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Abstract

The set of T cells that express the same T cell receptor (TCR) sequence represent a T cell clone. The number of
different naive T cell clones in an organism reflects the number of different T cell receptors (TCRs) arising from
recombination of the V(D)J gene segments during T cell development in the thymus. TCR diversity and more
specifically, the clone abundance distribution is an important factor in immune function. Specific recombination
patterns occur more frequently than others while subsequent interactions between TCRs and self-antigens are
known to trigger proliferation and sustain naive T cell survival. These processes are TCR-dependent, leading
to clone-dependent thymic export and naive T cell proliferation rates. Using a mean-field approximation to
the solution of a regulated birth-death-immigration model, we systematically quantify how TCR-dependent
heterogeneities in immigration and proliferation rates affect the shape of clone abundance distributions (the
number of different clones that are represented by a specific number of cells). By comparing predicted clone
abundances derived from our heterogeneous birth-death-immigration model with experimentally sampled clone
abundances, we quantify the heterogeneity necessary to generate the observed abundances. Our findings indicate
that heterogeneity in proliferation rates is more likely the mechanism underlying the observed clone abundance
distributions than heterogeneity in immigration rates.

Author Summary

The abundance distribution of different T cell receptors (TCRs) expressed on naive T cells depends on their
rates of thymic output, homeostatic proliferation, and death. However, measured TCR count distributions
do not match, even qualitatively, those predicted from a multiclone birth death-immigration process when
constant birth, death, and immigration rates are used (a neutral model). We show how non-neutrality in the
birth-death-immigration process, where naive T cells with different TCRs are produced and proliferate with
a distribution of rates shape the predicted sampled clone abundance distributions (the clone counts). Using
physiological parameters, we find that heterogeneity in proliferation rates, and not in thymic output rates, is the
main determinant in generating the observed clone counts. These findings are consistent with proliferation-driven
maintenance of the T cell population in humans.

Introduction

Naive T cells play a fundamental role in the immune system’s response to pathogens, tumors, and other infectious
agents. These cells are produced in the thymus, circulate through the blood, and migrate to the lymph nodes
where they may be presented with different antigen proteins from various pathogens. Naive T cells mature in
the thymus where the so-called V, D, and J segments of genes that code T cell receptors undergo rearrangement.
Most T cell receptors (TCRs) are comprised of an alpha chain and a beta chain that are formed after VJ segment
and VDJ segment recombination, respectively. The number of possible TCR gene sequences is extremely large,
but while recombination is a nearly random process, not all TCRs are formed with the same probability. Before
export to the periphery, T cells undergo a selection process, during which T cells with TCRs that react to self
proteins are eliminated.
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The unique receptors expressed on the cell surface of circulating TCRs enable them to recognize specific
antigens; well known examples include the naive forms of helper T cells (CD4+) and cytotoxic T cells (CD8+).
The set of naive T cells that express the same TCR are said to belong to the same T cell clone. Upon encountering
the antigens that activate their TCRs, naive T cells turn into effector cells that assist in eliminating infected
cells. Effector cells die after pathogen clearance, but some develop into memory T cells. Because of the large
space of unknown pathogens, TCR clonal diversity is a key attribute in mounting an effective immune response.
Recent studies also reveal that human TCR clonal diversity is implicated in healthy ageing, neonatal immunity,
vaccination response and T cell reconstitution following haematopoietic stem cell transplantation [1, 2]. Despite
the central role of the naive T cell pool in host defense, and broadly speaking in health and disease, TCR
diversity is difficult to quantify. For example, the human body is known to host a large repertoire of T cell
clones, however the actual distribution of clone sizes is not precisely known [3]. Only recently have experimental
and theoretical efforts been devoted to understanding the mechanistic origins of TCR diversity [4–9]. The goal
of this work is to formulate a realistic mathematical model that includes heterogeneous naive T cell generation
and reproduction rates and that we will use to describe recent experimental results.

A well-established way to describe the T cell repertoire is by determining the clone abundance distribution
or “clone count” ĉk (for k ≥ 1) that measures the number of distinct clones represented by exactly k T cells:
ĉk ≡

∑∞
i=1 1(ni, k), where ni is the discrete number of T cells carrying TCR i. This distribution captures the

entire pattern of the clonal populations. Several summary indices for T cell diversity such as Shannon’s entropy,
Simpson’s index, or the whole population richness can be deduced from the distribution ĉk [10]. Note that ĉk
counts only the number of clones of a specific population k and does not carry any TCR sequence or identity
information.

Complete clone counts ĉk are difficult to measure in humans due to the large number of naive T cells (the
total number of naive T cells is N ∼ 1011 [11]). Nonetheless, high-throughput DNA sequencing on samples
of peripheral blood containing T cells [12–15] have provided some insight into TCR diversity. A commonly
observed feature is that all experimentally measured realizations of the clone counts ĉk exhibit a power-law
distribution in the clone abundance k [3, 4, 16–18]. Several authors have introduced stochastic models to explain
the power law [4–7]. One of the proposed mechanisms is that T cells in different clones have TCRs that have
different affinities for self-ligands that are necessary for peripheral proliferation [4–6], leading to clone specific
replication rates. An alternative hypothesis [7] is that specific TCR sequences are more likely to arise in the
V(D)J recombination process in the thymus [19] leading to a higher probability that these TCRs are produced.
De Greef et al. [7] estimated the probability of production of a given TCR sequence by using the Inference and
Generation of Repertoires (IGoR) simulation tool that quantitatively characterizes the statistics of receptor
generation from both cDNA and gDNA data [19]. However, none of the previous studies have systematically
incorporated heterogeneity in both immigration and replication rates, sampling, and comparison with measured
TCR clone abundance distributions.

In this paper, we quantitatively analyze the effects of heterogeneity and sampling using a stochastic multiclone
birth-death-immigration (BDI) process that allows for TCR-sequence dependent replication and immigration
rates. Our model is based on a general continuous-time Markovian birth-death-immigration (BDI) process [10]
where: (i) immigration represents the arrival of new clones from the thymus; (ii) birth describes homeostatic
proliferation of naive T cells that yield newborn naive T cells with the same TCR as their parent; and (iii) death
represents cell apoptosis. We also include a regulation, or “carrying capacity,” mechanism through a total
population-dependent death rate which may represent the global competition for cytokines, such as Interleukine-
7 [20–24], needed for naive T cell survival and homeostasis [25, 26]. This homeostasis will be considered as
clone-independent since these cytokine signals are TCR-independent [22]. Mathematically, the inclusion of a
carrying capacity ensures a finite naive T cell population at homeostasis.

We derive analytical results of our heterogeneous BDI model that are applicable on the scale of the entire
organism. Our calculations provide insight into how parameters describing the shape of the distribution of
immigration and proliferation rates affect the shape of the expected clone counts. To compare with experimental
measurements, we also quantify the random sampling process that describes actual measurements derived from
blood draws. Comparison with available TCR clone abundance data shows that predicted thymic output rate
heterogeneity cannot generate the qualitative shape of the observed clone count distribution ĉk. However, we
show how a simple uniform proliferation rate distribution can yield the observed ĉk.
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Materials and Methods

We focus on the clone counts ĉk of the clone abundance distribution associated only with naive T cells, the
first type of cells produced by the thymus that have not yet been activated by any antigen. Antigen-mediated
activation initiates a one-way irreversible cascade of differentiation into effector and memory T cells that we can
subsume into a death rate. Thus, we limit our analysis to birth, death, and immigration within the naive T cell
compartment.

