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Abstract

We address the problem of estimating image difficulty de-

fined as the human response time for solving a visual search

task. We collect human annotations of image difficulty for

the PASCAL VOC 2012 data set through a crowd-sourcing

platform. We then analyze what human interpretable image

properties can have an impact on visual search difficulty,

and how accurate are those properties for predicting dif-

ficulty. Next, we build a regression model based on deep

features learned with state of the art convolutional neural

networks and show better results for predicting the ground-

truth visual search difficulty scores produced by human an-

notators. Our model is able to correctly rank about 75% im-

age pairs according to their difficulty score. We also show

that our difficulty predictor generalizes well to new classes

not seen during training. Finally, we demonstrate that our

predicted difficulty scores are useful for weakly supervised

object localization (8% improvement) and semi-supervised

object classification (1% improvement).

1. Introduction

Humans can naturally understand the content of images

quite easily. The visual human perception system works

by first recognizing the ’gist’ of the image almost instanta-

neously [32, 33], just from a single glance (200 ms) and,

then, in a second stage, by recognizing the individual ob-

jects in the image [33] as a result of visual search. Cogni-

tive studies [3, 43, 48] show evidence that, for the task of

searching for a pattern in an image, the user response time

is proportional to the visual search difficulty, which could

vary from one image to another. Images are not equal in

their difficulty: some images are easy to search and objects

are found fast while others are harder, requiring intensive

visual processing by humans. The measure of visual search

difficulty could be related to several factors such as back-

ground clutter, complexity of the scene, number of objects,

whether they are partially occluded or not, and so on.

In this paper, we address the problem of estimating vi-

sual search difficulty. This topic is little explored in the

computer vision literature with no data sets assessing the

difficulty of an image being available. We approach our

study by collecting annotations on the PASCAL VOC 2012

data set [15] as human response times during a visual search

task and convert them into difficulty scores (Section 2).

While measuring visual search difficulty by human obser-

vations might be subject to some user variability, we be-

lieve that there are intrinsic image properties that constitute

the ingredients in the unknown underlying recipe of making

an image difficult (Figure 1). We use the PASCAL VOC

2012 images annotated with difficulty scores to investigate

in depth how different image properties correlate with the

ground-truth difficulty scores. We find that higher level fea-

tures, such as the ones learned with convolutional neural

networks (CNN) [25] are the most effective, suggesting that

visual search difficulty is indeed a measure that relates to

higher level cognitive processing. Using such features, we

train models to automatically predict the human assessment

of visual search difficulty in an image (Section 3). We re-

lease the human difficulty scores we collected on PASCAL

VOC 2012, as well as our code to predict the difficulty of

any image at http://image-difficulty.herokuapp.com.

Measuring image difficulty could have many potential

applications that use the primary information that some

images are harder to analyze than others. In Section 4,

we demonstrate the usefulness of our difficulty measure

in two object recognition applications. For the task of

weakly supervised object localization, we show how to en-

hance standard methods based on multiple instance learn-

ing [5, 8, 10, 37, 39, 40, 41] with our measure and obtain an

8% improvement. Similarly, for the task of semi-supervised

object classification, we use our measure to improve the ac-

curacy of a classifier based on CNN features [38] by 1%.

Related work. There are many computer vision works an-

alyzing global image properties such as saliency [17, 19,

26, 30, 31], memorability [20, 21], photo quality [29] and
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Figure 1. Images with difficulty scores predicted by our system in increasing order of their difficulty.

objects’ importance [42]. However, there is little work on

the topic of image difficulty [28, 34, 46]. Russakovsky

et al. [34] measure difficulty as the rank of an object’s

bounding-box in the order of image windows induced by

the objectness measure [1, 2]. This basically measures im-

age clutter. However, it needs ground-truth bounding-boxes

in order to quantify difficulty (even at test time). Liu et

al. [28] predict the performance of a segmentation algorithm

to be applied to an image, based on various features includ-

ing gray tone, color, gradient and texture (on just 100 im-

ages). More closely related to our idea, Vijayanarasimhan

and Grauman [46] try to predict the difficulty of an image

in terms of the time needed by a human to segment it, with

the specific goal of reducing manual annotation effort. They

select candidate low-level features and train multiple kernel

learning models to predict easy versus hard images. How-

ever, the image segmentation task [46] is conceptually dif-

ferent from our visual search task. For example, it might be

very easy to find a tree in a particular image, although it can

be very hard to segment, while a truncated car can be eas-

ily segmented but difficult to find and recognize. Jain and

Grauman [22] predict what level of human annotation will

be sufficient for interactive segmentation to succeed. Their

approach learns the image properties that indicate how suc-

cessful a given form of user input will be.

