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The dynamics of unimolecular photo-triggered reactions can be strongly affected by the surround-
ing medium for which a large number of theoretical descriptions have been used in the past. An
accurate description of these reactions requires knowing the potential energy surface and the friction
felt by the reactants. Most of these theories start from the Langevin equation to derive the dynam-
ics, but there are few examples comparing it with experiments. Here we explore the applicability of
a Generalized Langevin Equation (GLE) with an arbitrary potential and a non-Markovian friction.
To this end, we have performed broadband fluorescence measurements with sub-picosecond time
resolution of a covalently linked organic electron donor-acceptor system in solvents of changing vis-
cosity and dielectric permittivity. In order to establish the free energy surface (FES) of the reaction,
we resort to stationary electronic spectroscopy. On the other hand, the dynamics of a non-reacting
substance, Coumarin 153, provide the calibrating tool for the non-Markovian friction over the FES,
which is assumed to be solute independent. A simpler and computationally faster approach uses the
Generalized Smoluchowski Equation (GSE), which can be derived from the GLE for pure harmonic
potentials. Both approaches reproduce the measurements in most of the solvents reasonably well.
At long times, some differences arise from the errors inherited from the analysis of the stationary
solvatochromism and at short times from the excess excitation energy. However, whenever the dynam-
ics become slow, the GSE shows larger deviations than the GLE, the results of which always agree
qualitatively with the measured dynamics, regardless of the solvent viscosity or dielectric properties.
The method applied here can be used to predict the dynamics of any other reacting system, given the
FES parameters and solvent dynamics are provided. Thus no fitting parameters enter the GLE simu-
lations, within the applicability limits found for the model in this work. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4990044]

I. INTRODUCTION

For many chemical reactions, a classical kinetics descrip-
tion using rate constants is sufficient, at least for their descrip-
tion at long times since their start. The Arrhenius empirical
picture1 and the transition state theory,2–4 still practical and
widely used, imply and assume an energetic barrier between
reactants and products, which the reacting system has to sur-
pass for the reaction to take place. This step determines the
reaction rate constant. However, in liquids the passage over
the activation barrier is not the only part to be taken into
account.5 This is especially the case for reactions with a large
coupling between the educts and the products, or, in other
terms, for reactions that proceed without jumps between dif-
ferent potential energy surfaces, i.e., adiabatic reactions.6 The
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much debated Kramers’ theory (extended later by Pollack
and others7,8) was one of the first to try to explain how the
energy-changes of the reacting species in the bottom of the
potential energy surface of the reactants couple to the move-
ment over the barrier.9 Such a movement cannot directly be
linked to a molecular translation or vibration but to a jour-
ney over different configurations of the reacting species with
the surrounding medium. Obviously, one of the most com-
plex questions concerns the nature of the path that dominates
this journey—the associated reaction coordinate(s).8 Eventu-
ally, in most of the cases, all relevant degrees of freedom are
projected into a general reaction coordinate.10–12 In the case
of electron or charge transfer reactions—assuming no other
degrees of freedom are relevant or fast enough—this coor-
dinate is the polarization of the solute-solvent complex.13,14

Under these conditions, dynamical solvent effects may become
relevant. The Marcus-theory for electron transfer reactions
has accommodated these effects either through the direct
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introduction of the dielectric relaxation time into the rate
constant13 or by considering the diffusion problem over the
potential- or free-energy surface (PES, FES) with sudden
jumps from the reactants’ to the products’ well.15 The lat-
ter is already a dynamic theory for the reaction-event based
on the Smoluchowski diffusion operator for one dimension
in the presence of a potential. An alternative to these models
consists of solving the time dependent Schrödinger equation
introducing the friction introduced by the solvent in the Hamil-
tonian, which has the advantage of being potentially fully
ab initio at the cost of long computational time for each specific
case.16

Most of the above-referred treatments try to obtain analyti-
cal formulas for the rate constant, as, for example, the powerful
Grote-Hynes theory,17 or at least a reaction-coordinate depen-
dent rate coefficient. In the core of these theories lies the
generalized Langevin equation (GLE), which is valid for any
potential shape and for any kind of friction—with or without
memory. Under certain circumstances, like a harmonic poten-
tial, an equivalent generalized Fokker-Planck (FP) equation
(an equation of diffusion in phase space) can be derived.6

Moreover, with a single coordinate in the projected phase
space, these FP expressions can be rewritten as a General-
ized Smoluchowski equation (GSE) without losing details on
the friction, as the diffusion coefficient is time-dependent.18

Further simplified expressions can be derived if the system
is overdamped, meaning that the second derivative of the
reaction coordinate with respect to time (i.e., the “accelera-
tion”) can be neglected, and the diffusion coefficient in the
Smoluchowski equation becomes a constant. Such a hierar-
chy of equations suggests that the most assumption-free and
therefore most general approach would be directly using the
GLE, instead of a Smoluchowski approach or an analytical
expression for the rate constant. In doing so, the details of
the reaction, or in general the dynamics, would not be lost
due to the approximations. For example, in solvation dynam-
ics, it is often observed that at short times the response of
the solvent to a perturbation like the change of the solute
dipole moment after light absorption is not diffusive but
impulsive.19 This detail is lost in the simpler form of the
Smoluchowski equations but is conserved in the GLE and
GSE. The disadvantage of the GSE resides in the fact that
it is only strictly valid for harmonic potentials, although it was
extended to cases with parabolic barriers by Okuyama and
Oxtoby20 and has been used in various occasions with other
potentials.21–23

Surprisingly, there are few studies in the literature in which
measured electron transfer dynamics are compared to the out-
put of GLE simulations.24–26 The most noticeable examples
are those of the groups of Barbara and Fonseca in the late
1980s and early 1990s.21,22,27 This renders the GLE, as applied
to ultrafast chemical reactions in solution, still a hypothesis
rather than a contrasted theory.

The difficulty in computing the GLE lies in its stochas-
tic form, with a random variable and a noise term with time
as the ordering parameter,6 which requires performing numer-
ous simulation trajectories to obtain meaningful statistics. The
ingredients needed to perform these simulations are the PES
and the friction felt by the reacting system. It can be formulated

in the following way:17

z̈ = − 1
mL

∂V (z)
∂z

−
∫ t

0
η(t − τ)żdτ + R(t), (1)

where η(t) denotes the friction term and R(t) is the noise
term.28 The random variable, z, can be normalized and takes
the value 0 for the reactants’ minimum and 1 for the products’
minimum, in the potential energy surface V. The mass, mL,
is associated with the “heaviness” of the polarization of the
medium and can be extracted from the rotational motion of
the individual solvent molecules.29 The integral term stands
for the non-Markovian friction, η(t), against the movement
of the system-associated particle. Beware that in the present
context, this friction is not purely mechanical but reflects
the resistance of the dielectric to a change in the electric
field associated with the charge redistribution in the solute,
as, for example, those occurring during an electron trans-
fer. This memory can be understood as an extended duration
of the correlation function of the medium beyond the delta-
function response that characterizes pure Debye-solvents.30

This friction has the same origin as the noise, which is the con-
figuration fluctuation of the solute-solvent entity. Therefore,
they are related through the second fluctuation-dissipation
theorem31

〈R(t)R(t + t ′)〉 = η(t ′) 〈ż2〉 . (2)

Determining the PES (which in condensed phases is actually
a FES)4 in the excited state is not an easy task from quan-
tum mechanical calculations. Thus having experimental data
which can elucidate its shape is extremely advantageous. The
friction, in the case of charge transfer reactions, is solely mod-
ulated by the solvent polarization and not by internal modes of
the solute. It can be calculated from the dielectric relaxation
spectrum of the solvent.32 Unfortunately, we do not count on
many experiments of this sort yet. Another approach would
be to somehow extract it from a reference measurement for
which the FES is well known.