Non-neutral Birth-Death-Immigration model

The multiclone BDI process is depicted in Fig. 1. We define Q to be the number of possible functional naive

Fig 1. Schematic of a multiclone birth-death-immigration process. Clones are defined by distinct TCR
sequences i. Theoretically, there are Q & 1015 [6] or more [27,28] possible viable V(D)J recombinations that lead
to naive T cells. Due to finite and heterogeneous thymic output rates and and selection, the number of clones
predicted in an entire organism is much less, on the order 106 − 107 [1, 6, 29–31]. Each clone carries its own
thymic output and peripheral proliferation rates, αi and ri, respectively. We assume all clones have the same
population-dependent death rate µ(N). Since Q ≫ 1, we impose a continuous distribution over the rates α and
r.

T cell clones that can be generated by V(D)J recombination in the thymus and that survive selection. This
quantity is a small fraction (∼ 1% [32]) of the total theoretical number of possible sequences, estimated to be
1015 − 1018 [6]. Thus, for each TCR chain, we choose Q = 1015 as the number of different clones that can be
exported by the thymus. Due to naive T cell death, not all possible clone types will be present in the organism,
so we denote the number of clones actually present in the body (or “richness”) by C ≪ Q, where estimates of C
range from ∼ 106 − 108 in mice and human [1,6, 29,30]. The total number of naive T cells in an individual is
N ∼ 1010 − 1011 [11]. The discrete quantities Q,C,N are related to the discrete clone counts ĉk through

C =
∑

k≥1

ĉk = Q− ĉ0 and N =
∑

k≥1

kĉk, (1)

where ĉ0 is the number of possible clones that are not expressed in the organism.
Each clone i (with 1 ≤ i ≤ Q) is characterized by an immigration rate αi and a per cell replication rate ri.

The immigration rate αi is clone-specific because it depends on the preferential V(D)J recombination process;
the replication rate ri is also clone-specific due to the different interactions with self-peptides that trigger
proliferation. Since the numbers of potential (Q ≫ 1) and observed (C ≫ 1) clones is extremely large, we can
define a continuous density π(α, r) from which immigration and proliferation rates α and r are drawn. This
means that the probability that a given clone has an immigration rate between α and α+ dα and replication
rate between r and r + dr is π(α, r)dαdr. Since Q is finite and countable, there are theoretical maximum values
A and R for the immigration and proliferation rates, respectively, such that π(α, r) = 0 for α ≥ A and r ≥ R. In
the BDI process, the upper bound R on the proliferation rate prevents unbounded numbers of naive T cells and
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is necessary for a self-consistent solution. Conversely, results are rather insensitive to the upper bound A on the
immigration rate provided π(α, r) decays sufficiently fast such that the mean value of α is finite for all r ≤ R.
Thus, for simplicity, we henceforth take the A → ∞ limit. The heterogeneity in the immigration and replication
rates allow us to go beyond typical “neutral” BDI models, where both rates are fixed to a specific value for all
clones.

Finally, we assume the per cell death rate µ(N) is clone-independent but a function of the total population
N . This dependence represents the competition among all naive T cells for a common resource (such as
cytokines), which effectively imposes a carrying capacity on the population [23, 28, 33]. We choose the linear
form µ(N) = µ1N but the specific form of the regulation will not qualitatively affect our findings.

Mean-Field Approximation

The exact steady-state probabilities over the discrete abundances ĉk for a fully stochastic neutral BDI model
with regulated death rate µ(N) were recently derived [10]. To incorporate TCR-dependent immigration and
replication rates in a non-neutral model, we must consider distinct values of αi and ri for each clone i. In this
case, an analytic solution for the probability distribution over ĉk, even at steady state, cannot be expressed
in an explicit form. However, since the number of naive T cells (N ∼ 1011 [11]) is large, we can exploit a
mean-field approximation to the non-neutral BDI model and derive expressions for the mean values of the
discrete clone counts ĉk. We will show later that under realistic parameter regimes, the mean-field approximation
is quantitatively accurate. Breakdown of the mean field approximation has been carefully analyzed in other
studies [34].

Deterministic approximation for total population

To implement the mean-field approximation in the presence of a regulated death rate µ(N), we must first
calculate the mean total steady-state population N∗ ≫ 1. We start by writing the deterministic, “mass-action”
ODE for the mean number nα,r(t) of cells with immigration rate α and proliferation rate r in a BDI process

dnα,r(t)

dt
= α+ rnα,r(t)− µ(N(t))nα,r(t). (2)

Since the number of clones that have an immigration rate between α and α+ dα and a replication rate between
r and r + dr is approximately Qπ(α, r)dαdr, the total mean number N(t) of naive T cells can be estimated as a
weighted integral over all nα,r(t)

N(t) = Q

∫ ∞

0

dα

∫ R

0

dr nα,r(t)π(α, r). (3)

At steady-state, the solution to Eq. 2 can be simply expressed as

n∗
α,r =

α

µ(N∗)− r
(4)

in which N∗ is the steady-state value of N(t). Thus, upon averaging Eq. 4 over α and r, we find

N∗ = Q

∫ R

0

dr

∫ ∞

0

dα
απ(α, r)

µ(N∗)− r
, (5)

a self-consistent equation whose solution N∗ will be used in our mean-field approximation for the mean clone
counts. Note that without the finite upper bound R of the density π(α, r), the integral in Eq. 5 diverges.

Mean-field model of clone counts

We now use the results for the mean steady-state population N∗ to find the clone counts averaged over all
realizations of the underlying stochastic process. The mean-field equations for the dynamics of these mean clone
counts in the neutral model were derived in [34,35] and are reviewed in Appendix A. In the neutral model, we
assume that all effective clones Q are associated with the same rates α and r so that the mean field evolution
equation for ck(α, r) is [34, 35]
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dck(α, r)

dt
= α [ck−1(α, r)− ck(α, r)] + r [(k − 1)ck−1(α, r)− kck(α, r)] + µ(N) [(k + 1)ck+1(α, r)− kck(α, r)] ,

(6)
along with the constraint

∑∞
k=0 ck(α, r) = Q. This equation assumes that both ck(α, r) and N are uncorrelated,

allowing us to write the last term as a product of functions of the mean population N =
∑

ℓ ℓcℓ and ck+1, ck.
At steady state we replace µ(N) with µ(N∗), where the mean steady-state population N∗ is found from

self-consistently solving Eq. 5. The solution follows a negative binomial distribution with parameters α/r and
r/µ(N∗) [10, 34]

ck(α, r) = Q

(

1−
r

µ(N∗)

)α/r (
r

µ(N∗)

)k
1

k!

k−1
∏

ℓ=0

(α

r
+ ℓ
)

. (7)

Now, suppose the clones obey possibly different values of α and r, as depicted in Fig. 1. The total mean clone
count can be obtained from the α, r-specific result in Eq. 7 by averaging over π(α, r):

ck =

∫ ∞

0

dα

∫ R

0

dr ck(α, r)π(α, r), (8)

where for notational simplicity, we refer to the realization- and π(α, r)-averaged clones counts simply by ck. Note
that since it is an average over the mean-field expression for ck(α, r), ck defined in Eq. 8, is to be considered
distinct from the actual ĉk, which is instead a discrete stochastic quantity that may be described via, e.g., a
Q-dimensional master equation. As mentioned earlier, the presence of heterogeneities makes computing the
solution of the master equation impractical. Henceforth, we utilize the mean-field average ck in Eq. 8 as a proxy
for the discrete clone counts ĉk, and discuss in detail the regimes where the identification ĉk → ck is justified;
namely, cases where fluctuations may be considered small, and ck can be compared to experimentally measured
realizations. We also henceforth denote the mean field approximation to the total population and total richness
by N and C, respectively. Since the population constraints are linear, these mean field quantities also obey the
relationships in Eq. 1.

