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Abstract. We investigate the complexity of half-space range searching: given n points 
in d-space, build a data structure that allows us to determine efficiently how many 
points lie in a query half-space. We establish a tradeoff between the storage m and 
the worst-case query time t in the Fredman/Yao arithmetic model of computation. 
We show that t must be at least on the order of 

(n/log n) 1 - ~ -  1~/~(~ +,  
mt/a 

Although the bound is unlikely to be optimal, it falls reasonably close to the recent 
upper bound of O(n/m TM) established by Matou~ek. We also show that it is possible 
to devise a sequence of n inserts and half-space range queries that require a total 
time of n 2-~ Our results imply the first nontrivial lower bounds for spherical 
range searching in any fixed dimension. For example, they show that, with linear 
storage, circular range queries in the plane require f~(n 1/3) time (modulo a logarithmic 
factor). 

1. Introduction 

A considerable amount of attention has been given to simplex range searching in 
the last few years [1], [4]-[13], [16], [19], [21], [22], [26], [27], [29]. This is the 
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problem of preprocessing a set P of n points in Euclidean d-space so that, given 
an arbitrary "query" simplex s, which points lie in s can be found efficiently. The 
problem comes under various guises, depending on whether it is wished to 
enumerate the points or simply count them. All these variants can be unified into 
a common formulation by attaching weights to the points and endowing the 
weights with a semigroup structure [31 [4], [15], [16], [28]. 

If m is the amount of storage, a lower bound on the query time of ~(n/ml/2), 
if d = 2, and D.((n/log n)/ml/'~, if d > 2, was established by Chazelle [4] in the 
arithmetic model of computation. The model, which is due to Fredman and Yao 
[3], [15], [16], [28], is general enough to encompass all known algorithms for 
the counting problem. Later, Chazelle et al. [9] provided a quasi-matching upper 
bound (up to within a factor of n ', for any fixed ~ > 0). More recently, Matou~ek 
[22] lowered the multiplicative factor to polylogarithmic. It thus appears that--at  
least theoretically--simplex range searching is a solved problem. 

However ,  what happens if we restrict the query simplex to be a half-space'? 
(Note that any simplex large enough acts as a half-space with respect to the n 
points.) Half-space range searching, as the problem is known, is particularly 
interesting because, as was observed in [29], just about any form of algebraic 
range searching can be "lifted" into such a problem. All kinds of intriguing 
questions immediately arise. If we insist on reporting the points, then the half-space 
problem is considerably easier than the simplex version. For example, if we wish 
to achieve optimal query time, the former can be solved using only O(n La/2j§ 
space, for any fixed e > 0 E11], [21]. By contrast, simplex range reporting provably 
requires t)(n d-~) storage (on a pointer machine) [8]. 

In the counting version of the problem, however, no one has yet been able to 
take (significant) advantage of the fact that a half-space is a restricted form of 
simplex to derive a faster algorithm. Indeed, the upper bound of O(n/m TM) for 
half-space range searching established by Matou~ek [22] is only a polylogarithmic 
improvement over the best bound for simplex range searching. This suggests that 
the two problems might have similar intrinsic complexity, but unfortunately no 
lower bound has been established for half-space range searching. This paper 
partially fills this gap by establishing a lower bound, which although nonoptimal, 
is probably not too far from the truth (at least in higher dimensions). We prove 
that if m units of storage are available, then the worst-case query time must be 
on the order of 

(n/log n) 1 -(d- X)/d(a + ~) 

ml/a 

which is 

n I -(I/d)-O(1/d 2) 

mild 

We also show that it is possible to devise a sequence of n inserts and half-space 
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range queries, so that, starting with the empty set, carrying out the sequence of 
operations on-line requires time proportional to 

n 2 - (3d+ 1)/(d+ 1) 2 

(log n) (a~+ 1)/(a+ 1)2, 

which is n 2-~ The only related result previously known is for the two- 
dimensional case and requires deletions as well as insertions: it was shown by 
Fredman [16-] that a mixed sequence of insertions, deletions, and queries takes 
~(n '*/3) time in the worst case. It is interesting to notice that because half-spaces 
are special cases of d-balls, our lower bounds hold for spherical range searching 
in any fixed dimension. For example, we derive that, with linear storage, circular 
range queries in the plane require ~"2(n 1/3) time (modulo a logarithmic factor). 