This is the spirit of the current work: we have tried to
obtain both of the above-mentioned quantities from auxil-
iary measurements in order to explain the solvent dependent
dynamics of a charge transfer reaction in a model com-
pound (cf. Fig. 1), perylene (Pe), covalently linked to the
donor N,N-dimethylaniline (DMA).33 The dynamics have
been obtained by means of fluorescence up-conversion spec-
troscopy (FLUPS).34 This method has a significant advantage
over other conventional techniques tracking fast fluorescent
events in the sub-ps to the ns time scales. FLUPS directly
provides photometrically correct emission spectra and does
not require—useful and correct but cumbersome and error-
prone—spectral reconstruction methods.35 Thus the dynamics
of the evolution over the excited state FES are reliably mon-
itored. In order to obtain the parameters needed to calculate
the FES, stationary absorption and fluorescence measurements
of PeDMA have been performed in a relatively large set of
solvents covering a wide range of dielectric properties. The
application of a continuum solvation model36,37 to explain
these data leads to dipole moments and energies that are used
to calculate the FES. For the friction, we have performed



244505-3 Angulo et al. J. Chem. Phys. 146, 244505 (2017)

FIG. 1. Chemical structure of the donor(DMA, blue box)-acceptor (Pe, red
box) molecule (PeDMA) under investigation.

FLUPS measurements of C153 in the very same solvents as for
PeDMA. C153 has been extensively studied and is assumed
to behave as if its FES in the excited state is purely har-
monic.35,38,39 This approximation allows us to reconstruct the
friction that is later employed in the GLE to simulate the polar-
ization changes during the reaction of charge transfer within
PeDMA.

In addition to the GLE simulations, we have also cal-
culated the purely diffusive motion over the FES using the
Smoluchowski operator with a time-dependent diffusion coef-
ficient obtained from the C153 measurements.29 The resulting
GSE equation is given by

∂ρ(z, t)
∂t

= D(t)
∂

∂z

[
∂

∂z
+

1
kBT

∂

∂z
F(z)

]
ρ(z, t). (3)

It describes the temporal behavior of the population distribu-
tion ρ(z, t) along an arbitrary FES (or PES), F(z). The solution
is strictly valid only for harmonic potentials, but in our case
the large coupling in PeDMA leads to a form very close to
that and therefore very close to Gaussian distributions of the
population over S1.

The article is organized as follows: Sec. II contains the
details of the methods and materials used in the experiments.
Then the spectroscopic measurements are presented, first the
stationary with a discussion of the observations, followed by
the time-resolved observations including broadband fluores-
cence and transient absorption. The next chapter describes
how the FESs are obtained from the stationary measurements
with a discussion of the parametrization. Then the procedure
to obtain the dynamic quantities for the GLE and the GSE is
presented, as well as the details of the calculation procedures
with these models. Finally, we compare the simulations with
the experimental data and discuss the results.

The comparison between the two models and the exper-
iments leads us to conclude that the GLE is superior in
reproducing the experiments for the present case. An inter-
esting observation is that the dynamics, despite being often
slower than the simple Debye relaxation times for some of
the solvents, are still fully controlled by the solvent relax-
ation dynamics. This is a result of the interplay between
the shape of the FES and the friction, as described by the
GLE.

II. METHODS AND MATERIALS

A. Chemicals

The synthesis of 3-(p-N,N-dimethylaminophenyl)
perylene (PeDMA) is described in Ref. 33. Coumarin 153

(C153, CAS 53518-18-6) and BBOT [2,5-bis(5-tert-butyl-
benzoxazol-2-yl)thiophene, CAS 7128-64-5] were used as
received. The solvents were of the highest commercially avail-
able purity and were used without further purification. In addi-
tion to the pure solvents, we used two binary solvent mixtures:
benzyl acetate/dimethylsulfoxide allows varying the dielectric
constant without significantly changing the refractive index
or the viscosity40 and dimethylsulfoxide/glycerol allows for
changing the solvent viscosity without changing the dielectric
constant or the refractive index.41

B. Spectroscopy

Steady-state absorption and emission spectra were
recorded on a Cary 50 and a FluoroMax-4 (bandpass of 1 nm)
instrument, respectively. The wavelength sensitivity of the flu-
orimeter has been determined using a set of secondary emissive
standards.42 Fluorescence quantum yields were determined
according to

φf = φr

(

n2
s

n2
r

) (

Is

Ir

) (

Ar · 10−deff ·Ar

As · 10−deff ·As

)

, (4)

where nx is the solvent refractive index, Ix is the integrated
emission intensity, Ax is the absorbance of sample x (either
sample or reference) at the excitation wavelength and deff is
the effective distance from the cuvette excitation window to
the point at which the luminescence is observed and which
has been determined experimentally as proposed in Ref. 43.
The φr values of C153 in methanol and tetrahydrofuran were
used as references.44 Samples for measuring fluorescence
lifetimes and quantum yields were contained in septa-sealed
quartz cuvettes (Starna, 3/GL14/Q/10) with 10 mm pathlength
and were degassed with argon prior to measurement during
10 min.

Transition dipole moments have been calculated accord-
ing to Birks,45

µa = 9.584 · 10−2

√

1
n

∫
S1

ǫ(ν̃)
ν̃

dν̃, (5a)

µf = 1.7857 · 103

√

krad

n3
∫ I(ν̃)ν̃−3dν̃

∫ I(ν̃)dν̃
, (5b)

where n denotes the solvent refractive index and krad is the
radiative rate of the excited state, calculated according to krad

= φf/τf , and τf is the fluorescence lifetime. ǫ(ν̃) and I(ν̃) are
the extinction coefficient spectrum, in L mol☞1 cm☞1, and the
fluorescence spectrum versus ν̃, in cm☞1, respectively.

Nanosecond, single-wavelength, time-resolved fluores-
cence experiments were performed using a home-built time-
correlated single-photon-counting setup described in the sup-
plementary material of Ref. 46. In brief, the sample was excited
at 400 nm using a pulsed laser diode with an approximate pulse
duration of 50 ps. The time-resolution of these experiments,
as judged from the full-width half maximum of the instru-
ment response function (IRF), measured with a dilute scat-
tering solution of Ludox in water, amounts to approximately
200 ps.

Femtosecond time-resolved broadband fluorescence up-
conversion spectra (FLUPS) were measured on an apparatus
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identical to the one described in Ref. 34, with an approx-
imate time-resolution of 170 fs (FWHM of the instrument
response function). The experimental spectra were corrected
for the wavelength dependent detection sensitivity, using a set
of secondary emissive standards (covering the range from 415
to 720 nm), and the temporal chirp, using the wavelength-
independent instantaneous response of BBOT in the solvents
under investigation as in Ref. 34.

Femtosecond time-resolved broadband transient absorp-
tion spectra were measured on an apparatus described in
Ref. 47. In brief, samples were excited at 400 nm with 100 fs
pulses, while broadband probing in the range from 370 nm to
720 nm was achieved using a white-light continuum, generated
in 3 mm thick CaF2.

The samples were placed in commercial quartz cells with
an optical pathlength of 1 mm (Starna, 1/GS/Q/1). Bubbling
with nitrogen during the measurement ensured the absence
of traces of oxygen as well as a sufficient sample-exchange to
avoid photodecomposition. All measurements were performed
at magic angle conditions, except where noted, by setting
the appropriate polarization of the pump-pulse with respect
to the white light continuum [transient absorption (TA)] or
the gate pulse (FLUPS). Sample concentrations were kept
below 10−4 mol/L and pump fluences per pulse were below
4 mJ/cm2.

All ultrafast measurements were performed at 20 ± 1 ◦C.
Density functional theory (DFT) calculations on the

B3LYP level of theory with the 6-31G(d,p) basis set were per-
formed using Gaussian 09.48 Solvent dependent permanent
electric dipole moments were obtained from conductor-like
polarizable continuum model (PCM) calculations.49,50

III. EXPERIMENTAL RESULTS

A. Steady-state spectroscopy

Figure 2 compares the absorption and emission spec-
tra of PeDMA with those of its two building blocks, Pe

and DMA. The PeDMA-spectra are slightly red-shifted by
approximately 1500 cm☞1 with respect to Pe but maintain
the reasonable mirror-symmetry, which characterizes the Pe-
spectra (see Fig. S3 of the supplementary material for tran-
sition dipole moment representation of the data from Fig. 2).
Similarly, the local DMA transitions also seem to be slightly
red-shifted in PeDMA. While the vibration of approximately
1500 cm☞1, which is responsible for the prominent vibronic
progression in Pe, is preserved in PeDMA, its bandshape is
significantly broader than that of Pe. We tentatively attribute
this to the lowering of symmetry in PeDMA and the ensu-
ing increase in the number of vibrations capable of cou-
pling to the electronic transition. This “intrinsic” broaden-
ing of the lineshape function of PeDMA translates into an
increase of the observed Stokes shift52 in apolar cyclohexane,
going from 50 cm☞1 for Pe to approximately 1760 cm☞1 for
PeDMA.

