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Abstract

We examine how the speed of learning and best-response processes depends on
homophily: the tendency of agents to associate disproportionately with those having
similar traits. When agents’ beliefs or behaviors are developed by averaging what they
see among their neighbors, then convergence to a consensus is slowed by the presence
of homophily, but is not influenced by network density. This is in stark contrast
to the viral spread of a belief or behavior along shortest paths – a process whose
speed is increasing in network density but does not depend on homophily. In deriving
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1 Introduction

There are pronounced disagreements in society about factual issues. In October 2004, 47 per
cent of Republican poll respondents believed that Iraq had weapons of mass destruction just
before the 2003 invasion of that country, as opposed to only 9 per cent of Democrats. These
disagreements can be highly persistent. Sixteen months later, in March 2006, the percentages
had changed to 41 for Republicans and 7 for Democrats.1 This kind of disagreement occurs
on many other important factual questions – for instance, whether temperatures on earth
are increasing over time.2,3

How long does it take for beliefs to reach a consensus about issues of broad interest?
What determines the extent of disagreement? Why might consensus be reached among
certain subgroups of a population much more quickly than among a population as a whole?
Understanding convergence times can help us to understand if and when we should expect
a consensus to be reached, and whether a society’s beliefs should settle down quickly or
continue to shift for substantial amounts of time.

The answers to these questions lie partly in the networks of relationships that are critical
determinants of how people update their beliefs, and how they choose their behaviors.4 In
this paper we examine how the speed of convergence of agents’ behaviors and beliefs depends
on network structure in a model that is rich enough to capture the segregation patterns that
are pervasive in social networks.

While social networks are naturally complex, they nonetheless exhibit fundamental pat-
terns and regularities. In this paper we focus on the impact of two of the most fundamental
aspects of network architecture: homophily and link density. Link density refers to a measure
of the number of relationships per capita in a society. Homophily, a term coined by Lazars-
feld and Merton (1954), refers to the tendency of individuals to associate disproportionately
with others who are similar to themselves. Indeed, homophily is one of the most perva-
sive and robust tendencies of the way in which people relate to each other (see McPherson,
Smith-Lovin and Cook (2001) for a survey).

Although homophily has been documented across a wide array of different characteristics,
including ethnicity, age, profession, and religion, there is effectively no modeling of how
homophily affects behavior. Intuitively, segregation patterns in a network are very important
for processes of behavior updating, learning, and diffusion, so it is essential to develop models
of homophily’s effects.5

1The polling data appears in “Iraq: The Separate Realities. . . ” (World Public Opinion, 2006).
2This is documented in “Little Consensus on Global Warming” (Pew Research Center, 2006).
3We emphasize that these disagreements concern purely factual questions, not policy matters. Differences

in initial information, which could be related to attempts to justify policy positions, can lead to long-standing
disagreements about facts, as we shall see in our analysis.

4In our analysis, we abstract away from preference differences over policies, and focus directly on updating
over information without any incentives to distort or manipulate the spread of information. Of course, it
is difficult to separate any factual question from its policy implications, and policy preferences might play
some role in the answer to these questions. Nonetheless, network structure also plays a key role, and so we
focus on isolating that issue.

5The closest previous work in economics focuses on models of homophily’s origins (Currarini, Jackson,
and Pin (2009), (2010), Bramoullé et. al (2011)) and rigorous foundations for measuring the extent of
segregation (Echenique and Fryer, 2007). DeMarzo, Vayanos, and Zwiebel (2003) discuss some aspects of
how segregation can affect the updating process they study, but do not formally model linking behavior as
being affected by group membership.
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Indeed, although there is a literature on how agents responding to neighbors’ behaviors
converge to equilibrium, and it is known that network structure matters (e.g., see the survey
by Jackson and Yariv (2010)), there has been no work relating homophily to the speed of
convergence. We address this gap by: (i) working with a model of networks that captures both
homophily and link density; (ii) studying how these properties affect simple but important
benchmark updating processes that are relevant in economic settings. There turns out to be
a clean relationship between the convergence speeds of updating processes and the structure
of the social networks upon which they operate, and we characterize that dependence.

The model of networks that we study, which we refer to as the multi-type random network
model, allows there to be an arbitrary number of groups making up arbitrary fractions of
society. The probability of a link between two nodes depends on which groups they are in.
Thus, the model is an extension of classical random graph models that allows for arbitrary
heterogeneity in types and allows us to tune two fundamental network characteristics: link
density and homophily.6

Using the multi-type random network model as a base, we focus on a simple updating
process, called average-based updating, in which agents set their next-period behaviors or
beliefs based on the average choices of their peers – as in standard peer effects models, with
a social network structure defining the peer relationships (for example, see Calvó-Armengol,
Patacchini, and Zenou (2009) and Bramoullé, Djebbari, and Fortin (2009)). This type of
process is relevant in a variety of applications. A simple one is a coordination setting where
an agent finds it optimal to match the average behavior of his or her social neighbors, and
best responds myopically to their last-period choices. Another updating process in this
class is the classic DeGroot (1974) model of learning and consensus in which one’s opinion
tomorrow about some unknown quantity is an average of the opinions of one’s friends today.
The end of Section 2.4 includes some evidence, both experimental and theoretical, on why
average-based updating is a useful benchmark.7

Our focus is on how long it takes a society to reach a consensus or equilibrium via
an average-based updating process – and, in particular, how this depends on homophily.
Although we provide results in the general model below, the way in which network structure
affects convergence speed is most easily seen within the context of a special kind of random
network that we define in Section 2.3, called the equal-sized islands model. In that model,
agents come in several different types, with an equal number of agents of each type. Agents
link to other agents of the same type with a probability that is different (typically higher)
than the probability with which they link to agents of other types. Homophily is defined
as the difference of these two probabilities, normalized by a measure of the overall linking
probability (see equation (2) in Section 2.3 for a formula). In this setting, the time it takes
for average-based updating processes to converge is increasing and convex in homophily

6Variations of such random graph models appear in the stochastic block modeling literature (e.g., Feinberg
and Wasserman (1981) and Holland, Laskey, and Leinhart (1983)) and the community detection literature
(e.g., Copic, Jackson and Kirman (2009)). The focus in those literatures is on fitting and the estimation of
the underlying (latent) types, and not on dynamic processes occurring on networks.

7One could model the updating of beliefs regarding, say, weapons of mass destruction in Iraq using a
standard Bayesian learning framework. But because of the extreme complexity of the relevant Bayesian
calculations, and the fact that the rational models tend to predict fast convergence to consensus (Parikh
and Krasucki, 1990; DeMarzo et al., 2003; Mossel and Tamuz, 2010) we do not believe this is a particularly
appropriate model either in its predictions or its mechanics for the types of applications that concerned us
here.
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and proportional to the logarithm of population size; but it is essentially unaffected by any
change in overall link density (holding homophily and population size fixed) as long as the
density exceeds a low threshold.

This special case captures the essence of what the paper aims to do: to operationally define
homophily and to show how it affects convergence time. To extend this exercise beyond the
simple structure of the islands model, we introduce a general measure of homophily that
works in any multi-type random network. This measure is called spectral homophily. It is
defined by considering a matrix that captures relative densities of links between various pairs
of groups and taking its second largest eigenvalue.

The paper makes two main contributions. The first is to introduce spectral homophily and
argue that this quantity actually measures homophily – that is, that it coincides with intuitive
notions of homophily and segregation. We do this by showing that spectral homophily
specializes to obvious “hands-on” (i.e., eigenvalue-free) measures of homophily in important
classes of networks; and by proving an explicit interpretation of spectral homophily in terms
of segregation patterns or “fault lines” in the group structure. The second contribution
is to show how spectral homophily affects the convergence time of average-based updating
processes. Indeed, our main theorem, generalizing the islands result above, is as follows: for
average-based updating processes, the time to converge is increasing and convex in spectral
homophily; it is directly proportional to the logarithm of population size; but it is essentially
unaffected by link density as long as the density exceeds a low threshold.

An intuition for the results is that in the average-based updating processes that we exam-
ine, agents are influenced by their acquaintances, and the relative weights on different types
of agents affects an agent’s interim belief. If one doubles connectivity without changing the
relative weights of interactions across groups, the influence on a typical agent’s beliefs from
different groups is unaltered, and so the speed to convergence is unaltered. In contrast,
rearranging the relative weights between groups affects the speed of convergence. Effec-
tively, under nontrivial homophily, within-group convergence is relatively fast, and the main
impediment to convergence is the process of reaching consensus across groups. The more
integrated groups become, the faster overall convergence to a consensus becomes.

