ is at most excess ratio distance
ǫ from the line a1d1, because a1d1 is parallel to ab′ and b′ is to the right of q∗. Since
G1 > 2ǫ, it follows that (d1q

∗) < (q∗b′) and, hence, (d1b′) < 2(q∗b′). Therefore,

(dkb
′) ≤ (d1b

′) ·
k
∏

i=2

Ri < 2(q∗b′) ·
k
∏

i=2

Ri.

Since (dkb
′) > (q∗b′) (as dk is left of q∗), we conclude that

k
∏

i=2

Ri > 1/2.

Thus, we have a lower bound on the product of the Pi’s from inequality (11) and
on the product of the Ri’s from Claim 23. It is easy to see (and is well known) that
for a fixed product of the Pi’s, the product of the Ri’s is maximized if all factors are
equal. We include a proof for convenience.

Claim 24. Let 0 < xi < 1 for i = 1, . . . , k. The maximum of
∏

i(1 − xi) subject
to

∏

i xi = c is achieved when all the xi’s are equal.

Proof of Claim 24. Suppose k = 2. Then (1− x1)(1− x2) = 1− (x1 + x2) + x1x2

is maximized subject to x1x2 = c, when x1 + x2 is minimized, which happens when
x1 = x2 by the arithmetic-geometric mean inequality (x1+x2 ≥ 2

√
x1x2 with equality

iff x1 = x2). For general k ≥ 2, if the xi’s maximize
∏

i(1 − xi) subject to
∏

i xi = c
then we must have xi = xj for all pairs i �= j, because otherwise replacing xi, xj by
their geometric mean will increase

∏

i(1− xi).

Thus, for any value of
∏k

i=2 Pi, the product
∏k

i=2 Ri is maximized when Pi = 1/t

for all i = 2, . . . , k and Ri = 1 − 1/t. Since
∏k

i=2 Ri > 1/2, we must have k − 1 < t

because (1 − 1/t)t < 1/e < 1/2. Therefore, ǫ/22m <
∏k

i=2 Pi < 1/(k − 1)k−1, hence,

(k − 1)k−1 < 22m/ǫ, which implies that k = O( m+log(1/ǫ)
logm+log log(1/ǫ) ).

We now proceed to analyze the general case, essentially by reducing it to the
aforementioned special case. Suppose that the optimal solution has an arbitrary
number of points, i.e., has the form Q∗ = 〈a, q1, q2, . . . , qr, b〉. Charge the points
computed by the Chord algorithm to the edges of the optimal solution as follows: if
a point belongs to the portion of the lower envelope between the points qi−1 and qi
(where we let a = q0 and b = qr+1), then we charge the point to the edge qi−1qi; if
the Chord algorithm generates a point qi of the optimal solution then we can charge
it to either one of the adjacent edges.

We claim that every edge of Q∗ is charged with at most 2k+1 points of the Chord

algorithm, where k = O( m+log(1/ǫ)
logm+log log(1/ǫ) ) is the same number as in the above analysis

for the OPTǫ = 3 case. To see this, consider any edge qi−1qi of Q∗. Let a0 be the
first point generated by the Chord algorithm that is charged to this edge, i.e., a0 is
the first point that lies between qi−1 and qi. We claim that the Chord algorithm will
generate at most k more points in each of the two portions LE(qi−1a0) and LE(a0qi)
of the lower envelope. The argument for the two portions is symmetric.

Consider the portion LE(a0qi). The proof that the Chord algorithm will introduce
at most k points in this portion is identical to the proof we gave above for the OPTǫ =
3 case with a0 in place of a and qi in place of q∗. The only fact about the assumption
OPTǫ = 3 that was used there was that the edge aq∗ ǫ-covers the portion of the lower
envelope between a and q∗. It is certainly true here that the segment a0qi ǫ-covers the
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portion LE(a0qi), since the edge qi−1qi ǫ-covers LE(qi−1qi) ⊇ LE(a0qi). Hence, by
the same arguments, the Chord algorithm will generate at most k points between a0
and qi. Thus, the algorithm will generate no more than (2k+1)(r+1) points overall

and, hence, its performance ratio is O( m+log(1/ǫ)
logm+log log(1/ǫ)). This completes the proof.

Remark 25. We briefly sketch the differences in the algorithm and its analysis for
the case of an approximate Comb routine. First, in this case, the description of the
Chord algorithm (Table 1) has to be slightly modified; this is needed to guarantee
that the set of computed points is indeed an ǫ-CP. In particular, in the Chord routine,
we need to check whether RD(q, lr) ≤ ǫ′ for an appropriate ǫ′ < ǫ. In particular, we
choose ǫ′ such that (1+ǫ′)(1+δ) ≤ (1+ǫ), where δ is the accuracy of the approximate
Comb routine, i.e., the routine Combδ. Consider the case that the Combδ routine
always returns feasible points that belong to a (1 + δ) scaled version of the lower
envelope. The same analysis as in the current section establishes that the Chord

algorithm performs at most O( m+log(1/ǫ′)
logm+log log(1/ǫ′) )OPTǫ′ calls to Combδ in this setting.

If ǫ′ is close to ǫ (say, ǫ′ ≥ ǫ/2) the first term is clearly O( m+log(1/ǫ)
logm+log log(1/ǫ)). Hence, to

prove the desired upper bound, it suffices to show that OPTǫ′ = O(OPTǫ). (It is clear
that OPTǫ′ ≥ OPTǫ, but in principle it may be the case that OPTǫ′ is arbitrarily
larger.) This is provided to us by a planar geometric lemma from [DY2] (Lemma 5.1)
which states that if (1 + ǫ′) ≥

√
1 + ǫ then OPTǫ′ ≤ 3OPTǫ. Selecting ǫ′ = δ =√

1 + ǫ− 1 ≥ ǫ/2 suffices for the above and completes our sketched description.