In contrast to these previous works, we approach the

problem from a higher level of image interpretation, for the

general task of visual search and collect annotations for a

much larger data set of over 10K images.

2. Image difficulty from a human perspective

Supported by cognitive studies [3, 43, 48], we consider

that the difficulty of an image is related to how hard it is for

a human to decide the presence or absence of a given ob-

ject class in an image. We quantify the difficulty as the time

needed by a human to solve this visual search task. This

value could depend on several factors such as the amount

of irrelevant clutter in the image, the number of objects,

their scale and position, their class type, the relevant contex-

tual relationships among them, occlusions and other kinds

of noise. We thoroughly investigate how these properties

correlate with the visual search difficulty in Section 2.2.

First, we designed a visual search protocol for collect-

ing human response times on a crowd-sourcing platform,

namely CrowdFlower1. We collected ground-truth diffi-

culty annotations by human evaluators on a per image ba-

sis for all 11, 540 train and validation images in PASCAL

VOC 2012 data set [15]. This data set contains images with

object instances from 20 classes (aeroplane, boat, cat, dog,

person and so on) annotated with bounding-boxes. The im-

ages vary in their difficulty: objects appear against a variety

of backgrounds, ranging from uniform to heavily cluttered,

and vary greatly in their number, location, size, appearance,

viewpoint and illumination. This variety makes this data set

very suitable for collecting ground-truth difficulty annota-

tions. We next describe the protocol and present informative

statistics about the collected data.

2.1. Can we measure visual search difficulty?

Collecting response times. We collected ground-truth dif-

ficulty annotations by human evaluators using the follow-

ing protocol: (i) we ask each annotator a question of the

type “Is there an {object class} in the next image?”, where

{object class} is one of the 20 classes included in the PAS-

CAL VOC 2012; (ii) we show the image to the annotator;

(iii) we record the time spent by the annotator to answer the

question by “Yes” or “No”. Finally, we use this response

time to estimate the visual search difficulty.

To make sure the measured time is representative, the an-

notator has to signal that he or she is ready to see the image

by clicking a button (after reading the question first). After

1http://www.crowdflower.com/

2158



Mean Minimum Maximum

Kendall τ 0.562± 0.127 0.182 0.818

Table 1. Kendall’s τ rank correlation coefficient among 58 trusted

annotators, on a subset of 56 images. The response time of each

annotator is compared to the mean response time of all annotators.

seeing the image and analyzing it, the annotator has to sig-

nal when he or she made up his mind on the answer by click-

ing another button. At this moment we hide the image to

prevent cheating on the time. Moreover, we made sure the

annotation task is not trivial by associating two questions

for each image, such that the ground-truth answer for one

question is positive (the object class specified in the ques-

tion is present in the image) and the ground-truth answer

for the other question is negative (the object class specified

in the question is not present in the image). In this way

we prevented a bias in obtaining answers uncorrelated with

the image content, constraining the annotator to be focused

during the entire task. Each answer (“Yes” or “No”) has a

50% chance of being the right choice. Naturally, an anno-

tator could memorize an image and answer more quickly

if the image would be presented several times, so we made

sure that a person did not get to annotate the same image

twice. Each question was answered by three human anno-

tators. Given that we used 11, 540 images and we associ-

ated two questions per image, we obtained 69, 240 anno-

tations. The annotations come from 736 trusted contribu-

tors. A trusted contributor has an accuracy (percentage of

answers that match the ground-truth answers) higher than

90%.