The most striking difference between PeDMA and its
building-block fluorophore, Pe, is manifested when changing
the solvent polarity (cf. Fig. 3). On the one hand, Pe shows sol-
vatochromism in absorption and emission that can be relatively
well correlated with changes in the solvent refractive index,

FIG. 2. Comparison of the absorption (red) and emission (blue) spectra of
Pe (upper panel) and PeDMA (lower panel) in cyclohexane. The upper panel
also depicts the absorption spectrum of DMA (grey) in cyclohexane, scaled
according to the extinction coefficient with respect to Pe (value taken from
Ref. 51). 1 kK = 1000 cm☞1.

which means that it is not subject to dipolar solvation. PeDMA,
on the other hand, shows a very pronounced bathochromic
solvatofluorochromism of up to almost 5000 cm☞1, which
is accompanied by a total loss of vibronic structure, while
the absorption spectra—in analogy to Pe—show neither a
dramatic change in bandshape nor in position.

For further analysis, we calculated the first and second
moments of the absorption and emission spectra, which are
defined as follows:53,54

m1 =

∫
ν̃S(ν̃)dν̃, (6a)

m2 =

∫
(ν̃ − m1)2S(ν̃)dν̃, (6b)

where S(ν̃) is the area normalized spectrum of interest. m1 cor-
responds to the average spectral position, while m2 represents
the spectral variance. The values in all solvents are summarized
in Table I together with other relevant steady-state parame-
ters. The emission spectra in polar solvents partially extended
beyond the detection-wavelength range of the fluorimeter (see,
e.g., emission spectra in solvents 11 and 13 in Fig. 3). Thus,
rather than extracting the moments directly from the corre-
sponding emission spectra, we fitted them with the convolution
of a spectral lineshape function, Lx(ν̃), accounting for the

FIG. 3. Normalized absorption and fluorescence spectra of PeDMA in 5
selected solvents (1: n-hexane, 4: n-butyl ether, 10: tetrahydrofuran, 11:
butyronitrile, 13: dimethylformamide).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-009725
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TABLE I. Solvent properties (at 20 ◦C) and spectral characteristics of PeDMA.a

Solvent properties Spectral characteristics

Solvent No. ǫ n m1a (kK)
√

m2a (kK) m1f (kK)
√

m2f (kK) Γf (kK) µa (D) µf (D) τf (ns) φf

n-hexane 1 1.88 1.375 23.19 1.20 19.75 1.26 0.00 6.19 6.23 3.51 0.82
c-hexane 2 2.02 1.426 23.13 1.22 19.66 1.27 0.21 5.98 6.21 3.44 0.87
n-pentyl ether 3 2.77 1.412 23.04 1.25 19.12 1.32 0.92 6.18 6.28 3.75 0.86
n-butyl ether 4 3.08 1.399 23.06 1.24 19.06 1.34 1.06 6.23 6.29 3.80 0.84
i-propyl ether 5 3.88 1.368 23.13 1.23 18.89 1.37 1.30 6.29 6.45 3.96 0.84
Ethyl ether 6 4.20 1.352 23.15 1.25 18.67 1.40 1.52 6.26 6.36 4.20 0.81
Chloroform 7 4.89 1.446 22.90 1.29 18.16 1.41 1.58 6.16 6.17 4.13 0.83
Butyl acetate 8 5.01 1.395 23.02 1.26 17.94 1.49 1.99 6.31 6.29 4.56 0.83
Ethyl acetate 9 6.02 1.372 23.07 1.26 17.66 1.57 2.26 6.31 6.27 4.92 0.81
Tetrahydrofuran 10 7.58 1.407 22.94 1.29 17.42 1.53 2.17 6.27 6.16 4.83 0.80
Butyronitrile 11 24.83 1.384 22.94 1.30 16.24 1.67 2.73 6.35 6.05 6.14 0.76
Acetonitrile 12 35.94 1.344 23.03 1.28 15.55 1.74 2.98 6.45 5.87 6.19 0.59
Dimethylformamide 13 36.71 1.430 22.80 1.33 15.35 1.73 2.93 6.25 5.74 5.01 0.52
Dimethylsulfoxide 14 47.01 1.478 22.67 1.36 14.81 1.76 2.99 6.15 5.48 4.15 0.40

DB xD = 0.10 20 7.24 1.501 22.78 1.33 17.22 1.56 2.27 . . . 6.20 4.41 0.87
DB xD = 0.16 21 8.20 1.500 22.76 1.32 16.95 1.59 2.39 . . . 6.13 4.63 0.86
DB xD = 0.25 22 9.88 1.499 22.78 1.34 16.62 1.62 2.50 . . . 6.09 4.90 0.84
DB xD = 0.33 23 11.66 1.498 22.74 1.34 16.38 1.63 2.57 . . . 6.10 5.08 0.84
DB xD = 0.42 24 14.05 1.496 22.73 1.34 16.13 1.66 2.68 . . . 6.03 5.21 0.80
DB xD = 0.51 25 16.95 1.495 22.72 1.35 15.87 1.68 2.75 . . . 6.02 5.27 0.76
DB xD = 0.59 26 20.01 1.493 22.72 1.35 15.70 1.69 2.81 . . . 5.97 5.24 0.72
DB xD = 0.66 27 23.15 1.491 22.71 1.34 15.57 1.77 2.88 . . . 5.95 5.19 0.69
DB xD = 0.78 28 29.72 1.488 22.70 1.35 15.30 1.73 2.96 . . . 5.88 4.96 0.61
DB xD = 0.89 29 37.38 1.484 22.68 1.35 15.08 1.75 3.06 . . . 5.82 4.59 0.53

n-pentanol 30 14.27 1.411 23.03 1.28 17.65 1.58 2.38 . . . 5.85 4.77 0.76
i-propanol 31 20.64 1.378 23.12 1.24 17.46 1.62 2.54 . . . 6.12 5.09 0.78
Ethanol 32 24.55 1.361 23.11 1.26 17.05 1.63 2.70 6.36 6.10 6.14 0.73
Methanol 33 32.66 1.328 23.15 1.25 16.58 1.64 2.94 6.42 6.10 5.01 0.57
Ethylene glycol 34 38.69 1.432 22.84 1.32 15.61 1.79 2.94 . . . 5.40 3.28 0.32

aSolvent properties were either taken directly from Ref. 56 or recalculated to 20 ◦C from data in Ref. 57. Data for the refractive indices and dielectric constants of the binary mixtures
were taken from Ref. 40. mix is the ith spectral moment of absorption (a) or fluorescence (f). The spectra moments for absorption and fluorescence were calculated in the wavenumber
range from 19 to 26 kK and 8-22.5 kK, respectively. Γf denotes the full-width at half maximum of the Gaussian accounting for inhomogeneous broadening due to polar solvation, i.e.,
Γ = σ

√
8 ln 2 [with σ being defined in Eq. (8)]. DB denotes solvent mixtures of dimethylsulfoxide/benzyl acetate with a dimethylsulfoxide molar fraction of xD. Absorption spectra

and fluorescence lifetimes were recorded at room temperature, 22 ± 2 ◦C. Emission spectra were recorded at 20 ◦C. µa and µf are the absorption and fluorescence transition dipole
moments, respectively, obtained from the experiments using Eq. (5). τf and φf are the fluorescence lifetime and the experimental fluorescence quantum yield determined with the aid
of Eq. (4), respectively.

vibronic structure and intrinsic linebroadening, with a Gaus-
sian distribution, ρ(δ), which accounts for inhomogeneous
broadening due to the solvent environment,39,55

A(ν̃) ∝ ν̃
∫
ρ(δ)La(ν̃ − δ)dδ, (7a)

I(ν̃) ∝ ν̃3
∫
ρ(δ)L f (ν̃ − δ)dδ, (7b)

where the Gaussian distribution is given by

ρ(δ) =
1

σ
√

2π
exp

[
− (δ − δ0)2

2σ2

]
. (8)

Here we used the oscillator distributions of the absorption and
emission spectra of PeDMA in the apolar solvent, n-hexane,
as the lineshape function, Lx(ν̃),

La(ν̃) ∝ ν̃−1A(ν̃), (9a)

Lf (ν̃) ∝ ν̃−3I(ν̃). (9b)

Exemplary fits of these equations to the experimental spectra
are shown in Fig. S2 of the supplementary material.