One of our main innovations is to relate the rate of convergence to imbalances of inter-
actions at the level of groups, and to show that the specific interactions among agents can
be ignored. This is important, as it allows one to work with a very reduced form, and to ig-
nore specific details of the interaction structure, which can be especially difficult to measure
or even to keep track of in large societies. This also distinguishes our work from previous
work on the speed of convergence of various dynamic processes, where it is known (see, e.g.,
Montenegro and Tetali (2006)) that the second largest eigenvalue of networks is important
for convergence of Markov processes. We show that the specifics of the full network can be
ignored, and so we characterize convergence rates in terms of group-level homophily. Indeed,
this perspective reduces the study of certain processes in large random networks to the study
of much simpler aggregate statistics that measure interactions between groups. As demon-
strated in the paper, such a simplification allows for clean characterizations of convergence
times that are not available otherwise (see Section 3.2.1 for a concrete illustration). This
approach also has implications for statistical work. Since macroscopic, group-level statistics
are much more easily obtained than data on the full network structure (exactly who links
with whom), our results can be used to simplify the work of an econometrician who is using
network data, and to justify this simplification rigorously.
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To provide some context for the results regarding the convergence time of average-based
updating, we briefly compare it to the analogous convergence time for a simple contagion
process. In the simplest contagion process, a node becomes infected or activated as soon
as one of its neighbors does. In such a setting, having one neighbor be infected is enough
for a node to become infected, so relative weights on different types are no longer critical,
and instead overall link density becomes the main determinant of convergence speed. This
contrast helps provide more insight into both types of processes, and makes it clear that the
role of network structure in determining convergence speed depends in intuitive ways on the
type of dynamic process.

As an application of the results and intuitions, we examine a homophilous society whose
members see some signals that are correlated with a true state of nature. The society
has to vote on a policy, and to keep the setting simple, we abstract away from individual
preferences and focus on heterogeneity in information and in interaction patterns. Agents
have no preference bias, but instead all wish to vote according to the true state – for example
updating regarding whether there is a threat to their national security. The agents, however,
have a chance to communicate and update their beliefs before voting. The two distortions in
the society come from homophily between the groups and an initial bias in the distribution
of information throughout the society – so that there is correlation between an agent’s
type (say, demographic group) and the signal seen by that agent. The problematic case is
one where the signals that are in favor of the truly better policy are held mainly by the
minority group, while majority group happens to have an initial bias of signals in favor of
the worse policy. We study how long it takes for such a society to overcome the homophily
and initial bias in the distribution of information and vote “correctly.” If the society votes
before any communication takes place, then all agents vote their initial information and
the majority vote is “correct”. However, in the short run, the groups aggregate their own
information and so the majority group initially votes for the wrong policy. It then takes time
for communication across groups to overcome the homophily and lead to a “correct” overall
vote. We show that the time to a correct vote is proportional to an intuitive factor that is
increasing in the homophily in the society, corresponding precisely to our general measure
of homophily specialized to this context. Indeed, the time to a correct vote is proportional
to our “consensus” time (based on our general measure of homophily), weighted by a factor
that captures the bias in the initial information.

2 The Model: Networks, Homophily, and Learning

We work with a simple model of network structure that generalizes many random network
models and is well-suited for identifying the relative roles of network density and homophily.

2.1 Multi-Type Random Networks

Given a set of n nodes N = {1, . . . , n}, a network is represented via its adjacency matrix: a
symmetric n-by-n matrix A with entries in {0, 1}. The interpretation is that Aij = Aji = 1
indicates that nodes i and j are linked, and the symmetry restricts attention to undirected
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networks.8 Let di(A) =
∑n

j=1 Aij denote the degree (number of links) of node i, the basic
measure of how connected a node is. Let d(A) denote average degree. Finally, let

D(A) =
∑

i

di(A)

be the sum of all degrees in the network, which is twice the total number of links.
Agents or nodes have “types,” which are the distinguishing features that affect their

propensities to connect to each other. Types might be based on any characteristics that
influence agents’ probabilities of linking to each other, including age, race, gender, profes-
sion, education level, and even behaviors.9 For instance, a type might consist of the eighteen
year-old female African-Americans who have completed high school, live in a particular
neighborhood, and do not smoke. The model is quite general in that a type can embody
arbitrary lists of characteristics; which characteristics are included will depend on the appli-
cation. There are m different types in the society. Let Nk ⊂ N denote the nodes of type k,
so the society is partitioned into the m groups (N1, . . . , Nm).

We work with the following random network model that incorporates arbitrary patterns of
intergroup interaction, including homophily. A multi-type random network is defined by the
partition into types (N1, . . . , Nm) together with a symmetricm-by-mmatrix P, whose entries
(in [0, 1]) describe the probabilities of links between various types. The resulting random
network is captured via its adjacency matrix, which is denoted A(P,n).10 In particular,
A(P,n) is built by letting the entries Aij with i > j be independent Bernoulli random
variables that take on a value of 1 with probability Pkℓ if i ∈ Nk and j ∈ Nℓ. That is, the
entry Pkℓ captures the probability that an agent of type k links to an agent of type ℓ. We
fill in the remaining entries of A(P,n) by symmetry: Aij = Aji. We let nk = |Nk| denote
the size of group k, and n denote the total number of agents. Unless otherwise noted, we
use A(P,n) to denote a random matrix, and A without an argument to refer to a given
deterministic matrix.11

The multi-type random model subsumes many other random networks. The seminal
random network model of Erdős and Rényi is a special case, as are many cases of the
model based on degree distributions of Chung and Lu (2002).12 One can also view the

8Although we conjecture that our results can be extended to directed networks without much change in
the statements, some of our proof techniques take advantage of the symmetry of the adjacency matrix, and
so we are not sure of the modifications that might be needed in examining directed networks.

9However, we do not allow types to depend on behaviors or beliefs that are endogenous to the model,
leaving this interesting potential extension for future work.

10The modeling of the network structure as random with certain probabilities amounts to assuming that
the large-scale structure of the network is exogenous to the updating process being studied. This kind of
stochastic network with type-dependent heterogeneity can arise from a strategic friendship formation process
with some randomness in the order of meetings, as in Currarini, Jackson, and Pin (2009).

11For individual entries, we drop the arguments (P,n), but the matrix in question will be clear from
context.

12This can also be seen as a cousin of some of the statistical models that have been used to capture
homophily in networks, such as various p∗ and exponential random graph models (e.g., see the references
and discussion in Jackson (2008b)). There are variations on it in the computer science literature called the
planted multi-section model, e.g., McSherry (2001). An early version of this type of model was introduced
by Diaconis and Freedman (1981) in a study on the psychology of vision, independently of its introduction
in the stochastic block modeling literature (e.g., Feinberg and Wasserman (1981) and Holland, Laskey and
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probabilities in the matrix P as arising from distances between some underlying locations,
either physical or abstract. One can even include different sociabilities, so that some groups
consist of individuals who, for whatever reasons, form more relationships on average than
others. Thus, it need not be that all nodes have the same expected number of connections;
the network can have a nontrivial degree distribution.13

2.2 A General Measure of Homophily

We now provide a general definition of homophily based on the probabilities of interaction
between various types, and then show how it works in an important special case.

Let Qkℓ(P,n) = nknℓPkℓ the expected total contribution to the degrees of agents of type
k from links with agents of type ℓ; when k 6= ℓ, this is simply the expected number of links
between k and ℓ. Also, let dk(Q(P,n)) =

∑
ℓ Qkℓ(P,n) be the expected total degree of nodes

of type k.
Let F(P,n) be a matrix of the same dimensions as P with entries

Fkℓ(P,n) =
Qkℓ(P,n)

dk(Q(P,n))
.

Thus, Fkℓ is the expected fraction of their links that nodes of type k will have with nodes of
type ℓ. This simplifies things in two respects relative to the realized random network. First,
it works with groups (or representative agents of each type) rather than individual nodes;
and second, it works with ratios of expected numbers of links rather than realized numbers
of links. With this matrix defined, we can formulate a general homophily measure.

Definition 1. The spectral homophily of a multi-type random network (P,n) is the second-
largest14 eigenvalue of F(P,n). We denote it by hspec(P,n).

The spectral homophily measure is based on first simplifying the overall interaction ma-
trix to that of the expected interaction across groups, and then looking a particular part of
the spectrum of that matrix: the second largest eigenvalue. On an intuitive level, a second
largest eigenvalue captures the extent to which a matrix can be broken into two blocks with
relatively little interaction across the blocks. Indeed, in Section 6, we present a formal result
showing that spectral homophily picks up “fault lines” created by segregation in the network.
Here, we illustrate this in the context of a special case.

2.3 A Special Case: The Islands Model

For an illustration of the general definitions, it is useful to consider a situation in which
groups are equal-sized and they are all biased in the same way. In particular, links within
type are more probable than those across types and the probability of those across types

Leinhart (1983)) which provided a basis for some of the community detection literature, e.g., Copic, Jackson
and Kirman (2009).

13There are certainly some kinds of networks that this approach is not well suited to modeling: strict
hierarchies, perfect regular lattices, etc., even though homophily can and does occur in these networks.