Data post-processing and cleanup. When the annotation

task was finished, we had 6 annotations per image (3 for

each of the two questions) with the associated response

times. We removed all the response times longer than 20

seconds, and then, we normalized each annotator’s response

times by subtracting the annotator’s mean time and by di-

viding the resulted times by the standard deviation. We re-

moved all the annotators with less than 3 annotations since

their mean time is not representative. We also excluded all

the annotators with less than 10 annotations with an aver-

age response time higher than 10 seconds. After removing

all the outliers, the difficulty score per image is computed as

the geometric mean of the remaining times. It is worth men-

tioning that by adjusting the accuracy threshold for trusted

annotators to 90%, we allow some wrong annotations in the

collected data. Wrong annotations provide the ultimate evi-

dence of a difficult image, showing also that the problem of

estimating image difficulty is not trivial. We determined the

images containing wrong annotations (based on the ground-

truth labels from PASCAL VOC 2012) and added a penalty

to increase the difficulty scores of these images.

Human agreement. We report the inter-human correlations

on a subset of 56 images that we used to spot untrusted an-

Image property Kendall τ

(i) number of objects 0.32

(ii) mean area covered by objects −0.28

(iii) non-centeredness 0.29

(iv) number of different classes 0.33

(v) number of truncated objects 0.22

(vi) number of occluded objects 0.26

(vii) number of difficult objects 0.20

(viii) combine (i) to (vii) with ν-SVR 0.36

Table 2. Kendall’s τ rank correlations for various image properties.

notators in CrowdFlower. We consider only the 58 trusted

annotators who annotated all these 56 images. In this set-

ting, we compute the correlation following a one-versus-all

scheme, comparing the response time of an annotator to the

mean response time of all annotators. For this, we use the

Kendall’s τ rank correlation coefficient [24, 44]. Kendall’s

τ is a correlation measure for ordinal data based on the dif-

ference between the number of concordant pairs and the

number of discordant pairs among two variables, divided by

the total number of pairs. The mean Kendall’s τ correlation

is reported in Table 1, along with the standard deviation,

the minimum and the maximum correlations obtained. The

mean value of 0.562 means that the average human ranks

about 80% image pairs in the same order as given by the

mean response time of all annotators. This high level of

agreement among humans demonstrates that visual search

difficulty can indeed be consistently measured.

2.2. What makes an image difficult?

Images are not equal in their difficulty. In order to gain

an understanding of what makes an image more difficult

than another, we consider several human interpretable im-

age properties and analyze their correlation with the visual

search difficulty assessed by humans. The image properties

are derived from the human manual annotations provided

for each image in PASCAL VOC 2012 [15]. All object in-

stances of the 20 classes are annotated with bounding boxes

and other several details (viewpoint, truncation, occlusion,

difficult flags) regarding the annotated object (for more de-

tails see [15]). In our analysis, we consider the following

image properties: (i) number of annotated objects; (ii) mean

area covered by objects normalized by the image size; (iii)

non-centeredness, defined as the mean distance of the cen-

ter of all objects’ bounding boxes to image center normal-

ized by the square root of image area; (iv) number of dif-

ferent classes; (v) number of objects marked as truncated;

(vi) number of objects marked as occluded; (vii) number of

objects marked as difficult.

It is important to remark that these image properties are

not available at test time. We only use them in our analysis

to study how human interpretable properties correlate with

visual search difficulty and also how well these properties

could predict difficulty.

We quantify the correlation between image properties
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and visual search difficulty assessed by humans (Sec-

tion 2.1) by measuring how well image properties scores

can predict ground-truth human difficulty scores. More pre-

cisely, we compute the Kendall’s τ correlation between the

rankings of the images when ranked either by the image

properties scores or by the ground-truth human difficulty

scores. Each image property assigns visual search diffi-

culty scores in a range that is different from the range of the

ground-truth scores. Kendall’s τ is suitable for our analy-

sis because it is invariant to different ranges of the various

measurements.