4. Average case analysis. In section 4.1 we present our average case upper
bounds and in section 4.2 we give the corresponding lower bound.

4.1. Upper bounds. In section 4.1.1 we start by proving our upper bound for
random instances drawn from a PPP. The analysis for the case of unconcentrated
product distributions is somewhat more involved and is given in section 4.1.2.

Overview of the proofs. The analysis for both cases has the same overall structure,
however, each case has its difficulties. We start by giving a high-level overview of the
arguments. For the sake of simplicity, in the following intuitive explanation, let n
denote (i) the expected number of points in the instance for a PPP and (ii) the actual
number of points for a product distribution.

Similarly to the simple proof of section 3.3.1 for worst-case instances, to analyze
our distributional instances we resort to an indirect measure of progress, namely, the
area of the triangles maintained in the algorithm’s recursion tree. We think that this
feature of our analysis is quite interesting and indicates that this measure is quite
robust.

In a little more detail, we first show (see Lemma 30 for the case of PPP) that
every subdivision performed by the algorithm decreases the area between the upper
and lower approximations by a significant amount (roughly at an exponential rate)
with high probability. It then follows that at depth log logn of the recursion tree, each
“surviving triangle” contains an expected number of at most log logn points with high
probability. We use this fact, together with a charging argument in the same spirit
as in the worst case, to argue that the expected performance ratio is log logn in this
case.

To analyze the expected performance ratio in the complementary event, we break
it into a “good” event, under which the ratio is logn with high probability, and a
“bad” event, where it is potentially unbounded (in the Poisson case) or at most n (for
the case of product distributions). The potential unboundedness of the performance
ratio in the Poisson case creates complications in bounding the expected ratio of the
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algorithm over the entire space. We overcome this difficulty by bounding the upper
tail of the Poisson distribution (see Claim 26).

In the case of product distributions, the worst-case bound of n on the competitive
ratio is sufficient to conclude the proof, but the technical challenges present them-
selves in a different form. Here, the “contents” of a triangle being processed by the
algorithm depend on the information coming from the previous recursive calls mak-
ing the analysis more involved. We overcome this by understanding the nature of the
information provided from the conditioning.

On the choice of parameters. A simple but crucial observation concerns the inter-
esting range for the parameters of the distributions. Suppose that we run the Chord
algorithm with desired error ǫ > 0 on some random instance that lies entirely in the
set [2−m, 2m]2. Then, it is no loss of generality to assume that the number of random
points in the instance (expected number for the PPP case) is upper bounded by some
fixed polynomial in 2m and 1/ǫ. If this is not the case, it is easy to show that the
Chord algorithm makes at most a constant number of Comb calls in expectation.

4.1.1. PPP. For the analysis of the PPP case we will make crucial use of the
following technical claim.

Claim 26. Let X be a Poisson(ν) random variable with ν ≥ 1, and let E be some
event. Then

E[X | E ] Pr[E ] ≤ max

{

1

ν
,O(ν3) Pr[E ]

}

.

Proof. Let k∗ be such that Pr[X ≥ k∗ + 1] < Pr[E ] ≤ Pr[X ≥ k∗]. Clearly,

E[X | E ] Pr[E ] ≤
+∞
∑

i=k∗

i·Pr[X = i] =
+∞
∑

i=k∗

i· e
−ννi

i!
= ν

+∞
∑

i=k∗−1

e−ννi

i!
= ν Pr[X ≥ k∗−1].

We distinguish two cases. If k∗ − 1 ≥ 2ν2, then Chebyshev’s inequality yields
Pr[X ≥ k∗ − 1] ≤ 1

ν2 which gives

E[X | E ] Pr[E ] ≤ 1

ν
.

If k∗ − 1 ≤ 2ν2, then

Pr[X = k∗] ≤ k∗ + 1

ν
Pr[X = k∗ + 1] ≤ O(ν) Pr[E ]

and

Pr[X = k∗ − 1] ≤ (k∗ + 1)2

ν2
Pr[X = k∗ + 1] ≤ O(ν2) Pr[E ].

Hence,

E[X | E ] Pr[E ] ≤ ν · Pr[X ≥ k∗ − 1]

≤ ν ·
(

Pr[E ] + Pr[X = k∗ − 1] + Pr[X = k∗]
)

≤ O(ν3) · Pr[E ].

This concludes the proof of the claim.

We start by pointing out that if the intensity of the PPP is very large, the Chord
algorithm will terminate after a constant number of calls in expectation.
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Fig. 10. Illustration of Proposition 27.

Proposition 27. Let T1 = △(abc) be at the root of the Chord algorithm’s recur-

sion tree and let ν denote the intensity of the PPP. Let α
def
= min{x(c), y(c)} and S∗ def

=

(ǫ2α2/2)·min{λab, 1/λab}. If ν ≥ ν0
def
= 10S(T1)/(S

∗)2, then E[CHORDǫ(T1)] = O(1).

Proof. First note we can clearly assume that y(a) > (1 + ǫ) · y(b) and x(b) >
(1+ ǫ) ·x(a). Let p1 = (x(a), (1+ ǫ) ·y(b)) ∈ ac and p2 = ((1+ ǫ) ·x(a), y(b)) ∈ bc. Let
T ∗ ⊆ △(cp1p2) be the right triangle of maximum area whose hypotenuse is parallel
to ab. (This is the shaded triangle in Figure 10.) We claim that S(T ∗) ≥ S∗. Indeed,
it is clear that c is a vertex of T ∗ and that either p1 or p2 (or both) are vertices.
Hence, one of the edges of T ∗ has length at least ǫ · α. Since λab is the slope of the
hypotenuse, the other edge has length at least min{λab, 1/λab} · (ǫα).

