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Abstract

We study the complexity of influencing elections through bribery: How computation-
ally complex is it for an external actor to determine whether by paying certain voters
to change their preferences a specified candidate can be made the election’s winner? We
study this problem for election systems as varied as scoring protocols and Dodgson voting,
and in a variety of settings regarding homogeneous-vs.-nonhomogeneous electorate briba-
bility, bounded-size-vs.-arbitrary-sized candidate sets, weighted-vs.-unweighted voters, and
succinct-vs.-nonsuccinct input specification. We obtain both polynomial-time bribery al-
gorithms and proofs of the intractability of bribery, and indeed our results show that the
complexity of bribery is extremely sensitive to the setting. For example, we find settings
in which bribery is NP-complete but manipulation (by voters) is in P, and we find set-
tings in which bribing weighted voters is NP-complete but bribing voters with individual
bribe thresholds is in P. For the broad class of elections (including plurality, Borda, k-
approval, and veto) known as scoring protocols, we prove a dichotomy result for bribery of
weighted voters: We find a simple-to-evaluate condition that classifies every case as either
NP-complete or in P.

1. Introduction

This paper studies the complexity of bribery in elections, that is, the complexity of com-
puting whether it is possible, by modifying the preferences of a given number of voters, to
make some preferred candidate a winner.

Election systems provide a framework for aggregating voters’ preferences—ideally
(though there is no truly ideal voting system, see Duggan & Schwartz, 2000; Gibbard,
1973; Satterthwaite, 1975) in a way that is satisfying, attractive, and natural. Societies use
elections to select their leaders, establish their laws, and decide their policies, but practical
applications of elections are not restricted to people and politics. Many parallel algorithms
start by electing leaders. Multiagent systems sometimes use voting for the purpose of
planning (Ephrati & Rosenschein, 1997). Web search engines can aggregate results using
methods based on elections (Dwork, Kumar, Naor, & Sivakumar, 2001). With such a wide
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range of applications, it is not surprising that elections vary tremendously. For example,
one might think at first that typical elections have many voters and very few candidates.
However, in fact, they may have a very wide range of voter-to-candidate proportions: In
typical presidential elections there are relatively few candidates but there may be millions
of voters. In the context of the web, one may consider web pages as voting on other pages
by linking to them, or may consider humans to be voting on pages at a site by the time
they spend on each. In such a setting we may have both a large number of voters and a
large number of candidates. On the other hand, Dwork et al. (2001) suggest designing a
meta search engine that treats other search engines as voters and web pages as candidates.
This yields very few voters but many candidates. To summarize this paragraph, elections
have a great variety of sizes in terms of numbers of candidates and numbers of voters. So,
surely, one should not simply say “Elections tend to be small, and so we can always solve
by brute-force the issues related to them.”

With the principles of democracy in mind, we also tend to think that each vote is equally
important. However, all the above scenarios make just as much sense in a setting in which
each voter has a different voting power. For example, U.S. presidential elections are in
some sense weighted (different states have different voting powers in the Electoral College);
shareholders in a company have votes weighted by the number of shares they own; and
search engines in the above example could be weighted by their quality. Weighted voting is
a natural choice in many other settings as well.

The importance of election systems naturally inspired questions regarding their resis-
tance to abuse, and several potential dangers were identified and studied. For example,
an election’s organizers can make attempts to control the outcome of the elections by pro-
cedural tricks such as adding or deleting candidates or encouraging/discouraging people
from voting. Classical social choice theory is concerned with the possibility or impossi-
bility of such procedural control. However, recently it was realized that even if control is
possible, it may still be difficult to find what actions are needed to effect control, e.g., be-
cause the computational problem is NP-complete. The complexity of controlling who wins
the election was studied first by Bartholdi, Tovey, and Trick (1992) and later on by many
other authors (Faliszewski, Hemaspaandra, Hemaspaandra, & Rothe, 2007; Hemaspaandra,
Hemaspaandra, & Rothe, 2007; Erdélyi, Nowak, & Rothe, 2008a, 2008b; Faliszewski, Hema-
spaandra, Hemaspaandra, & Rothe, 2008; Meir, Procaccia, Rosenschein, & Zohar, 2008).
Elections are endangered not only by the organizers but also by the voters (manipulation),
who might be tempted to vote strategically (that is, not according to their true preferences)
to obtain their preferred outcome. This is not desirable as it can skew the result of the
elections in a way that is arguably not in the best interest of the society. The Gibbard–
Satterthwaite/Duggan–Schwartz Theorems (Gibbard, 1973; Satterthwaite, 1975; Duggan &
Schwartz, 2000) show that essentially all election systems can be manipulated, and so it is
important to discover for which systemsmanipulation is computationally difficult to execute.
This line of research was started by Bartholdi, Tovey, and Trick (1989a) and was continued
by many researchers (as a few varied examples, we mention the work of Elkind & Lip-
maa, 2005b, 2005a; Conitzer, Sandholm, & Lang, 2007; Hemaspaandra & Hemaspaandra,
2007; Procaccia & Rosenschein, 2007; Brelsford, Faliszewski, Hemaspaandra, Schnoor, &
Schnoor, 2008; Faliszewski, Hemaspaandra, & Schnoor, 2008; and Zuckerman, Procaccia, &
Rosenschein, 2008; readers interested in manipulation will be able to reach a broader collec-
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tion of papers through the standard process of recursive bibliography search). Faliszewski,
Hemaspaandra, Hemaspaandra, and Rothe (2009b) provide a relatively nontechnical survey
of some complexity issues related to altering the outcomes of elections.

Surprisingly, nobody seems to have addressed the issue of (the complexity of) bribery,
i.e., attacks where the person interested in the success of a particular candidate picks a
group of voters and convinces them to vote as he or she says. Bribery seems strongly
motivated by both real-life and computational agent-based settings, and shares some of the
flavor of both manipulation (changing voters’ (reported) preferences) and control (deciding
which voters to influence). This paper (in this version and its conference precursor) initiates
the study of the complexity of bribery in elections.

There are many different settings in which bribery can be studied. In the simplest one
we are interested only in the least number of voters we need to bribe to make our favored
candidate win. A natural extension is to consider prices for each voter. In this setting,
each voter is willing to change his or her true preferences to anything we say, but only if
we can meet his or her price. In an even more complicated setting it is conceivable that
voters would have different prices depending on how we want to affect their vote (however,
it is not clear how to succinctly encode a voter’s price scheme). We mainly focus on the
previous two scenarios but we do point the reader to our results on approval voting and to
the work of Faliszewski (2008) for a discussion of bribery when prices are represented more
flexibly.

We classify election systems with respect to bribery by seeking in each case to either (a)
prove the complexity is low by giving a polynomial-time algorithm or (b) argue intractability
via proving the NP-completeness of discovering whether bribery can affect a given case. We
obtain a broad range of results showing that the complexity of bribery depends closely on
the setting. For example, for weighted plurality elections bribery is in P (Theorem 3.3) but
jumps to being NP-complete if voters have price tags (Theorem 3.2). As another example,
for approval voting the manipulation problem is easily seen to be in P, but in contrast we
prove that the bribery problem is NP-complete (Theorem 4.2). Yet we also prove that when
the bribery cost function is made more local, the complexity of approval voting falls back to
P (Theorem 4.4). But if more constraints are added, the problem goes up to NP-complete
again (Theorem 4.5). For scoring protocols we obtain complete characterizations of the
complexity of bribery for all possible voter types, i.e., with and without weights and with
and without price tags. In particular, via dichotomy theorems (Theorems 4.8 and 4.9) and
algorithmic constructions (Theorems 4.13 and 4.15) we provide for each voter type a simple
condition that partitions all scoring protocols into ones with NP-complete bribery problems
and ones with P bribery problems. We point the reader to Tables 1 and 2 (they appear near
the end of this paper) for a summary of some of the complexity results regarding bribery
in elections.

The paper is organized as follows. In Section 2 we describe the election systems and
bribery problems we are interested in and we cover some complexity background and pre-
liminaries. In Section 3, we provide a detailed study of plurality elections. After that
we study connections between manipulation and bribery, and obtain dichotomy results for
bribery under scoring protocols in Section 4. In Section 5, we study the case of succinctly
represented elections with a fixed number of candidates.
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2. Preliminaries

This section introduces the notions and notations that we use in the paper.

2.1 Election Systems

We describe elections by providing a set C = {c1, . . . , cm} of candidates, a set V of n voters
specified by their preferences, and a rule for selecting winners. A voter v’s preferences are
represented as a list ci1 > ci2 > . . . > cim , {i1, i2, . . . , im} = {1, 2, . . . ,m}, where ci1 is the
most preferred candidate and cim is the most despised one. We assume that preferences
are transitive, complete (for every two candidates each voter knows which one he or she
prefers), and strict (no ties). Sometimes authors also allow ties in the preference lists, but
ties do not have a clear interpretation for some election rules and so for simplicity and
uniformity we do not consider them.

Given a list of votes (i.e., of voters’ preference lists), an election rule determines which
candidates are winners of the elections. We now briefly describe the election systems that
we analyze in this paper, all of which are standard in the literature on social choice theory.1

Winners of plurality elections are the candidate(s) who are the top choice of the largest
number of voters (of course, these will be different voters for different winners). In approval
voting each voter selects candidates he approves of; the candidate(s) with themost approvals
win. Unlike all the other systems discussed in this paper, under approval voting the input
is not a preference order but rather is a bit-vector of approvals/disapprovals. A scoring
protocol for m candidates is described by a vector α = (α1, . . . , αm) of nonnegative integers
such that α1 ≥ α2 . . . ≥ αm. (We do not require α1 > αm, as we wish to classify the
broadest class of cases possible, including the usually easy boundary case when all αi’s
are equal.) Each time a candidate appears in the i’th position of a voter’s preference list,
that candidate gets αi points; the candidate(s) who receive the most points win. Well-
known examples of scoring protocols include the Borda count, plurality, k-approval, and
veto voting systems, where for m-candidate elections Borda uses α = (m − 1,m − 2, . . . ,

0), plurality uses α = (1, 0, . . . , 0, 0), k-approval uses α = (
k︷ ︸︸ ︷

1, . . . , 1,
m−k︷ ︸︸ ︷

0, . . . , 0), and veto uses
α = (1, 1, . . . , 1, 0). Note that by selecting a scoring protocol we automatically select the
number of candidates we have within elections. Though some scoring protocols can easily
and naturally be generalized to arbitrary candidate sets, formally each individual scoring
protocol deals with only a fixed number of candidates. Thus all our results regarding scoring
protocols automatically talk about a fixed number of candidates.

A Condorcet winner is a candidate who (strictly) beats all other candidates in pairwise
contests, that is, a Condorcet winner beats everyone else in pairwise plurality elections.
Clearly, there can be at most one Condorcet winner, but sometimes there are none (as is
the case in the Condorcet Paradox, Condorcet, 1785). There are many voting systems that

1. In the social choice literature, often voting systems are assumed to have at least one winner, or exactly

one winner, but at least in terms of the basic definition of a voting system, we do not require such a

restriction, since one can imagine wanting to study elections in which—perhaps due to tie effects or

symmetry effects or perhaps even due to having zero candidates—there is not always exactly one winner.

Indeed, in practice, in such elections as those on Hall of Fame induction worthiness or on who should be

hired at a given academic department, it is quite possible that a real-world election system might give

the answer “No one this year.”
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choose the Condorcet winner if one exists and use some compatible rule otherwise. One
such system—developed in the 1800s—is that of Charles Lutwidge Dodgson (a.k.a. Lewis
Carroll). In Dodgson’s system a winner is the person(s) who can become a Condorcet
winner by the smallest number of switches in voters’ preference lists. (A switch changes the
order of two adjacent candidates on a list.2) Thus, if a Condorcet winner exists, he or she
is also the unique winner of Dodgson’s election. See the work of Dodgson (1876)—and also
the work of Bartholdi, Tovey, and Trick (1989b)—for details regarding Dodgson’s voting
rule, under which it is now known that winner testing is complete for parallel access to NP
(Hemaspaandra, Hemaspaandra, & Rothe, 1997). A different election rule was introduced
more recently by Young (1977). In Young elections a winner is a person who can become
a Condorcet winner by removing the smallest number of voters. By way of contrast, note
that plurality rule has the property that it elects those candidates who, after removing
the least number of votes, are preferred by everyone. The work of Rothe, Spakowski, and
Vogel (2003), see also the expository presentation of Rothe (2005), proves that the winner
problem in Young elections is extremely difficult—complete for parallel access to NP.

Another election rule is that of Kemeny (1959), see also the work of Kemeny and Snell
(1960). A Kemeny consensus is a preference order thatmaximizes the number of agreements
with voters’ preference lists, where for each voter and for each two candidates a and b we
say that a preference order agrees with a voter’s preference list if both place a below b or
both place b below a. Naturally, many different Kemeny consensuses may be possible. A
candidate is a winner in a Kemeny election if he or she is the most preferred candidate
in some Kemeny consensus of that election. (The original work of Kemeny allowed voters
to have nonstrict preference orders, but like, e.g., Saari & Merlin, 2000, we use Kemeny
elections to refer to just the case where input orderings are strict.) Note that the winner
testing problem for Kemeny elections is known to be complete for parallel access to NP,
and this is known to hold both in the case when input preference orders must be strict, and
in the case when nonstrict input preference orders are allowed (Hemaspaandra, Spakowski,
& Vogel, 2005, and see in particular the comments in the footnote on page 383 of that
paper). The Kemeny rule might at first sound as if it were the same as the Dodgson rule,
but in fact they are very different. Dodgson’s elections are based on making the minimum
number of local changes, but Kemeny’s elections hinge on the overall closeness of the voters’
preference orders to certain “consensus” orderings—which themselves possibly may not be
the preferences of any of the voters.

2.2 Bribery Problems

Informally, the bribery problem is the following: Given the description of an election (i.e.,
the set of candidates, the preferences of the voters, etc.), a number k, and some distinguished
candidate p, can we make p a winner by changing the preference lists of at most k voters.
More formally, for an election rule (i.e., election system) E we define the E-bribery problem
to be the following. We assume a standard encoding of mathematical objects such as finite

2. We mention, since this can be a source of confusion, that in his seminal paper Dodgson did not explicitly

state that switches were limited to adjacent candidates. However, the mathematics of his examples is

consistent with only that reading, and so it is clear that that is his intended meaning.
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sets and lists (e.g., see Garey & Johnson, 1979). Also, all our numbers will be nonnegative
integers and, unless otherwise specified, will be represented in binary.

Name: E-bribery.

Given: A set C of candidates, a collection V of voters specified via their preference lists.
A distinguished candidate p ∈ C and a nonnegative integer k.

Question: Is it possible to make p a winner of the E election by changing the preference
lists of at most k voters?

We will speak both of the unweighted case (all voters are equal; in this paper that always
holds unless “weighted” is in the problem name) and the weighted case (voters are weighted).
Essentially all our results apply both to the case in which we want to make the preferred
candidate a winner and to the case in which we want to make the preferred candidate
the unique winner, and so we have not explicitly put a nonunique/unique setting into the
problem names. For clarity and specificity, we focus on the nonunique case in our discussions
and proofs, and all our problem statements and theorems by default refer to the nonunique
case. However, in most settings the differences between the proofs for the unique case and
the nonunique case are very minor and amount to a couple of small tweaks, e.g., changing
weak inequalities to strong ones, adding a special voter who already prefers p, etc., and we
often at the end of a proof briefly note that the theorem also holds for the unique case.