A close examination of the lower bound proof for simplex range searching given 
in [4] shows that although some tools can be salvaged, the basic technique cannot 
be extended to the half-space case and new ideas are needed. Let us briefly outline 
our line of attack in an informal, intuitive fashion. 

In the arithmetic model of computation, we can think of each point p~ e P as 
a variable xl ,  and a query r as a linear form ~,iEa,) x~, where J(z)  = {i: Ple  r}. The 
data structure can be modeled as a collection of m precomputed linear forms called 
generators, gl  . . . . .  gin. The time t to answer a query z is given by the smallest 
number of generators needed to express the linear form associated with z, i.e., the 
smallest subset {gi,, . . . .  g~,}, such that 

Xi = O~lgi, + " . .  q- ~tgi t  
ieJr 

for integral ct i > 0. 
Consider the bipartite graph G = (V, W, E), where V is the set of variables, W 

is the set of linear forms associated with all possible queries, and the edges of E 
connect the variables to the linear forms in W where they appear. The starting 
point of the lower-bound proof for simplex range searching [4] is the observation 
that efficient query-answering is related to the existence of large complete bipartite 
subgraphs (c.b.s) in G, where "large" refers to the number of edges in the c.b.s. 
Proving that G does not have any large c.b.s, immediately implies a lower bound 
on the maximum value of t as a function of m. To prove the absence of large c.b.s., 
a geometric analog of the graph is built (whereby generators map to certain convex 
polytopes) and the problem reduces to proving an isoperimetric inequality in 
integral geometry. 

The trouble in pursuing this line of attack is that in the case of half-space range 
searching the graph G does have very large c.b.s., so that the basic approach is 
doomed. We go around this difficulty by using the following trick: we weight each 
edge (xi, z) of the graph as a function of how far the point Pl lies from the boundary 
of the half-space z. The intuition behind this weighting strategy is that what makes 
a query hard are the points near the boundary and not so much those squarely 
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in the middle. Our lucky break is that it is precisely the points in the middle that 
create large c.b.s. Indeed, with an appropriate weighting function designed to 
emphasize the points near the boundary we can make all large (weighted) c.b.s. 
magically disappear. To prove this we must establish a more complex isoperimetric 
inequality than the one proven in [4]. This is done by using some of the same 
integral-geometric tools, as well as a useful geometric fact of independent interest, 
which we call the slicing lemma: it asserts that a compact convex body can be 
peeled into few chunks, so that any big enough slice of the body fully contains at 
least one chunk of roughly the same volume. 

2. Preliminaries 

In this section we briefly review the arithmetic model of computation. We 
introduce our notation and present useful facts from discrepancy theory and 
integral geometry. Finally, we state and prove the slicing lemma. Throughout this 
paper we assume that d > 1. 

2.1. The Model o f  Computation 

Let (S, +)  be a faithful commutative semigroup; recall that a semigroup is called 
faithful [28] if any two identically equal linear forms have the same set of variables. 
Let P = {pl . . . . .  p.} be a set of n points in [0, 1] d, and let w (the weight function) 
be an assignment of each point Pl to a semigroup value in S. We define a function 
answ mapping half-spaces z to S: 

answ(z)= ~ w(p). 
pEP~ ,  

Let xl . . . . .  x. be n variables over S. A generator g(xa . . . . .  x.) is a linear form 
~a ~ .  ~qx~, where the 0q's are nonnegative integers. A storage scheme F of size m 
is a collection of m generators {ga . . . . .  g.,} satisfying the following property: for 
any closed half-space z (P n z # ~) ,  there exist J ~_ [1. . .  m] and a set of labeled 
integers {fli > 0]i e J} such that the relation 

answ(z) = ~ flig,(w(pl) . . . . .  w(p.)) 
ieJ  

holds for any weight function w over P. The size of the smallest such J is the 
query time for z. Note that a storage scheme can be dependent on the particular 
semigroup under consideration and also take advantage of any property which P 
may enjoy: however, it must hold for any assignment of semigroup values to P. 