If there is a feasible point in T ∗, the Chord algorithm will find it by calling
Comb(λab) and terminate (since such a point forms an ǫ-CP set). Let X∗ be the
number of random points that land in the triangle T ∗. Note that X∗ is a Poisson(µ)
random variable with µ = ν · S(T ∗). We can write

E[CHORDǫ(T1)] = E[CHORDǫ(T1) | X∗ = 0]Pr[X∗ = 0]

+ E[CHORDǫ(T1) | X∗ ≥ 1] Pr[X∗ ≥ 1].

Observe that the second term is bounded from above by a constant, hence, it suffices
to bound the first term. Recall that the number of calls performed by the Chord
algorithm is at most twice the number Y1 of feasible points in the root triangle T1.
Therefore, we can write

E[CHORDǫ(T1) | X∗ = 0]Pr[X∗ = 0] ≤ 2E[Y1 | X∗ = 0]Pr[X∗ = 0].

Recall that Y1 is a Poisson(ν1) random variable, where ν1 = ν · S(T1) and note that
we can assume without loss of generality that ν1 ≥ 1 (since otherwise the expected
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number of feasible points in T1 is at most 1 and we are done). Hence, by Claim 26
the RHS above is bounded by

2max

{

1

ν1
, O(ν31 ) Pr[X

∗ = 0]

}

.

Thus, to complete the proof it suffices to show that ν31 Pr[X
∗ = 0] = O(1). First note

that this quantity equals ν3S3(T1) exp(−νS(T ∗)) which is at most ν30S
3(T1) exp(−ν0S

∗)
by monotonicity (which holds for our choice of ν0). The latter expression is at most
O(β6 exp(−10β)), where β = S(T1)/S

∗ > 1, which is easily seen to be absolutely
bounded.

The same proposition also applies for the case that we have an approximate Combδ
routine (in this case, we replace ǫ by an appropriate ǫ′ < ǫ so that (1 + δ)(1 + ǫ′) ≤
(1+ǫ)). We remark that a similar proposition can be shown for the Hausdorff distance;
this does not hold for the case of the horizontal/vertical distance, which is why the
average case bounds of this section do not apply for the latter metrics.

Note that by assumption T1 ⊆ [2−m, 2m]2 which implies that S(T1) ≤ 22m−1 and
α ≥ 2−m. We also have that ǫ/22m ≤ λab ≤ 22m/ǫ (since otherwise the set {a, b} is
an ǫ-CP) which gives S∗ ≥ ǫ32−4m−1. Therefore, ν0 = poly(2m/ǫ).

The main result of this section is the following theorem, which combined with
Proposition 27, yields the desired upper bound of O(logm + log log(1/ǫ)) on the
expected performance ratio.

Theorem 28. Let T1 be the triangle at the root of the Chord algorithm’s re-
cursion tree, and suppose that points are inserted into T1 according to a PPP with
intensity ν. The expected performance ratio of the Chord algorithm on this instance
is O (log log (νS(T1))).

The proof of Theorem 28 will require a sequence of lemmas. Throughout this
section, we will denote S1

def
= S(T1). Recall that the number of queries performed

by the Chord algorithm is bounded from above by twice the total number of points
in the triangle T1. Since the expected number of points in T1 is ν · S1, we have the
following.

Proposition 29. The expected performance ratio of the Chord algorithm is
O(νS1).

Hence, we will henceforth assume that νS1 is bounded from below by a sufficiently
large positive constant. (If this is not the case, the expected total number of points
inside T1 is O(1) and the desired bound clearly holds.)

Our first main lemma in this section is an average case analogue of our Lemma 17:
The lemma says that the area of the triangles maintained by the algorithm decreases
geometrically (as opposed to linearly, as is the case for arbitrary inputs) at every
recursive step (with high probability). Intuitively, this geometric decrease is what
causes the performance ratio to drop by an exponential in expectation.

Lemma 30. Let Ti = △(aibici) be the triangle processed by the Chord algorithm
at some recursive step. Denote qi = Comb(λaibi). Let Ti,l = △(aia

′
iqi) and Ti,r =

△(bib
′
iqi). For all c > 0 with probability at least 1 − 1

(ln(νS1))
c conditioning on the

information available to the algorithm,

S(Ti,l), S(Ti,r) ≤
√

S(Ti) ·
√

c · ln ln νS1

ν
.

D
o
w

n
lo

ad
ed

 0
3
/0

2
/1

8
 t

o
 1

8
.5

1
.0

.2
4
0
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A RIGOROUS ANALYSIS OF THE CHORD ALGORITHM 847

Fig. 11. Illustration of the average case area shrinkage property of the algorithm.

Proof. It follows from the properties of the Chord algorithm (see, e.g., Claim 7)
that, before the Comb routine on input Ti is invoked, the following information is
known to the algorithm, conditioning on the history (see Figure 11):

• There exist solution points at the locations qj for all j ∈ [i− 1].
• There is no point below the line ajcj for all j ∈ [i].
• There is no point below the line cjbj for all j ∈ [i].

By the definition of the PPP, conditioning on the above information, the number of
points in a region of area S inside Ti follows a Poisson distribution with parameter

ν · S. Hence, letting ζiηi being parallel to aibi so that the triangle T ∗ def
= △(ciζiηi)

has area S∗ def
= c·ln ln(νS1)

ν , it follows that, with probability at least 1 − 1
(ln(νS1))c

,

T ∗ �= ∅ (i.e., the triangle contains a feasible point). Hence, with probability at least
1− 1

(ln(νS1))c
the point qi is contained in T ∗.