In the E-$bribery family of problems we assume that each voter has a price for changing
his or her preference list. In such a case we ask not whether we can bribe at most k people,
but whether we can make p a winner by spending at most k dollars. For example, the
plurality-weighted-$bribery problem can be described as follows.

Name: plurality-weighted-$bribery.

Given: A set C of candidates. A collection V of voters specified via their preference
lists (prefs1, . . . , prefsm), their (nonnegative, integer) weights (w1, . . . , wm), and their
(nonnegative, integer) prices (p1, . . . , pm). A distinguished candidate p ∈ C and a
nonnegative integer k (which we will sometimes refer to as the budget).

Question: Is there a set B ⊆ {1, . . . ,m} such that
∑
i∈B pi ≤ k and there is a way to bribe

the voters from B in such a way that p becomes a winner?

Regarding the fact that in these models voters are assumed to vote as the bribes dictate,
we stress that by using the term bribery we do not intend to necessarily imply any moral
failure on the part of bribe recipients or bribe givers: Bribes are simply payments. Al-
though in human, political elections, such payments are typically considered morally wrong
(perhaps because each voter is supposed to be thinking of the overall social welfare), in
electronic/web/multiagent systems settings, such morality issues often do not apply. A
voter may simply be an electronic entity trying to maximize its utility, and the bribe price
of that entity may crisply reflect that fact.

Throughout this paper we use the term bribery both in its regular sense and in the
nonstandard sense of “a collection of bribes.” We will when using the latter sense often
speak of “a bribery,” by which we thus mean a collection of bribes. So, for example, “if
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Alice can end up a winner by a bribery that does not ask anyone to vote for Alice,” we mean
“if there is a pattern/scheme of bribes (e.g., give two dollars to Bob to make the change
FOO in his vote and give five dollars to Carol to make change BAR in her vote) none of
which asks anyone to vote for Alice yet that make Alice the overall winner.”

As we will be dealing with a variety of settings, we need some common format to speak
of the instances of bribery problems. We adopt the following convention (and we view the
already specified problems to be implicitly recast into this form): An instance of a bribery
problem is a 4-tuple E = (C, V, p, k), where

1. C is a list of candidates,

2. V is a list of voters (see below),

3. p ∈ C is the candidate that we want to make a winner (for problems about making a
candidate a unique winner, the “a winner” here is replaced with “a unique winner”),
and

4. k is the bribe limit (either the amount of money we can spend on bribing or the
maximum number of voters we can bribe, depending on the flavor of the bribery
problem).

The list of voters contains tuples describing the votes that are cast. Each voter is a 3-tuple
(prefs, π, ω), where

1. prefs is the preference list of the voter (or, in the case of approval voting, his or her
preference vector),

2. π is the price for changing this voter’s preference list, and

3. ω is the weight of the voter.

Each tuple in V describes precisely one voter. We drop the price and/or the weight field
if in the given election the voters have no prices/weights. (However, we do assume that
dropped prices and weights have unit values, so that we can refer to them. Some of our
proofs handle two cases, one with priced voters and one with weighted voters, at the same
time and need to be able to uniformly refer to both weights and prices.) If v ∈ V is a voter
then we refer to his or her price and weight as π(v) and ω(v). In the same manner, if U ⊆ V
then

π(U) =
∑
v∈U

π(v) and

ω(U) =
∑
v∈U

ω(v).

We will often refer to ω(U) either as “the vote weight of U” or as “the total weight of U .”
Note that throughout this paper V , though input as a list, typically functions as a mul-

tiset, and so summations such as those above do have an additive term for each appropriate
occurrence in the multiset—the multiplicities carry into such sums, and also into set-like
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operations, e.g., {v ∈ V | . . .} will itself be a multiset, with multiplicities appropriately
preserved. And we when dealing with V use set/subset to mean multiset/submultiset.

In Section 5 we deal with succinct representations. When we are dealing with succinct
representations, V will consist of 4-tuples (prefs, π, ω,m), where m is the multiplicity of the
vote, that is, a number of voters of identical preferences, price, and weight that this entry
in V is standing for. m(v) will denote the m value of a v ∈ V . Note that here single entry
in V often represents multiple voters.

This notation will help us speak of bribery problems in a uniform fashion. Note that in
addition to specifying E = (C, V, p, k) we always need to explicitly state what election rule
we are using.

Positive results regardingmore demanding bribery problems imply positive results about
weaker ones. For example, if weighted bribery is in P for some election system E then clearly
we have that unweighted bribery is also easy for E . Conversely, hardness results regarding
simpler models imply hardness results about the more involved ones. We often mention
such “implied” results separately if they are interesting (e.g., if an algorithm for a simpler
case provides insights for understanding the more complicated case), but we omit them if
they are not enlightening.

2.3 Reductions and NP-completeness

Before we proceed with the study of bribery, let us briefly review some notions of com-
putational complexity and some standard NP-complete problems that we will use in our
proofs.

As usual, ‖S‖ denotes the cardinality of the set S. We fix our alphabet to be Σ = {0, 1}
and we assume standard encodings of mathematical entities involved in our problems. In
particular, all integers are represented in binary unless specified otherwise. (For example,
see Garey & Johnson, 1979, for a discussion of these issues.) By NP-completeness we as is
standard mean completeness with respect to many-one (polynomial-time) reductions.

Definition 2.1 A ≤pm B (A many-one reduces to B) if there is a polynomial-time com-
putable function f such that

(∀x ∈ Σ∗)[x ∈ A ⇐⇒ f(x) ∈ B].

In one of our results relating manipulation and bribery we also need disjunctive truth-table
reductions.

Definition 2.2 We say that A ≤pdtt B (A disjunctively truth-table reduces to B) if there is
a polynomial-time procedure that on input x outputs a list of strings y1, . . . , ym such that
x ∈ A if and only if at least one of yi, 1 ≤ i ≤ m, is in B.

Both of the above definitions are standard and commonly used within the field of com-
plexity theory. Detailed treatment of various reduction types including these can be found,
e.g., in the work of Ladner, Lynch, and Selman (1975).

A standard way of showing that a problem is NP-complete is by proving it is in NP and
reducing some known NP-complete problem to it. The former is easy for most of the bribery
problems that we deal with: If we can compute the winners of the elections in polynomial
time, then we can just nondeterministically guess a bribe and test whether it yields the
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desired outcome. For the latter issue we use reductions from either the partition problem
or the exact cover by 3-sets problem (e.g., see Garey & Johnson, 1979; Papadimitriou, 1994,
for general background on these problems and on proving NP-completeness).

The problem Partition asks whether it is possible to split a sequence of integers into two
subsequences that have equal sums.

Name: Partition.

Given: A sequence s1, . . . , sn of nonnegative integers satisfying
∑n
i=1 si ≡ 0 (mod 2).3

Question: Is there a set A ⊆ {1, . . . , n} such that
∑
i∈A si =

∑
i∈{1,...,n}−A si?

To prove our main dichotomy result in Section 4 we need a more restrictive version
of the partition problem. Let s1, . . . , sn be a sequence of nonnegative integers such that∑n
i=1 si ≡ 0 (mod 2). In Partition′ we assume that for each i, 1 ≤ i ≤ n, it holds that

si ≥ 1
2 + n

n∑
i=1

si (1)

(reminder: footnote 3 of course applies regarding the handling of both
∑n
i=1 si ≡ 0 (mod 2)

and (∀i ∈ {1, . . . , n})[si ≥ 1
2+n

∑n
i=1 si]), and we ask whether there exists an A ⊆ {1, . . . , n}

such that
∑
i∈A si = 1

2

∑n
i=1 si. For the sake of completeness we include a proof that

Partition′ remains NP-complete.

Lemma 2.3 Partition′ is NP-complete.

Proof. Clearly, Partition′ is in NP. We will show, by a reduction from the standard
partition problem, that Partition′ is also NP-hard.

Let q = s1, . . . , sn be a sequence of nonnegative integers and let 2S =
∑n
i=1 si. First, we

construct a sequence q′ = s′1, o′1, . . . , s′n, o′n of 2n nonnegative integers that has the following
two properties. (1) q′ can be partitioned if and only if q can be. (2) Each partition of q′

splits q′ into two sequences of the same cardinality. We define s′i and o′i, for 1 ≤ i ≤ n, as
follows.

s′i = 3i−1 + 3nsi.
o′i = 3i−1.

Any partition of s′1, o′1, . . . , s′n, o′n splits q′ into two subsequences that each sum up to S′,
where S′ is defined as

S′ =
1
2

n∑
i=1

(s′i + o′i) = 3nS +
n∑
i=1

3i−1 = 3nS +
3n − 1

2
.

3. If for a given input it holds that
Pn

i=1 si �≡ 0 (mod 2), we consider the input to be “syntactically” illegal

and thus consider that input not to be a member of Partition. For the rest of this paper we assume, when

reducing from Partition to some other problem (Q), that if some “syntactic” constraint is violated by

the input, then our reduction will not do whatever the reduction we give states, but rather will instantly

map to a fixed element of Q. We (often tacitly) make the same assumption—that “syntactically” (by

which we mean both true conditions of syntax and other polynomial-time constraints on a problem via

the “Given” assumes apply to its inputs) illegal inputs are not handled via the reduction’s operation on

the input’s components, but rather are mapped to a fixed element of the complement of the set being

reduced to.
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Clearly, any partition of s′1, o′1, . . . , s′n, o′n splits q′ into two halves such that if s′i belongs to
one then o′i belongs to the other. It is also immediate that q can be partitioned if and only
if q′ can.

To satisfy condition (1) we add a constant to each s′i and o′i. Define q̂ to be a sequence
of numbers ŝ1, ô1, . . . , ŝn, ôn such that for each i, 1 ≤ i ≤ n,

ŝi = s′i + S′ and
ôi = o′i + S′.

Clearly, any partition of q′ still is a partition of q̂, since any partition of q′ splits q′ into
two subsequences of the same cardinality. The converse holds because any partition of q̂
has to split it into subsequences that each sum up to Ŝ = S′+nS′ and this is only possible
if each subsequence contains exactly n elements. (A sum of more than n elements would
be greater than (n + 1)S′ and that would be more than the other subsequence could sum
up to.) It remains to show that (1) holds for q̂. This is the case because each ŝi and ôi is
greater than S′ and S′ = 2

2+2n Ŝ. (Note that sequence q̂ has 2n elements.) Since q̂ can be
computed in polynomial time, the proof is completed. ❑

The exact cover by 3-sets problem (X3C) asks about a way to pick, from a given list,
three-element subsets of some set B so as to cover the whole set without ever introducing
the same element more than once.

Name: X3C.

Given: A set B = {b1, . . . , b3t} and a family of three-element subsets of B, S =
{S1, . . . , Sm}.

Question: Is there a set A ⊆ {1, . . . ,m} such that ‖A‖ = t and
⋃
i∈A Si = B?

These two problems—Partition and X3C—have been useful tools for proving NP-
completeness of control and manipulation problems, and in this paper we will see that
they are very powerful when used for bribery problems. Specifically, Partition will be very
useful when we are dealing with weighted elections and X3C will be particularly useful in
the unweighted cases.

3. Plurality

In this section we determine the complexity of bribery for plurality-rule elections. Plurality
rule is perhaps the most popular election system in practical use; from the point of view
of democracy it is very natural and appealing to make a decision that many people prefer.
However, there are also downsides to plurality rule. Plurality rule may slight the voices
of minorities and does not take into account full information about voters’ preferences.
In particular, if there is some candidate that all voters rank as second best and no other
candidate is the top choice of many rankings, it might seem natural to elect this “second
best” person. However, plurality is blind to this. In fact, we will typically view a vote
in plurality-rule elections as a vote for a particular candidate, namely, the most preferred
candidate according to the preference order that is the actual vote; for the purposes of
this paper that is the only thing that matters about the voter, though we mention that in
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other contexts, such as “control” problems allowing deletion of candidates (Bartholdi et al.,
1992; Hemaspaandra et al., 2007; Hemaspaandra, Hemaspaandra, & Rothe, 2009), the full
ordering might be important. The simplicity and widespread use of plurality-rule elections
make the results of this section of particular relevance.

We in the previous section somewhat carelessly mentioned plurality as a scoring rule
with the vector α = (1, 0, . . . , 0). Of course, formally speaking, what really holds is that
for each number of candidates k there is a notion of a plurality-of-k-candidates scoring-rule
election, which has the vector that is a 1 followed by k−1 0’s. But one can also consider the
system that takes as input any number of candidates and then applies the plurality scoring
rule (for that input’s number of candidates). This is what most people think of when
speaking of “plurality elections,” and throughout this section, our results about plurality
are of course about not just fixed numbers of candidates, but are about this case.

The simplest bribery scenario is when the voters are unweighted and each voter is as
expensive to bribe as each other voter. Not surprisingly, bribery is easy in such a setting.

Theorem 3.1 plurality-bribery is in P.

Proof. The proof of this theorem is simple, but we describe it in detail as a simple
introduction to our proofs regarding bribery. We will give a polynomial-time algorithm
that given an instance of bribery E = (C, V, p, k) decides whether it is possible to make p a
winner by bribing at most k voters.

Our algorithm works in the following way. Initially we have bribed zero voters. We
check whether p currently is a winner. If so, we accept. Otherwise, until doing so will
exceed the bribe limit, we pick any current winner, bribe one of his or her voters (recall, as
mentioned earlier in this section, that by “his or her [i.e., the selected winner’s] voters” we
mean those voters having that particular selected winner as their most preferred candidate)
to vote for p, and jump back to testing whether p is a winner. If we reach the bribe limit
(i.e., in the above we have the “until doing so will exceed the bribe limit” break us out of
the loop) without making p a winner then we reject.

If this algorithm accepts then obviously bribery is possible. We now show that if it
is possible to ensure that p is a winner via at most k bribes then our algorithm accepts.
Our proof follows by induction on k. For the base case it is enough to note that the
algorithm works correctly for k = 0. For the induction step, let us assume that on each
input E ′ = (C ′, V ′, p, k′) such that k′ < k, where k is some positive integer, the algorithm
accepts exactly if it is possible to ensure that p is a winner via at most k′ bribes. Now, let
E = (C, V, p, k) be an arbitrary input such that p can become a winner via at most k bribes.
We will show that our algorithm accepts this input. We consider two cases. If there is a
bribery of up to k voters that ensures p’s victory but that never involves any of the voters of
any of the current winners of election (C, V ) then it is clear that our algorithm accepts. (Let
Vp ⊆ V be the set of all voters who do not vote for p. In this case any bribery ofmin(k, ||Vp||)
voters ensures that p becomes a winner.) Thus, let us assume that the only briberies that
make p a winner involve bribing at least one voter of one of the current winners. Let c1
be one of the winners of (C, V ) (note that c1 �= p) and let E′′ = (C, V ′′, p, k − 1) be an
instance of plurality-bribery obtained from E by bribing one of c1’s voters. Clearly, after
executing a single iteration of the loop, our algorithm transforms its input into one that
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is isomorphic to E′′. By our assumptions and by the inductive hypothesis the algorithm
accepts its transformed input.