In all our experiments on visual search difficulty predic-

tion throughout this paper, we divided the 11, 540 samples

included in the official training and validation sets of PAS-

CAL VOC 2012 into three subsets. We used 50% of the

samples for training, 25% for validation and another 25%

for testing. Table 2 shows the Kendall’s τ rank correlations

between the difficulty scores based on the image properties

and the ground-truth difficulty scores on our test set. The re-

sults confirm that human interpretable properties are infor-

mative for predicting visual search difficulty. The top three

most correlated image properties with the ground-truth dif-

ficulty score specify some of the ingredients that make an

image difficult: the image should contain many instances

of different classes scattered all over the image (not just in

the center). The next most informative property is the mean

area covered by objects. It shows a negative correlation with

the ground-truth difficulty score suggesting that, on aver-

age, small objects are more difficult to find. Interestingly,

difficulty could also be predicted to some degree based on

the number of objects marked as truncated, occluded or dif-

ficult. However, as most objects appear normally, without

being truncated or occluded, these markers are rarely used,

which reduces their predictive power. As each image prop-

erty captures a different characteristic, combining them ap-

pears to be promising. We trained a Support Vector Regres-

sion (ν-SVR) model [36] to combine all seven image prop-

erties. In our evaluation, we used the ν-SVR implemen-

tation provided in [6]. The combination yields the highest

Kendall’s τ correlation (0.36). In Section 3, we show that

we can learn an even better predictor capable of automati-

cally assessing visual search difficulty based on CNN fea-

tures, without information derived from image properties.

2.3. Visual search difficulty at the class level

We can produce some interesting statistics based on our

collection of difficulty scores. Perhaps one of the most in-

teresting aspects is to study the difficulty scores at the class

level. We compute a difficulty score per object class by av-

eraging the score for the images that contain at least one

instance of that class. The difficulty scores for all the 20

classes in PASCAL VOC 2012 are presented in Table 3.

It appears that bird, cat and aeroplane are the easiest ob-

Class Score mAP Class Score mAP

bird 3.081 92.5% bicycle 3.414 90.4%

cat 3.133 91.9% boat 3.441 89.6%

aeroplane 3.155 95.3% car 3.463 91.5%

dog 3.208 89.7% bus 3.504 81.9%

horse 3.244 92.2% sofa 3.542 68.0%

sheep 3.245 82.9% bottle 3.550 54.4%

cow 3.282 76.3% tv monitor 3.570 74.4%

motorbike 3.355 86.9% dining table 3.571 74.9%

train 3.360 95.5% chair 3.583 64.1%

person 3.398 95.2% potted plant 3.641 60.7%

Table 3. Average difficulty scores per class produced by humans

versus the classification mean Average Precision (mAP) perfor-

mance of the best model presented in [7] for the 20 classes avail-

able in PASCAL VOC 2012. Classes are sorted by human scores.

ject classes in PASCAL that can be found in images by hu-

mans. We believe that birds and aeroplanes are easy to find

as they usually appear in a simple, uniform background, for

example on the sky. On the other hand, cats can appear

in various contexts (simple or complex), but their distinc-

tive shape, eyes and other body features are probably very

easy to recognize. The most difficult classes in PASCAL,

from a human perspective, appear to be potted plant, chair,

dining table and tv monitor. We believe that potted plants

and chairs are hard to find due to high (intra-class) vari-

ability in their appearance. For instance, chairs come in

different shapes and sizes, such as stools, armchairs, and

so on. Furthermore, all the difficult classes usually appear

in complex contexts, such indoor scenes with many objects

and varying illumination conditions. Interestingly, the dif-

ficulty scores presented in Table 3 indicate that the human

perspective is not very different from the results achieved by

state of the art computer vision systems [7, 25]. Table 3 in-

cludes the mean Average Precision (mAP) performance of

the best CNN classifier presented in [7]. It can be observed

that the lowest performance is obtained for the bottle, pot-

ted plant and chair classes. These are also among the top 5

most difficult classes for humans according to our findings.

Moreover, aeroplane and bird are among the top 4 easiest

classes for both humans and machines.

3. Learning to predict visual search difficulty

So far, we obtained a set of ground-truth difficulty scores

based on human annotations. We now go a step further and

train a model to predict the difficulty of an input image.

We compare our supervised model with a handful of base-

line models. We first describe our supervised model and the

baseline models and then present experimental results.

3.1. Our regression model

We build our predictive model based on CNN features

and linear regression with ν-SVR [36] or Kernel Ridge

Regression (KRR) [36]. We considered two pre-trained

CNN architectures provided in [45], namely VGG-f [7] and
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Figure 2. Visual search difficulty assessed by baselines. We show

the global image features used by each baseline for computing a

difficulty score. Top row: input images with predicted scores by

our method. Following rows: image edge maps [13], image seg-

mentation [16], top 5 highest scoring objectness windows (colored

red to black from highest to lowest).

VGG-verydeep-16 [38]. These CNN models are trained on

the ILSVRC benchmark [34].