14It is easily checked, analogously to Fact 1 in Appendix A, that the matrix F(P,n) is similar to the
symmetric matrix with entries Qkℓ(P,n)/

√
dk(Q(P,n))dℓ(Q(P,n)), and so all the eigenvalues of F are real.
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does not depend on the specifics of the types in question. This is a case that we call the
“islands” model.

More precisely, the islands model is the special case of the multi-type random networks
model such that (i) each type (group) has the same number of agents and (ii) an agent only
distinguishes between agents of one’s own type and agents of a different type. Moreover,
all agents are symmetric in how they do this. Formally, in the multi-type random network
notation, we say the multi-type random network (P,n) is an island network with parameters
(m, ps, pd) if:

• there are m islands and their sizes, nk, are equal for all k;

• Pkk = ps for all k; and

• Pkℓ = pd for all k 6= ℓ, where pd ≤ ps.

The idea that agents only distinguish between “same” and “different” agents in terms of
the linking probabilities is surprisingly accurate as a description of some friendship patterns
(e.g., see Marsden (1987) and footnote 7 in McPherson, Smith-Lovin and Cook (2001)).

Two realizations of the islands model with groups of seven with different parameters for
linking probabilities are pictured in Figure 1.

In the context of the islands model, it is easy to define homophily. Let

p =
ps + (m− 1)pd

m
(1)

be the average linking probability in the islands model (the probability that two agents
drawn uniformly at random are linked).

One natural measure of homophily then compares the difference between same and differ-
ent linking probabilities to the average linking probability, with a normalization of dividing
by the number of islands, m:

hislands(m, ps, pd) =
ps − pd
mp

. (2)

Note that this is equivalent to Coleman’s (1958) homophily index specialized to the islands
model:

ps
mp

− 1
m

1− 1
m

.

This is a measure of how much a group’s fraction of same-type links ( ps
mp

) exceeds its popu-

lation share (1/m), compared to how big this difference could be (1− 1/m).15

The measure hislands captures how much more probable a link to a node of one’s own
type is than a link to a node of any other type, and varies between 0 and 1, presuming
that ps ≥ pd. If a node only links to same-type nodes (so that pd = 0), then the average
linking probability p becomes ps/m and so h = 1, while if nodes do not pay attention to
type when linking then ps = pd and h = 0. Indeed, the purpose of the m in the denominator

15To see this, note that Coleman’s index can be rewritten as ps−p
(m−1)p , and then from (1) it follows that

ps − p = m−1
m (ps − pd); substituting verifies the equivalence.
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(a) (b)

Figure 1: Islands networks with low and high homophily are shown in (a) and (b), respec-
tively.

is restrict the variation of the measure exactly to the interval [0, 1] (under the assumption
that pd ≤ ps).

This simple measure of homophily introduced above is equal to the spectral homophily.

Proposition 1. If (P,n) is an islands network with parameters (m, ps, pd), then

hislands(m, ps, pd) = hspec(P,n).

2.4 The Average-Based Updating Processes

The processes that we focus on are ones where agents’ behaviors or beliefs depend on some
average of their neighbors’ behaviors or beliefs. Applications include ones where agents
dynamically and myopically best respond, trying to match the average behavior of their
neighbors, as in common specifications of peer-effects models. This also includes belief up-
dating rules as based on a model of updating and consensus reaching that was first discussed
by French (1956) and Harary (1959), and later articulated in its modern, general form by
DeGroot (1974).

2.4.1 Definition

Average-based updating processes are described as follows. Given a network A, let T(A)
be defined by Tij(A) = Aij/di(A). Beginning with an initial vector of behaviors or beliefs
b(0) ∈ [0, 1]n, agent i’s choice at date t is simply

bi(t) =
∑

j

Tij(A)bj(t− 1).

That is, the agent matches the average of his or her neighbors’ last-period choices. In matrix
form, this is written as:

b(t) = T(A)b(t− 1)

8



t = 0

(a)

t = 1

(b)

t = 2

(c)

t = 10

(d)

Figure 2: An illustration of the DeGroot process in which beliefs range from 0 (white) to 1
(black). Some nodes begin with beliefs of 0 and others begin with beliefs of 1. Over time, as
nodes average the information of their neighbors, the process converges to a situation where
nodes’ beliefs are shades of gray.

for t ≥ 1. It follows that
b(t) = T(A)tb(0).

The process is illustrated in Figure 2.
In Appendix B, we examine a variation of the model in which agents always put some

weight on their initial beliefs:

b(t) = (1− α)b(0) + αT(A)b(t− 1).

Although in such a model a consensus is not reached, our results about speed of convergence
have direct analogs there. Thus, we focus on the case where α = 1 in the main text and
refer the interested reader to Appendix B for the analogous statements in the other context.
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2.4.2 Interpretations

One simple interpretation of this process is as a myopic best-response updating in a pure
coordination game. For example, suppose the agents have utility functions

ui(b) = −
∑

j

Aij

di(A)
(bj − bi)

2,

with one interpretation being that agents receive disutility from interacting with neighbors
making different choices (e.g. about language or information technology). The Nash equi-
libria clearly consist of strategy profiles such that all agents in a component choose the
same behavior. As we discuss below, under mild conditions, myopic best responses lead to
equilibrium and we analyze the speed of convergence.

In a different interpretation based on the updating of beliefs, each agent begins with some
belief bi(0) ∈ [0, 1] at time 0. If the initial beliefs bi(0), as i ranges over N , are independent
and identically distributed draws from normal distributions around a common mean then
the linear updating rule at t = 1 corresponds to Bayesian updating for estimating the true
mean, as discussed by DeMarzo, Vayanos, and Zwiebel (2003).16 The behavioral aspect
of the model concerns times after the first round of updating. After the first period, a
Bayesian agent would adjust the updating rule to account for the network structure and the
differences in the precision of information that other agents might have learned. However,
due to the complexity of the Bayesian calculation, the DeGroot process assumes that agents
continue using the simple averaging rule in later periods, as well.17 DeMarzo, Vayanos, and
Zwiebel (2003) argue that continuing to update according to the same rule can be seen as
a boundedly rational heuristic that is consistent with psychological theories of persuasion
bias. It is important to note that agents do learn new things by continuing to update, as
information diffuses through the network as agents talk to neighbors, who talk to other
neighbors, and so forth.

Some further remarks on the averaging model and its empirical relevance, as well as
theoretical properties, can be found in Section 2.4.5 below.

2.4.3 Convergence

As long as the network is connected, the process will converge to a limit.18 In the results
below about random networks, the assumptions ensure that the networks are connected with

16Under the coordination game interpretation, the model involves no self-weight (Aii = 0), while in the
belief-updating interpretation, Aii = 1 is natural. It turns out that for our asymptotic results, there is no
change that arises from introducing either assumption to the multi-type random graph framework. This is
because (as can be seen via calculations very similar to those in the proof of Theorem 2 in Appendix A) the
spectral norm of the difference between the updating matrices under these different assumptions tends to 0
as n grows large.

17Although Bayesian updating can be complicated in general, there are settings where results can be
deduced about the convergence of Bayesian posteriors in social networks, such as that studied by Acemoglu
et. al. (2011) and Acemoglu et. al., and by Mueller-Frank (2011).

18If the communication network is directed then convergence requires some aperiodicity in the cycles of
the network and works with a different segmentation into components, but still holds quite generally, as
discussed in Golub and Jackson (2010).
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a probability tending to one as n grows.19

Lemma 1. IfA is connected, then T(A)t converges to a limit T(A)∞ such that (T(A)∞)ij =
dj(A)

D(A)
.

Lemma 1 follows from standard results on Markov chains20 and implies that for any given
initial vector of beliefs b(0), all agents’ behaviors or beliefs converge to an equilibrium or
consensus. That is:

lim
t→∞

b(t) = T(A)∞b(0) = (b, b, . . . , b) where b =
∑

j

bj(0) ·
dj(A)

D(A)
. (3)

Thus, the relative influence that an agent has over the final behavior or belief is his or
her relative degree. The rough intuition for this is fairly straightforward. With a connected
network, some of the agents who hold the most extreme views must be interacting with some
who are more moderate, and so the updating reduces the extremity of the most extreme views
over time. The linearity of the updating process, ensures that the moderation is rapid enough
to converge to a limit. The precise limit depends on the relative influence of various agents
in terms of how many others they interact with.

2.4.4 Measuring Speed: Consensus Time

Consider some networkA and the linear updating process with the matrixT(A). To measure
how fast average-based updating processes converge, we simply examine how many periods
are needed for behaviors or beliefs (viewed as a vector across individuals) to get within some
distance ε of their limits. The measure of deviation from consensus we use has a simple
interpretation. At each moment in time, there are twice as many “messages” sent as there
are links in the network (for the information/learning interpretation of the updating model)
– two messages across each link. Let m(t) be this vector of messages for some ordering of
the directed links. We define the distance from consensus at time t to be the root mean
square distance of m(t) from its limit m(∞). For the network A and starting beliefs b, we
denote this distance (the consensus distance) at time t by CD(t;A,b).