The algorithm works in polynomial time as at most ‖V ‖ bribes suffice to make p a
winner and each of the iterations can be executed in polynomial time. The theorem is
proven. We mention that the same approach clearly also works for the unique case. ❑

The ease of obtaining the above algorithm might fool us into thinking that bribery
within the plurality system is always easy. However, that is not the case.

Theorem 3.2 plurality-weighted-$bribery is NP-complete, even for just two candidates.

Proof. Recall that the nonunique version of the problem is our default case, and so we
are addressing that here.

plurality-weighted-$bribery is in NP: We can guess the voters to bribe and test whether
such a bribe both makes our designated candidate a winner and does not exceed the budget.
It remains to show that the problem is NP-hard.

To show NP-hardness, we will construct a reduction from Partition. Let s1, . . . , sn be
a sequence of nonnegative integers and let

∑n
i=1 si = 2S. Our goal is to design an election

E = (C, V, p, k) in which p can become a winner by bribery of cost at most k if and only
if there is a set A ⊆ {1, . . . , n} such that

∑
i∈A si = S. We define the election to have two

candidates, p and c, and exactly n voters, v1, . . . , vn, with each vi having both weight and
price equal to si. All voters prefer c to p. The budget k is set to S. We claim that p can
become a winner if and only s1, . . . , sn can be partitioned into two equal-sum groups.

Let us assume that there is a set A ⊆ {1, . . . , n} such that
∑
i∈A si = S. This means

that for each i ∈ A we can bribe vi to vote for p and get for p a total vote weight (in the
natural sense, as was defined in Section 2) of S. This makes p a winner. On the other hand,
assume that p can be made a winner by bribes of total cost at most k = S. The weight of
each voter is equal to his or her price and so p can obtain at most vote weight k = S. In
fact, p must obtain exactly vote weight S, since from our setup it is clear that if p gains
strictly less than vote weight S then c will be the unique winner. This means that there
is a way of picking some voters whose weights sum up to exactly S, and thus the sequence
s1, . . . , sn can be partitioned into two subsequences that each sum up to S.

Our reduction can be carried out in polynomial time and so the proof is complete. This
of course regards our default case, namely the nonunique case. The unique case also follows,
namely, by observing that it is enough to add one voter with weight 1 and price 0 who votes
for p. Then the same arguments as above show that this is a correct reduction. ❑

The above theorems show that bribery is easy in the basic case but becomes intractable
if we allow voters with prices and weights. It is natural to ask which of the additional
features (prices? weights?) is responsible for making the problem difficult. It turns out that
neither of them is the sole reason and that only their combination yields enough power to
make the problem NP-complete.4

Theorem 3.3 Both plurality-$bribery and plurality-weighted-bribery are in P.

4. However, it is interesting to compare this to Theorems 4.8, 4.9, 4.13, and 4.15, which suggest that high

weights are often the feature responsible for making the problem NP-complete.

496



How Hard Is Bribery in Elections?

Theorem 3.3 is a special case of a result that we prove later (namely, of Theorem 3.8) and
thus, instead of giving the proof, we provide a very informal discussion of polynomial-time
algorithms for both plurality-$bribery and plurality-weighted-bribery.

A direct greedy algorithm, like the one underpinning Theorem 3.1, fails to prove
Theorem 3.3: The problem is that one has to judge whether it is better to bribe voters
who currently prefer one of the winners or to bribe voters with the highest weights (or
lowest prices). (To see that the former may sometime make sense, consider an election in
which a has two weight-4 voters, b has one weight-5 voter, and p has one weight-2 voter.
Bribing one weight-4 voter is a winning bribery but bribing the one weight-5 voter is not.)

We approach Theorem 3.3’s proof as follows. Assume that p will have r votes after the
bribery (or in the weighted case, vote weight r), where r is some number to be specified
later. If this is to make p a winner, we need to make sure that everyone else gets at most r
votes. Thus we carefully choose enough cheapest (heaviest) voters of candidates that defeat
p so that after bribing them to vote for p each candidate other than p has at most r votes.
Then we simply have to make sure that p gets at least r votes by bribing the cheapest (the
heaviest) of the remaining voters. If during this process p ever becomes a winner without
exceeding the budget (the bribe limit) then we know that bribery is possible.

How do we pick the value of r? In the case of plurality-$bribery, we can simply run
the above procedure for all possible values of r, i.e., 0 ≤ r ≤ ‖V ‖, and accept exactly if it
succeeds for at least one of them. For plurality-weighted-bribery a slightly trickier approach
works. Namely, it is enough to try all values r that can be obtained as a vote weight of
some candidate (other than p) via bribing some number of his or her heaviest voters. There
are only polynomially many such values and so the whole algorithm works in polynomial
time. The intuition for using such values r is the following: (a) When bribing voters of some
candidate one can always limit oneself to the heaviest ones, and (b) after each successful
bribery there is a value r′ such that p’s vote weight is at least r′, each other candidate’s
vote weight is at most r′, and there is some candidate c �= p such that c’s vote weight is
exactly r′. Our algorithm, in essence, performs an exhaustive search (within our heavily
limited search space) for such a value r′.

Note that all of the above algorithms assume that we bribe people to vote for p. This
is a reasonable method of bribing if one wants p to become a winner, but it also has
potential real-world downsides: The more people we bribe, the more likely it may be that
the malicious attempts will be detected and will work against p. To minimize the chances
of that happening we might instead bribe voters to vote not for p but for some other
candidate(s). This way p does not get extra votes but might be able to take away enough
from the most popular candidates to become a winner.

Definition 3.4 plurality-weighted-negative-bribery is defined to be the same as plurality-
weighted-bribery, except with the restriction that it is illegal to bribe people to vote for the
designated candidate.

The problem plurality-negative-$bribery is defined analogously. We call this setting
negative-bribery because the motivation of p is not to get votes for him- or herself, but to
take them away from others. Unlike Theorem 3.3, this version of the problem draws a very
sharp line between the complexity of bribing weighted and priced voters.
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Theorem 3.5 plurality-weighted-negative-bribery is NP-complete, but plurality-negative-
$bribery is in P.

Proof. We first give a polynomial-time algorithm for plurality-negative-$bribery. Let
E = (C, V, p, k) be the bribery instance we want to solve. We need to make p a winner by
taking votes away from popular candidates and distributing them among the less popular
ones. (The previous sentence said “a winner” since we as usual are addressing the nonunique
case. However, it is clear that a similar approach works for the unique case, i.e., the case
in which the goal is to make p “the winner.”)

We partition the set of all candidates into three sets: candidates that defeat p, from
whom votes need to be taken away, candidates that are defeated by p, to whom we can
give extra votes, and candidates that have the same score as p. In the unweighted case,
by scoreE(c) we mean the number of voters within E who most prefer candidate c. In the
weighted case, scoreE(c) means the total vote weight of voters within E who most prefer c.

Cabove = {c | c ∈ C, scoreE(c) > scoreE(p)}.
Cbelow = {c | c ∈ C, scoreE(c) < scoreE(p)}.
Cequal = {c | c ∈ C, scoreE(c) = scoreE(p)}.

Since all voters have the same weight (weight 1) in the current case, plurality-negative-
$bribery, it is not hard to see that if there is some successful negative bribery then there
will be some successful negative bribery that will bribe no voters into or out of Cequal and
that also won’t bribe voters to move within their own “group,” e.g., bribing a voter to shift
from one Cbelow candidate to another. (However, for the weights case, such “crazy” bribes
are sometimes needed; see footnote 5.) To make sure that p becomes a winner, for each
candidate c ∈ Cabove we need to bribe as many of c’s voters as are needed to reduce his or
her score to at most scoreE(p). Thus, altogether, we need to bribe

∑
c∈Cabove(scoreE(c) −

scoreE(p)) voters. The number of votes that a candidate c ∈ Cbelow can accept without
preventing p from winning is

∑
c∈Cbelow(scoreE(p)− scoreE(c)). Thus, it is not hard to see

that a negative bribery is possible exactly if the following inequality holds.∑
c∈Cabove

(scoreE(c)− scoreE(p)) ≤
∑

c∈Cbelow
(scoreE(p)− scoreE(c)). (2)

If inequality (2) does not hold then we immediately reject. Otherwise, it remains to check
whether the cost of our negative bribery is within the budget: For every candidate c ∈ Cabove

let bc be the cost of bribing c’s scoreE(c) − scoreE(p) cheapest voters. If it holds that∑
c∈Cabove bc ≤ k then we accept, as the negative bribery is possible. Otherwise we reject.
Clearly, our algorithm works in polynomial time. The correctness follows from the fact

that we need to make all candidates in Cabove have score at most scoreE(p) and for each
c ∈ Cabove bc is the lowest possible cost of achieving that. Equation (2) guarantees that the
votes taken from candidates in Cabove can be distributed among those in Cbelow without
preventing p from winning.

Now let us turn to showing the NP-hardness of plurality-weighted-negative-bribery. We
must be careful here. In plurality-negative-$bribery, we argued that one could without
loss of generality ignore Cequal, i.e., one never needs to bribe voters into or out of Cequal,
and that we can ignore bribing voters from one candidate in a group (Cbelow, Cequal, and
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Cabove are our three groups) to another candidate within the same group. It is not too
hard to see that that claim is false for the weights case, essentially due to the fact that,
for example, members of Cequal or Cbelow can be useful in “making change”—that is, for
splitting large weights into small ones.5 However, in the image of the reduction we are
about to construct, Cequal will contain only p, bribing votes to change to p is forbidden by
our “negative setting,” and bribing votes to change away from p clearly is never required
for success; so we have a setting in which Cequal in fact will not play any interesting role.
And similarly, ‖Cabove‖ = ‖Cbelow‖ = 1 in the image of our reduction, so we will not have
to worry about any within-a-group bribes.

Now, we start our construction to show the NP-hardness of plurality-weighted-negative-
bribery. In particular, we will construct a reduction from Partition. Let s1, . . . , sn
be a sequence of nonnegative integers. We will design an instance of the plurality-
weighted-negative-bribery such that bribery is possible if and only if s1, . . . , sn can be split
into two parts that sum up to the same value. Let S be such that

∑n
i=1 si = 2S. Our

elections has three candidates: p, c1, and c2, and we have n + 1 weighted voters:

1. v0 with weight S, whose preferences are p > c1 > c2, and

2. v1, . . . , vn with weights s1, . . . , sn, each with preferences c1 > c2 > p.

The goal of the briber is to ensure p’s victory via bribing up to k = n+ 1 voters (i.e., up to
all the voters). Note that the only reasonable bribes are the ones that transfer votes of vi,
1 ≤ i ≤ n, from c1 to c2. (Strictly speaking, v0 could legally be bribed to vote for c1 or c2,
but that can be safely ignored.) If there is a set A ⊆ {1, . . . , n} such that∑

i∈A
si = S, (3)

then we could bribe all voters vi, i ∈ A, to vote for c2 and all candidates would be winners.
On the other hand, if p can end up a winner by a bribery that does not ask anyone to vote
for p, then there is a set A that satisfies Equation (3): p is a winner of our election if and
only if each of c1 and c2 have vote weight exactly S. However, at the beginning c1 holds 2S
vote weight and so a successful bribery needs to transfer exactly S vote weight from c1 to
c2. This is only possible if (3) holds for some A.

To finish the proof, we observe that this reduction can be computed in polynomial
time. ❑

Theorems 3.2 and 3.3 state that plurality-weighted-$bribery is NP-complete but any
attempt to make it simpler immediately pushes it back to the realm of P. In fact, the

5. To see this, consider a setting where candidate Big is the most preferred candidate of one weight-10 voter

and one weight-2 voter, candidate p is the most preferred candidate of one weight-10 voter, candidate

MakeChange is the most preferred candidate of ten weight-1 voters, candidate SmallOne is the most

preferred candidate of one weight-9 voter, candidate SmallTwo is the most preferred candidate of one

weight-9 voter, and the limit on the number of bribes is 3. Cabove = {Big}, Cequal = {p,MakeChange},
and Cbelow = {SmallOne,SmallTwo}. Note that there is no successful negative bribery that leaves

MakeChange uninvolved. However, by moving from Big to MakeChange the weight-2 voter, and then by

moving one weight-1 voter to each of SmallOne and SmallTwo from MakeChange, we have a successful

negative bribery. This example uses Cequal to make change, but one can construct similar examples that

require one to bribe votes from one member of Cbelow to another member of Cbelow.
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situation is even more dramatic. In the NP-complete problem plurality-weighted-$bribery
we assume that both prices and weights are encoded in binary. However, if either the prices
or the weights are encoded in unary, then the problem, again, becomes easy. Before we
proceed with a formal proof of this fact, let us discuss the issue in an informal manner.
Why does the unary encoding of either one of the weights or the prices matter? The reason
is that, for example, if the weights are encoded in unary then there trivially are only linearly
many (with respect to the size of the input problem) different total weights of subsets of
voters. Together with some additional tricks this allows us to use dynamic programming to
obtain a solution.

Definition 3.6 plurality-weighted-$briberyunary is defined exactly as is plurality-
weighted-$bribery, except the prices are to be encoded in unary. plurality-weightedunary-
$bribery is plurality-weighted-$bribery except with the weights encoded in unary.

It is tempting to use exactly the same proof approach as the one that we hinted at in
the discussion below Theorem 3.3, i.e., to split the bribery into two parts: demoting others
and promoting p. However, doing so would not be correct. Sometimes the optimal way of
getting the scores of other candidates to be at most at a certain threshold r prevents one
from getting an optimal bribe for the complete problem. Consider an elections with three
candidates, c, d, and p, and three voters v1, v2, and v3 such that v1 has both price and weight
equal to 10, v2 has both price and weight equal to 7, and v3 has price 1, 000, 000 and weight
10. Both v1 and v2 prefer c and v3 prefers d. Clearly, an optimal bribe for the problem
requires a threshold of 10. The optimal way of getting c down to vote weight at most 10 is
by bribing v2. However, at that point making p a winner requires bribing v1 as well. Yet,
bribing just v1 is a cheaper way of making p a winner and getting c below-or-equal-to the
10 threshold.

We will refer to plurality-weighted-$briberyunary as the “unary prices case,” and to
plurality-weightedunary-$bribery as the “unary weights case.” We will now give an overview
of how the algorithm works in the unary prices case, on input E = (C, V, p, k). The unary
weights case can be handled analogously. Themain idea is that, using the fact that there are
only linearly many possible prices to be paid, we can argue that there exists a polynomial-
time computable function Heaviest(E,C ′, π, r)—where C ′ will be a subset of the candidates,
π will be an integer price, and r will be an integer threshold—that gives the maximum vote
weight that we can obtain by bribing voters of candidates in C ′ such that

1. the cost of this bribery is at most π,

2. after the bribery every candidate in C ′ has vote weight at most r.