We bound from above the area of Ti,l by the area of T ′
i,l = △(aiciηi) (clearly,

Ti,l ⊆ T ′
i,l) and similarly the area of Ti,r by the area of T ′

i,r = △(ζicibi). From the
similarity of the triangles Ti and T ∗ we get

(ζiηi)

(aibi)
=

(ciηi)

(bici)
=

(ζiθi)

(aidi)
.

Hence,

S∗

S(Ti)
=

1
2 (ciηi)(ζiθi)
1
2 (bici)(aidi)

=

(

(ciηi)

(bici)

)2

,

which gives (ciηi) = (bici)
√

S∗

S(Ti)
. Therefore,

S(T ′
i,l) =

1

2
(aidi)(ciηi) =

1

2
(aidi)(bici)

√

S∗

S(Ti)

=
√

S(Ti) · S∗ =
√

S(Ti) ·
√

c · ln ln(νS1)

ν
.
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Finally,

S(T ′
i,r) =

1

2
(ζiθi)(bici) =

1

2

(ciηi)

(bici)
(aidi)(bici) = S(T ′

i,l).

This concludes the proof of Lemma 30.

Let us choose c ∈ ( 1
ln ln(νS1)

, νS1

ln ln(νS1)
), and let T be a triangle maintained by the

algorithm at depth d of the recursion. It follows from Lemma 30 that, with probability
at least 1− d

(ln(νS1))c
,

S(T ) ≤ S2−d

1 ·
(

c · ln ln(νS1)

ν

)1−2−d

,

where to bound the probability of the above event we have taken a union bound over
the events on the path of the recursion tree connecting T to the root of the recursion.

Now consider the top d∗ := ⌈log2 ln(νS1)⌉ levels of the recursion tree of the
algorithm. Using Lemma 30 and a union bound it follows that, with overall probability

at least 1− 2·ln(νS1)
(ln(νS1))c

, the area of every triangle at depth (exactly) d∗ of the recursion

tree is bounded from above by

S∗∗ := (e · c · ln ln(νS1)) /ν,

where we used our assumption on the range of c.
Let A be the event that all the nodes (triangles) maintained by the algorithm at

depth d∗ of the recursion tree (if any) have area at most S∗∗. In the aforementioned,
we argued that the probability of the event A is at least 1 − 2

(ln(νS1))c−1 . We now

show the following.

Lemma 31. Conditioning on A, the expected performance ratio of the Chord al-
gorithm is O (log log(νS1)).

Proof. Let T be the recursion tree of the algorithm and Td∗ be obtained from T
by pruning it at level d∗. Let Vd∗ be the set of nodes of Td∗ and let Ld∗ be the subset
of nodes in Vd∗ that lie at depth d∗ from the root. Clearly Ld∗ is a subset of the leaves
of Td∗ .

For a triangle (node) T maintained by the algorithm at depth d∗ of the recursion,
that is T ∈ Ld∗ , we let the random variable XT denote the number of points inside
T . Also, denote by L′

d∗ the set of lowest internal nodes of the tree Td∗ . By (a
straightforward analogue of) Lemma 18, we have OPTǫ ≥ |L′

d∗ |. Also, since Td∗ is a
depth d∗ binary tree, it holds |Vd∗ | ≤ 2d∗ · |L′

d∗ |.
We condition on the information F available to the algorithm in the first d∗

levels of its recursion tree (without the information obtained from processing—i.e.,
calling Comb for—any triangle at depth d∗). By assumption, F satisfies the event A.
Conditioning on the information F , for all T ∈ Ld∗ , XT follows a Poisson distribution
with parameter ν ·S(T ). So, given that the event A holds, we have E[XT F ] ≤ ν ·S∗∗.

Note that the Chord algorithm makes a query to Comb for every node in the tree
Td∗ . Also recall that the number of queries performed by the algorithm on a triangle
T containing a total number of XT points is at most 2XT . Hence, the expected total
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number of queries made can be bounded as follows:

E[CHORDǫ | F ] ≤ |Vd∗ |+ 2 · ∑

T∈Ld∗

E[XT | F ]

≤ |Vd∗ |+ 2 |Ld∗ | · ν · S∗∗

≤ |Vd∗ |+ 4|L′
d∗ | · ν · S∗∗

≤ |L′
d∗ | · (2d∗ + 4ν · S∗∗),

where the third inequality uses the fact that |Ld∗ | ≤ 2 |L′
d∗ |. So, conditioning on the

information F , the expected performance ratio of the algorithm is

E

[

CHORDǫ

OPTǫ
F
]

≤ E

[

CHORDǫ

|L′
d∗ |

F
]

≤ (2d∗ + 4ν · S∗∗)

= O (log log(νS1)) .

Integrating over all possible F in A concludes the proof of Lemma 31.

From Lemma 31 it follows that

E

[

CHORDǫ

OPTǫ
A
]

= O (log log(νS1)) ,

and from the preceding discussion we have that Pr
[

Ā
]

≤ 2
(ln(νS1))c−1 . Hence, we have

established the following.

Lemma 32. For c ∈ ( 1
ln ln(νS1)

, νS1

ln ln(νS1)
), there exists an event A with Pr[A] ≥

1− 2
(ln(νS1))c−1 , such that the expected performance ratio of the algorithm conditioning

on A is O(log log(νS1)).

Let B be the event that all the triangles at the level ⌈log2(νS1)⌉ of the recursion
tree of the algorithm (if any) have area at most (e · c′ · ln νS1)/ν. With the same
technique, but using different parameters in the argument, we can also establish the
following.