This measurement of distance between messages corresponds to a weighted version of the
usual (ℓ2) norm of the difference between beliefs or behaviors of the agents. The weights
put more emphasis on agents with more links, since agents who are more connected will
send more messages. Indeed, the distance measure is simply the square root of a weighted
average of the squared distances between the individual beliefs and their limits, where the
weights are proportional to each individual’s degree (which also corresponds to his or her
influence on the eventual consensus). More specifically, given two vectors of beliefs v and

u, define ‖v − u‖w = [
∑

i wi(vi − ui)
2]

1/2
. The distance of beliefs at time t from consensus

is then CD(t;A,b) = ‖T(A)tb − T(A)∞b‖s(A), where we use the weights s(A) defined

by s(A) =
(

d1(A)
D(A)

, . . . , dn(A)
D(A)

)
. This is equivalent to the “messages” interpretation because

19For example, Theorem 1 shows that under these assumptions, agents converge to within a specified
distance of consensus beliefs in the worst case, which could not happen if the network were not connected.

20For example, see Golub and Jackson (2010) and Chapter 8 of Jackson (2008b) for details, background,
and a proof.
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an agent with degree di(A) sends a share of the messages in the network given exactly by

si(A) = di(A)
D(A)

.
Then the consensus time is the time it takes for this distance to get below ε:

Definition 2. The consensus time to ε > 0 of a connected network A is

CT(ε;A) = sup
b∈[0,1]n

min{t : CD(t;A,b) < ε}.

The need to consider different potential starting behavior or belief vectors b is clear,
as if one starts with bi(0) = bj(0) for all i and j then equilibrium or consensus is reached
instantly. Thus, the “worst case” b will generally have behaviors or beliefs that differ across
types and is useful as a benchmark measure of how homophily matters; taking the supremum
in this way is standard in defining convergence times. This is closely related to mixing time,
a standard concept of convergence for analyzing Markov chains.21

Why is consensus time a good measure to study? Fundamentally, average-based updat-
ing is about reaching an equilibrium or consensus through repeated interaction. In many
applications, agents may never fully reach an equilibrium or consensus, and whether or not
they get close then depends on the speed of convergence. So an important measure the speed
of convergence is then obtained by asking how many rounds of communication it takes for
beliefs to get within a pre-specified distance of their limit.22

2.4.5 Why Average-Based Updating?

Despite the simplicity of average-based updating, it has a number of appealing properties.
In the coordination game application, it obviously leads agents to converge to an efficient
equilibrium in a very simple and decentralized way.

In the learning application, too, it turns out that the process often leads to efficient or
approximately efficient outcomes in the long run. In particular, Golub and Jackson (2010)
analyze conditions under which this “naive” updating process converges to a fully rational
limiting belief (that is, the Bayesian posterior conditional on all agents’ information) in a
large society. The conditions require23 no agent to be too popular or influential. Those
conditions will be satisfied with a probability going to one in the settings that we study here
– e.g. under the regularity conditions of Definition 3 below – and so the naive beliefs will
eventually lead to a fully rational limit.

To obtain the same learning outcome by behaving in a fully Bayesian manner when the
network is not common knowledge, agents would have to do a crushing amount of compu-
tation (see Mueller-Frank 2011 for some discussion of this issue, as well as explicit Bayesian
procedures). Thus, if computation has even a tiny cost per arithmetic operation, the averag-
ing heuristic can have an enormous advantage, both from an individual and group perspec-
tive. Indeed, this argument appears to be borne out by some recent empirical evidence. In

21For a discussion of various measures of convergence speed see Montenegro and Tetali (2006).
22The particular measure of distance can be small even if a few agents deviate substantially from the

eventual consensus. Thus, consensus time defined using this measure is a lower bound on consensus times
using more demanding measures which require everyone to have converged before we consider the distance to
consensus small. We believe the results would be essentially similar if a different (worst-case across agents)
measure were used instead.

23See Section II.C of that paper for the simple result relevant in the present framework.
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an experiment seeking to distinguish different models of learning, Chandrasekhar, Larreguy,
and Xandri (2010) placed experimental subjects exactly in the learning setting described
above.24 They find that the subjects’ updating behavior is better described by repeated
averaging models than by more sophisticated rules.25

3 How Homophily Affects the Speed of Convergence

3.1 The Main Result

This section presents the main result. A few definitions and notations are needed first.
Throughout the section, we consider sequences of multi-type random networks, with all
quantities (e.g. the matrix of intergroup linking probabilities P and the vector of group sizes
n) indexed by the overall population size, n. We generally omit the explicit indexing by n
to avoid clutter.

The following conditions are assumed in the statement of the main result.
The next definition catalogs several regularity conditions on a sequence of multi-type

random networks which will also be assumed in the theorem.

Definition 3.

1. A sequence of multi-type random networks is sufficiently dense if the ratio of the
minimum expected degree to log2 n tends to infinity. That is:

mink∈M dk(Q(P,n))

log2 n
→ ∞.

2. A sequence of multi-type random networks has no vanishing groups if lim inf
k

nk

n
> 0.

3. A sequence of multi-type random networks has interior homophily if

0 < lim inf
n

hspec(P,n) ≤ lim sup
n

hspec(P,n) < 1.

4. Let P denote the smallest nonzero entry of of P and P denote the largest nonzero
entry. A sequence of multi-type random networks has comparable densities if:

0 < lim inf
n

P/P ≤ lim sup
n

P/P < ∞.

24See also, Choi, Gale and Kariv (2005) for earlier experiments on learning in simple networks.
25Corazzini et al. (2011) also report results that favor a behavioral DeGroot-style updating model over a

Bayesian one. Nevertheless, there are some nuances in what the most appropriate model of boundedly ra-
tional updating might be, and how it depends on circumstances. Mobius, Phan, and Szeidl (2010) find some
experimental evidence that in situations where information is “tagged” (so that agents not only communi-
cate their information, but also where a piece of information came from) then the over-weighting of some
information that may take place under the DeGroot process can be avoided. The straight DeGroot model
seems more appropriate when such tagging is difficult, which can depend on the nature of the information
being transmitted, the size of the society, and other details of the process.
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The sufficient-density condition ensures that with a probability tending to one, all nodes
will be path-connected to each other.26 The no-vanishing-groups condition ensures that all
groups have a positive share of the population. The interior-homophily condition requires
that homophily not grow arbitrarily large or approach 0.27 Finally, the comparable-densities
condition ensures that positive interaction probabilities do not diverge arbitrarily: they may
be quite different, but their ratios must remain bounded.

The next definition is simply used to state the theorem’s conclusion compactly:

Definition 4. Given two sequences of random variables x(n) and y(n) we write x(n) ≈ y(n)
to denote that for any ε there is a large enough n such that the probability that

(1− ε)y(n)/2 ≤ x(n) ≤ 2(1 + ε)y(n)

is at least 1− ε.

Thus, x(n) ≈ y(n) indicates that the two (random) expressions x(n) and y(n) are within
a factor of 2 (with a vanishingly small amount of slack) for large enough n with a probability
going to 1.

With these preliminaries out of the way, we can state the main result:

Theorem 1. Consider a sequence of multi-type random networks satisfying the conditions
in Definition 3. Then, for any γ > 0:

CT
(γ
n
;A(P,n)

)
≈ log(n)

log(1/|hspec(P,n)|) .

Thus, the speed of convergence of an average-based updating process is proportional to
log(1/hspec(n)). In other words, the speed of the process essentially depends only on group
size and homophily. This approximation for consensus time is always within a factor of two
of the consensus time: this is the most that properties of the network other than spectral
homophily can matter.

Note that the matrix F(P,n) introduced in Section 2.2 is invariant to multiplying all
linking probabilities by the same number, and so the estimate above is invariant to homoge-
neous density shifts. Indeed, in Proposition 2 below, we will prove something stronger than
this.

The intuition behind why degree does not enter the expression in Theorem 1 is as follows.
If one doubles each agent’s number of links, but holds fixed the proportion of links that an
agent has to various groups, then the amount of weight that agents place on various groups is
unaffected. In the DeGroot process, each group quickly converges to a meta-stable internal
belief, and then the differences of beliefs across groups are primarily responsible for slowing
down convergence to a global consensus. It is the relative weights that agents put on their

26The minimum needed for the network to be connected asymptotically almost surely is for the degrees to
grow faster than log n. The condition here is a little stronger than this, and turns out to be what is needed
to prove the tight asymptotic characterizations of convergence time we are about to present.

27The case of no homophily is dealt with in detail in Chung et al. (2004), and the case of homophily
approaching 1 may lead the network to become disconnected, in which case there can be no convergence at
all. We leave the study of that more delicate situation (where the rate of homophily’s convergence to 1 will
be important) to future work.
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own groups versus other groups that is the main determinant of the speed of this convergence.
This is exactly what is captured by the homophily measure. And since these relative weights
do not change under uniform density shifts, neither does convergence speed.