To test whether it is possible to make p a winner by spending at most k dollars, we
need to find a threshold r such that scoreE(p) + Heaviest(E,C − {p}, k, r) ≥ r, i.e., so
that the weight p has originally or via bribed voters is at least as great as the post-bribery
weight of each of the other candidates. Unfortunately, in the case of plurality-weighted-
$briberyunary we cannot just try all thresholds since there may be exponentially many
of them. Instead we use a strategy similar to the one that we hinted at when discussing
Theorem 3.3. After every successful bribery (in elections with at least two candidates)
there is some candidate c �= p—namely, the candidate(s) other than p with the greatest
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post-bribery total weight—that either is a tied-with-p winner or loses only to p. We can
use the after-bribery vote weight of this candidate to be the threshold for the bribery of
the voters of all the other candidates. Of course, we neither know who this candidate is nor
what vote weight he or she would have after a successful bribery. Nonetheless, we can try
all candidates c �= p and for each such candidate and each possible “sub-budget” b ≤ k can
ask what is the maximum amount of additional weight we can get for p from bribing c’s
voters when allowed to spend at most b to do so (this will require solving certain instances
of the knapsack problem). Then, using the thus obtained threshold, we can bribe the voters
of the rest of the candidates. There are (at most) linearly many candidates and (at most)
linearly many prices so this yields (at most) polynomially many combinations.

Let us now describe how the above plan can be implemented. We no longer limit
ourselves to the unary prices case, but describe both cases in parallel. Let E = (C, V, p, k)
be our input. For each candidate c ∈ C we define

V cE = {v ∈ V | c is the most preferred candidate of v}.

Since we do not have any additional restrictions it only makes sense to bribe voters to
support p. For a given candidate c ∈ C, we can describe our bribing options either as a
function that gives the highest weight of c’s voters we can bribe for b dollars or as a function
that gives the lowest price needed to gain vote weight at least w by bribing c’s voters.

heaviest(E, c, b) = max{ω(U) | U ⊆ V cE and π(U) ≤ b}.
cheapest(E, c, w) = min{π(U) | U ⊆ V cE and ω(U) ≥ w}.

If c is not a candidate in E, these functions are undefined. Here and in the rest of the
proof, we take the max and min of the empty set to be undefined. Note that if c is a
candidate in E, then heaviest(E, c, b) is defined for all b ≥ 0 and cheapest(E, c, w) is defined
for all w ≤ ω(V cE). Also note that heaviest can easily be computed in polynomial time
in the unary prices case and that cheapest can easily be computed in polynomial time in
the unary weights case. In both cases we simply use dynamic programming solutions for
an appropriate optimization variant of the knapsack problem.6 We can further generalize
these functions to give us information about the best bribes regarding sets of candidates.
For each U ⊆ V , we define bribed(E,U) to be the bribery problem exactly like E but with
the voters in U bribed to vote for p. We define

Heaviest(E,C ′, b, r) = max
{
ω(U)

∣∣∣∣ (U ⊆ ⋃c∈C′ V cE) ∧ (π(U) ≤ b)∧
(∀c ∈ C ′)[scorebribed(E,U)(c) ≤ r]

}
, and

Cheapest(E,C ′, w, r) = min
{
π(U)

∣∣∣∣ (U ⊆ ⋃c∈C′ V cE) ∧ (ω(U) ≥ w)∧
(∀c ∈ C ′)[scorebribed(E,U)(c) ≤ r]

}
.

If C ′ is not a subset of E’s candidate set, these functions are undefined.

6. The knapsack problem is the following. Given a set of items, each with a price π and a weight ω, is it

possible to select items with total weight at least W , but without exceeding total price K? It is well

known that the knapsack problem has a polynomial-time dynamic programming algorithm if either the

prices are encoded in unary or the weights are encoded in unary. (See the work of Martello & Toth,

1990, for background/reference on the knapsack problem.)
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Lemma 3.7 We consider now only elections in which each voter has both a price and a
weight. If prices are encoded in unary then there is an algorithm that computes Heaviest in
polynomial time. If weights are encoded in unary then there is an algorithm that computes
Cheapest in polynomial time.

Proof. Note that in the unary prices case there are only linearly many sub-budgets b for
which we need to compute the value of Heaviest , namely 0 ≤ b ≤ π(V ), and in the unary
weights case there are only linearly many weights w for which we need to evaluate Cheapest ,
namely 0 ≤ w ≤ ω(V ). Using this fact we provide dynamic programming algorithms for
computing both functions. For the base case we have the following: If c is not a candidate
of E, then both our functions are undefined. Otherwise,

Heaviest(E, {c}, b, r) =
{

heaviest(E, c, b) if scoreE(c)− heaviest(E, c, b) ≤ r,
undefined otherwise.

Cheapest(E, {c}, w, r) =
{

cheapest(E, c, w) if scoreE(c)− w ≤ r,
cheapest(E, c, scoreE(c)− r) otherwise.

The following observation allows us to compute Cheapest and Heaviest for larger sets.
We assume that C ′ does not contain c. If any of the candidates in C ′∪{c} are not candidates
of E, then both our functions are undefined. Otherwise,

Heaviest(E,C ′ ∪ {c}, b, r) = max{Heaviest(E,C ′, b′, r) + Heaviest(E, {c}, b− b′, r) |
0 ≤ b′ ≤ b and Heaviest(E,C ′, b′, r) and Heaviest(E, {c}, b− b′, r) are both defined}.

Cheapest(E,C ′ ∪ {c}, w, r) = min{Cheapest(E,C ′, w′, r) + Cheapest(E, {c}, w − w′, r) |
0 ≤ w′ ≤ w and Cheapest(E,C ′, w′, r) and Cheapest(E, {c}, w − w′, r) are both defined}.
Thus, in the unary prices case we can compute Heaviest(E,C ′, b, r) using dynamic pro-

gramming in polynomial time. The same applies to Cheapest(E,C ′, w, r) for the unary
weights case. ❑

Theorem 3.8 Both plurality-weighted-$briberyunary and plurality-weightedunary-
$bribery are in P.

Proof. Algorithms for both of the problems are very similar and we will describe only the
(nonunique) unary prices case in detail. We provide the pseudocode for the (nonunique)
unary weights case, but we omit its proof of correctness, which is analogous to the proof
for the unary prices case. We mention in passing that the two unique cases can easily be
obtained as well, via the natural modifications of our algorithm.

Figure 1 shows our procedure for the unary prices case. The idea of the algorithm is
the following: Suppose that there is a set B of voters such that if we bribe all members
of B to vote for p then p becomes a winner. We can assume that for each candidate c,
c’s voters have been bribed optimally, i.e., there is no cheaper way of getting the same (or
greater) vote weight by bribing a different subset of c’s voters. There is some candidate
c that has the most votes among the non-p candidates after bribery. Thus, to decide if
bribery is possible it is enough to test whether there is a candidate c �= p and a sub-budget
b, 0 ≤ b ≤ k, such that after bribing c’s voters optimally, spending b dollars, it is still
possible to bribe (without, overall, exceeding the budget) voters of the other candidates in
such a way that
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procedure UnaryPricesBribery(E = (C, V, p, k))
begin

C ′ = C − {p};
if k ≥ π(V ) then

return(accept);
for c ∈ C ′ do

for b such that 0 ≤ b ≤ k do
begin

w′ = heaviest(E, c, b);
r = scoreE(c)− w′;
w = Heaviest(E,C ′ − {c}, k − b, r);
if w is defined and scoreE(p) + w + w′ ≥ r then

return(accept);
end

return(reject);
end

Figure 1: The main procedure for plurality-weighted-$briberyunary.

1. each candidate ends up with vote weight not higher than that of c, and

2. enough voters can be bribed so that p becomes a winner.

Our algorithm tests exactly if this is the case and accepts if so. (Though its “if-then” line
might at first seem to focus just on having the candidates in C − {c} beat p, note that c’s
post-bribery score is r, so that line handles c also.) By the above reasoning, if bribery is
possible the algorithm accepts. It should also be clear that if the algorithm accepts then
bribery is indeed possible. Since the functions heaviest and Heaviest can be computed
in polynomial time, we have that the whole algorithm runs in polynomial time. Thus,
plurality-weighted-$briberyunary is in P.

An analogous algorithm works for the unary weights case, see Figure 2. The proof of
correctness is analogous to the unary prices case. ❑

Theorem 3.8 is particularly interesting because it says that plurality-weighted-$bribery
will be difficult only if we choose both weights and bribe prices to be high. However, the
prices are set by the voters, and in many cases one could assume that they would set them
to be fairly low, in some sense rendering the bribery problem easy.

Another possible attack on the complexity of plurality-weighted-$bribery is through
approximation algorithms. In fact, using Theorem 3.8, Faliszewski (2008) obtained a fully-
polynomial approximation scheme for plurality-weighted-$bribery. Many researchers ask
about typical-case complexity of practically encountered NP-complete problems (see the
work of Conitzer & Sandholm, 2006; Procaccia & Rosenschein, 2007; Erdélyi, Hemaspaan-
dra, Rothe, & Spakowski, 2007, for discussions of this issue in the context of voting problems;
see also Erdélyi, Hemaspaandra, Rothe, & Spakowski, to appear; Erdélyi, Hemaspaandra,
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procedure UnaryWeightsBribery(E = (C, V, p, k))
begin

C ′ = C − {p};
for c ∈ C ′ do

for w′ such that 0 ≤ w′ ≤ ω(V cE) do
begin

b = cheapest(E, c, w′);
r = scoreE(c)− w′;
b′ = Cheapest(E,C ′ − {c}, r − (scoreE(p) + w′), r);
if b′ is defined and b + b′ ≤ k then

return(accept);
end

return(reject);
end

Figure 2: The main procedure for plurality-weightedunary-$bribery.

Rothe, & Spakowski, 2009), and this is clearly an important direction.7 However, it is often
difficult to come up with a distribution of inputs that is both realistic and simple enough
to study. On the other hand, providing a good polynomial-time approximation algorithm
would be a worst-case result: No matter how difficult an instance we would be given, we
could compute a decent answer. Recent papers by Brelsford et al. (2008), Faliszewski (2008),
and Zuckerman et al. (2008) take steps in this interesting direction.

7. There has been much excitement over the recent paper “Elections Can Be Manipulated Often” (Friedgut,

Kalai, & Nisan, 2008, see also Dobzinski & Procaccia, 2008; Xia & Conitzer, 2008), and indeed a referee

commented to us that that paper proves that (under certain assumptions) elections are manipulable

“most of the time.” However, one in fact has to be a bit careful as to what one claims. The lower

bound that paper (given its assumptions) establishes for frequency of manipulation is, for a type of

problem that is related to unpriced bribery (but involves choosing a single manipulator after drawing

the votes from one’s distribution), Ω(1/‖V ‖), and for the more typical approach to manipulation of

focusing on a single voter, that itself gives a lower bound on frequency of manipulation of Ω(1/‖V ‖2).
That isn’t “most,” of the time, but rather goes to zero asymptotically. Even if that lower bound could be

tremendously raised to Ω(1), that still might mean a manipulation frequency of 0.00001 percent of the

time—not a frequency that in itself means election methods are very frequently open to manipulation.

This is an exciting, active research direction in which we suspect that future work will much clarify

the upper and lower bounds that hold on frequency of manipulation (both in the single-manipulator

case and the coalition manipulation case), and what assumptions about election systems are needed to

obtain such results. Changing topics, we mention that in some cases “most of the time” detours around

NP-hardness election-complexity results have already been obtained. For example, although the winner

problem in Dodgson elections is known to be complete for parallel access to NP, two recent papers, by

McCabe-Dansted, Pritchard, and Slinko (2008) and by Homan and Hemaspaandra (2009), have shown

that (under particular assumptions about distributions and the relationship between the numbers of

candidates and voters) there are heuristic algorithms that in a rigorous sense are correct most of the

time.
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4. Bribery Versus Manipulation, and Two Dichotomy Theorems

The previous section provided a detailed discussion of the complexity of bribery for plurality
voting. To obtain its results we carefully hand-crafted and altered various algorithms and
reductions. Designing algorithms and reductions for specific bribery problems is certainly
a reasonable approach, but even better would be to find more general tools for establishing
the complexity of bribery in elections. Such general tools would be especially interesting
if they allowed one to inherit results already existent in the literature on election systems.
In this section we implement the above plan by studying relationships between bribery and
manipulation, and by showing how to obtain results using the relationships we find. In the
next section, by studying some ways in which integer programming can be employed to solve
bribery problems we continue this emphasis on exploring flexible tools for establishing the
complexity of bribery. There, using a theorem of Lenstra we show many bribery problems
regarding elections with fixed-size candidate sets to be in P, even when the voters are
succinctly represented. (Regarding the coming results studying the relationship between
bribery and manipulation, we more generally commend to the reader the issue of finding
even more extensive links between such problems as bribery, manipulation, and control. We
find this a natural and important direction.)

Manipulation is in flavor somewhat similar to bribery, with the difference that in ma-
nipulation the set of voters who may change their preference lists is specified by the input.
Formally, if E is some election rule then E-manipulation is the following problem (e.g., see
Bartholdi et al., 1989a; Conitzer et al., 2007).

Name: E-manipulation.

Given: A set C of candidates, a collection V of voters specified via preference lists, a set S
of manipulative voters (without loss of generality, not including any members of V ),
and a candidate p ∈ C.

Question: Is there a way to set the preference lists of the voters in S so that under election
rule E the voters in S ∪ V together choose p as a winner?

Instances of the manipulation problems can be described as tuples (C, V, S, p), where C
is a list of candidates, V is a list of voters (in the same format as in the bribery problems),
S is a list of the manipulative voters, and p is the designated candidate that voters in S
want to be a winner (a unique winner, in the unique case).

Manipulation, just like bribery, comes in many flavors. We may be asked to make p
the unique winner or just a winner, voters may have weights (in which case S is specified
together with weights of voters in S), etc. Bribery can be viewed as manipulation where
the set of manipulators is not fixed in advance and where deciding who to manipulate is a
part of the challenge. Note that to check whether bribery can be successful on a given input
we can simply try all possible manipulations by k voters, where k is the number of bribes
we are willing to allow. In this way, for a fixed k, we can disjunctively truth-table reduce
any bribery problem to the analogous manipulation problem. (Note that having no prices
but a limit of bribing k voters is the same in effect as having unit prices and a budget of k.)

Theorem 4.1 Let k be an arbitrary positive integer. Let B be any of our bribery problems,
but with the following constraints: Voters have no prices (i.e., we do not consider $bribery
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problems) and bribing more than k voters is forbidden (that is, we require that in each
“yes”-instance (C, V, p, k′) of B we have k′ ≤ k). Let M be the analogous manipulation
problem, i.e., the manipulation problem for the same election system, with weighted voters
if B allows that, allowing the manipulating set to contain any number of voters between 0
and k. Then it holds that B ≤pdttM.

Proof. To show that B ≤pdttM we need to give a polynomial-time procedure that for an
input x outputs a list of strings y1, . . . , ym such that x ∈ B if and only if at least one of yi,
1 ≤ i ≤ m, is in M. We now describe such a procedure.

Let x be the input string. We first check whether x can be parsed as an instance
of B (reminder: that is, that x meets the syntactic constraints of B). If not then we
output an empty list and terminate; otherwise we decode V , the voter set, and k′ ≤ k, the
maximum number of voters that can be bribed, from the string x. For every subset W of
k′′ = min(k′, ‖V ‖) elements of V we form an instance of the manipulation problem with
voter set V −W and manipulating set equal to W . After we go through all k′′-element
subsets we output the list of all the manipulation instances that we formed.