The absorption and emission transition dipole moments of
PeDMA are identical in cyclohexane (6.2 D) and almost 30%
larger than the ones of Pe (4.8 D). While in apolar solvents,
the transition dipole moments for absorption and emission are
identical to within experimental error, increasing the solvent
polarity leads to a slight decrease of the emission transition
dipole moments in PeDMA (vide infra Fig. 8).

B. Time-resolved broadband fluorescence

1. PeDMA

Figure 4 shows representative FLUPS spectra of PeDMA

in c-hexane and dimethylsulfoxide. In both examples, the sol-
vent Raman bands are clearly observable at short time-delays,
when the pump and gate still overlap temporally. In apolar c-
hexane, a significant change in bandshape in the blue part of the
spectrum is observed within the first picosecond. Immediately

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-009725


244505-6 Angulo et al. J. Chem. Phys. 146, 244505 (2017)

FIG. 4. (a) Normalized FLUPS spectra of PeDMA in cyclohexane recorded
under perpendicular excitation. (b) FLUPS spectra of PeDMA in dimethyl-
sulfoxide at selected time delays upon excitation at the magic angle. Note that
all dynamics are over after 50 ps. The sharp peaks at approximately 22 and
23.6 kK are caused by Raman scattering upon excitation at 25 kK. We cut the
data around 15 kK, as they are strongly contaminated by the third harmonic
of the gate.

after excitation, mirror symmetry is absent due to additional
vibronic transitions at the high-energy side of the emission
spectrum. Once these transitions have disappeared, while the
red part of the spectrum virtually remains unaltered, mirror
symmetry—as also observed in the steady-state spectrum in
this solvent—is recovered. The additional initial vibronic tran-
sitions can be ascribed to emission from vibrationally excited
states. In fact, exciting the sample with 400 nm is expected to
prepare the system in the v2-state of the vibronic progression.58

It is noteworthy that no spectral narrowing of the red-part of
the spectrum is observed, which is usually interpreted as a
signature of vibrational cooling [cf. Fig. 4(a)]. We have per-
formed measurements exciting the red edge of the absorption
band at 485 nm with the setup described in Ref. 41 and no sig-
nificant differences could be found in the shape of the spectra
in most of the wavelength range recorded, with respect to the
spectra recorded upon excitation at 400 nm. However, under
these experimental conditions, it is rather difficult to assess the
short-time behavior of the spectra in the blue edge. In any case,
the relaxation dynamics recorded upon excitation at 400 nm
are clearly influenced by intramolecular vibrational redistribu-
tion and vibrational cooling during the first picosecond. This
is reflected in both the first and the second moments, as will
be seen and discussed in Sec. V and is shown for PeDMA in
c-hexane in Fig. S11 of the supplementary material.

In dimethylsulfoxide, a representative polar solvent, an
initial emission spectrum with vibronic structure is observable
within the IRF. However, it quickly evolves into a broad and
unstructured band with its first moment shifting by almost 5
kK within 50 ps.

Further analysis does not necessarily require using the
full FLUPS data sets. Rather, we opted for determining the first
and second moments of the data, m1(t) and m2(t), as defined by
Eq. (6). This is more reasonable than simply following the band
maximum since the spectral bandshape of PeDMA changes
over time. In order to reduce the experimental noise, especially
around the region of the doubled gate (ca. 15 kK), we opted for
fitting the convolution of an emission lineshape-spectrum and

a Gaussian of arbitrary position and width to the experimental
spectra at each time step and calculate the first two moments,
m1(t) and m2(t), from these noise-free spectra [see Eq. (7)].
The Gaussian distributions were sufficiently close to the pop-
ulation distribution at any instance in time, in order to repro-
duce the experimental spectra, as judged from the weighted
residuals.59

A popular way of representing spectro-temporal shifts
consists of calculating a so-called spectral response function,
Cx(t),35,39

Cx(t) =
x(t) − x(∞)
x(t0) − x(∞)

, (10)

where x denotes either the first spectral moment, m1, or the
peak position of the band, ν̃p. t0 is ideally chosen large enough
to avoid problems with the finite duration of the instrument
response function. However, if there are any discrepancies in
the position of the spectra at short or long times between the
spectrotemporal model (and the corresponding simulations)
and the experimental results, the normalization procedure in
Eq. (10) will significantly and artificially deform the dynam-
ics and lead to potential misinterpretation. Thus, rather than
performing any kind of transformation of the experimental
observables via normalization, we opted to directly compare
experimental and simulated moments.

2. C153

In order to access the solvation dynamics of the refer-
ence compound, C153, we fitted a single log-normal function
(see, e.g., Ref. 35 for a definition) to the FLUPS spectra
at each time-delay [cf. Fig. 5(b)]. A multiexponential fit to
the time-dependence of the log-normal peak maxima, ν̃p(t),
which in the past has been assumed to represent a good mea-
sure of the solvation dynamics,35,60 should allow obtaining
an analytical description of the data. In order to account for
the limited time-resolution of the setup, we fit the data only
for times longer than 0.3 ps [see Fig. 5(a)]. Nonetheless, we
recognize that sometimes a significant part of the solvation
dynamics occurs within this initial time-window. In order to

FIG. 5. (a) Representative time dependences of the peak position of C153

in solvents 8, 11, and 14 (from top to bottom), ν̃p(t), (grey and orange dots)
and the corresponding fits (dashed lines) to the data at times larger than 0.3 ps
(orange points) with τs = 100 fs. The grey area indicates 2σ of the IRF. (b)
Representative FLUPS spectra of C153 in butyronitrile (12) at 0.1, 0.2, 0.5, 1,
2, and 20 ps time delays (from right to left/red to violet) and the corresponding
log-normal fits (solid lines). The sharp peak at approximately 22 kK is due to
Raman scattering from the solvent.
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account for these dynamics and—what is more important—
to estimate its relative contribution to the overall solvation
dynamics, we estimate the peak position of the spectrum at
time zero, ν̃p(0), using the approach outlined in Ref. 39. Com-
bined with the position of the steady-state spectrum, ν̃p(∞),
the theoretical dynamic Stokes shift, ∆ν̃theo = ν̃p(0) − ν̃p(∞),
is amenable. We use this additional information to fit the fol-
lowing equation to the experimental peak positions of C153,
ν̃p(t),

ν̃p(t) = (∆ν̃theo −
∑

i

∆ν̃i)e
− t

τs +
∑

i

∆ν̃ie
− t

τi + ν̃∞, (11)

which serves to obtain a fully analytical C(t) for further use in
the determination of D(t) for the GSE and η(t) for the GLE.
Here we have fixed the shortest lifetime, τs, to 100 fs. Figure 5
shows exemplary experimental data and the corresponding
fits.

C. Transient absorption

Figure 6 compares transient absorption spectra of
PeDMA and Pe in apolar c-hexane as well as in a polar solvent
with Pe in the presence of an excess of DMA. The transient dif-
ference spectra of PeDMA and Pe in an apolar solvent show a
substantial resemblance to each other with the most noticeable
differences being the red-shifted and broadened ground-state
bleach (GSB) and stimulated emission, in agreement with our
findings in the steady-state spectra. The excited state absorp-
tion of PeDMA at approximately 14 kK is almost identical to
the one observed in pure Pe, though slightly more broadened.
In a polar solvent, however, the situation changes drastically.
While the freely diffusing Pe/DMA pair almost perfectly pro-
duces precursor-successor kinetics, with an isosbestic point in
the TA spectra at approximately 16.5 kK, the linked PeDMA-
system shows a smooth transition from a spectrum resembling
the one in cyclohexane to a broad absorption band peaking at

FIG. 6. Transient absorption (TA) spectra of Pe and PeDMA in c-hexane
after 5 ps (lower panel). Selected TA spectra of PeDMA in dimethylsulfoxide
(middle panel) and of Pe and DMA (0.8 mol/L) in acetonitrile (upper panel).

approximately 15.5 kK. This band is more than 2 kK red-
shifted with respect to the Pe-anion band. The absence of
an isosbestic point is even more appreciated when the stimu-
lated emission is subtracted from the TA spectra, leaving only
excited state absorption features and the GSB (see Fig. S5
of the supplementary material). From these observations, the
following three consequences can be drawn:

1. The initially populated state after excitation resembles
the local excited state of Pe.

2. In polar solvents, the excited state evolves to a charge
transfer state.

3. This evolution is produced by a large coupling between
both involved states, otherwise an isosbestic point would
be observed and simple precursor-successor kinetics
would apply.