Finally, the parameter ε = γ/n in the consensus time CT
(
γ
n
;A(P,n)

)
deserves some

explanation. This choice is not essential. Indeed, Proposition 5 in Appendix A shows that
for any choice of ε, the consensus time CT (ε;A(P,n)) can be characterized to within a fixed
additive constant, and the inverse proportionality to log(1/|hspec(P,n)|) remains unchanged.
The intuition for choosing ε = γ/n can be described as follows. Under the assumption of
comparable densities and no vanishing groups, all agents have an influence of order 1/n on
the final belief. That is, the final belief is a weighted average of initial beliefs, and each
agent’s weight is of order 1/n.28 Therefore, if we begin with an initial condition where one
agent has belief 1 and others all have belief 0, then the limiting consensus beliefs will be
of order 1/n. Suppose we want a measure of consensus time that is sensitive to whether
the updating process has equilibrated in this example. Then, to consider consensus to have
been reached, the distance from consensus, as measured by the distance CD(t;A(P,n),b)
of Section 2.4.4, should be γ/n for some small constant γ > 0. This amounts to requiring
that agents should be within a small percentage of their final beliefs. Thus, setting ε = γ/n
results in a consensus time measure that is sensitive to whether a single agent’s influence
has diffused throughout the society.

3.2 Applications to Specific Classes of Networks

3.2.1 The Islands Model

We can immediately give two applications of this result. First, recall the islands model of
Section 2.3. There, we showed that if (P,n) is an islands network, then

hspec(P,n) = hislands(m, ps, pd) =
ps − pd
mp

.

This is a simple and hands-on version of the spectral homophily measure. Theorem 1 then
immediately implies the following concrete characterization of consensus time.

Corollary 1. Consider a sequence of islands networks with parameters (m, ps, pd) satisfy-
ing the conditions in Definition 3. Then, for any γ > 0:

CT
(γ
n
;A(P,n)

)
≈ log(n)

log(1/|hislands(m, ps, pd)|)
=

log(n)

log
∣∣∣ mp
ps−pd

∣∣∣
.

Note that if ps and pd are scaled by the same factor, then p scales by that factor, too,
and so the estimate above is unaffected.

This example illustrates why a group-level perspective is useful, and how it goes beyond
what we knew before. It is fairly straightforward from standard spectral techniques to deduce

28The formal proof relies on the fact that each agent’s influence is proportional to his degree, as stated
in Section 2.4.3, and the fact that each agent’s degree is very close to his expected degree (see Lemma 4 in
Appendix A).
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that CT
(
γ
n
;A(P,n)

)
is approximately

log(n)

log |1/λ2(T(A(P,n)))| ,

where λ2(T) is the second-largest eigenvalue of T. Since hspec(P,n) is the second-largest
eigenvalue of a closely related matrix (recall Section 2.2), one might ask whether Theorem
1 really yields much new insight.

We argue that it does. Recall that T(A(P,n)) has dimensions n-by-n, which is typically
large; and it is a random object, with zeros and positive entries scattered throughout. It
is not at all obvious, a priori, what its second eigenvalue is, or how it relates to the large-
scale linking biases. Theorem 1 allows us to reduce this hairy question about T(A(P,n))
to a question about the much smaller deterministic matrix P (whose dimensionality is the
number of groups, not agents), and obtain the formula of Corollary 1. We are not aware of
other methods that can do this; this demonstrates the power of the group level approach.

3.2.2 Two Groups

The analysis of the islands model is special in that all groups are of the same size. To
obtain simple expressions that allow for heterogeneity in group size, we restrict attention to
two groups, i.e., m = 2. This echoes the intuitions of the islands model above and again
illustrates the main points cleanly.

For the two-group model, the vector n has two entries (the two group sizes) and we focus
on a case such that P11 = P22 = ps while P12 = P21 = pd; and ps > pd.

In contrast to the islands model, there is no longer a homogeneous link density, since
the two groups can differ in size. Thus, the average link probability (allowing self-links) for
group k is

pk =
nkps + n−kpd

n1 + n2

,

where −k denotes the group different from k.
Coleman’s (1958) homophily index specialized to a group k is

h1 =

nkps
npk

− nk

n

1− nk

n

=
nk

n− nk

ps − pk
pk

.

Recall that this is a measure of how much a group’s fraction of same-type links (nkps
npk

) exceeds

its population share (nk

n
), compared to how big this difference could be (1− nk

n
).

We define the two-group homophily measure as the weighted average of the groups’
Coleman homophily indices:

htwo(ps, pd,n) =
n2

n
h1 +

n1

n
h2.

Here the weighting of each homophily by the other group’s size accounts for the relative
impact of each group’s normalized homophily index, which is proportional to the size of the
group with which a given group interacts.

Again, note that the homophily measure, htwo(ps, pd,n), is insensitive to uniform rescal-
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ings of the link density, and depends only on relative fractions of links going from one group
to another. It is 0 in a case where the link probabilities within groups are the same as across
groups; it is 1 when all links are within groups.

With the definitions in hand, we state the characterization of consensus time in the case
of two groups.

Corollary 2. Consider a sequence of two-group random networks (as described above)
satisfying the conditions in Definition 3. Then, for any γ > 0:

CT
(γ
n
;A(P,n)

)
≈ log(n)

log(1/|htwo(ps, pd,n)|)
.

Thus, consensus time depends only on the size of the network and on the weighted average
of the groups’ Coleman homophily indices!

3.3 The Speed of Average-Based Updating is Invariant to Uniform

Density Shifts

Theorem 1 and the special cases we have just discussed suggest that consensus times do not
depend on density but only on ratios of linking densities. That is, if linking probabilities
are adjusted uniformly, then the estimate of consensus time in Theorem 1 is essentially
unaffected. The following result strengthens this conclusion.

Proposition 2. Consider a sequence of multi-type random networks (P,n) and another
(P′,n) where P′ = cP for some c > 0. Under the conditions of Theorem 1, the ratio of
consensus times

CT
(
γ
n
;A(P,n)

)

CT
(
γ
n
;A(P′,n)

)

converges in probability to 1.29,30

3.4 How the Main Result is Obtained

In this section, we give an outline of the main ideas behind Theorem 1. There are two pieces
to this. One is the role of the second eigenvalue as a measure of speed, which follows from
known results in Markov theory. The other, which is the major technical innovation in our
paper, is to show that the interactions that need to be considered are only at the group level,
and only need to be considered in terms of expectations and not actual realizations.

29For any 1− δ, we can find large enough n and small enough δ, such that the ratio of the two consensus
times is in the interval [1− δ, 1 + δ] with probability at least 1− δ.

30The reason that this proposition is not an immediate corollary of Theorem 1 is as follows. According to
Theorem 1, both consensus times CT

(
γ
n ;A(P,n)

)
and CT

(
γ
n ;A(P′,n)

)
are approximately

log(n)

log(1/|hspec(P,n)|) =
log(n)

log(1/|hspec(P′,n)|) ,

with the equality holding since hspec is invariant to degree shifts. But the ≈ of Theorem 1 allows each
consensus time to deviate by a factor of 2 from the estimate, so that, a priori, the two consensus times might
differ by a factor of as much as 4. The proposition shows that this is not the case.
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3.4.1 Consensus Time and Second Eigenvalues

The following lemma relates consensus time to the second largest eigenvalue (in magnitude)
of the realized updating matrix.

Lemma 2. Let A be connected, λ2(T(A)) be the second largest eigenvalue in magnitude of
T(A), and s := mini di(A)/D(A) be the minimum relative degree. If λ2(T(A)) 6= 0, then
for any 0 < ε ≤ 1:

⌊
log(1/(2ε))− log(1/s1/2)

log(1/|λ2(T(A))|)

⌋
≤ CT(ε;A) ≤

⌈
log(1/ε)

log(1/|λ2(T(A))|)

⌉
.

If λ2(T) = 0, then for every 0 < ε < 1 we have CT(ε;A) = 1.

If ε is fairly small, then the bounds in the lemma are close to each other and so we have
a quite precise characterization in terms of the spectrum of the underlying social network.
However, the lower bound in Lemma 2 includes a term log(1/s1/2), which can grow as n
grows. In Appendix A, Proposition 5 shows that this can be dispensed with under the
assumptions of Definition 3.

The proof of this result follows standard techniques from the literature on Markov pro-
cesses and their relatives (Montenegro and Tetali, 2006).

3.4.2 Relating Second Eigenvalues to Large-Scale Network Structure

As mentioned above in Section 3.2.1, a result like Lemma 2 has the limitation that the
second eigenvalue of a large random matrix does not immediately yield intuitions about
how group structure affects convergence rates; for large populations, even computing this
eigenvalue precisely can be a challenge. Thus, our goal is to reduce the study of this object
to something simpler.