This procedure clearly works in polynomial time as there are at most
(‖V ‖
k

)
= O(‖V ‖k)

sets to test and we can form instances of manipulation in polynomial time. If any of the
manipulation instances we output is in M then bribery is possible; it is enough to bribe
exactly the voters selected for the manipulating group. On the other hand, if bribery is
possible, then at least one of the instances we output belongs to M, namely any one that
includes the voters we would bribe. ❑

While simple, this result is still powerful enough to allow the inheritance of some results
from previous papers. Bartholdi et al. (1989a) discuss manipulation by single voters and
Theorem 4.1 translates their results to the bribery case. In particular, this translation says
that bribery for k = 1 is in P for plurality, Borda count, and many other systems.

Can we strengthen Theorem 4.1 from constant-bounded bribery to general bribery? The
answer is no: There are election systems for which bribery is NP-complete but manipulation
is in P. In particular, manipulation for approval voting (both in the weighted and the
unweighted case) is in P for any size of manipulating set: The manipulating group simply
approves just of their favorite candidate and nobody else.8 However, by the following
theorem, bribery for approval voting is NP-complete.

Theorem 4.2 approval-bribery is NP-complete.

Proof. Clearly, approval-bribery is in NP. NP-completeness follows from a reduction
from X3C.

Let B = {b1, . . . , b3t} and let S = {S1, . . . , Sm} be a family of three-element subsets of
B. Without loss of generality, we assume that m ≥ t; otherwise an exact cover is impossible.
For each i, 1 ≤ i ≤ 3t, let �i be the number of sets Sj that contain bi. On input (B,S) we
construct approval-bribery instance E = (C, V, p, k), where k = t, the set of candidates C
is equal to B ∪ {p}, and we have the following voters.

1. For each Si ∈ S there is a voter vi who approves of exactly the members of Si.

8. Meir et al. (2008) in a somewhat different and more flexible setting have previously noted that approval-

manipulation is in P if there is only one manipulator.
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2. For each bi we have m− �i + 1 voters who approve only of bi.

3. We have m− t voters who approve only of p.

Note that p gets m − t approvals and that each bi, 1 ≤ i ≤ 3t, gets m + 1 approvals. We
claim that p can be made a winner by bribing at most t voters if and only if B has an exact
cover by sets in S.

First assume that there is a set A such that ‖A‖ = t and
⋃
i∈A Si = B. To make p a

winner, bribe each vi such that i ∈ A to approve only of p. As a result p gets m approvals
and each bi loses exactly one approval. Thus, all candidates are winners. On the other hand,
assume there is a bribery of at most t voters that makes p a winner. Each bribed voter
contributes at most one additional approval for p. Thus, p will get at most m approvals.
Each candidate in B has m+ 1 approvals, and our bribery needs to take away at least one
approval from each candidate in B. Since we bribe at most t voters, this can only happen
if we bribe t voters vi that correspond to a cover of B.

This reduction can be computed in polynomial time. ❑

Of course, when the number of bribes is bounded by some fixed constant then, by
Theorem 4.1, approval-bribery can be solved in polynomial time.

We mention that bribery in approval elections is actually very easy if we look at a
slightly different model. Our bribery problems allow us to completely modify the approval
vector of a voter, but this may be too demanding. A voter might be willing to change some
of his or her approval vector’s entries but not to change it completely.

Definition 4.3 approval-bribery′ is the problem that takes as input a description of an
approval election along with a designated candidate p and a nonnegative integer k, and asks
whether it is possible to make p a winner by at most k entry changes (total) in the approval
vectors. approval-$bribery′ is defined analogously, but with the extra twist that now changing
each entry of an approval vector may have a different price.9

Having different prices for flipping different entries in approval-$bribery′ models the pos-
sibility that a voter might be more willing to change his or her approval of some candidates
than of other candidates. These modified problems turn out to be easy. In fact, they are
easy even if we have both weights and prices, provided one of them is encoded in unary.

Theorem 4.4 Both approval-weighted-$bribery′unary and approval-weightedunary-
$bribery′ are in P.

Proof. The polynomial-time algorithm we provide is based on the observation that in
both approval-weighted-$bribery′unary and approval-weightedunary-$bribery′ getting vote
weight for the favorite candidate can be (carefully) treated separately from demoting the
other candidates. (This is basically because in approval voting in the bribery′ model costs
are linked to entries in voters’ approval vectors and a candidate’s point total is by weighted
addition, over all the voters, of that candidate’s 0-or-1 entry from that voter.)

9. As a referee points out, from a technical perspective one can view the voters in approval-bribery′ (and

its variants) as broken into multiple “plurality voters that can be turned on and off.” Partially due

to this similarity, various flavors of approval-bribery′ have computational properties very similar to the

corresponding variants of plurality-bribery.
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We can divide any bribery into two phases: First, we bribe voters to approve of p,
our favorite candidate, and second, we bribe enough voters to retract their approvals of
candidates that still defeat p. There are only polynomially many relevant vote weights that
p may obtain by bribery, so we can try them all.

Let E = (C, V, p, k) be the bribery instance we need to solve. For a candidate c, a price
b, and a subset of voters V ′, we define heaviest(V ′, c, b) to be the highest vote weight of
voters in V ′ whose approval of c can be switched by spending at most b dollars. Similarly,
for a candidate c, vote weight w, and a subset of voters V ′, we define cheapest(V ′, c, w)
to be the lowest price that can switch the approval-of-c of voters in V ′ that have total
weight at least w. In our proof we only use sets V ′ where either all voters approve of c
or all voters disapprove of c. Note that heaviest(V ′, c, b) is defined for all b ≥ 0 and that
cheapest(V ′, c, w) is defined for all w ≤ ω(V ′). As in Section 3, heaviest can easily be
computed in polynomial time in the unary prices case and cheapest can easily be computed
in polynomial time in the unary weights case. In addition, cheapest can be computed in
polynomial time in the unary prices case. Note that

cheapest(V ′, c, w) = min{b | heaviest(V ′, c, b) ≥ w}.
Since there are only polynomially many prices to try, this can be done in polynomial time.

Figure 3 gives pseudocode for the procedure UnaryPricesApproval, which decides
approval-weighted-$briberyunary′. scoreE(c) denotes the number of approvals of candi-
date c in election E. The procedure simply tries all relevant weights that p could obtain
by bribery and tests whether it is possible, for any of them, to bring the other candi-
dates down to vote weight at most that of p without exceeding the budget. The procedure
is correct because of the separation we achieved (as discussed above, and applied within
our proof framework of trying all thresholds) between the issue of bribing voters to ap-
prove of p and the issue of bribing them not to approve of some other candidate. Also, as
cheapest and heaviest are computable in polynomial time, the procedure works in polyno-
mial time. An analogous procedure decides the unary weights case: Simply change the line
“for b = 0 to k do” to “for w = 0 to ω(V ′) do” and the line “w = heaviest(V ′, p, b)” to
“b = cheapest(V ′, p, w).” ❑

With both prices and weights encoded in binary, approval-weighted-$bribery′ becomes
NP-complete.

Theorem 4.5 approval-weighted-$bribery′ is NP-complete.

Proof. It is immediate that approval-weighted-$bribery′ is in NP. To show NP-hardness,
we will construct a reduction from Partition. Let s1, . . . , sn be a sequence of nonnegative
integers and let

∑n
i=1 si = 2S. We construct an election E with candidates p and c and

n + 1 voters, v0, . . . , vn, with the following properties.

1. v0 has weight S, approves only of p, and changing any of v0’s approvals costs 2S + 1.

2. vi, for 1 ≤ i ≤ n, has weight si, approves only of c, changing vi’s approval for p costs
si, and changing vi’s approval for c costs 2S + 1.

We claim that p can be made a winner by a bribery of cost at most S if and only if there
is a set A ⊆ {1, . . . , n} such that

∑
i∈A si = S.
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procedure UnaryPricesApproval(E = (C, V, p, k))
begin

if k ≥ π(V ) then
return(accept);

V ′ = {v | v ∈ V and v does not approve of p};
for b = 0 to k do
begin

w = heaviest(V ′, p, b);
r = scoreE(p) + w;
k′ = k − b;
for c ∈ C − {p} do
begin

V ′c = {v | v ∈ V and v approves of c};
if scoreE(c) > r then

k′ = k′ − cheapest(V ′c , c, scoreE(c)− r);
end
if k′ ≥ 0 then return(accept);

end
return(reject);

end

Figure 3: The procedure UnaryPricesApproval.

First suppose that p can be made a winner by a bribery of cost at most S. Then we
can only bribe voters v1, . . . , vn to approve of p. In election E, p has S approvals and c
has 2S approvals, so our bribery needs to give p at least S extra approvals. Since changing
vi’s approval of p costs si, and the weight of vi is also si, it follows that p gains exactly S
approvals, and that the weights of the bribed voters in v1, . . . , vn add up to exactly S. This
implies that the sequence s1, . . . , sn can be partitioned into two subsequences that each sum
to S.

On the other hand, assume there is a set A ⊆ {1, . . . , n} such that
∑
i∈A si = S. Then

we can bribe voters vi, i ∈ A, to approve of p. As a result, both p and c will have vote
weight 2S and both of them will be winners. Our reduction can be computed in polynomial
time and thus the theorem is proved. ❑

Which of the above-discussed bribery models for approval is more appropriate depends
on the setting. For example, bribery′ seems more natural when we look at the web and treat
web pages as voting by linking to other pages. It certainly is easier to ask a webmaster to
add/remove a link than to completely redesign the page. We point the reader to the work
of Faliszewski (2008) for further discussion of bribery scenarios similar to bribery′.

After this somewhat lengthy discussion of approval bribery, let us now return to our
central goal of relating bribery and manipulation. In Theorem 4.1 we managed to disjunc-
tively truth-table reduce a restricted version of bribery to manipulation. The discussion and
theorems that follow show that working in the opposite direction, reducing manipulation
to bribery, which at first might seem more difficult, is in fact more fruitful.
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The reason why reducing manipulation to bribery appears to be more difficult is that
bribery allows more freedom to the person interested in affecting the elections. To embed
manipulation within bribery, we have to find some way of expressing the fact that only a
certain group of voters should be bribed (or, at least, expressing the fact that if there is any
successful bribery then there is also one that only bribes the manipulators). We can fairly
easily implement this plan, though at the cost of reducing to a stronger bribery model,
namely bribery with prices.

Theorem 4.6 Let M be some manipulation problem and let B be the analogous $bribery
problem (for the same election system). It holds that M≤pm B.

Proof. Let M = (C, V, S, p) be an instance of M. We design an instance B of B such
that B = (C, V ′ ∪ S′, p, 0), where

1. V ′ is equal to V , except that each voter has price 1, and

2. S′ is equal to S, except that each voter has price 0 and some fixed arbitrary preference
list.

Since the bribery budget is set to zero, the only voters that we may possibly bribe are those
in S′. The preference lists of the voters in S′ after any such bribery directly correspond to
a manipulation in M . This reduction can be carried out in polynomial time. ❑

Clearly, Theorem 4.6 holds even for $bribery problems where prices are represented in
unary or are required to come from the set {0, 1}. Theorem 4.6 is very useful as it allows us
to inherit some very powerful results from the theory of manipulation. Hemaspaandra and
Hemaspaandra proved the following dichotomy result (see also Procaccia & Rosenschein,
2007; Conitzer et al., 2007).

Theorem 4.7 (Hemaspaandra & Hemaspaandra, 2007) Let α = (α1, . . . , αm) be a
scoring protocol. If it is not the case that α2 = α3 = · · · = αm, then α-weighted-
manipulation is NP-complete; otherwise, it is in P. This result holds for both the unique
and nonunique variants.

Combining the two above theorems with Theorem 3.2 we can immediately classify the
complexity of weighted-$bribery for all scoring protocols.

Theorem 4.8 For each scoring protocol α = (α1, . . . , αm), if α1 = αm then α-weighted-
$bribery is in P; otherwise it is NP-complete.

Proof. We consider three cases.

1. α1 = · · · = αm.

2. α1 > α2 = · · · = αm.

3. All other settings.

In the first case, α1 = · · · = αm, α-weighted-$bribery is trivially in P as all candidates are
always tied. For the remaining two cases, note that α-weighted-$bribery is clearly in NP.
It remains to show NP-hardness.
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In the second case, α1 > α2 = · · · = αm, we can employ the proof of Theorem 3.2.
Theorem 3.2 shows NP-hardness for (1, 0)-weighted-$bribery. It is easy to see that for all
m ≥ 2 we can pad this reduction with m − 2 candidates that are never ranked first to

obtain NP-hardness for (1,
m−1︷ ︸︸ ︷

0, . . . , 0)-weighted-$bribery. Note that our α describes elections
equivalent to plurality (i.e., a candidate is a winner of an α election if and only if he or she

would also be a winner of the (1,
m−1︷ ︸︸ ︷

0, . . . , 0) election with the same voters and candidates;
see Observation 2.2 in the paper of Hemaspaandra & Hemaspaandra, 2007). Thus, we
get NP-completeness of α-weighted-$bribery for this case since we do have at least two
candidates.

The third case follows by combining Theorem 4.6 with Theorem 4.7. Since α-weighted-
manipulation many-one reduces to α-weighted-$bribery and α-weighted-manipulation is
NP-complete we have that α-weighted-$bribery is NP-hard. This exhausts all cases. ❑

Theorem 4.8 applies to $bribery, but of course it is also interesting to ask what happens
in the case when voters do not have prices. Does bribery remain NP-complete? Can we
express the constraints of bribery without using such a direct embedding as above? The
following dichotomy theorem shows that the answer is “Yes, but in fewer cases.”

Theorem 4.9 For each scoring protocol α = (α1, α2, . . . , αm), if α2 = α3 = · · · = αm then
α-weighted-bribery is in P; otherwise it is NP-complete.

If α2 = α3 = · · · = αm then either the α-weighted-bribery is trivially in P (if α1 =
· · · = αm) or can be solved using the algorithm for plurality-weighted-bribery. The core
of the proof is to show NP-hardness. It would be nice to do so by reducing from the
corresponding manipulation problems (which share the characterization’s boundary line
regarding the “α”s). This seems not to work, but in Lemma 4.11 we construct such a
reduction that has the right properties whenever its inputs satisfy an additional condition,
namely, that the weight of the lightest manipulating voter is at least double that of the
heaviest nonmanipulator. This would suffice if the thus-restricted manipulation problem
were NP-hard. Lemma 4.12 shows that the thus-restricted manipulation problem is NP-
hard. It does so by examining the manipulation-dichotomy proof of Hemaspaandra and
Hemaspaandra (2007) and noting that if we apply that paper’s reduction to Partition′ (see
Section 2.3) rather than to Partition then we can guarantee the restrictionmentioned above.

Definition 4.10 By α-weighted-manipulation′ we mean the manipulation problem α-
weighted-manipulation with the restriction that each manipulative voter has weight at
least twice as high as the weight of the heaviest of the nonmanipulative voters. Each in-
stance where the restriction is violated is considered not to be an element of α-weighted-
manipulation′.

