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We present a scheme for linear optical quantum computation that is highly robust to imperfect single
photon sources and inefficient detectors. In particular we show that if the product of the detector efficiency
with the source efficiency is greater than 2=3, then efficient linear optical quantum computation is
possible. This high threshold is achieved within the cluster state paradigm for quantum computation.
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Photons are a promising candidate for quantum infor-
mation processing [1]. They are relatively immune to
decoherence, allow a high experimental repetition rate
and high precision single-qubit operations. There are, how-
ever, a number of barriers to building a scalable pho-
tonic quantum computer. Entangling two-qubit operations
are challenging to implement, requiring either a highly
nonlinear material [2] (with strength many orders of mag-
nitude higher than any known materials [3]) or by employ-
ing linear optical elements and ‘‘measurement-induced
nonlinearities’’ [4]. In this latter alternative, combining a
photodetection device with linear optical elements such
as beam splitters, phase shifters, and polarizing beam split-
ters allows for nondeterministic two-qubit operations
which enable efficient linear optical quantum computing
(LOQC).

Recently there have been significant experimental ad-
vances in LOQC [1,5] but three major experimental issues
remain—imperfect sources, inefficient detectors, and poor
quantum memory; our results have significant implications
for all three issues. In particular, our main result is to show
that efficient LOQC is possible providing the detector
efficiency �D and the single photon source efficiency �S
(defined precisely below) satisfy �S�D > 2=3. In a subse-
quent publication [6] we will show in some detail how to
construct good quantum memory using the techniques we
introduce here.

Recently, there have been a number of promising pro-
posals for optical quantum computation under a degree of
experimental error [7,8]. Here, we show a significant re-
duction in the threshold required for scalable linear optical
quantum computation with inefficient sources and detec-
tors. Similarly to in other work, which has addressed
methods of reducing the effects of such errors by linear
optical means [8], we will be assuming that the linear
optical elements of the computation are ideal, except pos-
sibly for some amount of absorptive loss.

Certain photon sources are of the form that if any pho-
tons are present, then at most one photon is present (see,

e.g., [9]). For such sources the desired mode is precisely
known, and it is hoped the emitted photon’s wave packet
has significant overlap with this mode. Because the trans-
formation between mode operators is linear, there exists a
linear optical filter which can be used to ‘‘project out’’
(absorb) the undesired part of the photonic wave function.
We call the probability of the photon surviving this filtra-
tion �S, the efficiency of the photon source. More pre-
cisely, the mixed state of the source is taken to be
� � �Sj1ih1j � �1� �S�j0ih0j, with j1i and j0i the single
photon and vacuum Fock states, respectively.

The single photon detectors we consider are number re-
solving and inefficient (although the vast majority of the
photodetectors in our protocol can be non-number resolv-
ing). There are two primary technologies for such detectors
under active investigation: visible light photon counters
[10,11] and transition edge superconducting sensors [12].
Inefficiencies in these detectors are well modeled as an ini-
tially perfect detector, in front of which is placed a regular
beam splitter of transmission probability �D; photons re-
flecting off the beam splitter are presumed lost [1]. Thus
there is a probability that two input photons register as only
one photon—a particularly problematic scenario for LOQC
gates which are generally conditioned on detection of one
and only one photon. Dark counts in the photodetectors can
lead to postselection of erroneous states if they take the
place of a physical photon at a photodetector. The proposed
protocol is not tolerant to such events. However, their
occurrence is rare and does not affect the threshold.

The method we propose to achieve the main result is
based on the measurement-based ‘‘one-way quantum com-
putation’’ [13], in particular, the loss-tolerant variant in-
troduced by us in [14]. In one-way quantum computation,
single-qubit measurements on a cluster state of suitable
layout and size suffice to implement any quantum compu-
tation. In [14] we showed that if cluster states are encoded
using branched tree structures to represent each cluster
qubit, efficient computation is possible with an overall
loss rate of up to 50%.
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This strikingly high threshold is the result of restricting
the error model to the dominant error sources in photonic
quantum computation, qubit loss errors. One reason why
this error model allows higher thresholds than in general is
that, in a measurement-based scenario, since qubits are
measured throughout the computation, these errors can
be detected without further encoding. The error threshold
we utilize here was derived in [14]. A lower bound to the
threshold is analytically derived, and numerical simula-
tions show that this is tight for logical circuits of the order
of 108 gate operations. In a more general error model, error
thresholds are typically much lower, since additional en-
coding is required to allow all errors to be detected. The
best known numerical threshold for such a model [15] is of
the order of 10�2.