Lemma 33. For c′ ∈ ( 1
ln(νS1)

, νS1

ln(νS1)
), there exists an event B with Pr[B] ≥ 1 −

2
(νS1)c

′
−1 , such that the expected performance ratio of the algorithm conditioning on B

is O(log(νS1)).

We want to use Lemmas 32 and 33 together with Proposition 29 to deduce that
the expected performance ratio of the algorithm is O (log log(νS1)). This may seem
intuitive, but it is in fact not immediate. For technical purposes let us define the event
C = B \ A, where A is the event defined in the proof of Lemma 32. It is easy to see
that conditioning on C the expected performance ratio of the algorithm can still be
bounded by O(log(νS1)), since this expectation is affected only by whatever happens
at level ⌈log2(νS1)⌉ of the recursion tree and below. On the other hand, using the
fact that Pr[A] ≥ 1− 2

(ln(νS1))c−1 , it follows that

Pr[C] ≤ 2

(ln(νS1))c−1
.

We bound the expectation of the performance ratio using the law of total probability
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as follows:

E

[

CHORDǫ

OPTǫ

]

≤ E

[

CHORDǫ

OPTǫ
A
]

· Pr[A] + E

[

CHORDǫ

OPTǫ
C
]

· Pr[C]

+E

[

CHORDǫ

OPTǫ
A∪ C

]

· Pr
[

A ∪ C
]

≤ O (log log(νS1)) ·
(

1− 2

(ln(νS1))c−1

)

+O (log(νS1)) ·
2

(ln(νS1))c−1

+E

[

CHORDǫ

OPTǫ
A∪ C

]

· Pr
[

A ∪ C
]

,(13)

where (13) follows from Lemmas 32 and 33. To conclude, we need to bound the last
summand in the above expression. Note first that B ⊆ A ∪ C. Hence,

Pr
[

A ∪ C
]

≤ 2

(νS1)c
′−1

.

We again use the fact that the number of queries made by the Chord algorithm
(hence, also the performance ratio) is bounded by twice the total number of points
in the triangle at the root of the recursion tree. This number X follows a Poisson
distribution with parameter ν · S1. Hence, we have

E

[

CHORDǫ

OPTǫ
A ∪ C

]

· Pr
[

A ∪ C
]

≤ 2 · E
[

X A ∪ C
]

· Pr
[

A ∪ C
]

.

To bound the RHS of the above inequality we use Claim 26 and obtain

E

[

CHORDǫ

OPTǫ
A∪ C

]

· Pr
[

A ∪ C
]

≤ max

{

1

νS1
, O((νS1)

3) · Pr
[

A ∪ C
]

}

≤ max

{

1

νS1
, O((νS1)

3)
2

(νS1)c
′−1

}

.

Choosing c′ = 4, the above RHS becomes O(1). Plugging this into (13) with c = 2
gives

E

[

CHORDǫ

OPTǫ

]

= O (log log(νS1)) .

This concludes the proof of Theorem 28.

4.1.2. Product distributions. We start by proving the analogue of Proposi-
tion 27.

Proposition 34. Let T1 = △(abc) be at the root of the Chord algorithm’s re-
cursion tree and suppose that n points are inserted into T1 independently from a

γ-balanced distribution, where γ ∈ [0, 1). Let α
def
= min{x(c), y(c)}, S∗ def

= (ǫ2α2/2) ·
min{λab, 1/λab} and β

def
= S(T1)/S

∗. If n ≥ n0
def
= 10β2/(1−γ)2, then E[CHORDǫ(T1)]

= O(1).

Proof. As in Proposition 27 we have that S(T ∗) ≥ S∗ (see Figure 10). The
probability that a random point falls into T ∗ is at least t∗ = (1 − γ)(1/β), hence,
the probability than none of the n points falls into T ∗ is at most (1 − t∗)n. As
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before, if there is a feasible point in T ∗, the Chord algorithm will find it and termi-
nate. In all cases, the algorithm terminates after at most 2n calls to Comb. Hence,
E[CHORDǫ(T )] ≤ 3 + 2n · (1 − t∗)n. The last summand is bounded by 2n · e−t∗·n

which is at most 2n0 · e−t∗·n0 for all n ≥ n0 by monotonicity. The latter quantity
equals O(r2e−10r), where r = β/(1− γ) > 1, which is easily seen to be O(1).

Recalling that S(T1) ≤ 22m−1 and S∗ ≥ ǫ32−4m−1 we deduce that n0 =
poly(2m/ǫ)/(1− γ)2.

The main result of this section is devoted to the proof of the following theorem.

Theorem 35. Let T1 be the triangle at the root of the Chord algorithm’s recursion
tree, and suppose that n points are inserted into T1 independently from a γ-balanced
distribution, where γ ∈ [0, 1). The expected performance ratio of the Chord algorithm
on this instance is Oγ(log logn).

Combined with Proposition 34, the theorem yields the desired upper bound of
Oγ(logm + log log(1/ǫ)). The proof has the same overall structure as the proof of
Theorem 28, but the details are more elaborate. We emphasize below the required
modifications to the argument.

Since the performance ratio of the Chord algorithm is at most 2n on any instance
with n points, we will assume that n is lower bounded by a sufficiently large absolute
constant (n ≥ 12 suffices for our analysis). We start by giving an area shrinkage
lemma, similar to Lemma 30. (See Figure 11 for an illustration.)