Lemma 4.11 Let α = (α1, . . . , αm) be a scoring protocol. α-weighted-manipulation′ ≤pm
α-weighted-bribery.

Proof. Without loss of generality we can assume that αm = 0. If αm �= 0 then we can
consider the scoring protocol α′ = (α1 − αm, α2 − αm, . . . , αm − αm) instead. Given an
instance M = (C, V, S, p) of the manipulation problem, we construct B = (C, V ′, p, ‖S‖), a
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bribery instance, such that there is a successful manipulation within M if and only if there
is a successful bribery within B. We assume that M fulfills α-weighted-manipulation′’s
requirements regarding relative weights of voters in V and S. If not, we output some fixed
B that has no successful briberies.

The reduction works by constructing V ′ = V ∪ S′, where S′ is the set of voters from S
with a fixed arbitrary preference list that has p as the least preferred candidate. Clearly,
if a manipulation is possible within M then some bribery works for B. We show that the
other direction also holds by arguing that if a successful bribery within B exists, then there
is a successful bribery that affects only voters in S′. This implies that S can be viewed as
being the manipulative group.

Let us assume that there is some way of bribing at most ‖S‖ voters in V ′ so that p
becomes a winner. If all the bribed voters are in S′ then the theorem is proven. Otherwise,
select some bribed voter v ∈ V ′ − S′. By bribing v, p gains at most (α1 + α1) · ω(v) points
over each candidate c �= p. (The first α1 is because p can get at most α1 additional points
by this bribery, and the second α1 is because c can lose at most α1 votes.) However, if
instead of bribing v we would bribe some voter v′ in S′, p would gain at least α1ω(v′) points
over each c. (We would bribe v′ to put p as his or her most preferred candidate and shift
all other candidates back.) Since it holds that ω(v′) ≥ 2ω(v), we might just as well bribe
v′ instead of v, and p would still be a winner. Thus, if p can be made a winner, then p can
be made a winner by bribing only voters in S′.

This reduction can easily be computed in polynomial time. ❑

It remains to show that the restricted version of manipulation is NP-complete for all
scoring protocols for which the nonrestricted version is.

Lemma 4.12 If α = (α1, . . . , αm) is a scoring protocol such that it is not the case that
α2 = α3 = · · · = αm, then α-weighted-manipulation′ is NP-complete.

Proof. Let α = (α1, . . . , αm) be a scoring protocol such that α2 �= αm. We will use Hema-
spaandra and Hemaspaandra’s (2007) proof of their result that is here called Theorem 4.7 to
show the NP-completeness of α-weighted-manipulation′. Clearly, α-weighted-manipulation′

is in NP so we only need to prove its NP-hardness.
Hemaspaandra and Hemaspaandra’s (2007) proof of Theorem 4.7 reduces Partition (re-

stricted to positive integers) to α-weighted-manipulation. A close inspection of that proof10

shows that there exist constants c and d ≥ 2 that depend only on α such that for ev-
ery sequence of positive integers s1, . . . , sn such that

∑n
i=1 si = 2S, the Hemaspaandra–

Hemaspaandra reduction outputs a manipulation problem that has the following properties.

1. Each nonmanipulative voter has weight at most cS, and

2. the weights of the manipulative voters are ds1, ds2, . . . , dsn.

We will use these facts to provide a reduction from Partition′ to α-weighted-manipulation′.
Our reduction works as follows. Let s1, . . . , sn be the input sequence of nonnegative

integers,
∑n
i=1 si = 2S, such that for each i, 1 ≤ i ≤ n, it holds that si ≥ 2

2+nS. (As per
footnote 3, if these conditions do not hold then we return a fixed string not in α-weighted-

10. We do not repeat that proof here. Interested readers are referred to the paper of Hemaspaandra and

Hemaspaandra (2007).
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manipulation′.) Without loss of generality, we assume that S > 0, and thus s1, . . . , sn are
positive integers. Let f be the reduction given by the proof of Theorem 4.7 in the paper
of Hemaspaandra and Hemaspaandra (2007). We compute f((s1, . . . , sn)) = (C, V, T, p).
(Reduction f works for general Partition and so, since we already checked the special prop-
erties required by Partition′, it has to work correctly for our input.) That is, s1, . . . , sn
can be partitioned if and only if there is a successful manipulation of (C, V, T, p). Unfor-
tunately, we cannot just output (C, V, T, p) as it does not necessarily fulfill the condition
on voters’ weights. Recall that we have to ensure that each manipulative voter has weight
at least twice as high as the weight of the heaviest of the nonmanipulative voters. Let
smin = min{sj | 1 ≤ j ≤ n}. In (C, V, T, p), the least weight of a voter in T is exactly dsmin,
and the highest weight of a voter in V is at most cS. However, we can split each voter v in
V . The weights of the voters who do not participate in the manipulation are irrelevant as
long as the total weight of voters with each given preference order does not change. Thus,
we can replace a voter with high weight by several other voters with the same preference
order but with lower weights. In our case, we need to make sure that each nonmanipulative
voter has at most weight 1

2dsmin. Since the heaviest of the nonmanipulative voters has
weight at most cS, we need to replace each voter v ∈ V by at most⌈

cS

�1
2dsmin�

⌉
(4)

voters, each of weight at most 1
2dsmin. Since d ≥ 2, S > 0, smin is a positive integer, and

2
2+nS ≤ smin, we can bound (4) from above by

⌈
cS

�1
2dsmin�

⌉
≤
⌈

cS

smin

⌉
≤
⌈
cS
2S

2+n

⌉
=
⌈
c(n + 2)

2

⌉
,

which is clearly polynomially bounded in n. Thus, the splitting of voters can easily be
performed in polynomial time, and since it does not change the result of manipulation, the
theorem is proven. ❑

The proof of Theorem 4.9 simply combines Lemmas 2.3, 4.11, and 4.12.
Theorem 4.9 shows that bribery within weighted scoring protocols is, in most cases,

difficult. Though weighted bribery in light of Theorem 4.9 is easy for trivial elections (α1 =
αm), plurality, and even plurality’s equivalent clones (all scoring systems with α1 > α2 =
· · · = αm), if the voters are not only weighted but also have prices then (by Theorem 3.2)
bribery also becomes difficult in the case of plurality and plurality’s equivalent clones. It is
interesting to ask whether having voters who have prices but are not weighted also yields a
dichotomy result. As Theorem 4.13 shows, the behavior of scoring protocols with respect
to priced voters is very different than with respect to weighted ones.

Theorem 4.13 Let α = (α1, . . . , αm) be a scoring protocol. α-$bribery is in P.

Proof. We will give a polynomial-time algorithm for α-$bribery. Let E = (C, V, p, k)
be an instance of the problem. First, observe that by considering scoring protocol α =
(α1, . . . , αm) we, by definition, limit ourselves to a scenario with m candidates, where m is
a fixed constant. This implies that there are only a constant number of different preference
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orders, o1, . . . , om!, that the voters might have. We partition V into sets V1, V2, . . . , Vm!

such that each Vi contains exactly the voters with preference order oi. Some Vi’s might be
empty and each Vi has at most n elements, where n = ‖V ‖.

A bribery within E can be described by giving two sequences of integers, b1, . . . , bm! and
d1, . . . , dm!, such that 0 ≤ bi ≤ ‖Vi‖ and 0 ≤ di ≤ n, for 1 ≤ i ≤ m!, and

m!∑
i=1

bi =
m!∑
i=1

di.

Each bi says how many voters from Vi we are bribing. It is sufficient to just give the
numbers bi since we want to bribe only the cheapest members of each Vi. After we bribe
these b =

∑m!
i=1 bi voters, we need to decide what preferences to assign to them. This is

described by the sequence d1, . . . , dm!: Each di says howmany of the b voters will be assigned
to have preferences oi. Since the voters are indistinguishable, specifying these numbers is
enough.

It remains to observe that there are at most nm! sequences b1, . . . , bm! and there are at
most nm! sequences d1, . . . , dm! for each b. Thus, there are at most n2(m!) sequences to try
out. For each pair of sequences it is easy to check whether after performing the described
bribery p becomes a winner and whether the budget is not exceeded. Thus, α-$bribery is
in P. ❑

The algorithm given in the proof of Theorem 4.13, with almost no changes, can be used
to prove the following corollary.

Corollary 4.14 Let E be an election system such that (a) for each fixed number of candi-
dates its outcome is computable in polynomial time and (b) its outcome does not depend on
the order of the votes. For each fixed number of candidates E-$bribery is in P.

Theorem 4.13 stands in a sharp contrast to Theorem 4.9. It is natural to ask why prices
and weights exhibit such differing behavior. One answer is that in the weighted case the
voters retain their individuality—their weights—throughout the whole process of bribery.
On the other hand, in the priced case the voters are disassociated from their prices as
soon as we decide to bribe them. If we decide to bribe a particular priced voter then we
simply need to add his or her price to our total budget, but from then on the voter is
indistinguishable from all the other bribed ones. Precisely this observation facilitated the
proof of Theorem 4.13.

The algorithm given in the proof of Theorem 4.13 has a rather disappointing running
time. While nO(m!) is a polynomial in our setting, one would certainly prefer to have an
algorithm whose time complexity did not depend on m in this way. In particular, it would
be nice to have an algorithm with running time polynomial in n + m. However, if such an
algorithm exists then P = NP. This follows from the proof of the fact that approval-bribery
is NP-complete. In that proof we showed how to reduce X3C to approval-bribery in such
a way that each voter approves of at most 3 candidates. If there were a polynomial p and
an algorithm that ran in time p(‖C‖ + ‖V ‖) for every scoring protocol α, then we could
solve X3C by reducing it to approval-bribery and then embedding that approval-bribery
problem in an α-bribery problem for some α = (1, 1, 1, 0, . . . , 0), possibly adding some
dummy candidates. This embedding is straightforward so we do not describe it in detail.
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Let α = (α1, . . . , αm) be a scoring protocol such that it is not the case that α2 =
· · · = αm. By Theorem 4.9 we know that α-weighted-bribery is NP-complete. We also
know, by Theorem 4.13, that α-$bribery is in P. It clearly holds that α-weighted-$bribery
is NP-complete, but it is interesting to ask whether the NP-completeness of α-weighted-
bribery and α-weighted-$bribery holds because of the possibly exponentially large values
of the weights, or do these problems remain NP-complete even if the weights are encoded
in unary? It turns out, by the following theorem, that high weight values are necessary for
NP-completeness.

Theorem 4.15 Let α = (α1, . . . , αm) be a scoring protocol. α-weightedunary-$bribery is
in P.

Proof. Let α = (α1, . . . , αm) be a scoring protocol. The proof of this theorem cashes
in on the same observation as that made in the proof of Theorem 4.13: There are only
finitelymany different preference orders, and there are only polynomiallymany substantially
different ways of bribing.

Let E = (C, V, p, k) be a bribery problem and let o1, . . . , om! be all the different possible
preference orders over C. We partition V into m! disjoint sets V1, . . . , Vm! such that each Vi
contains exactly the voters with preference order oi. A bribery within E can be described
by a sequence of m! vectors bi = (bi,1, bi,2, . . . , bi,m!), 1 ≤ i ≤ m!, such that for each i, j,
1 ≤ i, j ≤ m!, bi,j is a nonnegative integer and for each i, 1 ≤ i ≤ m!, we have

m!∑
j=1

bi,j = ω(Vi).

The interpretation of a vector bi is that voters in Vi can be partitioned into m! sets
Vi,1, . . . , Vi,m! such that ω(Vi,j) = bi,j , with the intention of bribing voters in Vi,j to change
their preference lists to oj (recall that Vi is a multiset, and so of course this is a multiset
partition and the Vi,j ’s will be multisets). When i �= j this bribery has some price, and
when i = j it is for free as nothing really needs to be done. Note that not all vectors are
realizable; not every splitting of vote weight ω(Vi) can be achieved. The rest of this proof is
devoted to developing a method for evaluating whether a given split is possible and what its
minimal cost is. There are only (ω(V )m!)m! ways of selecting vectors b1, . . . , bm! so if we can
test whether a given vector is realizable (and compute the minimal price for its realization),
then we can simply try all sequences of vectors and test whether any of them both makes
p a winner (the winner, in the unique case) and has its total cost fall within the budget.

We will now describe an algorithm that checks if a particular vector w = (w1, . . . , wm!),
where wi ∈ {0, . . . , ω(V )} for each i in {1, . . . ,m!}, is realizable and computes the minimal
price for w’s realization. By V ′i (w1, . . . , wm!) we mean the following set of m!-element
sequences of subsets of Vi:

V ′i (w) = {(Vi,1, . . . , Vi,m!) | (Vi =
⋃m!
j=1Vi,j) ∧ (∀1 ≤ j ≤ m!)[ω(Vi,j) = wj ]}.

For each w we define

gi(w) =
{
min{ρ | (∃(Vi,1, . . . , Vi,m!) ∈ V ′i (w))[ρ =

∑
j �=i π(Vi,j)]} if V ′i (w) �= ∅,

∞ otherwise.
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That is, gi(w) gives the lowest price for bribing the voters in Vi according to weight vector
(w1, . . . , wm!). We can compute gi(w) in polynomial time using dynamic programming
techniques. Let us rename the candidates so that Vi = {v1, . . . , vt} and let gi,�(w) be the
same as gi(w) except restricted to voters v�, . . . , vt. Thus, gi,1 is exactly gi. Naturally, the
following boundary condition holds for gi,t+1.

gi,t+1(w1, . . . , wm!) =
{

0 if w1 = w2 = · · · = wm! = 0,
∞ otherwise.

We can compute values of gi,�(w1, . . . , wm!) using dynamic programming and the observation
that gi,�(w1, . . . , wm!) is equal to the minimum of the following:

gi,�+1(w1 − ω(v�), w2, . . . , wm!) + π(v�),
gi,�+1(w1, w2 − ω(v�), w3, . . . , wm!) + π(v�),
. . .

gi,�+1(w1, . . . , wm!−1, wm! − ω(v�)) + π(v�), and

gi,�+1(w1, . . . , wi−1, wi − ω(v�), wi+1, . . . , wm!).

Note that the last of the values handles the fact that if we bribe v� to report preference
order oi then we actually do not need to pay him or her; v� already has preference order
oi. Otherwise, we need to decide which of the m! − 1 other preference orders we ask v� to
report, and we need to pay for this change. Clearly, using this rule and the above boundary
condition we can compute gi,1(w), and thus gi(w), in time polynomial in ω(V ). Since ω(V )
is polynomial in the size of the input, this completes the proof. ❑

Corollary 4.16 Let E be an election system such that (a) for each fixed number of candi-
dates its outcome is computable in polynomial time and (b) its outcome does not depend on
the order of the votes. For each fixed number of candidates E-weightedunary-$bribery is in
P.

Note that, by Theorem 4.6, it holds that for each scoring protocol α,
α-weightedunary-manipulation ≤pm α-weightedunary-$bribery, and as the latter is in P,
we have the following corollary.

Corollary 4.17 For any scoring protocol α, α-weightedunary-manipulation is in P.