Results

We now analyze Eqs. 5 and 8 using different choices for π(α, r) to show the effect of clone-specific immigration
and proliferation rates on the overall measured clone abundance distribution. To determine the clone abundance
ck we must first solve the fixed point equation (Eq. 5) and use Eqs. 7 and 8 to determine ck. Rather than
choosing a value for µ1 in µ(N) = µ1N , we first fix N∗ to observed values and then determine µ1 that satisfies
Eq. 5. The parameters used in our study are set according to

• The average total number of naive T cells is set to N∗ = 1011 [11].

• The total possible number of TCRs of either alpha or beta chains is set to Q = 1015 [36].

• The average immigration rate per clone ᾱ can be deduced from the total thymic output of all clones
to be ᾱQ = 1.6 × 107/day [37]. Using Q = 1015, the average per clone immigration rate is set to
ᾱ = 1.6× 10−8/day.

• The average proliferation rate r̄ is estimated as r̄ ∼ 0.18/year. We thus set r̄ = 5× 10−4/day [37].

These parameters will be used in the rest of our analyses. We have verified that the predicted shapes of the
clone counts are relatively insensitive to Q ≫ 1 and N∗ ≫ 1.

Clone-specific immigration

To make analytical progress, we first assume that all clones have the same proliferation rate r̄ and that
heterogeneity arises only in the immigration rate α through π(α, r) = πα(α)δ(r− r̄). We analyze how differential
V(D)J recombination probabilities affect the clone abundance distribution by drawing for each clone i (1 ≤ i ≤ Q),
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Fig 2. Effects of immigration rate heterogeneity. (a) Different Pareto distributions πα(α) ≡ πα(α|ᾱ, θ) of the
immigration rate α plotted for the same value of the mean ᾱ but different values of the shape parameter θ in
Eq. 10. Increasing θ increases the heterogeneity in the immigration rate per clone α. Although the different
distributions appear to have different mean values, the longer tails of the distributions with larger θ yield means
that are invariant to θ. Inset: Standard deviation of πα(α) as a function of θ. (b) Expected clone counts ck for
different choices of θ (Eq. 9). The clone counts differ significantly from that of the BDI neutral model only when
θ & 0.35, as can be seen from the dashed curve plotted above.

the immigration rate αi from the probability density πα(α). By averaging the mean clone abundance (Eq. 8)
over πα(α), we find

ck = Q

(

r̄

µ(N∗)

)k
1

k!

∫ ∞

0

(

1−
r̄

µ(N∗)

)α/r̄ k−1
∏

ℓ=0

(α

r̄
+ ℓ
)

πα(α)dα. (9)

A specific form for πα(α) can be obtained from previous studies that predict V(D)J recombination frequencies
associated with each TCR sequence. The statistical model for differential V(D)J recombination in humans is
implemented in the Inference and Generation of Repertoires (IGoR) software [19]. In Appendix B.1, we estimate
πα(α) by repeatedly running IGoR [19] and sampling a large number of TCRs. We assume that thymic selection
is uncorrelated with V(D)J recombination so the relative probabilities of forming different TCRs provide an
accurate representation of the ratios of the TCRs exported into the periphery. The observed frequency of each
TCR shows that πα(α) can be approximated by a Pareto distribution with threshold parameter ᾱ(1− θ) and
shape parameter θ:

πα(α|ᾱ, θ) =







(ᾱ(1− θ))
1/θ

θα1+1/θ
if α ≥ ᾱ(1− θ)

0 otherwise.
(10)

The parameters of the Pareto distribution will first be constrained such that ᾱ is set to the average per-clone
immigration rate, ᾱ = Q−1

∑Q
i=1 αi ≈

∫∞

0
απα(α)dα.

The distributions πα(α) for different values of θ are shown in Fig. 2. An increase in the parameter θ will
increase the variance of πα(α) (Fig. 2(a)-inset). In Fig. 2(b) we plot the mean clone count ck derived in Eq. 9
with πα(α) specified by Eq. 10 for various values of θ. These curves are compared with those obtained when
θ → 0 and πα(α) → δ(α− ᾱ) describing a fixed immigration rate ᾱ. The BDI model in this neutral limit predicts
a log-series distribution for ck [10]. As can be seen in Fig. 2(b), deviations from the predictions of the neutral
model (θ → 0) are noticeable only when θ & 0.35. The estimates using IGoR fixes θ ≈ 0.28, suggesting that
heterogeneity in thymic output is insufficient for producing the observed clone abundance distributions of naive
T cells.

The shape of ck as derived from Eqs. 9 and 10 exhibits two regimes. At small clone sizes k, regardless of the
value of θ, ck follows that of the neutral model. At larger sizes k, ck converges to a power-law. The transition
between these two regimes occurs at a characteristic size that decreases with θ, and with the standard deviation
of πα(α). In Appendix B.2 and Fig. S2(b), we show that clones within these two regimes correspond to two
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Fig 3. Effects of proliferation rate heterogeneity. (a) Different “box” distributions for πr(r) associated with
different widths w (see Eq. 12). Larger w corresponds to higher heterogeneity across clones in the per-cell
proliferation rate r. Inset: Standard deviation of πr(r) for different values of w. (b) Predicted clone abundances
ck from Eq. 11 for different choices of w. Wider distributions generate longer-tailed distributions.

sub-populations. The first, with smaller clone sizes, is characterized by immigration rates α smaller than the
proliferation rate r̄. For these clones, the production of new cells is due mostly to peripheral proliferation rather
than from thymic immigration. The second sub-population with larger clone sizes corresponds to clones with
immigration rates α > r̄. The production of new cells in these clones is driven mainly by thymic immigration
rather than by proliferation. Intuitively, one can see that as θ increases, the proportion of clones with higher
immigration rate α increases as well, leading to a larger representation of the second, high immigration rate
sub-population.

Clone-specific proliferation

The other limit of clonal heterogeneity that can be readily analyzed is that of an immigration rate that is
common to all clones and proliferation rates that are clone-dependent. The peripheral proliferation of T cells
depends on the affinity of the corresponding TCR to self-antigens. TCR-antigen affinity in turn depends on the
receptor amino acid sequence; thus, the rate at which a T cell proliferates can be clone-specific [28, 38]. The
distribution of proliferation rates among all the Q possible clones is a mapping to the interactions between TCRs
and low-affinity MHC/self-peptide complexes that has not been experimentally resolved.