In principle, the TA data could be used to study the dynam-
ics of this reaction. However, we do not have information on
the shape of the free energy surface of the state to which
the system is excited by the probing light in the transient
absorption experiment. Thus, this would increase the number
of unknowns.

IV. MODELING AND SIMULATIONS

A. Free energy surfaces

The steady-state solvatochromism, transient absorption
data, and the fact that freely diffusing Pe and DMA can eas-
ily undergo electron transfer lead us to opt for a three-state
model for PeDMA. This model for calculating the free energy
surfaces builds on the following three (diabatic) states: (a) Pe

and DMA in their respective electronic ground state, (b) the
locally electronically excited Pe and DMA in its ground state,
and (c) the fully charge separated state with the Pe anion and
DMA cation, which we will label as |g〉, |l〉, and |c〉 (Fig. 7),

|g〉 = |PD〉 ,
|l〉 = |P∗D〉 ,
|c〉 = |P•−D•+〉 .

(12)

FIG. 7. Energy scheme depicting the relevant diabatic (dashed blue, red, and
green lines) and adiabatic (dark and light grey) states and quantities. Note that
the ordinate has been set to zero by subtracting (Ug − 1

2 Btot
g µ2

g + Bel
g D)/hc.
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The matrix representation of the Hamiltonian, H, and the
dipole moment matrix, µ, in this diabatic basis are given as
follows:27,61

H(µs) =
*...,

Fg(µs) 0 Jgc

0 Fl(µs) Jlc

Jcg Jcl Fc(µs)

+///-
(13)

and

µ =
*..,
µg µgl µgc

µlg µl 0

µcg 0 µc

+//-
. (14)

Here, we assume that H and µ are symmetric matrices62 and
that the diagonal elements, F i in Eq. (13), depend exclusively
on the solvent polarization, i.e., the instantaneous effective
dipole moment, µs, and can be described within a continuum
model for solvation following the work by van der Zwan and
Hynes,63

Fi(µs) = Ui −
Btot

i

2
µ2

i +
Bnuc

i

2
(µi − µs)

2 + δ0iB
el
i D. (15)

This model accounts for the interaction of the permanent
point dipole, µi, with polarizability, αi, of state i placed in
the center of a spherical cavity of radius, a, with a contin-
uum dielectric environment, characterized entirely by its static
and high frequency dielectric permittivities, i.e., ǫ and n2,
respectively. The first term on the right hand side of Eq. (15),
U i, accounts for the free energy of state i in the gas-phase,
the second one for equilibrium solvation, and the third one
for the non-equilibrium contribution to the free energy, due
to orientational solvent relaxation. The fourth term accounts
for the difference in the dispersion interactions between the
solute and solvent between the excited states and the ground
state.36 In order to keep the number of experimentally inac-
cessible (or difficult to access) parameters low, we have opted
for adding the effective last term to the ground state free
energy, rather than assigning excited and ground state stabi-
lization energies separately and taking their difference.64 In
doing so, the results from Ref. 36 for the absorption and emis-
sion transition energies and their solvent dependence are fully
recovered.

The solvent response functions, B
y

i
, are given by36,63,65

B
y

i
=

2

a3
· fx

1 − 2(αi/a3)fx
, fx =

x − 1
2x + 1

, (16a)

Bnuc
i = Btot

i − Bel
i (16b)

(x = ǫ → y = tot) ∧ (x = n2 → y = el).

J ij in Eq. (13) denotes the electronic coupling elements
between states i and j, all of which—in analogy to the treatment
in Refs. 21 and 27—are assumed to be equal.

Diagonalization of Eq. (13) at each point along the sol-
vation coordinate µs yields three adiabatic states, which we
henceforth shall label as |0〉, |1〉, and |2〉. Applying the same
basis transformation to the dipole moment matrix yields the
adiabatic permanent dipole moments (diagonal elements) and
transition moments (off-diagonal elements).

TABLE II. PeDMA-parameters establishing the FES in solvents of arbitrary
ǫ and n.

State-specific

i = g i = l i = c

µi/D 3.26 5.8 33.2
µig/D 4.8 ☞2.2
U i/hc/kK 0 22.9 27.0

Common

J/hc/kK 1.3
α/Å3 71
a/Å 7.76
2D/hca3/kK 3.9

With the above-presented model, it is possible to calcu-
late the FES of PeDMA in any solvent of interest, given that
key solute (and solvent) properties are known, which are sum-
marized in Table II. The solvents are entirely parametrized by
their static dielectric constant, ǫ , and refractive index, n. How-
ever, the 16 solute parameters constitute a rather large number.
Below we outline how we can reduce this number and deter-
mine the remaining parameters either by quantum mechanical
calculations or by comparison with experiment.

1. Parameters by assignment

First we applied some simplifications by assuming that
the couplings between the diabatic states involving the charge
separated state are all the same, i.e., Jcj = J jc = J, and that
the polarizabilities of all electronic states are identical, i.e.,
αi = α.66 Second, as all observables of interest are related to
free energy differences between the involved states, we can
set the gas-phase energy of the ground state to zero, i.e., Ug

= 0. Finally, the transition connecting states |g〉 and |l〉 are
essentially nothing else than the first electronic transition of
Pe. Thus, we chose to fix the corresponding diabatic tran-
sition dipole moments µlg = µgl to the value obtained for
Pe.

2. Parameters from quantum mechanical calculations

It is advisable to rely on quantum mechanical calculations
for those parameters in Table II which are difficult to access
experimentally. We thus decided to apply an approach identical
to the one outlined in Ref. 67 for determining µg, α, and a.

• The electronic dipole moment in the electronic ground
state, µg, was calculated using Gaussian [gas-phase,
B3LYP/6-31G(d,p)].

• The electronic polarizability of PeDMA, α, is esti-
mated from an empirical relationship with the van der
Waals volume, VvdW,65

(α/Å
3
) � 0.0268(VvdW/Å

3
)
1.35

, (17)

where VvdW was calculated using volume increments.68

• The hydrodynamic cavity radius of PeDMA, a, was
determined by calculating the permanent electric dipole
moment in a series of solvents of different dielectric
constants (see Fig. S6 of the supplementary material)
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and applying the following relationship:

µ(ǫ = 1)
µ(ǫ)

= 1 − 2
α

a3
fǫ , (18)

where fǫ is defined in Eq. (16).

3. Parameters from solvatochromism

Six of the seven remaining unknown parameters (U l, Uc,
µl, µc, D, J) can be obtained by comparing the experimental
steady-state solvatochromism of PeDMA with the one sim-
ulated from the FES-model. To obtain the simulations, we
follow an approach outlined by Maroncelli and co-workers.39

The energy difference, ν̃0, between |0〉 and |1〉 at a given
position of the solvent coordinate µs constitutes the 0-0 tran-
sition energy at this specific solvent polarization. In addition,
the population distribution in state i, ρi(µs), and the transi-
tion dipole moment of interest, µ10(µs), have to be taken into
account. Simulated absorption and emission spectra in any
given solvent can then be calculated from

A(ν̃) ∝ ν̃
∫
ρ0(ν̃0, 0)µ2

10(ν̃0)La(ν̃ − ν̃0)dν̃0, (19a)

I(ν̃,∞) ∝ ν̃3
∫
ρ1(ν̃0,∞)µ2

10(ν̃0)Lf (ν̃ − ν̃0)dν̃0, (19b)

where ν̃0 denotes the free energy difference between |0〉 and
|1〉. In Eq. (19) we have already undertaken the transforma-
tion from the µs-space to the ν̃0-space making use of the fact
that the integral of the transition moment weighted population
distribution, ρi(x)µ10(x)2, is a conserved quantity, i.e.,

ρi(ν̃0)µ2
10(ν̃0) = ρi(µs)µ

2
10(µ s)

dµs

dν̃0
, (20)

where µ10 denotes the adiabatic transition dipole moment
for the 1 ← 0 transition. The population distributions for
obtaining steady-state spectra are simply given as

ρ0(µs) = N0 exp (−F0(µs)/kBT ) , (21a)

ρ1(µs,∞) = N1 exp (−F1(µs)/kBT ) . (21b)

The normalization factors, N i, ensure area-normalized popula-
tion distributions. It is necessary to note that for emission this
is only true if the equilibrium distribution in the excited state
is attained much faster than the actual lifetime of the excited
state, which is generally true for conventional organic solvents
and solutes with lifetimes in the ns-regime (as is the case for
PeDMA).