To this end, we now present the main technical result: a “representative-agent” theorem
that allows us to analyze the convergence of a multi-type random network by studying a
much smaller network in which there is only one node for each type of agent. We show
that under some conditions on the minimum expected degree, the second eigenvalue of a
realized multi-type random graph converges in probability to the second eigenvalue of this
representative-agent matrix – namely, the matrix F(P,n) introduced in Section 2.2. That
eigenvalue is precisely the spectral homophily, hspec(P,n).

This result is useful for dramatically simplifying computations of approximate consen-
sus times both in theoretical results and in empirical settings, as now the random second
eigenvalue can be accurately predicted knowing only the relative probabilities of connections
across different types, as opposed to anything about the precise realization of the random
network. Indeed, this result is the workhorse used in Appendix A to prove all the propositions
about the islands and two-group cases already discussed above.

Theorem 2. Consider a sequence of multi-type random networks described by (P,n) that
satisfies the conditions of Definition 3 (i.e., is sufficiently dense; and has no vanishing groups,
interior homophily, and comparable densities). Then for large enough n,

|λ2(T(A(P,n)))− λ2(F(P,n))| ≤ δ,
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with probability at least 1− δ.

Theorem 2 is a law of large numbers for spectra of multi-type random graphs. Large-
number techniques are a central tool in the random graphs literature; they show that various
important properties of random graphs converge to their expectations, which shows that
these locally haphazard objects have very precise global structure. The closest antecedent
to this particular theorem is by Chung, Lu and Vu (2004) for networks without homophily,
which shows that expectations rather than realizations are important in some particular
limiting properties of a class of random graph models. Our theorem is the first of its kind
to apply to a model that allows homophily and the associated heterogeneities in linking
probabilities, which eliminates the sort of symmetry present in many random graph models.
We employ a similar strategy in the proof, which relies on decomposing the random matrix
representing our graph into two pieces: an “orderly” piece whose entries are given by linking
probabilities between nodes of various types, and a noisy piece due to the randomness of
the actual links. By bounding the spectral norm of the noise, we show that, asymptotically,
the second eigenvalue of the orderly part is, with high probability, very close to the second
eigenvalue of the random matrix of interest. Then we note that computing the second
eigenvalue of the orderly part requires dealing only with a representative-agent matrix.

Figure 3 provides an idea of why Theorem 2 holds. In Figure 3, the left hand picture
presents the probability of linking between two nodes, in a case with 300 nodes and three
groups (each of 100 nodes) with varying probabilities of linking within and across groups
represented by the shading of the diagram. On the right hand side, the picture is broken into
300×300 pixels where a pixel is shaded black if there is a link between the corresponding
nodes and is white if there is no link. This is a picture of one randomly drawn network
where each link is formed with the independent probability governed by the generalized
random network model with the probabilities in the left hand picture. One sees clearly the
law of large numbers at work as the relative shadings of the expected and realized matrices
coincide rather closely. Though this is harder to see in a picture, the same will be true of
the important parts of the spectra of the two matrices.

(a) Probability of links (b) Realized links

Figure 3: The left hand side is shaded according to the expected probability of linking
between nodes, with darker shades indicating a higher probability, and on the right hand
side is a single realized matrix drawn from the generalized random network model with the
left-hand-side probabilities, shaded according to the actual realizations of links.
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4 Interim Dynamics and Separating the Sources

of Disagreement

In this section, we focus on the dynamics of behaviors to tease apart the effects of homophily
and initial disagreement and thus clarify the implications of the model.

4.1 Reducing to the Dynamics of Representative Agents

Suppose that initial beliefs bi(0) of agents of type k (so that i ∈ Nk) are independent random
variables distributed on [0, 1] with mean µk. Let µ ∈ Rm be the vector of these means with
as many entries as types.

Recall the definition of F(P,n) from Section 2.2. The (k, ℓ) entry of this matrix captures
the relative weight of type k on type ℓ. Fixing F(P,n), define the vector b(t) ∈ Rm by

b(t) = F(P,n)tµ.

This is an updating process in which there is one representative agent for each type, that
starts with that type’s average belief, and then the representative agents update according
to the group updating matrix F(P,n). We will call this the representative agent updating

process. We can then define a vector b̂(t) ∈ Rn by the property that if agent i is of type

k, then b̂i(t) = bk(t). That is, b̂(t) gives to each agent a belief equal to the belief of the
representative agent of his type.

Then we have the following result, which states that the real process is arbitrarily well
approximated by the representative agent updating process for large enough networks.

Proposition 3. Fix a sequence of multi-type random networks described by (P,n) that
satisfies the conditions in Definition 3. Consider initial beliefs drawn as described above,
and let31 b(t) = T(A(P,n))tb(0). Then, given a δ > 0, there is a sufficiently large n such

that and any t ≥ 1 it holds that32 ‖b(t)− b̂(t)‖ ≤ δ.

This proposition shows that in large enough (connected) random networks, the conver-
gence of beliefs within type occurs quickly – essentially in one period – and that all of the
difference is across types afterward. To understand why this is the case, note that under
the connectivity assumption in Definition 3, each agent is communicating with many other
agents as n becomes large, and thus the idiosyncratic noise of any single agent is washed
away as n grows even with just one period of communication. Moreover, each agent of a
given type has a similar composition of neighbors, in terms of percentages of various types.
Thus, it is only the difference across types that remains after one period of communication.
This proposition then allows us to focus on the representative agent updating process with
only an arbitrarily small loss in accuracy, even after just one period.

4.2 Separating and Estimating the Sources of Disagreement

To clarify the roles of initial disagreement and homophily, it is enough (and clearest) to
examine the case of two groups, as described in Section 3.2.2. Let Di = ni(psni + pdn−i)

31Thus, b(t) is a random variable, which is determined by the realization of the random matrix A(P,n).
32We are using an equal-weight ℓ2 norm: ‖v − u‖ =

[
1
n

∑
i(vi − ui)

2
]1/2

.
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be the expected total degree of group i and D be the total degree D = D1 + D2. Writing
h = htwo(ps, pd,n), we can compute33

bi(t) =
Di +D−ih

t

D
· µi +

D−i(1− ht)

D
· µ−i.

Beliefs converge to a weighted average of initial beliefs, with each group’s mean getting a
weight proportional to its total degree, Dk. The difference in beliefs is then

b1(t)− b2(t) = ht(µ1 − µ2).

Thus, disagreement at a given time is always proportional to initial disagreement, but its im-
pact decreases by a factor that decays exponentially in time based on the level of homophily.

We can also write

log
(
b1(t)− b2(t)

)
= (log h) · t+ log(µ1 − µ2).

Thus, given data on the average disagreement between types, b1(t)−b2(t), at several different
times, running a regression of log

(
b1(t)− b2(t)

)
on t would estimate both the logarithm

of homophily (as the coefficient on t) and the logarithm of initial disagreement (as the
intercept). Note that the validity of this procedure does not depend on the sizes of the
different groups or the values of ps and pd, nor does it require any adjustments for these
(typically unknown) quantities. Thus, when the model holds, it provides a simple way
to separate what part of disagreement is coming from differences in initial information or
inclinations, and what part is coming from homophily in the network. Extending these
results to more groups, as well as richer distributions of initial beliefs (allowing for some
correlation across agents’ beliefs), presents interesting directions for future study.

4.3 Consequences for Interpreting the Main Results

A central finding of this paper is that homophily slows convergence. The mechanism by which
this occurs in our model is as follows. Homophily, through the type-dependent network-
formation process, causes “fault lines” in the topology of a network when agents have linking
biases toward their own type. That is, there are relatively more links among agents of the
same type, and fewer links between agents of different types. This creates the potential for
slow convergence if agents on different sides of the fault lines start with different beliefs.
Since consensus time is a worst-case measure (recall Definition 2 in Section 2.4.4) it equals
the time to converge starting from exactly such initial beliefs; this is a quite natural initial
point to the extent that types not only correspond to network structure, but also correspond
to differences in characteristics that might relate to differences in initial information.

In the model, agents’ types play a direct role only in determining the network topology.34

33The formulas can be verified inductively using the law of motion b(t+ 1) = F(P,n)b(t), recalling that
b(t) = µ.

34In particular, agents’ types have no formal role in the definition of the updating process or of consensus
time, although of course they affect both things through the structure of the network. Holding fixed a
given random network generated by the multi-type random graph model, we could “scramble” the type
labels – that is, reassign them at random – and neither the updating process nor the consensus time would
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We view this as a plausible and important channel through which homophily affects commu-
nication processes. In some situations, however, it may be desirable to also think of types
as separately determining agents’ initial beliefs, rather than focusing on a worst-case initial
condition. The results given above in this section show how to do this. More generally, one
may think of agents having two different kinds of type: a “network type” – the traits that
determine the probabilities of linking, and “belief type” – the traits that govern initial beliefs
bi(0). Then the calculation in Section 4.2 can be interpreted as follows: if network type and
belief type are highly correlated (so that µ1 is significantly different from µ2), then we should
see a high persistence of disagreement (assuming there is homophily based on the network
type). But if they are uncorrelated, so that µ1 = µ2, then there should be no persistent
disagreement, regardless of linking biases.35

5 An Application: Voting in a Society with Homophily

We now provide an application that illustrates some of the concepts and results. The appli-
cation is one where a society that exhibits homophily sees some signals that are correlated
with a true state of nature, and then the agents communicate to update their beliefs. After
communicating for some time, the agents vote on a policy. The question is: do they vote
correctly? The answer depends on homophily. Even when the society has more correct
signals than wrong ones, and it is guaranteed eventually to converge to a situation where a
majority holds the correct view, in the medium run homophily can cause incorrect majority
rule decisions.36

To keep the setting simple, we abstract away from individual preferences and focus on
heterogeneity in information and in interaction patterns. Thus, agents have no preference
bias, but instead all wish to vote according to the true state – for example, according to
whether there is a threat to their national security.