We removed the last layer of the CNN models and used

them to extract deep features as follows. The input image is

divided into 1 × 1, 2 × 2 and 3 × 3 bins in order to obtain

a pyramid representation for increased performance. The

input image is also horizontally flipped and the same pyra-

mid is applied over the flipped image. Finally, the 4096

CNN features extracted from each bin are concatenated into

a single feature vector for the original input image. The fi-

nal feature vectors are normalized using the L2-norm. The

normalized feature vectors are then used to train either a

ν-SVR or a KRR model to regress to the ground-truth dif-

ficulty scores. We use our learned models as a continuous

measure to automatically predict visual search difficulty.

3.2. Baselines

We try out several baselines. Each baseline can assess

the visual search difficulty based on some specific feature:

image area, file size, objectness [2], edge strengths [13],

number of segments [16]. Unlike the image properties ana-

lyzed in Section 2.2, these features can be computed at test

time (without manual annotations).

Random scores. We assign random scores for each image.

Image area. Without any prior information about the image

content, the visual search task should be more difficult on

larger images than on smaller ones. Based on this intuition,

without analyzing the pixels inside an image, we quantify

the difficulty of an image by its area.

File size. A similar feature for quantifying visual search

difficulty without looking at the pixels is the image file size.

The images in PASCAL VOC 2012 are all compressed, in

JPEG format. In this context, we tried recovering the com-

pression rate induced to the original image by normalizing

the file size with the image area, but it did not provide better

results than the image file size alone.

Objectness. The objectness measure [2] quantifies how

likely it is for an image window to contain an object of

any class. It is trained to distinguish windows containing

an object with a well defined boundary and center, such as

cows, cars and telephones, from windows covering amor-

phous background such as grass, road and sky. We used

the official objectness code and obtained, for each image,

a difficulty score by summing all the objectness scores of

sampled windows. This difficulty score quantifies the im-

age clutter through the objectness distribution in the 4D

space of image windows. An easy image (Figure 2, first col-

umn) should have a small score as it contains only a small

number of windows with high objectness (red colored win-

dows) covering the dominant object. All other windows, not

covering objects, have small objectness (black colored win-

dows). Conversely, a harder image (Figure 2, last column)

would have several peaks in the objectness distribution in

the 4D space of image windows corresponding to objects’

positions in the image. We tried several variants for obtain-

ing a difficulty measure by using objectness: (i) entropy of

the objectness distribution estimated with kernel density in

the 4D space of all image windows; (ii) mean value of the

objectness heat map obtained by accumulating objectness

scores at each pixel for all windows containing the respec-

tive pixel; (iii) entropy of the sampled objectness windows;

(iv) sum of all (usually 1000 samples obtained via the NMS

sampling procedure [2]) objectness windows scores. We

found out that all variants are essentially the same in terms

of performance (Kendall’s τ correlations between 0.20 and

0.24), with (iv) being marginally better.

Edge strengths. Humans can easily find objects in cluttered

scenes by detecting their contours [35]. We use this idea to

provide a measure of difficulty based on edges. Intuitively,

an image with a smaller density of edges should be easier

to search than another image with higher density. We use

the fast edge detector of [13] to compute the edge map of

an image and characterize its visual search difficulty by the

sum of edge strengths.

Segments. A different way of measuring difficulty rests

on using segments as features. Segments divide an image

into regions of uniform texture and color. Ideally, each seg-

ment should correspond to an object or to a background re-

gion. We quantify the complexity of an image by counting
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Model MSE Kendall τ

Random scores 0.458 0.002

Image area - 0.052

Image file size - 0.106

Objectness [1, 2] - 0.238

Edge strengths [13] - 0.240

Number of segments [16] - 0.271

Combination with ν-SVR 0.264 0.299

VGG-f + KRR 0.259 0.345

VGG-f + ν-SVR 0.236 0.440

VGG-f + pyramid + ν-SVR 0.234 0.458

VGG-f + pyramid + flip + ν-SVR 0.233 0.459

VGG-vd + ν-SVR 0.235 0.442

VGG-vd + pyramid + ν-SVR 0.232 0.467

VGG-vd + pyramid + flip + ν-SVR 0.231 0.468

VGG-f + VGG-vd + pyramid + flip + ν-SVR 0.231 0.472

Table 4. Visual search difficulty prediction results of baseline mod-

els versus our regression models based on deep features extracted

by VGG-f [7] and VGG-verydeep-16 (VGG-vd) [38]. KRR and ν-

SVR are alternatively used for training our model on 5, 770 sam-

ples from PASCAL VOC 2012. The mean squared error (MSE)

and the Kendall’s τ correlation are computed on a test set of 2, 885

samples. The best results are highlighted in bold.

the number of segments. While turbo-pixels [27] segment

the image in regular small regions, essentially providing the

same number of superpixels per image, the method of [16]

divides the image into irregular segments covering objects

and larger portions of uniform background with fewer su-

perpixels (Figure 2). We use the available segmenter tool

of [16] with the default parameters for segmenting an image

and characterize the difficulty by the number of segments.