Given a linear form ~1 ~-~. cqs~, the set of points {p~laq # 0} is called its cluster. 
Let Ca, . . . ,  Cm be the clusters associated with the generators of the storage scheme. 
Given any closed half-space ~, let A, be the smallest set of indices such that 
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P n ~ = Ui~a~ ci .  it is shown in [4] that, given P and m units of storage, the 
worst-case query time is at least equal to the minimum,  over all set-systems 
C1, . . . ,  Cm, of max~lA,l. 

2.2. Three Geometric Lemmas  

We need to build a number  of technical tools. First, by relying on a r andom input 
distribution we are able to relate the number  of  input points  in a given query to 
its volume. This allows us to approximate  a discrete measure by a cont inuous one 
and thereby open the door  to an analytical attack. Next,  we introduce a well- 
behaved probabi l i ty  measure  over the set of queries and estimate the probabi l i ty  
that a r andom query contains a convex body of fixed volume. Finally, we prove 
the slicing l emma ment ioned earlier. 

Let P be a set of n points in [0, 1] a and let vol denote the Lebesgue measure  
over E a. We say that  P is scattered if, given any convex set C ___ [0, 1] a, 

1 
- n v o l  C -  l o g  n < I P n C I < an vol C + l o g  n 
a 

for some constant  a > 1 that  depends only on d. 

Lemma 2.1. A random set o f  n points chosen uniformly and independently in [0, 1] a 
is scattered with probability 1 - o(I). 

Proof. It  is shown in [4] that, with probabil i ty at least 1 - 1/n, every convex set 
C __ [0, 1] d satisfies [P n CI < an vol C + log n. We establish the other  inequality 
by using the following well-known result: 

Lemma 2.2. Given any 0 < p < 1, there exists a collection o f  m < a t /p  ~2 convex 
bodies K1 . . . . .  Kin, where al, a2 are positive constants that depend only on d, such 
that any convex set K ~_ [0, lId of  volume p encloses some K i, where vol K i 

> (l/a2) vol K. 

Proof. A straightforward variat ion of the proof  of L e m m a  4.8 [4]. [ ]  

Set p = aa(log n)/n, where a a is some appropr ia te  constant.  We can assume that, 
for all i, K s ~_ [0, 1] d and vol K i > p/a z. By Chernofrs  bound [251 we know that, 
for small enough e > 0 and any fixed i, 

P r o b [ I P  n K/I < n(vol KiX1 - e)] < exp( - �89  vol Ks). 

Set e = 1 - -  a2/a3; by choosing a 3 large enough, we verify that  

P r o b [ I P  n Kil < log n] < 1 - p~2+ 1. 
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Therefore, with probability 1 - o(1), each K i contains at least log n points of P, 
and therefore, by Lemma 2.2, this is also true of any convex body in [0, 1] d of 
volume p. By cutting up any bigger convex body into convex slices of volume p 
or less, we complete the proof of Lemma 2.1. [] 

Next, we define a probability measure over the set of queries. Let ~ § be the 
set of half-spaces of the form r(q) = {p E Ed: (p,  q) < Iq12}, where q ~ Ed\{O}. We 
denote by ~*g'- the set of half-spaces obtained by reversing the inequality, i.e., 
setting (p,  q) > Iql 2. We can define a differential structure over ~ +  and ,~a- that 
is invariant under isometrics [4], [24]. The differential volume element is uniquely 
defined (up to scaling) as 

d r = d x  t A ' " A d x a  

Iqla-I 

where q = (xl . . . . .  xd). Given T e oafr and ~t > 0, let r[~t] be the slab obtained by 
slicing a sliver of width at off the boundary of z. Specifically, r[~] is the set of 
points p satisfying 

The key inequality below relates the volume of a convex body with the probability 
that a random slab z[0t] encloses it. 

Lemma 2.3 [4]. Given any compact convex body K ~ [0, 1] a, we have 

vol K x f ,  dr < b0~ + 1, 
[~]-~g 

where b is a constant that depends only on d. 