For simplicity, we assume π(α, r) = πr(r)δ(α− ᾱ) where ᾱ is the common immigration rate and where the
probability that a clone has a replication rate between r and r + dr is πr(r)dr. We previously introduced the
biologically relevant constraint that π(r) = 0 for r > R; we now further assume that R < µ(N∗) so that a finite
fixed point solution N∗ exists for Eq. 5. This assumption implies that the death rate is larger than the fastest
proliferation rate and allows us to write

ck =
Q

k!

∫ R

0

(

1−
r

µ(N∗)

)ᾱ/r (
r

µ(N∗)

)k k−1
∏

ℓ=0

( ᾱ

r
+ ℓ
)

πr(r) dr. (11)

We illustrate in Fig. 3 the effect of a uniform proliferation rate distribution

πr(r) =

{

1/w if |r − r̄| < w/2

0 otherwise,
(12)

where w represents the width of the uniform distribution centered about r̄, as shown in Fig. 3(a). By construction,
the maximum allowable immigration rate is R = r̄ + w/2. Fig. 3(b) shows that an increase in w leads to an
increase in the proportion of large clones. It is important to note that the shape of the clone abundance ck is
particularly sensitive to the behavior of πr(r) near the upper bound R as can be seen in Fig. S3. This is because,
regardless of their initial numbers, clones with r ≈ R will have a proliferation advantage over other clones and
will eventually dominate the total naive T cell population, as shown in Fig. S3(c).
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Sampling

Unless an animal is sacked and its entire naive T cell population sequenced, TCR clone distributions are typically
measured from sequencing TCRs in a small blood sample. In such samples, low population clones may be missed.
In order to compare our predictions with measured clone abundance distributions, we must revise our predictions
to allow for random cell sampling.

We define η as the fraction of naive T cells in an organism that is drawn in a sample and assume that all
naive T cells in the organism have the same probability η of being sampled. This is true only if naive T cells
carrying different TCRs are not preferentially partitioned into different tissues and are uniformly distributed
within an animal. Let us assume that a specific TCR is represented by ℓ cells in an organism. If Nη ≫ ℓ, the
probability that k cells from the same clone are sampled approximately follows a binomial distribution with
parameters ℓ and η [39–41]

P [k|ℓ] ≈

(

ℓ

k

)

ηk (1− η)
ℓ−k

, k ≤ ℓ. (13)

The associated mean sampled clone count csk depends on the clone count cℓ in the body via the formula

csk ≈
∑

ℓ≥k

cℓP [k|ℓ] =
∑

ℓ≥k

cℓ

(

ℓ

k

)

ηk(1− η)ℓ−k, (14)

where cℓ is found through Eq. 8.
In Fig. 4(a) we show the effects of sampling by plotting both the whole-organism ck derived from Eq. 8 and

the corresponding sampled distribution csk calculated using Eq. 14. We show three cases: i) the cℓ distribution is
derived from a fully neutral model with specific values of ᾱ and r̄; ii) the proliferation rate is fixed at r̄ and a high
heterogeneity in the immigration rate α is chosen with πα(α) given in Eq. 10 with θ ∼ 1, iii) the immigration
rate is kept fixed at ᾱ and proliferation rates r are highly heterogeneous with w = 2r̄ = 9.8× 10−4/day in πr(r),
as given in Eq. 12.

Experimental sampling will strongly affect the observed clone abundances csk especially when η ≪ 1. We set
the sampling fraction to η = 2× 10−3, which is typical for data on humans. In all three cases described above
the observed clone abundances csk are significantly reduced with respect to ck, reducing the overall slopes of the
power-law-like clone abundance distributions. The magnitude of the reduction in the exponent depends on the
value of η and can be quite significant as can be seen in Fig. S4).

An interesting crossover feature can be seen, particularly when sampling in the case of heterogeneous
immigration rates, as described in case ii) above. As can be seen from the blue curves in Fig. 4(a), two power-law
regimes arise with a crossover size k ∼ 2− 3. To understand this behavior, consider the effect of sampling from
a hypothetical power-law clone abundance cℓ ∼ ℓ−λ, λ = 2.1 as shown in the inset of Fig. 4(b). For a given

sampled clone of size k, we can calculate its most probable size ℓ̂(k) in the organism by evaluating the maximum
likelihood of the binomial sampling

ℓ̂(k) = max
ℓ≥k

[

cℓ

(

ℓ

k

)

ηk(1− η)ℓ−k

]

, cℓ ∼ ℓ−2.1. (15)

The ℓ̂(k) curve in this case is shown in Fig. 4(b). For clones of size k ≤ 2 measured in the sample, the most likely

size in the organism ℓ̂(k) is also small, less than ∼ 10 copies in the body. Conversely, sampled clones of size
k ≥ 2 are most likely to have originated from clones with & 103 copies in the body. The two regimes observed in
Fig. 4(b) can then be interpreted as a trade-off between the contributions of the large number of clones with
small populations and the few number of clones with large populations, leading to a cross-over behavior in ck.
This cross-over arises in the heterogeneous immigration model (blue curve) in Fig. 4(a) and is a consequence of
sampling and not the intrinsic kink in the whole-body ck at k ≈ 30. The sampling trade-off is not apparent in
the neutral and heterogeneous proliferation model, case i) and iii) above, and depicted by the black and red
curves in Fig. 4(a). These distributions decay too fast before the “sampling kink” reveals itself.

Comparison with measured clone abundances

We now compare our predictions for csk with measured clone abundances from Oakes et al. [13]. These data
were extracted by combining barcoding with TCR sequencing of either the alpha or beta chains of TCRs from
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Fig 4. Effect of sampling on mean clone abundances ck. (a) Whole-body mean clone abundances ck (solid
curves) and expected sampled (dashed curves) abundances csk for the neutral (black), immigration rate
heterogeneity (blue), and proliferation rate heterogeneity (red) models. The sampling fraction used is
η = 2× 10−3. (b) Illustration of two regimes in sampling. We considered sampling from an idealized pure
power-law clone abundance cℓ ∼ ℓ−λ, λ = 2.1 (inset) that is consistent with that predicted by the heterogeneous
proliferation rate model (solid red curve in (a)). For a sampled clone of size k, the main plot shows the most

likely abundance of said clone in the whole body, ℓ̂(k), defined in Eq. 15. Plotting ℓ̂(k) indicates two regimes in
the sampling. The main contributors to sampled clones of size k ≤ 2 (regime 1) are smaller whole-body clones
(ℓ . 10), while the main contributors to clones of size k ≥ 3 (regime 2) are clones of size ℓ & 103.

naive human CD4+ and CD8+ T cells, thereby eliminating PCR bias, especially for larger clones [15]. In Fig. 5
we plot the experimental clone abundances alongside our theoretical results for csk as evaluated in Eq. 13. We
focused our fitting to small- and intermediate-sized clones since the mean field approximation at large clone sizes
k is not accurate [34], the frequencies at large k are low and fitting to a continuous expected distribution is not
reliable, and the single large clones represented by the flat region in Fig. 5 contain memory T cells that have
expanded [26,42]. Moreover, we do not expect a model for an expected continuous clone count to accurately
capture these isolated, discrete single clones (open circles) in the large-k regime where ck = 0, 1. Since our model
does not incorporate the emergence of memory T cells, and the large-k data is more likely to include a higher
percentage of memory cells, we simply drop the single-clone counts and fit only those alpha chain or beta chain
clones for which the clone count ck ≥ 2.