3.3. Experimental Analysis

Evaluation measures. In order to evaluate the proposed

regression model for predicting visual search difficulty, we

report both the mean squared error (MSE) and the Kendall’s

τ rank correlation coefficient [44]. We report only the

Kendall’s τ correlation coefficient for the baseline models

that do not involve regression, since the scores predicted by

the baseline models are on a different range compared to the

ground-truth difficulty scores and the MSE is a quantitative

measure of performance unsuitable in this case.

Evaluation protocol. We use the same split of the data set

as described in Section 2.2. The validation set is used for

tuning the regularization parameters of ν-SVR and KRR.

Results. Table 4 shows the results of different methods for

predicting the ground-truth difficulty. Using random scores

to assess difficulty leads to almost zero accuracy, showing

that visual search difficulty estimation is not a trivial prob-

lem. Baselines that do not analyze image pixels perform

a little bit better but are far away from accurately predict-

ing the order of the images based on their difficulty. The

methods based on mid-level features offer an increase in ac-

curacy. Objectness and edge strengths perform essentially

the same, achieving a correlation rank around 0.24. Using

segments further improves the performance to around 0.27.

2.5 3 3.5 4 4.5 5
2.5

3

3.5

4

Figure 3. Correlation between ground-truth (x-axis) and predicted

(y-axis) difficulty scores. The least squares regression line is al-

most diagonal suggesting a strong correlation.

Combining all these baselines with the ν-SVR framework,

we obtain a predictor that achieves a Kendall’s τ rank cor-

relation of about 0.30. Based on the Kendall’s τ definition,

this translates in ranking about 65% image pairs correctly.

In training our regression models, we tested out several

configurations, including two neural network architectures

(VGG-f and VGG-verydeep-16), various ways of extract-

ing features (standard, pyramid, horizontal flip), and finally,

two different regression methods, namely Kernel Ridge Re-

gression and Support Vector Regression. The least accurate

configuration (VGG-f + KRR) gives already better perfor-

mance compared to the baselines, reaching a rank correla-

tion coefficient of 0.345. Changing the regression method,

ν-SVR instead of KRR, we obtain a substantial increase to

0.440. The best approach is to combine the pyramid fea-

tures from both CNN architectures and to train the model

using ν-SVR. This combination outperforms by far all the

baselines and their combination, and it remarkably achieves

better performance than the image properties investigated

in Section 2.2, which require knowledge of the number ob-

jects, classes, bounding boxes (unavailable at test time).

The best approach based on linear regression reaches a

Kendall’s τ correlation coefficient of 0.472, which means

that it correctly ranks about 75% image pairs. We consider

the best regression model as our difficulty predictor and use

it in two applications in Section 4.

Figure 3 shows the correlation between the ground-truth

and the predicted difficulty scores. The cloud of points

forms a slanted Gaussian with the principal component ori-

ented almost diagonally, indicating a strong correlation be-

tween the predicted and ground-truth scores.

The examples presented in Figure 1 visually confirm the

performance of our model: images with small number of

objects and uniform backgrounds are ranked lower in diffi-

culty than cluttered images with many objects and complex

backgrounds. We explain the high accuracy of our model

through the powerful features that capture visual abstrac-
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Model Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Iteration 7 Iteration 8 Iteration 9

Standard MIL 26.5% 29.9% 31.8% 32.7% 33.3% 33.6% 33.9% 34.3% 34.4%

Easy-to-Hard MIL 31.1% 36.1% 36.8% 38.9% 40.1% 40.8% 42.1% 42.4% 42.8%

Table 5. CorLoc results for standard MIL versus Easy-to-Hard MIL.

tions at a higher level, close to the level of object class

recognition. Since we define difficulty based on human re-

sponse times for a visual search task that involves object

detection and recognition, the fact that the best features are

the higher level ones makes perfect sense. Analyzing the

image content at lower levels (edge strengths, objectness,

segmentation) is not good enough, showing that a higher

level of interpretation is needed in order to assess difficulty.