Lemma 36. Let Ti = △(aibici) be a triangle processed by the Chord algorithm
at recursion depth at most ⌈log2 lnn⌉ − 1. Denote qi = Comb(λaibi). Let Ti,l =
△(aia

′
iqi), Ti,r = △(bib

′
iqi), and T ′

i = △(a′icib
′
i). For all c > 0 with probability at least

1− lnn− c(1−γ)2

2 conditioning on the information available to the algorithm,

S(Ti,l), S(Ti,r) ≤
√

S(Ti)S1 ·
√

c · ln lnn
n

and S(T ′
i ) ≤ S1

c · ln lnn
n

.

Proof. We follow the proof of Lemma 30 with the appropriate modifications. Let
Ti be the triangle maintained by the algorithm at some node of the recursion tree, and
suppose that Ti is at recursion depth at most ⌈log2 lnn⌉−1. The information available
to the algorithm when it processes Ti (before it makes the query Comb(λaibi)) is the
following.

• The location of all points qj , j ∈ [i− 1] is known; by our assumption on the
depth it follows that i ≤ 2 lnn.

• There is no point below the line (defined by) ajcj , or below the line cjbj for
all j ∈ [i].

Given this information, the probability that, among the remaining ni ≥ n − 2 lnn
points (whose location is unknown), none falls inside a triangle T of area S(T ) inside
Ti, is at most

(

1− (1 − γ)2
S(T )

S1

)ni

.

Indeed, let T ∗
i ⊆ T1 be the subset of the root triangle which is available for the location

of qi; this is the convex set below the line a1b1, to the right of all lines ajcj for j ∈ [i],
and above all lines cjbj for j ∈ [i]. The probability that a point whose location is
unknown falls inside T ⊆ T ∗

i is

D [T ]

D[T ∗
i ]

≥ (1− γ)U [T ]

U [T ∗
i ]/(1− γ)

≥ (1− γ)U [T ]

U [T1]/(1− γ)
= (1− γ)2

S(T )

S1
.
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Choosing S(T )
def
= S1

c·ln lnn
n , the probability becomes

(1− γ)2 · c · ln lnn
n

.

Hence, the probability that T is empty is at most

(

1− c(1− γ)2
ln lnn

n

)ni

≤ e−c(1−γ)2 ln lnn
n ni ≤

(

1

lnn

)

c(1−γ)2

2

.

The proof of the lemma is concluded by identical arguments as in the proof of
Lemma 30.

Using Lemma 36 and the union bound, we can show that, with probability at
least

1− 2

(lnn)
c(1−γ)2

2 −1
,

the following are satisfied:
• All triangles maintained by the algorithm at depth ⌈log2 lnn⌉ of its recursion
tree have area at most

S1 ·
e · c · ln lnn

n
.

• For every node (triangle) i in the first ⌈log2 lnn⌉ − 1 levels of the recursion
tree

S(T ′
i ) ≤ S1

c · ln lnn
n

,

where T ′
i is defined as in the statement of Lemma 36.

The proof of the second assertion above follows immediately from Lemma 36 and
the union bound. The first assertion is shown similarly to the analogous assertion of
Theorem 28. For the above we assumed that c ∈ ( 1

ln lnn ,
n

ln lnn ).
Now let us call Ac the event that the above assertions are satisfied. We can show

the following.

Lemma 37. Suppose c ≤ n
4·lnn·ln lnn . Conditioning on the event Ac, the expected

performance ratio of the Chord algorithm is Oc,γ(log logn).

Proof. The proof is in the same spirit as the proof of Lemma 31, but more care
is needed. We need to argue that, under Ac, the expected number of points falling
inside a triangle at depth ⌈log2 lnn⌉ of the recursion tree is Oc,γ(log log n). Using
rationale similar to that used in the proof of Lemma 36 above, we have the following:
Let Ti be the triangle maintained by the algorithm at a node i at depth ⌈log2 lnn⌉ of
the recursion tree. Let also p be a point whose location is unknown to the algorithm
(conditioning on the information known to the algorithm after processing the first
⌈log2 lnn⌉ − 1 levels of the recursion tree). The probability that the point p falls
inside Ti is

D [Ti]

D[T ∗
i ]

≤ U [Ti] /(1− γ)

(1− γ)U [T ∗
i ]

,

where T ∗
i is the region below the line a1b1, above the lines ajcj for all j in the first

⌈log2 lnn⌉ levels of the recursion tree, and above the lines cjbj for all j in the first
⌈log2 lnn⌉ levels of the recursion tree. To upper bound the probability that p falls
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inside Ti, we need a lower bound on the size of the area S(T ∗
i ). Such a bound can be

obtained by noticing that
S(T ∗

i ) = S1 −
∑

j

S(T ′
j),

where the summation ranges over all j in the first ⌈log2 lnn⌉−1 levels of the recursion
tree. Hence,

S(T ∗
i ) ≥ S1 − 2 lnn · S1

c · ln lnn
n

= S1 ·
n− 2 · c · lnn · ln lnn

n
≥ S1

2
,

where we used that c ≤ n
4·lnn·ln lnn . Hence, the probability that a point falls inside Ti

is at most

U [Ti] /(1− γ)

(1− γ)U [T ∗
i ]

≤ 1

(1− γ)2
· S1 · e·c·ln lnn

n

S1/2
≤ 2 · e · c · ln lnn

(1− γ)2n
.

Therefore, the expected number of points falling in Ti is at most

2 · e · c · ln lnn
(1− γ)2

.

The final part of the proof is a charging argument identical to the one in Lem-
ma 31.

We have thus established the following.

Lemma 38. For c ∈ ( 1
ln lnn ,

n
4·lnn·ln lnn ), there exists an event Ac with Pr[Ac] ≥

1 − 2

(lnn)0.5c(1−γ)2−1
, such that the expected performance ratio of the Chord algorithm

conditioning on Ac is Oc,γ(log logn).