We close this section with the slicing lemma. This is a useful tool in the spirit 
of Lemma 2.2. It allows us to break up a big cluster into a small number of pieces 
that collectively account for the entire action of the cluster near the boundary of 
a query half-space. 

Lemma 2.4. Given a compact convex body K c E a of unit volume and 0 < t < 
1/(2d) 2d, there exists a collection of at most c(1/~) 1-2/(d+1) convex bodies, KI, 
K2 . . . .  c K, satisfyino the following condition: for any half-space z ~ ~qP- with 
vol(K c~ z) > ~, there exists K s ~_ K n r such that 

1 
vol Ks > ~ voI(K n z). 

(oa)-- 

The constant c depends only on d. 
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Given a compact  convex body K _ E d, a point x e K, and a real number  2, we 
call the set 

M(x, 2) = x + 2{(K - x) n (x - K)} 

a Macbeath region [20]. Obviously, 

Mfx, 2) _~ M(x, 2') 

for all 0 < 2 < 2' and 

vol M(x, 2) = ~ vol M(x, 2'). 

We need two additional properties of Macbeath  regions. The first one is a variation 
of Lemma 1 1-14] while the second one is derived from Lemma 2 [143. 

Lemma 2.5. I f  M(x, 8) n M(y, ~) # ~2~ for some x, y ~ K, then M(x, 8) ~- M(y, 1). 

Proof. As M(x, 8) n M(y, 8) ~ ~ ,  there is a point z in this set that can be written 
in the form 

z = x + ~(kl - x) = y + ~ ( y -  k2) 

for some kl, k 2 e K. Thus, 

x = ~ y - ~ k ,  +k2).  

We have to show that every point v eM(x ,  8) belongs to the set M(y, 1 ) =  
K n (2y -- K). Obviously, 

v e M(x, 8) ~- M(x, 1) ~ K. 

On the other  hand, v can be written in the form v = x + (x - k3)/5 for some k 3 e K. 
It follows that 

6 1 6 3  v = ~x -- sk 3 = ~(2y - �88 - �88 - -  8ka = 2y - (BY + ~ k l  + i~ok2 + 8k3) e 2y - K, 

by convexity of  K. [ ]  

Lemam 2.6. Let K c E d be a compact convex body containing the ball B(O, r) of 
radius r centered at the origin. Let z be a half-space not containing the origin and 
assume that the distance between tg~ and one of the supporting hyperplanes of K 
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parallel to c3z is at most r/3. Then 

K c~ z ~_ M(c, 3d), 

where c is the center of gravity of the section K n dr. 

Proof. The s ta tement  of L e m m a  2 [14] is identical, except that  it requires that 
z should not cut B(O, r), and that  one of the suppor t ing  hyperplanes  of K parallel 
to c3~ should be within distance r/2 f rom c3z. We notice that  under our  assumptions 
K contains the ball B(O, 2r/3) and z does not  cut this ball, so that  our  claim is 
identical to L e m m a  2 [14], with r replaced by 2r/3. [] 

It is well known that, by using a volume-preserving affine t ransformat ion  of 
E~, any compac t  convex body  K can be brought  into a form such that  it contains 
a ball of  radius r and is contained in a concentric ball of radius R with R < dr 
(see, e.g., [18-]). F r o m  now on we always assume that  B(O, r) ~_ K ~ B(O, R), with 
R = dr and vol K = 1. 

Given any e > 0, let K~ denote the set of all points  of K not contained in any 
half-space z e ~ -  such that  vol(K c~ z) = ~. The  set K~ is usually called a floating 
body. With these conventions,  we can easily prove  the following statement,  which 
is a s trengthening of Theorem 6 f rom [2]. 

Lemma 2.7. For any e < 1/(2d) 2d there exist pairwise disjoint Macbeath regions 
M(xl, ~) ~- K\K~, such that 

(i) (30d)-de < vol M(xi, ~) < ~ for all i, and 
(ii) any half-space z ~ ~,~- with vol(K c~ r) > e fully contains at least one of the 

regions M(xi, ~). 