As shown by the black curve in Fig. 5, the expected sampled clone count csk derived from the neutral model
with fixed ᾱ, r̄ cannot qualitatively fit the data. Heterogeneity in immigration rate α also does not yield a good
match to data for realistic values of the sampling parameter η, except possibly at large clone sizes k where the
clone counts are highly variable, and only for high degrees of heterogeneity θ ∼ 0.9. However, as estimated from
IGoR, θ ≈ 0.28 > 0.9. At this value of θ, no significant difference between the neutral and the heterogeneous
immigration rate cases are to be expected, especially after sampling. Thus, a heterogeneous immigration rate
model cannot be consistent with both measured clone abundances [13] and the level immigration heterogeneity
estimated from IGoR [19].

On the other hand, the red curves in Fig. 5 show that the csk predicted using heterogeneity in the proliferation
rate match the data for reasonable values of the clone size k, using realistic sampling fractions η. In this context,
since a specific TCR is composed of one alpha chain and one beta chain, and since the distributions of alpha and
beta chains are quantified separately, the heterogeneous proliferation rates should be interpreted as those of an
individual alpha or beta sequence, and not as the heterogeneity in functional TCR-self-antigen avidity.

In Fig. S4, we show additional comparisons for different values of the sampling fractions, confirming that
η ∼ 2× 10−3 provides the optimal fitting with measured clone counts. In summary, it is evident that the neutral
model cannot be made to fit the data without using unrealistic sampling rates η & 0.1. The model with large
immigration heterogeneity also fails to fit some of the data, in particular, those derived from sequencing different
beta chains on CD4+ cells.

We have also tried to fit our model to data from mice, such as from Zarnitsyna et al. [31]. These preliminary
data did not filter out PCR errors and yielded biphasic clone abundance distributions with λ ≈ 1.76, 1.1. The
magnitudes of these exponents are too small to be accurately fit by a heterogeneous BDI process, even when
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Fig 5. Comparison of the predicted mean sampled clone abundances csk (dashed) with measured human TCR
alpha and beta chain seuence abundances (dots) in which PCR bias was avoided [13]. The best-fit model (for
reliable measurements at modest sizes k) model includes proliferation rate heterogeneity. In the dataset shown,
TCRs observed in memory cells are not subtracted. Data points corresponding to single clones are denoted by
the open circles.

unrealistic distributions in r are used and the effects of sampling are neglected.

Discussion and Conclusions

Here, we review and justify a number of critical biological assumptions and mathematical approximations used
in our analysis. The effects of relaxing our approximations are also discussed.

Mean field approximation. Our mean-field approximation is embodied in Eq. 6, where correlations between
fluctuations in the total population N =

∑

k kck in the regulation term µ(N) and the explicit ck terms are
neglected. This approximation has been shown to be accurate for k . N∗ when ᾱQ2 > µ(N∗) [34]. When the
total T cell immigration rate is extremely small, the above constraint is violated and a single large clone arises
due to competitive exclusion [34, 43, 44]. In this case, an accurate approximation for the steady-state clone
abundance ck can be obtained using a variation of the two-species Moran model [34]. Thus, except under such
extreme scenarios, the parameters associated with the human adaptive immune system satisfy the condition for
the mean-field approximation to be accurate.

For large k the number of cells contributing to ck is also large so demographic stochasticity is relatively small
and results in small uncertainties in the value of k, and not in the magnitude of ck. However, the mean field
approximation to large-k clone counts is not accurate. For very large clone sizes, the total population constraint
forces ck to rapidly approach zero for k & N∗, a feature that is not accurately reflected in the mean-field
approximation [34]. Finally, large clones likely include memory T cells that have been produced after antigen
stimulation of specific clones. Thus, the data at large k is likely to contain T cells in the memory pool. Thus, in
our analysis, we perform qualitative “fits” to the data only for modest values of k.

Estimation of π(α, r). Given an explicit mean-field solution to ck(α, r) from Eq. 7, distributions π(α, r)
detailing the immigration and proliferation rates α and r are then required to compute the expected clone
abundances in ck from Eq. 8. The main difficulty is accurately representing immigration and proliferation
heterogeneity. Even if we assume that the immigration and proliferation rates are uncorrelated and that π(α, r)
is factorizable, π(α, r) = πα(α)πr(r), there have been no direct experimental measurements of either πα(α) or
πr(r).

We refer to a study on the statistical inference of the probability of TCR sequences to estimate immigration
heterogeneity. In particular, we used the IGoR (Inference and Generation of Repertoires) computational tool
which predicts recombination events [19]. We selected approximately 108 such IGoR recombination events,
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and created a frequency histogram on the observed sequences. The resulting frequency distribution closely
follows Zipf’s law [45, 46], from which we constructed a self-consistent Pareto distribution for πα(α), with a
mean ᾱ ∼ 1.6× 10−8/day [37]. As mentioned, we assume that selection and recombination are uncorrelated and
that the results from IGoR can be used to infer the heterogeneity of the thymic output after selection. While
IGoR allows us to reconstruct πα(α) there are no reliable data on the in vivo distribution of TCR-dependent
homeostatic proliferation rates r.

Previous studies modeled the proliferation rate of each TCR as being directly proportional to the average
interaction times between the TCR itself and a large number of self-ligands [4, 6]. Each TCR was assumed to
interact with multiple self-antigens through cross-reactivity and the interaction of each TCR–self-antigen pair
is sampled from a given Gaussian [4] or log-normal [6] distribution. However averages were taken over a large
number of TCR–self-ligand interactions sampled from the same distribution and may underestimate the true
proliferation heterogeneity. In this work we assumed a simple box distribution for πr(r) centered around the
mean value r̄ ∼ 5× 10−4/day [37] and analyzed the predicted the clone abundances as the width w of the box is
varied.

Qualitative description of clone abundances ck. Here, we offer a qualitative interpretation of the observed
clone abundance profiles ck as a function of k, as seen in Fig. 4. The arguments we use closely resemble those
presented to describe the two regimes observed under heterogeneous immigration, case ii), and are more thoroughly
discussed in Appendix B.2 and Fig. S2(b). We begin by dissecting the behavior of ck(α, r), which, as described
above, defines a negative binomial distribution with parameters u = α/r and v = r/µ(N∗). In Fig. 6 we plot the
mean clone size k,

∑∞
k=1 kck(α, r)
∑∞

k=1 ck(α, r)
=

uv

1− v
=

α

µ(N∗)− r
, (16)

as a function of u = α/r. Two different regimes emerge:

• If u → 0 while v = r/µ(N∗) remains constant (lower left in Fig. 6), ck(α, r) (conditioned on k > 0)
converges to a log-series distribution.

• If u → ∞ while the averaged clone size given by uv/(1− v) = α/(µ(N∗)− r) (Eq. 16) remains constant,
ck(α, r) converges to a Poisson distribution with parameter uv/(1− v).

These results follow from analogous considerations made in Appendix B.2. Finally, we show paths in the u = α/r
and uv/(1− v) = α/(µ(N∗)− r) plane over which the constrained “line integrals” correspond to the distributions
π(α, r) for the neutral, heterogeneous immigration, and heterogeneous proliferation rate models.

Results are displayed in Fig. 6. As can be seen, both the heterogeneous proliferation and the neutral cases
fall in the log-series regimes; here the expected clone counts result from an integration of different log-series
distributions over π(α, r). The heterogeneous immigration case includes both log-series and Poisson distributions,
generating the two qualitatively different regimes. More details are discussed in Appendix B.2).