We can also show the analogue of Lemma 33 in the following.

Lemma 39. For c′ ∈ ( 1
lnn ,

lnn
6 ), there exists an event Bc′ with Pr[Bc′ ] ≥ 1 −

2
n0.5c′(1−γ)2−1

, such that the expected performance ratio of the Chord algorithm condi-

tioning on Bc′ is Oc′,γ((log n)
3).

Proof. The proof is similar to the proof of Lemma 38, except that the bound is
now a bit trickier. For c′ ∈ ( 1

lnn ,
lnn
6 ), let Bc′ be the event that

• all the triangles maintained by the algorithm at depth ⌈log2 n⌉ of its recursion
tree have area at most S1 · e·c′·lnn

n ;
• for every node i inside the first ⌈log2 n⌉ − 1 levels of the recursion tree

S(T ′
i ) ≤ S1

c′ · lnn
n

,

where S(T ′
i ) is defined as in the statement of Lemma 36.

Using arguments similar to those in the proof of Lemma 36 and the union bound, we
obtain that

Pr[Bc′ ] ≥ 1− 2

n0.5c′(1−γ)2−1
.

Now let d∗
def
= ⌈log2 n⌉ and Td∗ be the recursion tree of the algorithm pruned at level

d∗. We also define the set L′
d∗ as in the proof of Lemma 31, (but with d∗ replaced by

⌈log2 n⌉). As in that proof, any ǫ-CP set needs to use at least |L′
d∗ | points. Moreover,
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the total number of nodes inside Td∗ is at most 2d∗|L′
d∗ |. Whenever the algorithm

processes a triangle, a planar region of area at most S1 · c′·lnn
n is removed from T1

(the root triangle). Therefore, after finishing the processing of the first ⌈log2 n⌉ − 1
levels of the tree, a total area of at most

2⌈log2 n⌉S1 ·
c′ · lnn

n
|L′

d∗ |

is removed from T1.
We distinguish two cases. If |L′

d∗ | ≥ n
⌈lnn⌉3 , then the size of the optimum is

at least n
⌈lnn⌉3 points. Since there is a total of n points (and the algorithm never

performs more than 2n Comb calls), it follows that in this case the performance ratio
is O(log3 n).

On the other hand, if |L′
d∗ | ≤ n

⌈lnn⌉3 , then the total area that has been removed

from T1 is at most 2S1 · c′

lnn . Hence, the remaining area is at least S1/2, assuming
c′ ≤ lnn/6. Given this bound it follows that the expected number of points inside a
triangle at level ⌈log2 n⌉ of the recursion tree is at most

2 · e · c′ · lnn
(1− γ)2

.

Using the aforementioned and noting that the performance ratio “paid” within the
first ⌈log2 n⌉ − 1 levels of the recursion tree is at most Oc′,γ(log n), we can conclude
the proof via arguments parallel to those in the proof of Lemma 31.

Now let us choose c = 8
(1−γ)2 and c′ = 4

(1−γ)2 . From Lemmas 38 and 39 we have

that

Pr[Ac] ≥ 1− 2

(lnn)3
and Pr[Bc′ ] ≥ 1− 2

n
.

Given this, we can conclude the proof Theorem 35. The argument is the same as
the end of the proof of Theorem 28, except that we can now trivially bound the
performance ratio of the algorithm by 2n in the event A ∪ C.

4.2. Lower bounds. In this section we show that our upper bounds on the
expected performance of the algorithm are tight up to constant factors. In particular,
for the case of the PPP we prove the following.

Theorem 40. Let T1 be the triangle at the root of the Chord algorithm’s recursion
tree, and suppose that points are inserted into T1 according to a PPP with intensity ν.
There exists an infinite family of instances (parameterized by ǫ and m) on which the
expected performance ratio of the Chord algorithm is Ω(log log(νS(T1))). In particular,
we can select the parameters so that S(T1) = poly(2m/ǫ), which yields a lower bound
of Ω(logm+ log log 1/ǫ).

Proof. The lower bound construction is reminiscent of the worst-case instance
of section 3.2. In particular, the initial triangle T1 = △(a1b1c1) (at the root of the
recursion tree) will be right and (a1c1) ≫ (b1c1). To avoid clutter in the expressions,
we present the proof for the case m = 1. The generalization for all values of m is
straightforward.

We fix a1 = (1, 2), b1 = (1 + 2ǫ, 1), and c1 = (1, 1) and select the intensity of the

Poisson process to be ν
def
= 1/ǫ2. Note that for this setting of the parameters we have

that νS(T1) = 1/ǫ, and we thus obtain an Ω(log log(1/ǫ)) lower bound.
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Fig. 12. Illustration of the average case lower bound construction.

Given the endpoints a1, b1, it is clear that OPTǫ ≤ 3 with probability 1. Hence,
it suffices to show that the Chord algorithm makes Ω(log log(1/ǫ)) Comb calls in
expectation before it terminates. To show this, we are in turn going to prove that for
ǫ being a sufficiently small positive constant, with constant probability, there exists a
path P of length Ω(log log(1/ǫ)) in the recursion tree of the algorithm.

As shown in Lemma 13, for such instances the ratio distance is very well approx-
imated by the horizontal distance. In particular, consider the triangle Ti = △(aibici)
(see Figure 12), where (bici) ≤ 2ǫ. For any point s ∈ Ti, we have that

RD(s, aibi) ≤ ∆x(s, aibi) ≤ RD(s, aibi) + 4ǫ2 + 2ǫ/λaibi .