The model is as follows: a society of n agents consists of two groups; one forms a fraction
M ∈

(
1
2
, 1
)
of the society, and is referred to as the “majority group”; the other is referred to

as the “minority group”.
We work in the setting of Section 4. There is a true state of nature, ω ∈ {0, 1}. Agents

see signals that depend on the state but also what group they are in. In particular, agents
in the majority have a probability µ of seeing a signal that is equal to the state ω, and
probability 1− µ of seeing a signal 1− ω, which is the opposite of the true state. As for the
minority group, their probability of seeing a correct signal is ν, and otherwise they see an
incorrect signal. Conditional on ω, all these signals are independent.

The two probabilities µ and ν are chosen so that the overall expected fraction of agents

change, though some interpretations might. Thus, our main results about homophily should be interpreted
as referring to the types that were relevant in network formation in the multi-type random network setting.

35We thank an anonymous referee for suggesting this discussion.
36Nielson and Winter (2008) study deliberation through linear updating followed by voting. They point

out that voting before convergence occurs can yield results different from the eventual consensus of the
society; we extend their framework to study how these deliberative processes are affected by large-scale
homophily in a connected network.
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in the society with a correct signal is some given p > 1/2. Thus, Mµ+(1−M)ν = p and so

ν =
p−Mµ

1−M
.

We will assume that each agent, irrespective of type, has the same expected number of
links and so the same influence on the final belief. Thus, regardless of the initial distribution
of who sees which signal, the weighted averaging of beliefs will converge in a large society to
bi(∞) = p if the state is ω = 1 and bi(∞) = 1 − p if the state is ω = 0. We will consider a
voting rule so that an individual votes “1” if bi(t) > 1/2 and “0” if bi(t) ≤ 1/2. This will
eventually lead society to a correct decision. Moreover, note that if agents vote without any
communication (that is, based on initial beliefs bi(0)) then there will be a correct majority
vote, since a fraction p > 1/2 of the agents will vote for the correct state. It is voting in
intermediate stages – such that agents have had some communication, but not yet converged
– where incorrect votes may occur.

The groups exhibit homophily. The group-level matrix F(P,n) of relative linking densi-
ties is37:

F(P,n) =

(
1− f f
fQ 1− fQ

)
.

A majority agent has a fraction f of his or her links to the minority group, while a minority
agent has a fraction fQ of his or her links to the majority group, where Q = M

1−M
(as required

for a case of reciprocal communication). Suppose that 1 − M ≥ f > 0, so that there is a
bias toward linking to one’s own type (if there were no bias then f should equal 1 −M).38

In a situation where there is no bias in how signals are distributed across the population,
then the communication will quickly aggregate information and lead to correct voting. The
interesting case is when there is some bias in how signals are distributed across the groups.

Without loss of generality, suppose the true state turns out to be ω = 1. If there is no
bias in how signals are distributed across groups, then a fraction pM of these signals are
observed by the majority group, and a fraction p(1−M) of them are observed by the minority
group. If there is a bias, then the “correct” signals will be either more concentrated among
the majority group or the minority group. It is easy to see that if they are concentrated
among the majority group then voting will tend to be correct from the initial period onwards,
and so is not upset by communication. However, if the correct signals turn out to be more
concentrated among the minority, then it is possible for short-term communication to lead to
incorrect voting outcomes. Recall that µ is the fraction of majority agents who observe the
correct signal of 1. From now on we will focus on the case µ < 1/2. Under the assumption
that p is the overall expected fraction of correct signals in the population, the minimum
value that µ can take is p−(1−M)

M
, which corresponds to the case where every minority agent

sees a correct signal and then the remaining correct signals are observed by the majority

37Note that this multi-type random network departs from our two-group setting introduced in Section 3.2.2,
in that a majority agent’s probability of linking to a majority agent may differ from the probability that a
minority agent links to a minority agent (whereas, in the basic two-type model, both probabilities would be
equal to the same number ps). Nevertheless, it fits into the general multi-type framework. Throughout this
section, we assume that the regularity conditions of Definition 3 are satisfied by the sequence of multi-type
random networks.

38The number f = 1 − M is the correct unbiased link fraction for majority agents if agents are allowed
self links, but otherwise it would be (1−M)n/(n− 1).

23



group.
In the initial period t = 0, before any communication, all agents vote based on their

signals, and so there is a correct vote, with a fraction p agents voting “1” and (1− p) of the
agents voting “0.” Now let us consider what happens with updating.

We will use Proposition 3, which allows us to reduce the large-population dynamics to
the representative agents with a vanishing amount of error. We can then use the matrix
F(P,n) given above to deduce that, after one period of updating, the majority belief will
be:

bMaj(1) = p−
(
1− f

1−M

)
(p− µ)

and minority belief will be:

bMin(1) = p+Q

(
1− f

1−M

)
(p− µ) .

Thus, in a case where f < 1 − M and µ < p, the majority will have a lower belief than
the average signal. This corresponds to homophily (f below its uniformly mixed level of
1−M) and a bias toward error in the initial signal distribution of the majority (µ below the
probability p that a randomly chosen agent has a correct signal).

This presents an interesting dynamic. If agents can vote before any communication has
taken place, then they will vote correctly. After an initial round of communication, the
majority of beliefs can be biased towards the wrong state, but then again in the long run
the society will reach a correct consensus. So, how long will it take for the voting behavior
to converge to being correct again after some communication? This will depend both on
the homophily and the bias in signal distribution. In particular, the general expression for
beliefs after t periods of updating is39

bMaj(t) = p−
(
1− f

1−M

)t

(p− µ)

and

bMin(1) = p+Q

(
1− f

1−M

)t

(p− µ) .

Here we see the dynamics of homophily explicitly. The deviation of beliefs after t periods
from their eventual consensus is proportional to the initial bias in signal distribution times
a factor of (

1− f

1−M

)t

,

which captures how homophilous the relationships are. Recall that f is the fraction of the
majority group’s links to the minority group, which in a world without homophily would be
1−M, and with homophily is below 1−M . The impact of homophily decays exponentially
in time.

39This is seen as follows. If bMaj(t−1) = p−a and bMin(t−1) = p+aQ, then bMaj(t) = p− (1−f)a+fQa,
which is then rewritten as bMaj(t) = p − a(1 − f(1 + Q)) and noting that 1 + Q = 1/(1 −M) leads to the
claimed expression. The averaging of overall beliefs to p provides the corresponding expression of bMin.
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The first period in which voting will return to being correct is the first t such that

(
1− f

1−M

)t

<
p− 1/2

p− µ
,

which depends on how biased the initial signal distribution is, and on an exponentially
decaying function of homophily. Treating the representative dynamics approximation as
exact for the moment and ignoring integer constraints40, the time to the correct vote is

log p−1/2
p−µ

log
(
1− f

1−M

) . (4)

The expression resembles our earlier results, with
(
1− f

1−M

)
corresponding to the homophily.

In fact the matrix F(P,n) given above has a second-largest eigenvalue

hspec(P,n) = 1− f − fQ = 1− f

1−M

and so (4) is exactly

log
(

p−1/2
p−µ

)

log |hspec(P,n)| ,

which resembles the formulas in our earlier results.
From the formula, one can immediately deduce that the time to a correct vote is de-

creasing in the fraction of majority agents having the correct initial signal, decreasing in
the overall fraction of correct signals p, and increasing and convex in homophily (becoming
arbitrarily large as homophily becomes extreme).

Thus, when deliberation occurs in the setting of our model before a vote, the efficiency of
electoral outcomes (measured by the time it takes to be able to get a correct vote) depends
not only on the overall quality of information distributed throughout society at the beginning,
but also on how it is distributed (what fraction of majority agents get correct information)
and on the segregation patterns in communication, as measured by homophily.

6 What Spectral Homophily Measures

Homophily has consequences for updating processes because it creates “fault lines”, in the
patterns of interactions among groups. Homophily makes it possible to draw a boundary in
the group structure, separating it into two pieces so that there are relatively few links across
the boundary and relatively many links not crossing the boundary. Thus, an appropriate
global measure of homophily should find a boundary where that disparity is strongest and
quantify it.41

In this section, we show that the spectral homophily measure does this. We do this by
proving an estimate on spectral homophily in terms of a more “hands-on” quantity that we

40It can be seen from Proposition 3 that, for fixed values of the parameters in this section, taking n large
enough will result in the true t being off by at most 1 relative to this estimate.