Correlated immigration α and proliferation r. Hitherto, we have considered independent immigration
and proliferation, and assumed a factorizable rate distribution π(α, r) = πα(α)πr(r). However, immigration
and proliferation rates may be correlated for certain clones. For example, a frequent realization of V(D)J
recombination may also result in a TCR that is more likely to be activated for proliferation. In this case, α
would be positively correlated with r. In Fig. S5 we consider the effect of correlated π(α, r). For r̄/2 ≤ r ≤ 2r̄,
we considered normalized, positively/negatively correlated box distributions as shown in Fig S5(a):

Positively correlated : π(α, r) =
1

r̄
δ
(

α−
ᾱ

r̄
r
)

,

Negatively correlated : π(α, r) =
1

r̄
δ
(

α− ᾱ
(

2−
r

r̄

))

. (17)

Within our mean field model, these correlated distributions π(α, r) result in very similar expected clone
abundance distributions ck (Fig S5(b)). This insensitivity to correlations between immigration and proliferation
can be qualitatively understood by considering the “line integral” over dominant paths of π(α, r) in the
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Fig 6. Parameter regimes of different distributions. For a clone with immigration rate α and proliferation rate
r, (whose clone size follows a negative binomial distribution of parameters u = α/r and v = r/µ(N∗), see Eq. 7,
the diagram shows the average clone size uv/(1− v) = α/(µ(N∗)− r) as a function of u = α/r. When v > 0 is
held constant and u → 0, the clone counts (conditioned to k > 0) converges to a log series distribution. If
uv/(1− v) = α/(µ(N∗)− r) remains constant while u → ∞, the clone size converges to a Poisson distribution.
The “line integral” of the three models of Fig. 4 are shown: both the neutral model, and the proliferation model
are in the log-series regime; the immigration regime covers both the log-series and the Poisson regime.

uv/(1 − v) = α/(µ(N∗) − r) vs. u = α/r diagram. As shown in Fig. S5(c), both line integrals remain in the
log-series distribution regime, indicating that the clone abundance distributions are qualitatively similar to that
predicted by a model with proliferation heterogeneity alone.

Steady state assumption. In this study, we only considered the steady state of our birth-death-immigration
model in Eq. 7 because this limit allowed relatively easy derivations of analytical results. This was also the
strategy for previous modeling work [4, 6, 7, 34, 35]. However, the per clone immigration and proliferation times
may be on the order of months or years, a time scale over which thymic output can change significantly as an
individual ages [33, 37, 47, 48] and as thymic output diminishes [33, 37]. Moreover, clone abundance distributions
have been shown to show specific patterns as a function of age [49–51].

From the dynamics of N(t) in a neutral model with fixed ᾱ and r̄, the timescale for relaxation to steady
state can be estimated to be ∼ 15− 20 years [33]. Besides the total population, the different subpopulations of
specific sizes described by their number ck relax to steady-state in a spectrum of time scales depending on the
clone sizes k [52].

Thus, the steady-state may not be strictly reached and should be considered as an approximation, especially
given time-dependent perturbations, including aging, to the adaptive immune system of an individual.

These timescales can be approximated by the eigenvalues of linearized forms of Eqs. 6. Besides time-dependent
changes in α, more subtle time-inhomogeneities such as changes in proliferation and and death rates have been
demonstrated [47,48]. Thus, our steady-state assumption should be relaxed by incorporation of time-dependent
perturbations to the model parameters µ(N) and/or π(α, r). Longitudinal measurements of clone abundances or
experiments involving time-dependent perturbations would provide significant insight into the overall dynamics
of clone abundances.

General conclusions. We developed a heterogeneous multispecies birth-death-immigration model and ana-
lyzed it in the context of T cell clonal heterogeneity; the clone abundance distribution is derived in the mean-field
limit. Unlike previous studies [4], our modeling approach incorporated sampling statistics and provided simple
formulae, allowing us to predict clone abundances under different rate distributions for arbitrarily large systems
(N ∼ 1011), without the need for simulation.
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The heterogeneous BDI model produces mean clone count distributions that follow power laws over a range
of sizes k, with varying exponents that depend on the immigration and proliferation rate heterogeneity and
sampling size η. We were able to compare results from our model to measured clone abundance distributions in
alpha and beta TCR chains. Based on recombination statistics inferred from cDNA and gDNA sequences [19], we
derived a Pareto distribution quantifying the heterogeneity in TCR immigration rates. The derived distribution
for πα(α), given in Eq. 10 with θ = 0.28, however, is not large enough to generate a sampled clone abundance
distribution csk consistent with observations. In fact, the predicted distributions for reasonable sampling fractions
η are nearly indistinguishable from those arising from a simple neutral model in which all clones have the same
immigration rate. Conversely, proliferation heterogeneity within our model yields significantly different clone
abundances that match those seen in experimental samples. Even under modest proliferation rate heterogeneity,
larger clones become significantly more numerous at steady state since, although the number of TCR clones
with large proliferation rates r may be small, such clones proliferate more rapidly contributing to higher clone
counts at larger sizes. In particular, we found that the expected clone abundance is sensitive to the behavior of
πr(r ≈ R), the proliferation distribution near the maximum proliferation rate R.

Our work leads to the conclusion that proliferation heterogeneity is the more likely mechanism driving the
emergence of the power law distributions as observed in [13]. These results are consistent with the findings
that peripheral selection leads to contraction of T cell diversity [49] and that naive T cells in humans are
maintained by proliferation rather than thymic output [9]. Since we have only explored the effects of a uniform
distribution for πr(r), further studies using more complex shapes of π(α, r) can be easily explored using our
modeling framework. Different parameter values and rate distributions appropriate for mice, in which naive T
cells are maintained by thymic output, should also be explored within our modeling framework.
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Proliferation and Survival of Näıve T Cells. Proceedings of the National Academy of Sciences, USA.
2001;98(15):8732–8737. doi:10.1073/pnas.161126098.

21. Schluns KS, Kieper WC, Jameson SC, Lefranccois L. Interleukin-7 Mediates the Homeostasis of Näıve
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S1: Mathematical Appendices

A Neutral model

Here, we review the neutral model to provide insight into the properties of our heterogeneous BDI model. When
there is no heterogeneity in either proliferation or immigration rates, π(α, r) = δ(α− ᾱ)δ(r − r̄). Upon inserting
this expression for π(α, r) in Eqs. 7 and 8, we find that the clone abundance ck follows a negative binomial
distribution [10]:

ck = Q

(

1−
r̄

µ(N∗)

)ᾱ/r̄ (
r̄

µ(N∗)

)k
1

k!

k−1
∏

k′=0

( ᾱ

r̄
+ k′

)

. (S1)

We can also express ck/C, the clone abundance distribution normalized by the mean richness C in the body as

ck
C

=
ck

∑

ℓ≥1 cℓ
(S2)

which is a negative binomial distribution of parameters ᾱ/r̄ and r̄/µ(N∗). Using ᾱ ≈ 1.6 × 10−8/day, r̄ ∼
5 × 10−4/day, and µ(N∗) ≈ 6.4 × 10−4, we find ᾱ/r̄ ≪ r̄/µ(N∗). In this regime, ck/C, for k ≥ 1, can be
approximated by a log-series distribution with parameter r̄/µ(N∗). Fig. S2(a) shows that the exact solution for
ck(ᾱ, r̄) is indistinguishable from the log-series approximation.