Hence, as long as λaibi (the slope of aibi) is sufficiently large, we can essentially use
the horizontal distance metric as a proxy for the ratio distance. Indeed, this will be
the case for our lower bound instance below.

We now proceed to formally describe the construction. The path P of length
Ω(log log(1/ǫ)) will be defined by the triangles with bi = b1, i.e., the ones corre-
sponding to the right subproblem in every subdivision performed by the algorithm.
For notational convenience, we shift the coordinate system to the point c1, so that
c1 = (0, 0), a1 = (0, 1), and b1 = (2ǫ, 0). (Note that the horizontal distance is in-
variant under translation.) We label the triangles in the path P by T1, T2, . . . , and
we let the vertices of triangle Ti be ai = (xi, yi), ci = (x′

i, 0), and bi = b1. Suppose
that when the Chord algorithm processes the triangle Ti, the Comb routine returns
the point qi on a line a′ib

′
i parallel to aibi (as in Figure 12). Note that b′i = ci+1 and

qi = ai+1. Let a′i = (Xi,Yi). Let j∗
def
= (1/2)⌈log log(1/ǫ)⌉. The theorem follows

easily from the next lemma.

Lemma 41. Let ǫ be a sufficiently small positive constant. With probability at
least 1− 4j∗/(ln(1/ǫ))1/4 for all i ∈ [j∗],

(14) yi ≥ c′i · ǫ1−2−i+1

/ln(1/ǫ) and x′
i ≤ c′′i · ǫ1+2−i+1 · ln(1/ǫ),

where c′i = 21−2−i

and c′′i =
√
2 ·∑i

j=1 2
2−j

.
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Proof. It is clear that (14) is satisfied for i = 1. We are going to show by induction
that, if (14) holds for some i, it also holds for i + 1 with probability at least 1 −
4/(ln(1/ǫ))1/4. The theorem then follows by a union bound over all i ∈ [j∗].

By the similarity of the triangles Ti = △(aibici) and T ′
i = △(a′ib

′
ici) we have

yi
Yi

=
2ǫ− x′

i

x′
i+1 − x′

i

.(15)

From the properties of the PPP we have the following: Conditioning on the informa-
tion available to the algorithm when it processes the triangle Ti, if a measurable region
inside Ti has area S∗ = ǫ2 ln(1/ǫ), then we have that the number of points inside this
region follows a Poisson distribution with parameter ν · S∗ = ln(1/ǫ). Hence, with
probability at least 1−ǫ, any such region contains at least one point. Hence, with prob-
ability at least 1− ǫ we have that S(T ′

i ) ≤ S∗. Note that S(T ′
i ) = (1/2)(x′

i+1 − x′
i)Yi.

Using (15) and the induction hypothesis, this implies that, with probability at least
1− ǫ,

x′
i+1 − x′

i ≤
2

√

c′i
· ln(1/ǫ) · ǫ1+2−i

;

hence,

x′
i+1 ≤

(

2
√

c′i
+ c′′i

)

· ln(1/ǫ) · ǫ1+2−i

as desired.
On the other hand, if the area of a region is no more than S∗∗ = ǫ2/

√

ln(1/ǫ) the

probability that a point is contained in that region is at most ν · S∗∗ = 1/
√

ln (1/ǫ).

Similarly, this implies that, with probability at least 1− 1/
√

ln (1/ǫ),

Yi ≥
√

c′i · ǫ1−2−i

(ln(1/ǫ))3/4
.

By the properties of the PPP it follows that the point qi is uniformly distributed on

the segment a′ib
′
i. Hence, with probability at least 1−

√
2

(ln(1/ǫ))1/4
, it holds

yi+1 ≥
√

2c′i · ǫ1−2−i

ln(1/ǫ)
.

A union bound concludes the proof.

We now show how the theorem follows from the above lemma. First note that,
for all i it holds

√
2 · ∑i

j=1 2
2−j ≤ 2

√
2 · i. Hence, by Lemma 41 and the choice of

j∗, it is easy to check that with probability at least 1 − 4j∗/(ln(1/ǫ))1/4, we have
x′
j∗ = o(ǫ) and yj∗ = ω(ǫ). The latter condition implies that the horizontal distance

is a very good approximation to the ratio distance. The latter, combined with the
first condition, implies that the node (corresponding to the triangle) Tj∗ is not a leaf
of the recursion tree. That is, all the triangles T1, . . . , Tj∗ survive in the recursion
tree, since the Chord algorithm does not have a certificate that the points already
computed are enough to form an ǫ-CP set. This concludes the proof of the theo-
rem.

An analogous result can be shown similarly for the case of n points drawn from
a balanced distribution.
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5. Conclusions and open problems. We studied the Chord algorithm, a sim-
ple popular greedy algorithm that is used (under different names) for the approxi-
mation of convex curves in various areas. We analyzed the performance ratio of the
algorithm, i.e., the ratio of the cost of the algorithm over the minimum possible cost
required to achieve a desired accuracy for an instance, with respect to the Hausdorff
and the ratio distances. We showed sharp upper and lower bounds, both in a worst
case and in an average setting. In the worst case the Chord algorithm is roughly at
most a logarithmic factor away from optimal, while in the average case it is at most
a doubly logarithmic factor away.

We showed also that no algorithm can achieve a constant ratio in the worst
case, in particular, at least a doubly logarithmic factor is unavoidable. We leave
as an interesting open problem to determine if there is an algorithm with a better
performance than the Chord algorithm (both in the worst-case and in average case
settings), and to determine what is the best ratio that can be achieved. Another
interesting direction of further research is to analyze the performance of the Chord
algorithm in three and higher dimensions, and to characterize what are the best
performance ratios that can be achieved by any algorithm.
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