Proof. The assertion is obviously true for d = 1, so let us assume that  d > 2. 
Assume that  x l  . . . . .  xj have already been determined so that  (i) holds but  (ii) does 
not. Then there exists a half-space �9 e ~ -  such that  vol(K n z) = e, but  M(xi, �89 
K c~ z, for all i < j. Let ho -~ �9 denote  a hyperplane  parallel to 8z and support ing 
K at some point  c o. 

Observe  that  the distance between ~ and h o is at mos t  r/3. Otherwise, 

voI(K n ~) ~ vol((conv{B(O, r) u Co}) r~ z), 

and therefore, using COd to denote  the volume of the unit d-ball, and using the fact 
that  co d _< (4/3)dcod_ 1, 

v o l ( g  n ~)> \Rf\fr/3"~d(Rrd-l~cod-l~d ,/ : ( ~ )  2d-1 (Rdcod) ( ~_d13~,~.COd_____- / 

_> C~ _> (2d)-zd > e, 
3adzaco d 
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contradicting our  assumption.  Therefore, we can apply L e m m a  2.6 to derive that  
K c~ z ~ M(c, 3d), where c is the center of gravity of K n t3z. 

Letting y = (c + Co)/2, since y lies halfway between c3z and ho, we have 

M(y,  �89 c_ M(y ,  1) ~ K n z. 

On the other hand, M(y,  1) ~ M(c, �89 + (y - c). Thus, 

1 1 1 
e > vol M(y,  �89 = ~ vol M(y,  1) > 5~ vol M(c, �89 - (30d)a 

1 1 
_> . .~ ~. vol(K n z ) =  ~ e. 

(.~oa)- tJoar 

- - -  v o l  M(c, 3d) 

We claim that  M(x  i, �89 M(y , -~)= ~ for all i < j .  Assuming the opposite, 
Lemma 2.5 would imply that  M(xl ,  ~) c M(y ,  1) c K ~ z, which contradicts the 
choice of  z. So we can set x j+ 1 = Y and repeat  the whole procedure,  if necessary. 
The algori thm will terminate in finitely m a n y  steps. []  

We need the following well-known relation [2], [17]: 

Lemma 2.8. There exists a constant c a > 0 such that, for any compact convex body 
K c E a of  unit volume, and for any e > O, 

vol (K\K, )  < Cd,S 2/(d+ 1). 

In fact, it is also known that  vol(K\K~) attains its m a x i m u m  for ellipsoids. 
However,  we do not  need this s tronger assertion. Now,  apply L e m m a  2.7 with 
ej = 2Je for 0 < j  < log(e-X(2d)-2a). In view of L e m m a  2.8, for e a c h j  we obtain a 
collection of at most  

v o l ( K \ K , )  Cd(3Od)n(1/e) 1- 2/~d+1~ 

ej/(3OcOa < 20-2/~a+l))j 

Macbeath  regions, and the union of these collections meets the requirements. In 
particular, for any T e ~ -  such that  vol(K c~ z) > e we can choose j so that  

ej _< vol(K n z) < 2(2d)2dej, 

and, hence, we can find a Macbea th  region M(xi,  ~) c K n z in the corresponding 
collection with 

ej 
vol M(xi,  �89 >_ ~ >_ 

(~uaj- 

1 1 
vol(K n z) > ~ vol(K n z). 

2(2d) 2d(30d)d toa)-- 

This completes  the p roof  of L e m m a  2.4. [ ]  
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3. The Lower Bound 

Let P be a scattered set of n points in 1-0, 1] d. Assume that C~ . . . . .  Cm are the m 
clusters derived from the storage scheme and that any query can be answered in 
time at most t. Recall that given a query half-space z E ~ + ,  A, is a minimum set 
of indices such that P n z = U~eA, C~ and that t > max, lA, I. Let ~ = c~(t log n)/n 
be a real parameter,  where c~ > 0 is some appropriate constant. Given a query z, 
our weighting strategy is meant to filter out any point of ~ further from the 
bounding hyperplane by more than ~. To do that, we clip the query by zl-~]. 
We restrict ourselves to the subset ~ of half-spaces ~ = ~(q)~ oaff § such that 
q e (0, + oo) s and IP n ~[~]1 > 3at log n. (Recall that a is the constant implicit in 
Lemma 2.1.) Let 

t "  
O = / I P n "r[~] I dz. 