The results of [14] apply to the case where a large cluster
state has been constructed, and independent (uncorrelated)
qubit loss now affects the qubits. However, in the scenario
under consideration we are beginning with imperfect
sources of qubits (polarized photons), and attempting to
efficiently grow large clusters by acting noisy gates upon
them. It is crucial that the method is not only efficient, but
also produces cluster states of an independently degraded
(ID) form. ID states are states where all the qubits share the
same and independent loss rate as a result of imperfect
components used in the creation step. The loss-tolerant
protocol in [14] is effective on ID states but much less
robust to correlated errors.

Our description of a strategy to achieve the main result
proceeds as follows. First we present a method for creating
three photon ID-GHZ (Greenberger-Horne-Zeilinger)
states from an initial resource of six single photons. The
effective loss rate of this state is a function of the efficien-
cies of the sources or detectors used in its creation, and this
is the only step in which number-resolving detectors are
required. Next, we discuss the manner in which type-II
fusion (see supplementary material and [16]) is inherently
loss tolerant—when successfully applied to ID states it
generates an ID state with the same effective loss rate as the
input states. After a brief discussion of how tree cluster
states achieve their loss-tolerant properties we present a
method to efficiently grow such states given the initial
3 photon ID-GHZ states. We then describe a method for
joining such tree clusters so as to produce a state capable of
achieving universal quantum computation.

Creating initial GHZ states.—A scheme for creating an
initial resource of GHZ states is given in Fig. 1 of the
supplementary material [17]. By combining six photons
via a network of PBSs and fusion gates, one can create a
state locally equivalent to the three-photon GHZ state. The
success rate (assuming perfect sources and detectors) is
1=32. Recall that we consider sources which are of the
form that if any photons are present, then at most one
photon is present. Let the efficiency of the sources (as
defined earlier) be �S, and that of the detectors be �D. In
this particular scheme (as explained in full in the supple-
mentary material [17]), if the gate is successful then the

state of the remaining three photons is collapsed to an ID-
GHZ state which has a loss rate � � 1� �S

2��D�S
. In the rest

of the Letter we show that loss-tolerant cluster states with
an ID loss rate of � can be constructed efficiently. Since,
once we take the inefficiencies of single-qubit measure-
ments into account, the protocol [14] has a loss threshold of
�1� ���D > 1=2 this implies our main result.

The reason we require GHZ states initially (as opposed
to Bell states, which sufficed in [16]) is that all subsequent
steps of the protocol are going to use type-II fusion, which
destroys two photons on each application (type-I fusion
unfortunately does not have the same natural loss tolerance
properties). Fusing three-photon GHZ states allows for the
creation of four-photon (and larger) GHZ states by post-
selection on successful fusions in a straightforward man-
ner, and it is then clear that if there are no lossy failures,
arbitrary cluster states can be built using type-II fusion
alone. If losses during the construction of the state are
considered, however, growing suitable clusters efficiently
is rather more complex.

Loss tolerance of type-II fusion.—Recall the type-II
fusion gate (see Fig. 2 of the supplementary materials or
[16]) is essentially a polarizing beam splitter (PBS) ori-
ented at 45� [16,18,19], which implements a destructive
Bell state projection when it succeeds. Success occurs
when one (and only one) photon is detected at two inde-
pendent detectors of the gate. We classify all other detec-
tion outcomes as failures. These failures arise when two
photons emerge in a single mode, or when loss or detector
inefficiency causes only one photon to be detected.