The missing solute parameters can now be obtained by
nonlinear optimization to reproduce the steady-state absorp-
tion and emission spectra in a total of 14 organic solvents and
10 binary solvent mixtures of varying dielectric constants.69

Rather than fitting the entire spectra, we opted for reproducing
the first and second moments of absorption and emission, as
defined in Eq. (6). The simulated spectra were calculated using
Eqs. (9), (19), and (21).

Finally, the transition dipole moment connecting |g〉 and
|c〉, µcg, was adjusted separately until good agreement between
the Boltzmann averaged simulated, µa(f) = ∫ ρ0(1)(µs)µ01dµs,

FIG. 8. Simulated vs. experimental first moments of the stationary absorp-
tion and emission spectra using the parameters given in Table I, upon fitting
solvents 1-28. Full black circles (•) denote (aprotic) pure solvents (1-14),
white circles (◦) are binary solvent mixtures (20-28), and grey circles (light
gray •) denote protic solvents (30-34). The upper left panel shows the exper-
imental (black circles) absorption and emission transition dipole moments as
a function of the first moment of the corresponding transition. The simulated
Boltzmann-weighted transition dipole moment values are shown as red open
squares and are plotted vs. the calculated first moments.

and experimental transition dipole moments for absorption and
emission, µa and µf , was achieved. The initial solvatochromic
fitting procedure was then repeated with this new parameter,
the results of which served as new input for the estimation of
µcg, and so on until convergence was achieved. It is, however,
to be noted that the impact of µcg on the spectral moments is
rather small.

Table II and Fig. 8 summarize the optimization param-
eters and compare the calculated and experimental spectral
moments and transition dipole moments in all solvents stud-
ied (exemplary simulated and experimental spectra are shown
in Fig. S4 of the supplementary material). We excluded all
protic solvents from the analysis for two reasons. First, we do
not know whether the solvatochromism of PeDMA in pro-
tic solvents can be fully described by using a model based
on non-specific interactions. Second, protic solvents tend to
exhibit long solvent relaxation times, thus potentially lifting
the restriction [Eq. (21b)] we had imposed for calculating the
emission spectra.

Some of the fitting parameters are worth discussing.
Note that the gas-phase 0-0 transition energy of the locally
excited state, E00 = U l ☞Ug, is only slightly lower in energy
by 200 cm☞1 than the experimental gas-phase (argon at 20 K)
value of pure Pe (23.1 kK).70 Similarly, the permanent dipole
moment of the diabatic “charge-transfer” state, µc, very closely
resembles the value that would result from fully displacing a
single electron over the center to center distance from Pe and
DMA within PeDMA (approximately 6.6 Å). On the down-
side, we do recognize that the locally excited state diabatic
permanent dipole moment, µl, is not very well defined and the
estimated uncertainty allows for a large variation of it. The
large coupling, J, being more than 6kBT, is sufficiently large
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to justify the GLE (and GSE) approach, which relies on adi-
abatic FESs and that nonadiabatic effects on the excited state
dynamics can be safely neglected.

The FES can also be rewritten in normalized reaction
coordinates, z, to facilitate the simulations with the GLE. The
transformation is straightforward,

z =
µs − µl

∆µ
, (22)

where ∆µ = µc − µl. This yields the final equations for the
FES in this new coordinate as

Fi(z) = Ui − Btot

2

(

zi,eq∆µ + µl

)2
+

Bnuc

2
(µi − µl − z∆µ)2,

(23)

where zi ,eq denotes the equilibrium position of state i.

B. Dynamic quantities

In both models, the GLE and the GSE, the dynamics
are represented by either the friction kernel, η(t), or the time
dependent diffusion coefficient, D(t).71 Assuming that to a
large extent both time dependent functions are independent of
the FES over which the solute evolves, i.e., independent of the
nature of the solute and exclusively a function of the solvent,
both quantities can be obtained by measuring the solvation
dynamics in a free energy potential of known—and if possi-
ble simple—form. Two-level systems, such as charge-transfer
dyes like coumarins, fulfill this condition and—in medium
to polar solvents—exhibit a reasonably quadratic free energy
surface in the ground and excited states.39 Due to this and
the reasonably large dynamic Stokes shifts, coumarins have
been exhaustively used in the past to reliably report solvation
dynamics.39,60,72,73 Here we have used the well-studied C153,
the spectral response function, C(t), of which, is supposed to
provide a reasonable experimental equivalent of the solvation
energy response and thus the basis for evaluating D(t) and
η(t).38

1. Time-dependent diffusion coefficient

Following van der Zwan and Hynes, the time-dependent
diffusion coefficient in the GSE can be obtained from the
solvent relaxation dynamics, C(t), in a harmonic FES as
follows:29

D(t) = − kBT

Bnuc

Ċ(t)
C(t)

, (24)

where C(t) [Eq. (10)] and Bnuc [Eq. (16b)] have been defined
before.

2. Time-dependent friction

As mentioned above, the friction kernel, η(t), in the GLE
is related to the solvent dielectric relaxation function of the
solvent, which can be measured experimentally by observing
the time dependent peak shift of a polarity probe like C153.
According to Hynes,63 the solvent correlation function can be
related to the properties of the stochastic variable for a pure
harmonic potential well,

C(t) ≈ ∆(t) =
〈z(0)z(t)〉
〈z2〉 . (25)

Upon Laplace transforming the Langevin equation in the har-
monic potential after multiplying by z(0) and ensemble aver-
aging, one can obtain the friction kernel evaluating the inverse
Laplace transform of

η̃(s) =
(s2 + ω2

L)∆̃(s) − s

1 − s∆̃(s)
, (26)

which for a multiexponential function of C(t) takes the form
of

η̃(s) =
(s2 + ω2

L)
∑

i

ai

s + 1/τi
− s

1 − s
∑

i

ai

s + 1/τi

, (27)

where ai = ∆ν̃i/
∑

i ∆ν̃i and τi are the results from the fits to
the solvation dynamics of C153 (see Table SII of the supple-
mentary material). The friction kernel in the time domain is
evaluated by numerically inverting the above expression using
the Gaver-Stehfest algorithm.74 This result is then fit by the
expression

η(t) = ω2
Lγδ(t) + ω2

L

∑

i

ki exp(−λit). (28)

This function is suitable for deriving the set of equivalent ordi-
nary differential equations (ODEs) to the GLE [see Eq. (29)].
Further details are provided in Sec. IV C and the supple-
mentary material. Equations (26) and (27) are to be dealt
with caution, as it is assumed that the derivative of the sol-
vent correlation function at time zero is zero (otherwise it
appears summing in the numerator), in agreement with the
fact that the system is pumped to the excited state from an
equilibrium distribution. However, for C153, we make use of
C(t) with a multiexponential decaying function which does
not fulfill this condition. On the other hand, this condition
is fulfilled if that function is a series of exponential terms
plus a series of exponential terms multiplied by sines and
cosines. Thus, for the sake of simplicity of fitting, we assume
that the oscillatory part of the correlation function is small
enough to be neglected within the time scale under study,
such that we obtain only a sum of exponentials. This is sup-
ported by the fact that no oscillations have been observed in our
experiments.

There are two parameters in Eq. (28) which are not fit-
ted, namely, ωL and γ. ωL is the frequency associated with
the mass mL in Eq. (1). For chemical reactions, the particle
which is moving over the potential energy surface is not mass,
properly speaking. Rather it is related to the change of polar-
ization of the environment, which enables the reaction. In other
words, for an electron transfer reaction, the system is suffer-
ing energy fluctuations due to the thermal noise that provokes
constant changes in the electric field of the medium. In the
supplementary material, we point out how mL and ωL can be
obtained.