Certain scoring protocols have natural generalizations to an arbitrary number of can-
didates, e.g., the plurality rule, the Borda count, and the veto rule. Our results above do
not imply easiness of bribery for such election systems, as we need a single P algorithm to
work in all cases. For example, for the case of Borda count, recently Brelsford et al. (2008)
have shown that even Borda-bribery is NP-complete. In other cases, easiness results can
be easily obtained “by hand.” For example, Theorem 4.9 immediately implies that veto-
weighted-bribery is NP-complete even for 3 candidates, yet the following result shows that
the difficulty of bribery for veto voting comes purely from the weighted votes.

Theorem 4.18 veto-bribery is in P.
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Proof. The proof of this theorem is essentially the same as that of Theorem 3.1. We can
view veto elections as elections in which every voter vetos one candidate, and a candidate
with the least number of vetoes wins. (In the unique case, a candidate is the winner if and
only if no other candidate has as few vetoes as he or she has.)

Thus, given an instance E = (C, V, p, k), we keep on bribing voters that veto p and ask
them to veto a candidate that, at that time, has the least number of vetoes. If after at most
k bribes p is a winner then we accept; otherwise we reject. A simple inductive argument
shows this is a correct strategy, and the algorithm clearly runs in polynomial time. ❑

Interestingly, Brelsford et al. (2008) showed that veto-weightedunary-manipulation is
NP-complete. This immediately gives, by Theorem 4.6, that veto-weightedunary-$bribery
is NP-complete. Using techniques similar to those we used in the proof of Theorem 4.9
(but much simpler) we can modify their reduction to show that even veto-weightedunary-
bribery is NP-complete. On the other hand, the main result of the paper Faliszewski (2008)
implies that veto-$bribery is in P. As to whether Theorem 4.18 follows immediately from
Theorem 4.13, it does not. Why? Recall that 4.13 covers veto for each fixed number of
candidates, but Theorem 4.18 is covering the protocol that handles veto for all numbers of
candidates—what people commonly think of when they think of veto as a voting system.

We in spirit obtained Theorem 4.9 by reducing (with much work and adjustment) from
manipulation to bribery, for scoring protocols. Will that work in all other settings? The
answer is no; we have designed an artificial voting system where checking manipulability
even by just one voter is NP-complete, but checking bribability is easy.

Theorem 4.19 There exists a voting system E for which manipulation is NP-complete, but
bribery is in P.

Proof. Let A be an NP-complete set and let B ∈ P be such that

1. A = {x ∈ Σ∗ | (∃y ∈ Σ∗)[〈x, y〉 ∈ B]}, and

2. (∀x, y ∈ Σ∗)[〈x, y〉 ∈ B ⇒ |x| = |y|].
Such sets can easily be constructed from any NP-complete set by padding. The idea of the
proof is to embed a verifier for A within the election rule E . We do this in a way that forces
manipulation to solve arbitrary A instances, while allowing bribery to still be easy.

First, we observe that preference lists can be used to encode arbitrary binary strings.
We will use the following encoding. For C a set of candidates, let c1, c2, . . . , cm be those
candidates in lexicographical order. We will view the preference list

ci1 > ci2 > ci3 > · · · > cim

as an encoding of the binary string b1b2 · · · b�m/2	, where

bj =
{

0 if i2j−1 > i2j ,
1 otherwise.

This encoding is of course not the most efficient one, and a given binary string may have
many preference lists that encode it. However, this encoding is very easy and has the
properties that we need in our construction.
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In our reduction, binary strings starting with 1 will encode instances, and binary strings
starting with 0 will encode witnesses. Given this setup, we can describe our election system
E . Let (C, V ) be an election. For each c ∈ C, c is a winner of the election if and only if
‖V ‖ = 3 and

Rule 1: all preference lists encode strings starting with 1 or all preference lists encode
strings starting with 0, or

Rule 2: exactly one preference list encodes a string that starts with 1, say 1x, and at least
one other preference list encodes a string 0y such that 〈x, y〉 ∈ B.

Thus, either all candidates are winners or none of them are winners. Note that testing
whether a candidate c is a winner of an E election can easily be done in polynomial time.
The following polynomial-time algorithm shows how to perform an optimal bribery. This
implies that E-bribery ∈ P.

1. If c is a winner, we do nothing.

2. Otherwise, if ‖V ‖ �= 3, then bribery is impossible.

3. Otherwise, if there is exactly one voter whose preference list encodes a string that
starts with 1, then we bribe that voter to encode a string that starts with 0. By
Rule 1, c is a winner of the election.

4. Otherwise, there is exactly one voter whose preference list encodes a string that starts
with 0 and we bribe that voter so that his or her preference list encodes a string that
starts with 1. By Rule 1, c is a winner of the election.

On the other hand, the ability to solve themanipulation problem for E implies the ability
to solve A. We construct a reduction from A to E-manipulation. Given a string x ∈ Σ∗,
we first check whether 〈x, 0|x|〉 ∈ B. If so, then clearly x ∈ A and we output some fixed
member of E-manipulation. Otherwise, we output a manipulation problem with candidates
{1, 2, . . . , 2(|x|+ 1)} and three voters, v0, v1, and v2, such that v0’s preference list encodes
1x, v1’s preference list encodes 00|x|, and v2 is the only manipulative voter. We claim that
candidate 1 can be made a winner if and only if x ∈ A.

Since 〈x, 0|x|〉 �∈ B, the only way in which v2 can make 1 a winner is when v2 encodes
a string 0y such that 〈x, y〉 ∈ B in which case x ∈ A. For the converse, if x ∈ A, there
exists a string y ∈ Σ|x| such that 〈x, y〉 ∈ B. We can encode string 0y as a preference list
over {1, 2, . . . , 2(|x|+ 1)}, and let this be the preference list for v2. This ensures that 1 is a
winner of the election.

Since this reduction can be computed in polynomial time, and the E-manipulation’s
membership in NP is clear, we have that E-manipulation is NP-complete.

The same result holds for the case of unique winners. In this case we modify E such
that only the lexicographically smallest candidate can win the election and the reduction
will define the distinguished candidate as the lexicographically smallest candidate. ❑

The above election system is not natural, but it does show that unless we restrict our
election rules somehow or prove P = NP, obtaining a general reduction from manipulation
to bribery seems precluded.
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5. Succinct Elections

So far we have discussed only nonsuccinct elections—ones where voters with the same
preference lists (and weights, if voters are weighted) are given by listing each of them one
at a time (as if given a stack of ballots). It is also very natural to consider the case where
each preference list has its frequency conveyed via a count (in binary), and we will refer to
this as “succinct” input. The succinct representation is particularly relevant in case when
the number of candidates is bounded by a constant. When there are many candidates, it is
natural to expect that a lot of voters will have preferences that vary in some insignificant
ways. On the other hand, if there are very few candidates then, naturally, there will be
large numbers of voters with the same preferences, and using succinct representation will
save a lot of space.

In this section we provide Pmembership results (and due to our proofs, these in fact each
are even FPT membership results11) regarding bribery in succinctly represented elections
with a fixed number of candidates. Our main tool here is Lenstra’s (1983) extremely
powerful result that the integer programming feasibility problem is in P if the number of
variables is fixed.

Theorem 5.1 (Lenstra, 1983) Let k be some fixed nonnegative integer. There is a
polynomial-time algorithm that given an m × k integer matrix A and a vector b ∈ Z

m

determines whether
{x ∈ Z

k | Ax ≤ b} �= ∅
holds. That is, integer linear programming is in P for a fixed number of variables.

We mention that Lenstra’s polynomial-time algorithm is not at all attractive practically
speaking. In particular, although the algorithm uses just a linear number of arithmetic
operations on linear-sized integers—and thus it has a theoretically attractive, low-degree
polynomial run-time—the multiplicative constant is very large. To us here this is not a
critical issue since we are mostly interested in polynomial-time computability results and
general tools for obtaining them, rather than in actual optimized or optimal algorithms.

Although Lenstra’s result applies to the integer linear programming problem when the
number of variables is fixed and achieves P-time in that case, in this section we in fact

11. Regarding the natural issue of which P results can be strengthened to being FPT results, we mention in

passing that every P membership result of this section is clearly (although implicitly), via its proof, even

an FPT membership result. (A problem with some parameter j is in FPT, a class capturing the notion of

being fixed-parameter tractable, if there exists an algorithm whose running time on instances of size n is

bounded by f(j)nO(1), where f is some function depending only on j; see Niedermeier, 2006, for detailed

coverage of parameterized complexity.) Essentially, this is because Lenstra’s method is well known to

use a linear number of arithmetic operations on linear-sized variables (Lenstra, 1983, see also Downey,

2003; Niedermeier, 2002). Although the fact that some voting problems are in FPT is implicit in the

seminal work of Bartholdi et al., 1989b (e.g., see Christian, Fellows, Rosamond, & Slinko, 2007; Betzler,

Guo, & Niedermeier, 2008b), we mention that the work of Christian et al. (2007, Section 4), which itself

has a bribery-like flavor to its results, explicitly addresses the issue of FPT, in particular mentioning

that it is well known that the (nonsuccinct) winner and score problems for Kemeny and Dodgson are in

FPT, and we are indebted to an earlier version of their paper as it motivated us to here mention that

this section’s P results (even those about succinct elections) are FPT results. Among the other papers

addressing FPT results for election problems (although not regarding bribery problems), we mention as

examples the work of Betzler, Fellows, Guo, Niedermeier, and Rosamond (2008a) on Kemeny voting and

of Faliszewski et al. (2008) on Llull and Copeland voting.
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typically only need the special case of his result in which the number of variables and the
number of constraints are both fixed (and so the only parameter that is changing is the
constants within the constraints).

P membership results regarding succinctly represented elections naturally imply anal-
ogous results for the nonsuccinct representation. To express the fact that succinctness of
representation is optional in such cases, we put the phrase succinct in curly braces in the
names of the problems. For example, if we say that plurality-{succinct}-bribery is in P,
we mean that both plurality-bribery and plurality-succinct-bribery are in P. (By the way,
Theorem 3.1, by a similar but more careful algorithm than the one in its proof also holds
for the succinct case.)

Before we proceed with the results, let us introduce some notation. Throughout this
section we assume that all bribery problems that we are dealing with have exactly m
candidates, where m is some arbitrary fixed constant. Thus, if E = (C, V, p, k) is a bribery
problem then we may assume that C = {1, . . . ,m}, and that o1, o2, . . . , om! are all the
possible preference orders over C. Given a set of voters V , by Vi, 1 ≤ i ≤ m!, we mean the
set of voters v ∈ V that have preference order oi. For a given i, we define wh(c, i) to be
the index of candidate c within preferences oi (informally, where is c in oi). This notation
is assumed in each of the proofs of this section.

Using the integer programming approach we obtain polynomial-time algorithms for
bribery under scoring protocols in both the succinct and the nonsuccinct cases. The same
approach yields a similar result for manipulation. (The nonsuccinct case for manipulation
was already obtained in the work of Conitzer et al., 2007.)

Theorem 5.2 For every scoring protocol α = (α1, . . . , αm), both α-{succinct}-bribery and
α-{succinct}-manipulation are in P.

Proof. Let α = (α1, . . . , αm) be a scoring protocol and let E = (C, V, p, k) be the bribery
problem we want to solve, where C = {1, . . . ,m}. A bribery can be described by providing
numbers si,j , 1 ≤ i, j ≤ m!, saying how many people should switch from preference order oi
to preference order oj . (The values si,i simply say how many voters with preference order
oi should not switch to anything else. And we do allow superfluous exchanging, e.g., it is
legal, even when i �= j, to have both si,j and sj,i be strictly greater than zero. However,
note that in this proof, for example, if there is a solution where that happens then there
will be another solution in which it holds that, for each i �= j, at least one of si,j and
sj,i is zero.) We may express by an integer program the fact that the si,j ’s describe a
successful bribery, and we do so as follows. Here, our variables, the si,j ’s, are required
to be integers. We have (m!)2 such variables. Our constants (they are constants—i.e.,
coefficients—from the integer linear programming perspective, not all are constants from
the complexity perspective, as in effect k, and ||V1||, . . . , ||Vm!|| are inputs to the problem)
are k, α1, α2, . . . , αm, ‖V1‖, ‖V2‖, . . . , ‖Vm!‖.

1. The number of bribed voters has to be nonnegative. For all i, j, 1 ≤ i, j ≤ m!, we
have

si,j ≥ 0.

2. We cannot bribe more voters with a given preference than there are. For each i,
1 ≤ i ≤ m!, we have the constraint (keeping in mind that the si,i’s pick up any
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leftover, thus we state this as an equality)

m!∑
j=1

si,j = ‖Vi‖.

3. Altogether, we can only bribe at most k people.

m!∑
i=1

m!∑
j=1

si,j −
m!∑
�=1

s�,� ≤ k.

4. The score of p is at least as high as anybody else’s. For each h, 1 ≤ h ≤ m, we have
a constraint that says that candidate h does not defeat p:

m!∑
j=1

αwh(p,j)

(
m!∑
i=1

si,j

)
≥
m!∑
j=1

αwh(h,j)

(
m!∑
i=1

si,j

)
.

We have a constant number of variables, (m!)2, and a constant number of constraints.
(Of course, on the other hand the size of some of our integer linear program’s “constants”—
in particular k, ‖V1‖, . . . , ‖Vm!‖—may increase with the number of voters.) Thus using
Lenstra’s algorithm we can in polynomial time test whether the above set of constraints
can be satisfied by some legal si,j ’s. It is clear that these constraints can be satisfied if and
only if there is a bribery of at most k voters that leads to making p a winner. Also, note
that to make this program test whether p can become a unique winner we simply make the
inequalities in the final set of constraints strict.

The case ofmanipulation can be proved very similarly, only that we would have variables
si that would say how many of the manipulators decide to report preference order oi. We
omit the detailed description as it is clear given the above. ❑

The power of the integer programming approach is not limited to the case of scoring
protocols. In fact, the seminal paper of Bartholdi et al. (1989b) shows that applying this
method to computing the Dodgson score in nonsuccinct elections with a fixed number of
candidates yields a polynomial-time score algorithm (and though the paper of Bartholdi
et al., 1989b, did not address the issue of succinct elections, one can see that there too this
method works perfectly; that is, it is implicit from the “Lenstra” approach of the paper of
Bartholdi et al., 1989b, that Dodgson score for elections with a fixed number of candidates
is, even for the succinct case, in FPT, see also footnote 11).12 A similar program can be
used to compute the scores within Young elections. Let us recall the definition of both
Dodgson and Young scores.

Definition 5.3 Given a set of candidates C and a set of voters V specified via their prefer-
ences, the Dodgson score of a candidate c ∈ C is the minimum number of adjacent switches
within the preferences of voters that make c a Condorcet winner.

The Young score of a candidate c ∈ C is the minimum number of voters that need to be
removed from the elections to make c a Condorcet winner.