In the ideal case, the success probability of the type-II
fusion is 50%. Provided there is at most one photon in each
mode, this gate is robust to loss errors and detector ineffi-
ciencies, because when two detectors click the desired case
of one photon being present in each input mode must have
been the case. The effect of the loss errors (imperfect
sources, detectors, or absorptive components) will be to
reduce the success probability. Significantly, however, a

a) b)

c) d)

FIG. 1 (color online). A strategy for creating tree clusters via
type-II fusion (denoted by a blue or light gray box).
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successful type II preserves the ID property of the input
state. More specifically, successfully fusing an n-photon ID
state with an m-photon ID state, both with loss rate �,
leaves an n�m� 2 photon state which remains ID with
the same loss rate �. In other words, the type-II gate does
not introduce dangerous correlated loss errors into the
state, nor does it increase the loss rate, even though it is
implemented with inefficient detectors.

Tree clusters: a resource for loss-tolerant computa-
tion.—We now briefly review the manner in which
tree clusters achieve their loss-tolerant properties. These
states are fully specified by their branching parameters bi
which give the number of qubits in the �i� 1�th level a
qubit in the ith level branches out to (see [14] for details).
When such trees are used to encode qubits in a cluster state
used for a computation, then a plethora of alternative
measurement patterns become available for implementing
a specific encoded single-qubit measurement in some ar-
bitrary basis. This allows a loss-tolerant strategy which, by
increasing the number of tree qubits, can boost the effec-
tive success probability for the measurement arbitrarily
close to 1, provided each individual measurement has an
individual likelihood to succeed of at least 1=2.

The basis of this loss tolerance is a ‘‘counterfactual’’
error correction. At instances where a specific qubit is lost,
the special quantum correlations present on the tree clus-
ters allow ‘‘indirect measurements.’’ In other words the
outcome of a measurement which could have occurred, had
the qubit not been lost, can be inferred by measurements on
other surviving qubits. One can then proceed with an
alternative measurement pattern which is still suitable for
implementing the original logical operation.

Building tree clusters in the presence of loss.—Type-II
fusing one photon from each of two 3-photon GHZ states
yields, when successful, a 4-photon GHZ state, and we will
take these to be our basic resources for tree cluster creation.

By applying local Hadamard gates to two of the qubits in a
4-qubit GHZ state, one creates a three-qubit tree cluster
state, where the central qubit is redundantly encoded in the
two-qubit basis jHHi, jVVi. We will term this basic re-
source a ‘‘2-tree’’. Figures 1(a) and 1(b) indicate how two
2-trees can be fused together into a 4-tree, maintaining the
redundant encoding at the top of the tree.

Given a supply or resource of 2-trees, we wish to show
that one can efficiently generate arbitrary tree cluster
states. This is achieved by building a tree with branching
parameters fb0; b1; . . . ; bmg from bottom to top as follows.
First we use type-II gates and combine 2-trees to form 4-
trees. Then we repeat the process by fusing 4-trees to create
8-trees, and so on until a sufficient resource of bm-trees is
created. Any given type-II fusion succeeds with probability
pII � �1� ��2�2

D=2. This is because �1� ��2 is the proba-
bility of both photons being present in their appropriate
cluster (which is given above for one specific proposal for
producing GHZ states), �2

D is the probability both detec-
tors fire appropriately, and 1=2 is the intrinsic optimal
success probability of a type-II gate even if both photons
are present and the detectors are perfect. Thus, for any
integer number l, the expected cost for creating one 2l-tree
from two 2l�1-trees is 2=pII 2l�1-trees. The expected cost
for creating a 2l-tree from 2-trees is then �2=pII�

l�1 2-trees.
Further, it can be readily shown that in order to create a
bm-tree such that 2l�1 � bm � 2l, then on average the
number of 2-trees required is � �2=pII�

log2�bm� �
poly�bm�. (Note that in the event of a failure—regardless
of the type—we simply discard all qubits involved. While
clearly not optimal from a resource perspective, our aim
here is to provide a simple argument that even in this
nonoptimal case, desired scaling is still achieved.)