On the other hand, the γ-parameter is the equivalent of
the Debye linear solvent relaxation time. However, instead of
taking this parameter from tables, as we are not dealing with
Debye solvents, we adjust it in such a way that the obtained
friction kernel reproduces the experimental solvent correlation
function of C153 (using the parameters given in Table S1 of
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the supplementary material for the FES of C153). In doing
so, a self-consistent result is obtained. Finally, the so-obtained
values forωL, γ, kis, and λis are subsequently used for PeDMA

in evaluating the GLE (see Table SIII).

C. (Stochastic) differential equations

1. General Smoluchowski equation

For a harmonic potential, the GSE [Eq. (3)] can be
deduced from the GLE [Eq. (1)] for the temporal evolu-
tion of the probability density, ρ(z, t), along the free energy
surface, F(z), with the time-dependent diffusion coefficient,
D(t), defined in Eq. (24) and the initial condition given by
the equilibrium population distribution in the ground state,
Eq. (21a). As mentioned before, and following the example
of Refs. 21–23, we take the liberty of using the GSE with
a potential different from a perfectly harmonic one. Solving
the GSE yields the time-dependent excited state population
distribution, ρ1(z, t), which can be used for further analy-
sis. The GSE has been solved using the pdepe function in
Matlab.75

2. Generalized Langevin equation

Below, we briefly present the procedure that allows
for numerical integration of Eq. (1).76–80 The GLE, which
describes a process that is non-Markovian due to the presence
of memory, can be split into a set of stochastic differential equa-
tions, where the memory kernel is not explicitly present (see
the supplementary material for derivation).76–80 Each of the
equations describes the Markovian evolution of an auxiliary
variable, driven by independent Gaussian white noise,

dz(t)
dt
= v(t),

dv(t)
dt
= − 1

mL

∂F(z)
∂z

− ω2
Lγv(t)

+
∑

i

wi(t) + ω2
L

√

γkBT

λs
ξ0(t),

dwi(t)
dt

= −λiwi(t) − ω2
Lkiv(t) + ω2

L

√

λikikBT

λs
ξi(t).

(29)

In Eqs. (29), the variables ξj(t), j = 0 . . .N , denote indepen-
dent Gaussian noises with correlations

〈ξj(t)〉 = 0, (30a)

〈ξj(t)ξj(t + τ)〉 = δ(τ). (30b)

The number of auxiliary variables, wi, corresponds to the num-
ber of exponential components in the friction kernel. The
variables wi have the dimension of “acceleration” of the z

variable.
The initial conditions for this set of equations can be

obtained assuming that the system starts from an equilibrium
Gaussian distribution, which is a projection to the excited state
of that in the ground state. Under such conditions, the veloc-
ity is zero. The second derivative of the stochastic variable,
the acceleration, is equal to the derivative of the potential
divided by the inertial mass of the solvent. Therefore, the

sum of the initial values for the other quantities, wi, is also
zero.

As there is no reason to believe that in the case of several
of these quantities their initial values compensate, they all must
be zero at time zero,

v(0) = 0, (31)

wi(0) = 0. (32)

The initial distribution of the stochastic variable comes from
the distribution of the system at rest in the ground state

ρ1(z, t = 0) = ρ0(z, eq) = N exp (−F0(z)/kBT ) , (33)

where N ensures area-normalized population distributions.
Generalized Langevin equations can be solved analyt-

ically only in some special cases.78 Therefore, in order to
integrate Eqs. (29) for our system, with the initial conditions
given above, we use the numerical Euler-Maruyama scheme
(see the supplementary material for an explanation of the
algorithm).81 For the sake of consistency, we have also used
the very same approach for C153 despite having an (almost
perfectly) harmonic potential.

V. COMPARISON OF EXPERIMENTS
WITH SIMULATIONS

As explained in the experimental part, the first two
moments of the experimental time resolved spectra were
extracted. From the simulations, we obtain trajectories start-
ing at different points in the LE region of the FES. These
trajectories are weighted taking into account the initial dis-
tribution in S1 after excitation, and the histograms which
are equivalent to the population evolution ρ(ν̃0, t) are calcu-
lated. Finally, the time-resolved emission spectra are simulated
according to

I(ν̃, t) ∝ ν̃3
∫
ρ1(ν̃0, t)µ2

10(ν̃0)Lf (ν̃ − ν̃0)dν̃0. (34)

The lineshape function, Lf, and the frequency-dependent
transition-dipole moment, µ10, are the same as described
before and are obtained from the calculation of the FES.
The so-simulated time resolved spectra are analyzed just as
the experimental spectra, i.e., the time-dependencies of the
first and second spectral moments are calculated. For a com-
parison of representative simulated and experimental time-
resolved emission spectra, see Fig. S12 of the supplementary
material. A flow chart summarizing the whole procedure of
analysis and comparison of the experiments with the sim-
ulation results for the GLE (or GSE) can be found in Fig.
S1. As pointed out before, the solvatochromic analysis lead-
ing to the FES is not unambiguous, as some parameters
are rather ill defined. In order to test how these variations
affect our simulations, we tested different FES-parameter
sets (with comparable goodness of fit in the solvatochromic
fitting). Figure S10 clearly shows that the differences are
negligible.

A comparison of the experimental and simulated (GLE
and GSE) results is given in Figs. 9–11. In Fig. S7 of the sup-
plementary material, we compare the times required for the
dynamics Stokes shift to reach 1/e = 0.368, τ1/e, for PeDMA
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FIG. 9. Comparison of the experimental (black dots) and simulated (GSE—blue dashed line; GLE—red line) m1f (lowest row) and
√

m2f (upper row) in a set
of pure solvents. In addition, the relative difference of the simulated and the experimental m1f, given by ∆m1f = (msim

1f − m
exp
1f )/(mexp

1f (t = 0) − m
exp
1f (t = ∞)),

is shown in the middle row. Solvents used are from left to right: i-propyl ether (iPr2O), butyl acetate (BuAT), tetrahydrofuran (THF), butyronitrile (BuCN),
acetonitrile (ACN), and dimethylsulfoxide (DMSO).

and C153.82 These times are to be taken as an orientation only
and not as a quantity with physical significance characteriz-
ing the dynamics. The first observation is that in almost all

the cases, in the mixtures too, the dynamics are significantly
slower for PeDMA than for C153.83 This is a direct conse-
quence of the difference in the free energy surface for these two

FIG. 10. Comparison of the experimental (black dots) and simulated (GSE—blue dashed line; GLE—red line) m1f (lowest row) and
√

m2f (upper row) in a set
of isoviscous binary mixtures of DMSO/BzAc (DB) with changing dielectric constants (values given in parentheses).
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FIG. 11. Comparison of the experimental (black dots) and simulated (GSE—blue dashed line; GLE—red line) m1f (lowest row) and
√

m2f (upper row) in a set
of isoelectric binary mixtures of DMSO/GLY (DG) with changing viscosities (values given in parentheses).

molecules. This is noteworthy, as very often in the literature the
solvent dynamic control of a chemical reaction is thought to be
active only if the mean or one of the solvent relaxation times
is directly reflected in the kinetics of the reaction, which is
not necessarily the case.33 We have also extracted these times
from the GSE and GLE calculations and compared them to
the PeDMA times (see Fig. S7). In the case of the GSE, the
obtained times deviate more from the experimental values than
in the case of the GLE, and increasingly with the magnitude of
the relaxation time. In the case of the GLE, the largest deviation
is observed for the glycerol-rich mixtures. All these deviations
are the opposite compared with the C153-times: the 1/e-times
from the GLE and GSE simulations—if off from the experi-
mental values—are larger than the measured ones. These times
are to be taken with care as in any case the dynamics are more
complex than simple exponential functions. In Secs. V A and
V B, a more detailed comparison is presented.

In addition to the GSE and GLE analyses, we have per-
formed a test calculation with the Smoluchowski equation
keeping the diffusion coefficient at a constant value and equal
to the asymptotic one, reached at long times for two cases:
acetonitrile (12) and dimethylsulfoxide (14). The correspond-
ing figure can be found in the supplementary material (Fig.
S9). This is the case of pure overdamping with a memory-less
friction. These results allow for two observations: First, for a
“fast” solvent like acetonitrile the memory is lost much earlier
than for dimethylsulfoxide. Second, the overdamped descrip-
tion (Smoluchowski equation)— at least with only a single
relaxation mode of the solvent—does not suffice to explain
the observations.