Machine versus human performance. Interestingly, when

our best difficulty predictor is evaluated on the same 56 im-

ages used for computing human agreement (0.562) in Sec-

tion 2.1, we obtain a Kendall’s τ correlation of 0.434. No-

tably, our best difficulty predictor correctly ranks about 72%

image pairs, which is just a little lower than the average hu-

man performance of 80% image pairs correctly ranked.

Generalization across classes. To demonstrate that our dif-

ficulty measure generalizes to classes not seen during train-

ing, we consider the setting where we train and test on dis-

joint PASCAL VOC 2012 classes. We train on 10 classes

(bicycle, bottle, car, chair, dining table, dog, horse, mo-

torbike, person, TV monitor) and test on the remaining 10

classes. We remove images containing both training and

testing classes. The classes are split in order to exclude

a minimal number of images (1601). In this setting, our

ν-SVR model based on CNN features obtains a Kendall’s

τ correlation of 0.427, compared to 0.270 for the ν-SVR

model that combines all the baselines. This result is rather

close to that obtained without separating classes (0.472).

Hence, this shows that our system generalizes well across

classes.

4. Applications

We demonstrate the usefulness of our difficulty measure

in two applications: weakly supervised object localization

and semi-supervised object classification.

4.1. Weakly supervised object localization

In a weakly supervised object localization (WSOL) sce-

nario, we are given a set of images known to contain in-

stances of a certain object class. In contrast to the standard

full supervision, the location of the objects is unknown. The

task is to localize the objects in the input images and to

learn a model that can detect new class instances in a test

image. Often, WSOL is addressed as a Multiple Instance

Learning (MIL) problem [5, 8, 10, 11, 37, 39, 40, 41]. In

the MIL paradigm, images are treated as bags of windows

(instances). A negative image contains only negative win-

dows, while a positive image contains at least one positive

window, mixed in with a majority of negative ones. The

goal is to find the true positives instances from which to

learn a window classifier for the object class. This typically

happens by iteratively alternating two steps: (i) select in-

stances in the positive images based on the current window

classifier; (ii) update the window classifier given the current

selection of positive instances and all windows from nega-

tive images.

Learning protocol. We employ our measure of difficulty as

an additional cue in the standard MIL scheme for WSOL.

We design a simple learning protocol that integrates the dif-

ficulty measure: rank input images by their estimated diffi-

culty and pass them in this order to the standard MIL. We

call this Easy-to-Hard MIL.

Evaluation protocol. We perform experiments on the train-

ing and validation sets of PASCAL VOC 2007 [14]. The

main goal of WSOL is to localize the object instances in the

training set. Following the standard evaluation protocol in

the WSOL literature, we quantify this with the Correct Lo-

calization (CorLoc) measure [8, 9, 37, 39, 47]. For a given

target class, a WSOL method outputs one window in each

positive training image. CorLoc is the percentage of images

where the returned window correctly localizes an object of

the target class according to the PASCAL VOC criterion

(intersection-over-union > 0.5 [15]).

Implementation details. We represent each image as a bag

of windows extracted using the state-of-the-art object pro-

posal method of [12]. This produces about 2, 000 windows

per image. Following [5, 18, 40, 41, 47], we describe win-

dows by the output of the second-last layer of the CNN

model [25], pre-trained for whole-image classification on

ILSVRC [34], using the Caffe implementation [23]. This

results in 4096-dimensional features. We employ linear

SVM classifiers that we train with a hard-mining procedure

at each iteration. For our Easy-to-Hard MIL we split the

images in k batches according to their difficulty. We use

the easiest images (easiest batch) first, in order to update

the window classifier, and progressively use more and more

difficult batches. We used k = 3 batches and 3 iterations per

batch, for a total of 9 iterations. The standard MIL baseline

instead uses all images in every iteration.

Results. In Table 5, we compare the performance of our

Easy-to-Hard MIL with the standard MIL, in terms of aver-

age CorLoc over all 20 classes. From the first iteration the

improvement is already noticeable: almost +5% CorLoc.