Next we add a higher level of qubits by first joining a
pair of the cluster states created in the previous step with a
single 2-tree using two type-II gates as shown on Fig. 1(c).
Subject to both gates succeeding, the resulting state is the
one shown on Fig. 1(d). This is a tree cluster state consist-
ing of a redundantly encoded qubit at the top that is
branching out to 2 qubits in the next lower level, each of
which branch out to bm qubits in the last level. Since we
require two gates to succeed in this step, the expected
number of 2-trees consumed in order to create a single
such state is � 2p�2

II poly�bm�.
By creating a sufficient supply of these new cluster

states we can now increase the branching parameter on
the top level from 2 to bm�1 by combining these
tree clusters together, much as we combined the initial 2-
trees into 2l trees. That is, successfully type-II fusing
together a photon from the redundantly encoded qubit
from 2 of these trees creates new tree clusters where the
top level branching would then be equal to 4; fusing those
together increases the branching to 8, etc. Repeating the
process can increase the branching value to bm�1. This
increases the resource overhead in the number of 2-trees
required to � �2=pII�

log2�bm�1�2p�2
II poly�bm�. The extra

X

X

X

X X

X

X

X

X X

n  qubits

a)

b) XX

FIG. 2 (color online). In (a), the type-II fusion gate (denoted
by a blue or light gray box) between the end qubit of an n-qubit
cluster and a redundantly encoded qubit from a three-qubit
cluster state will ‘‘fuse’’ the states together, generating, in this
example an n� 1-qubit cluster. (b) Presents the loss-encoded
version of this protocol. Note that the qubits marked with an x
have already been measured in the �x basis. They have been left
in the diagram for illustrative purposes. The graphical represen-
tation of the true loss-tolerant state after the x measurements
would be unhelpfully complicated.
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added level with branching parameter bm�1 incurs an in-
creasing factor of 2p�2

II poly�bm�1� in the 2-trees overhead.
Iterating the process in order to add all the levels sug-

gests that in order to create one tree cluster state with the
full branching parameter profile: fb0; b1; . . . ; bmg (as re-
quired in [14]) then the expected number of 2-trees re-
quired satisfies: hNtreei � �

2
p2

II
�m
Qm
i�0 poly�bi�. The overall

conclusion is that the expected number of qubits consumed
in order to build a tree containingQ qubits is polynomial in
Q, since m � log2�Q�.

From trees to a loss-tolerant cluster state.—The final
step of our protocol is to combine the generated trees into
an encoded cluster state. This is achieved using a strategy
similar, at the level of encoded qubits, to those strategies
proposed in [16]. We start with an n-qubit linear cluster
and a 2-qubit cluster state, of which one qubit is redun-
dantly encoded as illustrated in Fig. 2 (this is locally
equivalent to a 3-qubit GHZ state). Successful application
of a type-II fusion gate between qubits creates an n� 1
linear cluster. A similar approach can be employed to
create loss-encoded linear clusters. The type-II fusion on
the encoded qubits proceeds in an analogous manner to the
loss-tolerant single-qubit measurements in [14]. The fusion
measurement is applied to a pair of ‘‘first row’’ qubits, as
illustrated in Fig. 2, and remaining tree qubits are measured
out in accordance to the loss-tolerant strategy [14]. Loss
errors in the type-II fusion are dealt with in the same way as
before. When the type-II fusion gate fails it can be treated
as a loss error. Note that this means that at the level of
encoded qubits the failure probability of the fusion can be
made arbitrarily small. Thus an n encoded qubit linear
cluster can be built at a cost of n tree-encoded three-
GHZ states. Following the methods above, these states
can themselves be built (for example) by postselected
fusion of three tree clusters and a 4-photon linear cluster
state at a cost of �3=p3

II � 3hNtreei�=p
3
II 2-trees.

Conclusion.—Our primary purpose in this Letter has
been to show that an extremely relaxed error threshold
exists for some of the primary error mechanisms expected
to be crucial to the eventual viability of linear optical
quantum computation. It is possible that our threshold
trade-off can be improved—fall that is required is a better
linear optical scheme for producing three photon ID-GHZ
states than the one we have outlined, which we have made
no attempt to optimize. There are clearly many ways in
which the resource consumption of our scheme can be
lowered. In the methods above we have made no attempts
to recycle states after gate ‘‘failures’’ and to do so would
greatly reduce the overhead, especially when efficiencies
are significantly above the threshold. Although the experi-
mental requirements of the current scheme seem forbid-
ding, we are confident that experiments demonstrating the
principles of elements of this scheme are within current

laboratory feasibility. The development of loss-tolerant
protocols with a more compact resource count remains
an important and challenging area for future research.
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