J ~  

We easily derive a lower bound on �9 by virtue of the fact that P is scattered. On 
the other hand, the ability of answering any query in time t implies an upper 
bound on O. The desired space-time tradeoff follows from these two bounds. 

Since we can assume that t does not exceed, say, n/log 2 n, we easily check that 
(for n large enough) the measure of the set of ~[~] (z = ~(q) e ~ +  and q e (0, + ~)d) 
whose intersection with the unit cube has volume exceeding c 2 ~ is at least c2, for 
some small enough constant c2 > 0. Because P is scattered, it follows that if 
cl > 6a2/c2, then the measure of ~ d -  is at least c 2, and hence 

�9 > 3ac2t log n. (3.1) 

We now need an upper bound on O. Let A~ + be the set of indices i e A, such 
that I Ci n T[~]I > 2a log n. Since t > I A ,  I for any �9 e ~ and 

P n ~[~] = U C, n ~[~], 
i e A ~  

we have 

l e n ~[~]1 -< ~ I Ci n rl-~]l -< 3 ~ I C, n ~[~31. 
feAT i c A  + 

It  follows that 

0 < 3 f ~  ~ I C i n x [ ~ ' ] l d ~ 3  ~ fA I C / n z [ 0 0 l d z ,  
+ l e a  + l ~ i < m  t 

where the integration domain A i is {z e J ~ :  I Ci n z[~]l > 2a log n}. Because P is 
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scattered and Ci _ P, we have 

r ~', f , ( a n v o l B ~ + l o g n )  dz<6a ~ fAnvolB,~z) dz, (3.2) 
l < i ~ m  i l <_i<_m j 

where Bi(z ) = conv(Ci) n zl-~-] is the por t ion of the convex hull of Ci within ff~].  
Let i 0 be the index i that  maximizes the r ightmost  summand,  and let 

1 log n 
/3-- 

a(2d) 2d n 

Since P is scattered, we have 

e e I < < 
vol(conv C o - vol Be(z ) (2d) 2d' 

and therefore we can apply L e m m a  2.4 to conv C e. This gives a collection of at 
most c(1/e) 1-2/(d+ 1) convex bodies, K1, K2 . . . .  _ c o n v  C e, such that  

f~  n vol Be(z ) dz < (6d) 3d 1~ " ; r  n vol K j dr. 

It follows f rom L e m m a  2.3 that  

fA ( 1 )  1-2/(d+ 1) 
n vol Be(z ) dz < bc(6d) ad ~ no~d+ 1, 

io 

and f rom (3.2) that  

< 6abc(6d)3d/l'xl 
~ 2 ~ d  �9 1) 

~ )  mned+ 1. 

Combining this inequality with (3.1) establishes the following. 

Theorem 3.1. Half-space range searching among n points in E d, using m units of 
storage, requires query time on the order of 

(n/log n) 1 - ~ -  1)/d(d + 1) 

m l / d  

Note  that  the same lower bound  holds for spherical range searching, since a 
large ball acts as a half-space. We also derive a lower bound for the dynamic  
on-line case. 
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T h e o r e m  3.2. There exists a sequence of n inserts followed by n half-space range 
searchinff queries in E d whose execution requires time on the order of 

n2 -(3d+ 1)/(d+ 1) 2 

( log  n) (a~+ 1)/(d+ 1) 2 ' 

which is n 2-O(1/a). 

Proof Insert the n points that provide the input for Theorem 3.1, then keep 
asking the hardest query n times. Notice that although any amount of reorganiza- 
tion in the data structure is allowed between queries, no new query may be asked 
until the answer to the previous one has been provided. The maximum size of the 
data structure at any stage is at most proportional to the time t required to process 
the whole sequence. Therefore, the hardest query requires time proportional to 

(n/log n) 1 - ( a -  1)~aid+ I) 

tl/a 

Thus, up to within a constant factor the following inequality holds, 

t >  
n(n/ log  n) 1 - ( d -  1)/d(d+ 1) 

tl/d 

from which the theorem follows. []  
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