A. Pure solvents

Figure 9 represents the mean frequency (first moment) and
the standard deviation (square root of the second moment) of
the time resolved emission of PeDMA in 6 pure solvents. For
the mean frequency, we observe a deviation between the exper-
iment and simulation in all cases at very short times, typically
below 1 ps. This deviation is explicitly shown in the middle
panel as relative deviation between the simulation and exper-
iment, normalized to the full dynamic Stokes shift. The same
is true for the standard deviation,

√
m2f . This is a consequence

of the excess vibrational energy after excitation to v ′ = 2 at
400 nm. The time-dependence of

√
m2f is especially revealing

in this respect: due to the displacement between the minima
of S0 and S1, this moment is expected to increase with time,
passing through a maximum if the dynamics are fast enough
to enlarge the population distribution in S1 (see, for example,
acetonitrile). The simulations clearly follow this behavior, but
not exactly the experiments. In the experiments, the standard
deviation tells us that at short times the band is broader than
expected. This is a consequence of the emission from vibra-
tionally excited states. This broadening disappears on a time
scale similar to that characterizing the deviations between sim-
ulations and experiments of the mean frequency. Beware that
the initial discrepancy between the experimental and simu-
lated standard deviations is always in the range of 0.3-0.5 kK.
A quite clarifying additional experiment in this respect is the
relaxation of the emission in pure c-hexane in which no charge
separation occurs at all (see Fig. S11 of the supplementary
material): the dynamics of both moments are almost identical.
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The total relaxation of the first moment is in the range of 0.4-
0.5 kK, which is in agreement with the short-time differences
observed between simulations and experiments in the other
solvents. In addition, the standard deviation of the spectra also
changes by about 0.3 kK as observed for the other solvents for
the very same reason.

In all solvents, both the GLE and the GSE reproduce
the time scales of the decay of the mean frequency reason-
ably well. Only in the case of dimethylsulfoxide, the GLE is
clearly closer to the experiments than the GSE, which itself
is slightly slower than the measured data. In several cases,
larger discrepancies between the simulations and the experi-
ments are observed at long times. These deviations are a direct
result of the deviations from modeling the steady-state solva-
tochromism (compare with the differences in Fig. 8). In other
words, these deviations cannot be ascribed to imperfections
of modeling the dynamics but to deviations from the fits to
the stationary spectroscopic data. Note that such deviations
would most probably have passed unnoticed if the correlation
function [Eq. (10)] would have been used instead in the data
presentation.

B. Solvent mixtures

1. Isoviscous binary mixtures

For the dynamics in the binary mixtures of benzyl
acetate/dimethylsulfoxide, a similar trend as in the case of
pure solvents is reproduced for both observables (cf. Fig. 10).
Again, the GSE is slightly slower and worse than the GLE,
when it comes to reproducing the data for cases where the
relaxation is slower. In general, it seems that the GSE adds
a long component, which is not observed experimentally. We
can summarize these findings by saying that the applicability
of the GLE seems to be independent of the dielectric prop-
erties of the medium and works equally well for solvents of
relatively low and high polarity.

2. Isoelectric binary mixtures

Larger differences between the GSE and the GLE can be
observed, when the viscosity is increased while the dielectric
properties are kept almost unaltered (cf. Fig. 11), as is the case
in the binary mixtures of dimethylsulfoxide and glycerol. As
soon as the viscosity is increased to 5 cP, the GSE shows signif-
icantly slower dynamics. The GLE, on the other hand, is still
able to reproduce the experimental results quite well, except
for the largest of the viscosities. However, we have the impres-
sion that this deviation is again not due to a failing model for the
dynamics but a consequence of extracting the friction kernel
from another molecule, C153. Upon increasing the viscosity
by adding glycerol, the hydrogen bonding ability of the binary
solvent mixture changes. More precisely, the α-parameter of
the Kamlet-Taft (KT) scale increases steadily starting from 20
to 30 cP.84

C153, on the other hand, has a corresponding a∗-
coefficient of ☞0.86 kK in the excited state,85 while, although
unknown, for PeDMA we expect it to be lower: for example,
this value for another aromatic amine is ☞0.34 kK,86 and in
PeDMA the charge is transferred to the Pe moiety, thus fur-
ther decreasing this value. Therefore, a correlation between
the difference of the KT α coefficient and the deviation of

the simulations with respect to the experiments seems reason-
able. This is in line with the conclusions obtained by Ernsting
for 4-aminophthalimide in methanol.87 There the authors had
attributed the observed differences in the solvent relaxation
times to concomitant changes in the rotational relaxation times
as a result of specific solute-solvent interactions. It is pos-
sible, nevertheless, that whenever the dielectric relaxation is
very fast the influence of slower phenomena, like hydrogen-
bonding, is not affecting the dynamics. In the present case, the
dielectric relaxation is much slower, opening the possibility for
hydrogen-bonding to differently affect the dynamics of C153

and PeDMA, thus invalidating the use of the friction kernel
obtained with the former to explain the results of the latter.

VI. CONCLUSIONS

In this paper, we have shown how, with very elementary
models for both the thermodynamics and the non-equilibrium
dynamics of solvation, it is possible to describe all experi-
mental observables for a model compound in which a charge
transfer reaction occurs in the excited singlet state. The FESs
are obtained from fitting a three-state model based on Liptay’s
continuum theory for equilibrium solvation to the steady-state
absorption and emission spectra. Moreover, there are almost
no free parameters in the simulation of the dynamics of the
model compound, PeDMA, as the relevant solvent parameters
are related to those obtained from measurements of C153,
a well established reference in this kind of study. To the
best of our knowledge, so far no such comprehensive study
combining ultrafast broadband spectroscopy and the GLE has
been performed. The deviations of the GLE with respect to
the experiments are ascribed to vibrational relaxation at short
times, to short-comings of the solvatochromic model at long
times, and to differences in the hydrogen-bonding sensitivity
for C153 and PeDMA in glycerol-rich binary mixtures, but
not to the intrinsic capabilities of the GLE in describing the
dynamics. In general, both used models (GLE and GSE) work
relatively well as long as the energy dissipation is fast enough,
but the GSE fails in those cases where the relaxation becomes
slower. A plausible explanation for this difference when the
dynamics are slower is that in such cases the population in the
S1-state has more time to explore all the details of the shape
of the FES. In other words, the differences between the har-
monic potential and the one used for PeDMA become more
relevant, and the assumption for the validity of the GSE is
removed.

Two possible improvements can be foreseen: an improved
stationary solvation model to encompass the molecular details
of the solvent88,89 and/or the addition of another reaction coor-
dinate to the dynamics to account for vibrational relaxation
and other internal modes of freedom. So far we have only con-
sidered the polarization of the medium. With respect to the
additional reaction coordinates, both the groups of Hynes90

and especially Hammes-Schiffer,91 as well as Ivanov,92 the
latter in the context of the Smoluchowski approach, but con-
sidering also vibrational modes, have performed substantial
theoretical advances. Further work in this direction is, without
any doubt, necessary when comparing full sets of experimental
data as presented here.
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In the present case, PeDMA, the results suggest that addi-
tional reaction coordinates are not necessary. It can be argued
that the discrepancy at the largest viscosities is connected to
large internal rotational motion modes of PeDMA. However,
it is counterintuitive that these would make the relaxation
faster than that calculated by the model presented here, as
the moieties of PeDMA are both heavier than the solvent
molecules.

The conventional approach for extracting the solvent
relaxation times from experimental C(t)s consists of fitting
them with a multiexponential decay function. However, it is
unclear whether the functional shape of an intrinsically noisy
set of data such as C(t) necessarily is a sum of exponentials, and
if—even in such a case—each of the exponents corresponds to
a single relaxation time of the solvent or is a manifestation of
memory effects of this relaxation. With the present approach,
we have shown that it is possible to explain the dynamics of
relaxation of fluorescence by using a single relaxation mode for
the solvent with memory, instead of several times. It is never-
theless unquestionable that further comparison with dielectric
spectroscopy data would be needed to establish the micro-
scopic physical origin in each of the solvents of the energy
dispersion or the solvent response to perturbations.

SUPPLEMENTARY MATERIAL

See supplementary material for a short discussion about
the form of the correlation function, the derivation of Eq. (29),
the Euler-Maruyama integration scheme, details on the calcu-
lation of the friction parameters, and additional experimental
data.
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