12. We mention in passing that some recent work responds to the theoretical complexity of Dodgson scores

from a different direction, namely, by studying the success rate of simple heuristics for the prob-

lem (McCabe-Dansted et al., 2008; Homan & Hemaspaandra, 2009).
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Applying the integer programming attack for the case of bribery within Dodgson-like
election systems, i.e., the Dodgson system and the Young system, is more complicated.
These systems involve a more intricate interaction between bribing the voters and then
changing their preferences. For Dodgson elections, after the bribery, we still need to worry
about the adjacent switches within voters’ preference lists that make a particular candidate
a Condorcet winner. For Young elections, we need to consider the voters being removed
from the elections. This interaction seems to be too complicated to be captured by an
integer linear program, but building on the flavor of the Bartholdi et al. (1989b) integer
programming attack we can achieve the following: Instead of making p a winner, we can
attempt to make p have at most a given Dodgson or Young score.

Formally, by DodgsonScore-bribery (and by its succinctly encoded variant,
DodgsonScore-succinct-bribery) we mean the problem that takes as input a Dodgson-
bribery instance (C, V, p, k) (with voters encoded succinctly in the succinct variant) and a
nonnegative integer t, and asks if it is possible to ensure—by bribing at most k voters—that
p’s Dodgson score is at most t. We define YoungScore-bribery and YoungScore-succinct-
bribery analogously.

Theorem 5.4 For each fixed number of candidates, DodgsonScore-{succinct}-bribery is in
P when restricted to that number of candidates.

Proof. Given a nonnegative integer t and a bribery problem instance E = (C, V, p, k)
for Dodgson elections, where C = {1, . . . ,m}, we will give an integer program that tests
whether it is possible to bribe at most k voters in such a way that, after the bribery, p has
Dodgson score at most t. Our program will have only a constant number of variables and a
constant number of constraints. Thus by Lenstra’s algorithm it can be solved in polynomial
time.

The process of bribery has, in the case of Dodgson elections, two phases: a bribery phase
in which we decide how to bribe voters, and a swapping phase in which we (in effect) allow at
most t adjacent swaps to occur. We will model the first phase with integer variables bi,j and
the second phase with integer variables si,j : For each i, j, 1 ≤ i, j ≤ m!, the interpretation
of bi,j and si,j is as follows.

bi,j – the number of voters with preference order oi who are bribed to report preference
order oj .

si,j – the number of voters who, after the bribery, change their preference order from oi to
oj .

The values bi,i say how many voters with preferences oi are not bribed. The values si,i
say how many voters with preferences oi do not change their preferences. We have these
variables bi,i and si,i as they make our equations neater.

Recall that the Dodgson score is the number of adjacent switches within preference lists
that are needed to make a given candidate a Condorcet winner. However, the variables si,j
talk about much more complicated operations, namely transfers from preference order oi to
preference order oj . For each i, j, 1 ≤ i, j ≤ m!, define a constant switches i,j which gives
the minimum number of adjacent switches that lead from preference order oi to preference
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order oj .13 For every preference order oi and every two candidates r and q we define
who(r, q, i) to be 1 if r strictly defeats q in the preference order oi and to be −1 otherwise.
who(r, r, i) = −1, but we will never invoke this fact. Our integer linear program has the
following constraints.

1. The number of bribes and switches has to be nonnegative. For each i, j, 1 ≤ i, j ≤ m!,
we have

bi,j ≥ 0, and
si,j ≥ 0.

2. We cannot bribe more voters than there are. For each i, 1 ≤ i ≤ m!, we require

m!∑
j=1

bi,j = ‖Vi‖.

3. Altogether, we can bribe at most k people.

m!∑
i=1

m!∑
j=1

bi,j −
m!∑
�=1

b�,� ≤ k.

4. The number of voters who switch from preference order oi in the swapping phase
needs to be equal to the number of voters who, after the bribery, had preference order
oi. For each i, 1 ≤ i ≤ m!,

m!∑
j=1

bj,i =
m!∑
k=1

si,k.

5. After the swapping phase, p is a Condorcet winner. For every q ∈ C − {p},
m!∑
i=1

m!∑
j=1

who(p, q , j ) · si,j > 0.

6. The swapping phase involves at most t adjacent switches within preference lists.

m!∑
i=1

m!∑
j=1

switches i,j · si,j ≤ t.

13. The astute reader will note that to seek to meet or beat a given score for p under a given amount of

bribery, one would never need to in the Dodgson score calculation invoke any exchanges that do anything

except move p ahead some number of slots. This is true, and thus rather than our (m!)2 variables si,j ,

one could define an integer linear program that replaced the si,j ’s with (m!)(m−1) variables that capture

just such shifting. We define things in the current more general way since the current approach removes

the dependence on a “we can get away with just shifts of this sort” argument of the type just made

(which would work fine here but might not hold in sharply different settings), and the current approach

also leads to quite simple, uncluttered constraint equations.
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Clearly, this program contains a constant number of variables and a constant number
of constraints. Thus in light of Lenstra’s algorithm the theorem is proven. ❑

Theorem 5.5 For each fixed number of candidates, YoungScore-{succinct}-bribery is in P
when restricted to that number of candidates.

Proof. The proof is very similar to the proof of Theorem 5.4. Let t be a nonnegative
integer and let E = (C, V, p, k) be a bribery instance where C = {1, . . . ,m}. We want to
provide an algorithm that tests whether it is possible to ensure that p has Young score at
most t by bribing at most k voters. We will do so by providing an integer linear program.

The workings of the integer linear program are be divided into two phases: the bribery
phase and the removal phase. The bribery is described by variables bi,j , 1 ≤ i, j ≤ m!,
which say how many voters with preferences oi are bribed to have preferences oj . The
removal is described by variables ri, 1 ≤ i ≤ m!, which say how many of the voters who
have preferences oi after the bribery are being removed. To enforce the above, we use the
following constraints:

1. The number of bribes and removals has to be nonnegative. For each i, j, 1 ≤ i, j ≤ m!,
we have

bi,j ≥ 0, and
ri ≥ 0.

2. We cannot bribe more voters than there are. For each i, 1 ≤ i ≤ m!, we have

m!∑
j=1

bi,j = ‖Vi‖.

3. Altogether, we can only bribe at most k people.

m!∑
i=1

m!∑
j=1

bi,j −
m!∑
�=1

b�,� ≤ k.

4. The number of voters with preference order oi who are removed from the election
during the removal phase has to be bounded by the number of voters who after the
bribery have preference order oi. For each i, 1 ≤ i ≤ m!, we have

ri ≤
m!∑
j=1

bj,i.

5. After the removal phase, p is a Condorcet winner. For every q ∈ C − {p},
m!∑
j=1

((
m!∑
i=1

bi,j

)
− rj

)
· who(p, q , j ) > 0.
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6. The removal phase removes at most t voters.

m!∑
i=1

ri ≤ t.

Clearly, there are a constant number of variables and constraints, so the integer linear
program can be solved using Lenstra’s algorithm in polynomial time. ❑

The above two theorems say that we can test in polynomial time whether a given bribe
suffices to obtain or beat a given Dodgson or Young score. Thus using binary search we
can in fact find the optimal bribe for obtaining a particular score.

The issue of actually making a candidate p a winner (a unique winner, if we are studying
the unique winner case) of Dodgson elections is, as already indicated, much more difficult
and a direct attack using integer linear programming seems to fail. Nonetheless, combining
the integer programming method with a brute-force algorithm resolves the issue for the
nonsuccinct case.

Theorem 5.6 For each fixed number of candidates, Dodgson-bribery, Dodgson-$bribery,
Young-bribery, and Young-$bribery are all in P.

Proof. As in Theorem 4.13, there are only polynomially many briberies we need to check.
For each of them we test whether our favorite candidate becomes a winner, using Bartholdi
et al.’s (1989b) integer linear program for Dodgson score-testing or a similar one for Young
score-testing. ❑

The above discussions of bribery with respect to Dodgson elections lead to an observation
that a small change in the voting system does allow us to resolve a natural bribery-related
winner problem. Note that bribes allow us to completely change a given voter’s preference
list—and this goes far beyond the switches allowed by Dodgson score-counting. It is inter-
esting to observe that one can define a Dodgson-like voting system based on bribes: Instead
of counting how many switches are needed to make a given candidate the Condorcet winner,
we count how many bribes (where each bribe is a complete overwrite, at unit cost, of one
voter’s preference list) suffice to guarantee such an outcome. We call this election system
Dodgson′. By the above comments, for a fixed number of candidates computing winners of
Dodgson′ elections can be done in polynomial time.

Theorem 5.7 For each fixed number of candidates, the winner problem for succinct
Dodgson′ elections is in P.

Proof. This follows immediately from Theorem 5.4. For each candidate c we simply need
to binary search for the smallest bribe that makes him or her a Condorcet winner (i.e.,
gives c Dodgson score zero). The winners are those candidates for whom the least number
of bribes is needed. ❑

Clearly, like Dodgson, Dodgson′ elects the Condorcet winner whenever one exists.
Theorem 5.7 shows that for each fixed number of candidates the winner problem in succinct
Dodgson′ elections is in P, and just before Definition 5.3 we noted that the same holds
for succinct Dodgson elections. As to which is more attractive, that will depend on what
one feels the more natural model is for counting distance—counting each adjacent switch
or counting each voter who had any change. In settings in which the latter seems more
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attractive, of course Dodgson′ seems preferable to Dodgson. Nonetheless, before jumping
on any Dodgson′ bandwagon, one should probably first carefully study the properties of
the new election system. Note that even though computing Dodgson′ winners for a fixed
number of candidates is a polynomial-time procedure, this does not immediately imply that
the bribery problem is easy for Dodgson′, and we conjecture that it is not.

In light of the above discussion, itmight seem that for Dodgson-like election rules getting
polynomial-time bribery results (in the succinct model) is very difficult using integer linear
programming. However, this is not always the case. In particular, the following theorem
states that bribery in the Kemeny system is easy if we fix the number of candidates. Recall
that a candidate c is a winner of the Kemeny elections if there exists a preference order oh
that lists c on top and that “agrees” most strongly with the votes. (See Section 2.1.)

Theorem 5.8 For each fixed number of candidates, Kemeny-{succinct}-bribery is in P
when restricted to that number of candidates.

Proof. The proof employs integer linear programming, but this time we need more than
just one program. Very informally put, this is because integer linear programs seemingly
can express only conjunctions, but not disjunctions, and in the case of Kemeny elections
we need to express the fact that at least one of the preference orders that lists our favorite
candidate on top disagrees with the least number of voters’ preferences.14

Let E = (C, V, p, k) be a bribery instance for Kemeny elections, where C = {1, . . . ,m}.
For each preference order oh, 1 ≤ h ≤ m!, such that p is the top candidate in oh, we construct
a separate integer linear program that has a feasible solution if and only if there is a bribery
of at most k candidates after which oh is an ordering that maximizes (compared against all
other orders) the number of agreements with voters’ reported preferences. By agreei,j we
mean the number of agreements between preference orders oi and oj (see Section 2.1).

Let us consider an arbitrary h such that p is the top candidate in preference order oh.
We describe the bribery using variables bi,j , 1 ≤ i, j ≤ m!, each saying how many voters
with preference order oi are bribed to have preference order oj . We employ the following
constraints.

1. The number of bribes has to be nonnegative. For each i, j, 1 ≤ i, j ≤ m!, we have

bi,j ≥ 0.

2. We cannot bribe more voters than there are. For each i, 1 ≤ i ≤ m!,

m!∑
j=1

bi,j = ‖Vi‖.

3. Altogether, we can only bribe at most k people.

m!∑
i=1

m!∑
j=1

bi,j −
m!∑
�=1

b�,� ≤ k.

14. A natural way of expressing this disjunction within a single integer program is to use boolean variables

indicating which preference order we are concentrating on. However, this leads to an integer quadratic
program.
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election system E
bribery problem plurality approval veto

E-bribery P NP-complete P

E-$bribery P NP-complete P (Faliszewski, 2008)

E-weightedunary-$bribery P NP-complete NP-complete (Brelsford et al., 2008)

E-weighted-bribery P NP-complete NP-complete

E-weighted-$briberyunary P NP-complete NP-complete

E-weighted-$bribery NP-complete NP-complete NP-complete

Table 1: The complexity of bribery in plurality, approval, and veto (in the setting where
the number of candidates is not bounded). The results attributed to the work
of Brelsford et al. (2008) and Faliszewski (2008) follow via simple arguments from
results in those papers.

4. Each preference order o� disagrees with voters’ preferences at least as many times as
oh. For each �, 1 ≤ � ≤ m!, we have

m!∑
i=1

agreei,h

⎛
⎝ m!∑
j=1

bj,i

⎞
⎠ ≥ m!∑

i=1

agreei,�

⎛
⎝ m!∑
j=1

bj,i

⎞
⎠ .

Clearly, each such integer program has a constant number of constraints and a constant
number of variables. Thus each can be solved separately, using Lenstra’s algorithm, in
polynomial time. And since there are just a constant number—m!—of such integer linear
programs regarding a given input, by m! applications of Lenstra’s algorithm we can solve
all of them. If any one of them has a feasible solution then bribery is possible and otherwise
it is not. ❑

It is interesting to consider which features of Kemeny elections allow us to employ the
above attack, given that the same approach does not seem to work for either Dodgson or
Young elections. One of the reasons is that the universal quantification implicit in Dodgson
and Young elections is over an exponentially large search space, but the quantification in
Kemeny is, in the case of a fixed candidate set, over a fixed number of options.

6. Conclusions

Our paper provides a study of bribery with respect to plurality rule and provides tools and
results regarding many other election systems, such as scoring protocols, approval voting,
and Condorcet-winner based elections. Bribery seems as important an issue as manipula-
tion and control; our paper addresses this gap in our knowledge about the complexity of
voting systems. Tables 1 and 2 collect some of the main results of this paper regarding
the complexity of bribery in scoring protocols and related election systems. (However, of
course, the paper contains many other results which cannot easily be presented in a form
of a table, e.g., Theorem 4.19 and most of the results of Section 5.)

One of the important contributions of this paper is pointing out, by concrete examples,
that NP-completeness results may not guarantee the difficulty of the most natural problem
instances. In particular, Theorem 3.2 says that plurality-weighted-$bribery is NP-complete,
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Scoring protocol α = (α1, . . . , αm).

α1 > α2 and not true that

bribery problem α1 = · · · = αm α2 = · · · = αm α2 = · · · = αm

α-bribery P P P

α-$bribery P P P

α-weightedunary-$bribery P P P

α-weighted-bribery P P NP-complete

α-weighted-$briberyunary P P NP-complete

α-weighted-$bribery P NP-complete NP-complete

Table 2: The complexity of bribery within scoring protocols.

but Theorem 3.8 observes that if either the weights or the prices are small enough, the
problem can be solved efficiently.

Another contribution of this paper is to relatemanipulation and bribery, thusmaking re-
sult transfer from the former to the latter a reasonable line of attack—and one that is already
exploited in spirit in the proof approach of our central dichotomy result (Theorem 4.9).

As to suggested future work, we believe that studying approximation algorithms for
control (by voter/candidate addition/deletion) and bribery problems currently known to be
NP-complete would be an attractive next step and we point the reader to the recent papers
regarding approximation for manipulation, bribery, and control (Brelsford, 2007; Brelsford
et al., 2008; Faliszewski, 2008; Zuckerman et al., 2008). It would also be interesting to study
the complexity of bribery in other settings, such as with incomplete information, multiple
competing bribers, or more complicated bribe structures (see the work of Faliszewski, 2008,
for preliminary results on bribery with more involved pricing schemes).
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