Easier images lead to a better initial class model as the MIL

has a higher chance to detect class specific patterns and lo-

calize objects correctly. The improvement increases as we
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add more batches: +7% after the second batch and +8.4%

after the third. This increase demonstrates that the order

in which images are processed is important in WSOL. Pro-

cessing easier images in the initial stages results in better

class models that in turn improve later stages. Remarkably,

our difficulty measure is trained on PASCAL VOC 2012,

while here, we used it to quantify difficulty on images from

PASCAL VOC 2007. As these two datasets have no images

in common, the results show that our measure can gener-

alize across different data sets. Finally, we point out that

better CorLoc performance results have been reported on

PASCAL VOC 2007 by other works using different WSOL

algorithms [8, 47].

4.2. Semi­supervised object classification

Here we use our difficulty measure in a second appli-

cation, namely in predicting whether an image contains a

certain object class (without localizing it).

Learning protocol. We consider three sets of samples: a set

L of labeled training samples, a set U of unlabeled training

samples and a set T of unlabeled test samples. Our learn-

ing procedure operates iteratively, by training at each itera-

tion a classifier on an enlarged training set L. We enlarge

the training set at each iteration by moving k samples from

U to L as follows: we select k samples from U based on

some heuristic, we label them (positive or negative) using

the current classifier and move them from U to L. We stop

the learning when L reaches a certain number of samples.

The final trained classifier is tested on the test set T .

Selection heuristics. To select the k samples from U at

each iteration, we use one of the following heuristics: (i)

select the samples randomly (RAND); (ii) select the eas-

iest k samples based on the ground-truth difficulty scores

(GTdifficulty); (iii) select the easiest k samples based on

the predicted difficulty scores (PRdifficulty); (iv) select the

most confident (farthest from the hyperplane) k examples

from U according to the current classifier confidence score

(HIconfidence); (v) select the least confident (closest to the

hyperplane) k examples from U according to the current

classifier (LOconfidence); (vi) select the least confident K

examples from U according to the current classifier, and

from these K, take the easiest k examples based on our pre-

dicted difficulty score (LOconfidence+PRdifficulty).

Evaluation protocol. We evaluate the classification perfor-

mance of several models on PASCAL VOC 2012. All mod-

els are linear SVM classifiers based on CNN features [38].

We use as test set T the official PASCAL validation set,

and we partition the PASCAL train set into L and U . We

stopped the learning process when L reached 3 times more

samples than the initial training set. We choose the initial

L to have 500 labeled images randomly selected and repeat

each run for 20 times to reduce the amount of variation in

the results. We report the mean Average Precision (mAP)

Figure 4. The mAP performance (y-axis) as the size of the training

set (x-axis) grows by adding automatically labeled samples using

different heuristics (compared to the BASIC baseline).

performance. We set k to 50 and K to 2000. In addition

to the 6 models given by the above heuristics, we include a

baseline model (BASIC) trained only on the initial set L. We

evaluate all models on the 7 classes (aeroplane, bird, car,

cat, chair, dog and person) from PASCAL VOC 2012 that

include more than 5% positive samples. If the number of

positive samples is not large enough, our semi-supervised

learning protocol has trouble capturing feature patterns of

the class.

Results. Figure 4 shows the evolution of mAP for the

proposed heuristics and the baseline. Randomly choosing

50 examples leads to a decrease in performance (86.1% ±
1.0%) compared to the BASIC method (87.8% ± 0.6%).

Adding the most confident examples from U (HIconfi-

dence) does not influence the results because the support

vectors remain essentially the same. Using the least con-

fident examples from U (LOconfidence) in order to change

the support vectors decreases performance (85.2% ± 1.1%).

The only useful information is provided by the difficulty

scores, either predicted (88.4% ± 0.6%) or ground-truth

(88.5% ± 0.7%), although it improves performance by

less than 1%. Interestingly, by taking the least confident

2, 000 examples from U , and the easiest 50 from these

examples based on our predicted difficult score (LOcon-

fidence+PRdifficulty), we can also improve performance

(88.1% ± 0.7%) by a little margin.

5. Future work

Curriculum learning [4] can help to optimize the training

of deep learning models. We believe that our difficulty mea-

sure can be used in a curriculum learning setting to optimize

the training of CNN models for various vision tasks.
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