To mathematically show that ck/C converges to a log-series distribution when ᾱ/r̄ → 0, consider a random
variable X that follows a negative binomial distribution of parameters ᾱ/r̄ and r̄/µ(N∗)

P [X = k] =

(

1−
r̄

µ(N∗)

)ᾱ/r̄ (
r̄

µ(N∗)

)k
1

k!

k−1
∏

ℓ=0

( ᾱ

r̄
+ ℓ
)

. (S3)

Note that the probability mass function of X is given by ck/Q as can be seen from Eq. S1, the clone abundance
distribution for all possible Q clones, which includes c0, the number of all clones that are not represented in the
organism. To find the clone abundance distribution ck/C, for all the C clones present in the organism, we must
exclude the case k = 0 by marginalizing the distribution of X over all X > 0:

P [X = k|X > 0] =
P [X = k]

∑

ℓ≥1 P [X = ℓ]
=

ck/Q
∑

ℓ≥1 cℓ/Q
=

ck
C
. (S4)

What remains is to show that the distribution of converges to a log-series distribution of parameter r̄/µ(N∗)
when ᾱ/r̄ → 0. Consider the moment generating function of X|X > 0 given by

E
[

eξX |X > 0
]

=
E
[

eξX
]

− E
[

eξX |X = 0
]

P [X = 0]

P [X > 0]
. (S5)

Since the moment generating function of a negative binomial distribution E
[

eξX
]

is known, and since P [X > 0] =
1− P [X = 0] (see Eq. S3), we can write

E
[

eξX |X > 0
]

=

(

1−r̄/µ(N∗)
1−eξ r̄/µ(N∗)

)ᾱ/r̄

−
(

1− r̄
µ(N∗)

)ᾱ/r̄

1−
(

1− r̄
µ(N∗)

)ᾱ/r̄
. (S6)

For any x > 0, the limit of ᾱ/r̄ → 0, yields

xᾱ/r̄ = 1 +
ᾱ

r̄
log x+ o

( ᾱ

r̄

)

.

If we apply this result to Eq. S6 for E
[

eξX |X > 0
]

, we find
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E
[

eξX |X > 0
]

=
1 + ᾱ

r̄ log
(

µ(N∗)−r̄
µ(N∗)−eξ r̄

)

−
(

1 + ᾱ
r̄ log

(

1− r̄
µ(N∗)

))

+ o
(

ᾱ
r̄

)

− ᾱ
r̄ log

(

1− r̄
µ(N∗)

)

+ o
(

ᾱ
r̄

)

=
log
(

1− eξ r̄
µ(N∗)

)

log
(

1− r̄
µ(N∗)

) + o (1) ,

which we recognize as the moment generating function of a log series distribution of parameter r̄/µ(N∗). Thus,
we finally have

lim
ᾱ/r̄→0

ck =
C

log
(

1
1−r̄/µ(N∗)

)

1

k

(

r̄

µ(N∗)

)k

. (S7)

B Heterogeneous immigration

Here, we provide technical details of the derivation of a Pareto distribution for the immigration rates α.

B.1 Determination of immigration rate distribution πα(α)

Marcou et al. [19] developed a computational tool, Inference and Generation of Repertoires (IGoR), which
infers the probabilities of the recombination events that lead to the generation of a sequence. Using this
tool, we generated 108 different trials (for producing the human beta chain) and determined the frequency of
occurrence of the corresponding sequence. Most of the sampled sequences arose only once, but others occurred
twice or more in the sample. If ni denotes the number of times each distinct sequence i arises in the 108-trial
simulation, its frequency is fi = ni/10

8. In Fig. S1 we plot the IGoR-generated frequencies fi in descending
order f1 ≥ f2 ≥ . . . ≥ fQ.

Fig S1. Clone rank versus frequency of sequences produced by IGoR (sampled for the human beta chain).
Fitting this data to a Zipf distribution fi ∼ i−θ yields the best-fit parameter θ ≈ 0.28.

By identifying the sequences generated by IGoR, we show that the distribution of thymic output rates
follows a Zipf law (a discrete power-law distribution fi ∼ 1/iθ). This correspondence is not surprising since our
procedure is analogous to determining word frequencies [45] from a given corpus of words in natural language,
which is also known to follow a discrete power law. We can thus posit

fi =
1

Hθ,Qiθ
(S8)
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where Hθ,Q =
∑Q

i=1 i
−θ is a generalized harmonic number that serves as a normalizing constant. Using regression

on the 108 counts generated from IGoR, we determined that the slope of the Zipf distribution in our problem is
θ ≈ 0.28.

Note that in principle we should probe a sufficient number of events to adequately represent the total number
of distinct TCR sequences, on the order Q ∼ 1015. However, since this is costly from a computational perspective,
we generated 108 recombination events (a “trial”) and assumed that the frequency-rank distribution would
remain Zipf-like, with parameter θ ≈ 0.28, even under a higher number of trials. In the main text, we tested
different values of θ in case this exponent is modified by choosing a larger number of trials.

Based on Zipf’s Law (Eq. S8), we reconstructed the statistics of immigration rates and πα(α) by associating
fi to the probability that each trial using IGoR generates a clone of sequence i. The total immigration rate
ᾱ ≈ 1.6× 107/day [37] represents the rate of the total TCR immigration. For each clone i, we can define its
specific immigration rate αi as

αi = ᾱQfi =
ᾱQ

Hθ,Qiθ
. (S9)

By definition, the immigration rates of all clones αi (1 ≤ i ≤ Q) are sampled from πα(α). Since the quantity Q
is very large, one can assume that given bounds a and b,

∫ b

a

πα(α)dα ≈
1

Q

Q
∑

i=1

1 (αi ∈ [a, b[) , (S10)

where 1 (αi ∈ [a, b[) is the indicator function, of unitary value if αi falls in the [a, b[ interval, and zero otherwise.
From Eq. S8, we find the equivalent representation

∫ b

a

πα(α)dα ≃
1

Q

Q
∑

i=1

1

(

i ∈

[

(

ᾱQ

bHθ,Q

)1/θ

,

(

ᾱQ

aHθ,Q

)1/θ
[)

. (S11)

After using the first order approximation in the polynomial approximation for b → a, we find

πα(α) =
1

θα1+1/θ

(

ᾱQ1−θ

Hθ,Q

)1/θ

, (S12)

which is a Pareto distribution with parameters ᾱQ1−θ/Hθ,Q and 1/θ. Note that since Q is large, the exact
computation of Hθ,Q is numerically challenging but a very accurate approximation can be obtained by considering
its integral representation

Hθ,Q ≃

∫ Q

0

1

xθ
dx =

Q1−θ

1− θ
, (S13)

so that finally

πα(α) =
(ᾱ(1− θ))

1/θ

θα1+1/θ
. (S14)

B.2 Shape of ck in the heterogeneous immigration model

In the model with immigration heterogeneity, two regimes appear in the clone abundance ck (see Figs. 2(b)
and S2(b)). Small-sized clones are distributed similarly as in the neutral model; larger sized clones tend to
follow a power-law. The interpretation of this behavior, provided in the main text, is that small-sized clones
(population 1) are characterized by a low immigration rate α < r̄, while larger-sized clones (population 2) are
represented by a higher immigration rate α > r̄. For clones in population 1, new cells arise in the clone mainly
due to proliferation, while in population 2, they increase mainly due to immigration.

To verify this interpretation, we consider the clone count fraction pk = ck/C for general π(α, r):

pk :=
Q

C

(

r̄

µ(N∗)

)k
1

k!

∫ ∞

0

(

1−
r̄

µ(N∗)

)
α
r̄

k−1
∏

ℓ=0

(α

r̄
+ ℓ
)

πα(α) dα. (S15)
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We separate the clone abundance distribution pk into p
{1}
k , where immigration rates α < r̄, and p

{2}
k where

immigration rates α > r̄ so that

p
{1}
k :=

∫ r̄

0

Q

C

(

r̄

µ(N∗)

)k
1

k!

(

1−
r̄

µ(N∗)

)
α
r̄

k−1
∏

ℓ=0

(α

r̄
+ ℓ
)

πα(α) dα,

p
{2}
k :=

∫ ∞

r̄

Q

C

(

r̄

µ(N∗)

)k
1

k!

(

1−
r̄

µ(N∗)

)
α
r̄

k−1
∏

ℓ=0

(α

r̄
+ ℓ
)

πα(α) dα

and pk = p
{1}
k + p

{2}
k (see Eq. S15). We approximate p

{1}
k by focusing on the contribution to the integrand by

terms with immigration rates α ≪ r̄, and similarly for p
{2}
k where we assume the greatest contribution arises

from terms with α ≫ r̄.
To evaluate p

{1}
k , since α ≪ r̄ in the corresponding integrand, we can proceed in the same way as for the

derivation of Eq. S7 in Section A to obtain a log-series distribution

p
{1}
k ≃

πα([0, r̄[)

log
(

1
1−r̄/µ(N∗)

)

1

k

(

r̄

µ(N∗)

)k

. (S16)

To evaluate p
{2}
k , we consider a random variable Xα,r̄ following a negative binomial distribution of parameters

α/r̄ and r̄/µ(N∗) and note that p
{2}
k can be written as

p
{2}
k =

Q

C

∫ ∞

r̄

P [Xα,r̄ = k] πα(α) dα. (S17)

Since we have imposed α ≫ r̄, we consider the r̄ → 0 limit of P [Xα,r̄ = k], or equivalently the behavior of its
moment generating distribution E

[

eξXα,r̄
]

as r̄ → 0. The latter is given by

E
[

eξXα,r̄
]

=

(

1− r̄/µ(N∗)

1− eξ r̄/µ(N∗)

)α/r̄

. (S18)

Under the assumption α ≫ r̄, we take the r̄ → 0 limit of Eq. S18 to find

E
[

eξXα,r̄
]

= exp

[

α

r̄
log

(

1− r̄/µ(N∗)

1− eξ r̄/µ(N∗)

)]

= exp

[

α

r̄
log

(

1 +
r̄

µ(N∗)

(

eξ − 1
)

+ o(r̄)

)]

= exp

[

α

r̄

(

r̄

µ(N∗)

(

eξ − 1
)

+ o(r̄)

)]

∼ exp

[

α

µ(N∗)

(

eξ − 1
)

]

. (S19)

We now recognize the moment generating function of a Poisson distribution of parameter α/µ(N∗) so that

P [Xα,r̄ = k]
r̄→0
−−−→

1

k!

(

α

µ(N∗)

)k

e−α/µ(N∗) (S20)

and

p
{2}
k ≃

Q

C

∫ ∞

r̄

1

k!

(

α

µ(N∗)

)k

e−α/µ(N∗) πα(α) dα. (S21)

Thus, in this regime, clone abundance ratios obey a Poisson distribution of parameter α/µ(N∗). The approxima-

tions for p
{1}
k and p

{2}
k given by Eqs. S16 and S21 respectively are shown in Fig S2(b). Both approximations well

represent the two sub-populations:
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• Clones with a small cell number are mainly clones with an immigration rate α ≪ r̄ (population 1). When
considering a clone in this regime that has at least one individual in the body, its distribution globally
follows a log-normal distribution of parameter r̄/µ(N∗). The creation of new cells in these clones is mainly
driven by proliferation.

• Clones with a high cell number are mainly clones with an immigration rate α ≫ r̄ (population 2). When
considering a clone in this regime with an immigration rate α, its distribution globally follows a Poisson
distribution of parameter α/µ(N∗). The creation of new cells in these clones is mainly driven by thymic
output.

Fig S2. (a) Comparison of the clone abundance distribution (Eq. S7) with the log-series distribution in the
neutral model. (b) Illustration of the two regimes in the clone abundance distribution of the heterogeneous
immigration. The normalized clone abundance distribution pk = ck/C is simply the normalization of ck of

Fig. 2(b) with θ = 0.8. The population pk is subdivided in two sub-populations p
{1}
k and p

{2}
k that represent

clones with immigration rates α respectively lower or higher than r̄ as described in Section B.2. The

approximations of p
{1}
k and p

{2}
k (given by Eqs. S16 and S21), well represent the two regimes of pk.

Fig S3. Effect of πr(r ≈ R) on the predicted mean clone count ck. (a) To study the effect of πr(r) when r is
near its upper-bound R, we consider a series of almost-similar proliferation distributions πr(r) where only the
local behavior for r ≈ R changes. Specifically, we allow πr(r) to take on two constant values: πr(r) = r1 for
r ≤ 0.99R and πr(r) = r2 for R ≥ r ≥ 0.99R. By varying the ratio r1/r2, we change the local behavior at r ≈ R
without significantly affecting the mean or the variance of πr(r) (see inset). (b) Decreasing r1/r2, increases the
proportion of larger-size clones. (c) Spreading of proliferation rates r among the T cell population: Nr denotes
the density of cells in the whole body with a proliferation rate between r and r + dr. Cells with higher r have a
fitness advantage. Paradoxically, when r1/r2 decreases, the local competition between clones with proliferation
rate r ≈ R decreases (the bluest curves are lower than the others around the upper bound R). Thus the fewer
the number of clones with replication rate r ≈ R the less competition arises, leading to higher clone sizes k as
observed in the (b).
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Fig S4. Effect of different sampling fractions η on predicted sampled clone abundances csk. For all plots, the
dots correspond to the experimental results of [13]. (a) Sampled clone abundances for the neutral model
(without immigration or proliferation heterogeneity). (b) Sampled clone abundances for a model with high
immigration rate heterogeneity corresponding to Fig. 2 for θ ≈ 1. The fit is poor even at this unrealistic value of
θ. (c) Expected sampled clone counts for a high proliferation rate heterogeneity model (corresponding to the
Fig. 3 for w = 2r̄ = 9.8× 10−4/day).

Fig S5. Positively and negatively correlated π(α, r). (a) For r̄/2 ≤ r ≤ 2r̄, we consider π(α, r) distributions
with positively and negatively correlated α and r (Eqs. 17). (b) Mean sampled clone counts corresponding to
positively and negatively correlated π(α, r) show negligible differences. (c) “Line integrals” of the positively and
negatively correlated distributions π(α, r) in the uv/(1− v)-u diagram. Clones counts predicted by such π(α, r)
follow log-series distributions, similar to those of a neutral model.
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