41Previous work taking a different approach in the same spirit is discussed in Diaconis and Stroock (1991).

25



call degree-weighted homophily.
Let M = {1, . . . ,m} be the set of groups. First, we define a notion of the weight between

two groups.

Definition 5. Let F(P,n) be as defined in Section 2.2. For two subsets of groups, B,C ⊆
M , let

WB,C =
1

|B||C|
∑

(k,ℓ)∈B×C

FkℓFℓk.

The quantity WB,C keeps track of the relative weight between two collections of groups
B and C, and is a measure that ranges between 0 and 1. The numerator measures the total
intensity of interaction between groups in the collection B and groups in the collection C.
The denominator is the product of the sizes of the two sets B and C. With this definition
in hand, we define a notion of degree-weighted homophily.

Definition 6. Given any subset of groups ∅ ( B ( M , let the degree-weighted homophily
of (P,n) relative to B be defined by

DWH(B;P,n) =
WB,B +WBc,Bc − 2WB,Bc

|B|−2
∑

k∈B dk(Q(P,n))−2 + |Bc|−2
∑

k∈Bc dk(Q(P,n))−2
, (5)

where the W ’s are computed relative to F(P,n).

The term in the numerator keeps track of how much of the weight in F falls within B and
within Bc, as well as (with the opposite sign) how much weight goes between these sets of
nodes. Indeed, links within B or its complement Bc increase the degree weighted homophily
and links between the two subsets decrease it. The term in the denominator is a normalizing
value which guarantees that the quantity is no greater than 1 in absolute value.42

To see that the degree-weighted homophily has an intuitive interpretation, consider a
very simple special case. Suppose |B| = m/2 and that every group has the same expected
number of links. Then

DWH(B;P,n) =
#(links within B or Bc)−#(links from B to Bc)

#(total links)
, (6)

where all quantities are expectations.
Let

DWH(P,n) = max
∅(B(M

|DWH(B;P,n)|.

Thus, the degree weighted homophily of a given network is the maximum level of degree
weighted homophily across different possible splits of the network.43

The point of this section is the following lemma, which shows that DWH provides a lower
bound on the spectral homophily.

Lemma 3. If Q(P,n) is connected (viewed as weighted network), then

|hspec(P,n)| ≥ |DWH(P,n)|.
42See Section 9.5 (part of Appendix A) for details.
43This is related, intuitively speaking, to a weighted version of a minimum cut, although this degree

weighted homophily measure turns out to be the right one for our purposes.

26



The key implication is that the second eigenvalue can be related to a “hands-on” ratio
of weights in and out of groups. This provides intuition as to why it measures homophily
and relates to the slowdown of averaging processes.

This DWH lower bound on the spectral homophily is tight in the islands and two-group
models we explored above, as can be verified by simple calculations. Thus, by the remark
made in Section 2.3, DWH coincides with the Coleman homophily index for the islands
model; by the formula in Section 3.2.2 it also has a simple relationship with Coleman ho-
mophily in the two-group case.

Under some additional assumptions, a general complementary upper bound can be es-
tablished, which is not quite tight, but reasonably good when the number of groups is not
too large (as explored in an extension, Golub and Jackson (2011)).

7 Comparing Average-Based Updating with Direct Con-

tagion

It is useful to compare average-based updating with a different sort of contagion process.
It turns out that the two processes are affected in very different ways by homophily and
density. This shows that the averaging aspect of the average-based updating process (though
probably not the exact linear functional form) is essential for producing the results discussed
above. It also shows, more generally, that different natural processes have starkly different
dependencies on the network structure.

7.1 Direct Contagion Processes

Loosely, let us say that a dynamic process on a network is a “direct contagion process”
if it is characterized by travel along shortest paths44 in the network. More formally, we
simply consider a direct contagion process to be any process such that the time to converge
is proportional to the average shortest path between nodes in a network.45

This covers a variety of processes. For example, suppose that we examine a game where
an agent is willing to choose action 1 (e.g., buy a new product) as soon as at least one of
his or her neighbors does. Let us examine the (myopic) best response dynamics of such a
process. If we begin with some random agent taking action 1, what is the time that it will
take for the action to spread to others in the society, on average? This will be determined
by the average network distance between the initial agent who takes action 1 and any other
agent in the society. This class of pure contagion processes also models the spread of some
diseases, ideas or rumors – where an agent is either “infected” or not, “informed” or not,
and so forth – and where the time it takes for something to diffuse from one agent to another
is proportional to the length of the shortest path between them. This class also includes
broadcast processes, where nodes communicate to all neighboring nodes in each period, as
well as processes where the network is explicitly navigated by a traveler using some sort of

44Standard network definitions such as that of a shortest path are omitted. They can be found in Jackson
(2008b).

45As will become clear, one could replace “average shortest path”with “maximum length shortest path”
(network diameter) and the conclusions below would still hold.
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(a) t = 1 (b) t = 2 (c) t = 3

(d) t = 4 (e) t = 5 (f) t = 6

Figure 4: Illustration of the simple diffusion process where each node passes information to
each of its neighbors at each date, t = 1, 2, . . ..

addressing system. Such contagion processes serve as a useful point of comparison to the
average-based updating that we have considered.

An example of a direct contagion process operating is pictured in Figure 4.
Direct contagion processes have an obvious measure of speed, which is simply the average

shortest path length in the network. We denote this random variable by AvgDist(A(P,n)). If
one is worried about the longest time it could take to pass from some node to some other node,
then the diameter of the network is the right measure; we write this as Diam(A(P,n)).46

Such direct contagion processes are obviously idealized, but they can easily extend to
analyze more realistic phenomena. For example, it may be more plausible to posit that
each node sends the news to each neighbor with probability π < 1, and the decisions are
independent. It turns out that this process can be analyzed using the simpler contagion
process outlined above in which the transmission is certain. Given a network on which
the “noisy” process is supposed to happen, one merely considers a subnetwork in which
edges of the original network are included with probability π and excluded with probability
1−π, independently if each other. The deterministic broadcasting process across this sparser
subnetwork is equivalent to the latter on the original network.

46For the multi-type random networks that we examine, it turns out that these average distance and
diameter are effectively the same. This is because, as long as clustering remains bounded away from one, the
vast majority of pairs of nodes in a large network are at the maximum possible distance from each other.
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7.2 The Speed of Contagion

Before discussing the speed of a direct contagion process, we provide one more definition.
Let d̃(P,n) =

∑
k(dk(Q(P,n)))2nk/D(P,n) be the second order average degree, which is a

useful quantity in analyzing asymptotic properties of multi-type random networks.47 If the
average degree dk(Q(P,n)) is the same across groups, then this is just the average degree,
but more generally it weights degrees quadratically across groups.

We need to restrict attention to settings in which the random network will be connected
(with a probability going to one as the number of nodes grows) so that average distance
between any two randomly picked nodes is well-defined. In particular, we suppose that

(i) there exists M < ∞ such that maxk,k′ dk(Q(P,n))/dk′(Q(P,n)) < M ,

(ii) d̃(P,n) ≥ (1 + ε) log n for some ε > 0,

(iii) log(d̃(P,n))/ log n → 0, and

(iv) there exists ε > 0 such that minkk′ Pkk′/maxkk′ Pkk′ > ε.

These conditions admit many cases of interest and can be understood as follows: (i)
requires that there is not a divergence in the expected degree across groups so that no
group completely dominates the network; (ii) ensures that the average degree grows with n
fast enough so that the network becomes connected with a probability going to 1, so that
communication is possible; (iii) implies that average degree grows more slowly than n, as
otherwise the shortest path degenerates to being of length 1 or 2 (which is not of much
empirical interest); and (iv) that there is some lower bound on the probability of a link
between groups relative to the overall probability of links in the network. This last condition
ensures that groups do not become so homophilous that the network becomes disconnected.
Nevertheless, the conditions can accommodate any arbitrarily high fixed level of homophily,
since M and ε are arbitrary parameters.

By adapting a theorem of Jackson (2008a) to our setting, we can derive the following
characterizations of the average (and maximum) distance between nodes in a generalized
random network in the setting considered in this paper. We say a statement holds asymp-
totically almost surely if, for every δ, it holds with probability at least 1− δ in large enough
societies.

Proposition 4. If the random network process (P,n) satisfies (i)-(iv) then, asymptotically
almost surely the network is connected and the average distance between nodes and the
network diameter are proportional to log n/ log(d̃(P,n)): the average distance between nodes
satisfies48

AvgDist(A(P,n)) ∈ (1 + o(1))
log n

log(d̃(P,n))
;

47There is a subtlety in the definition. It resembles the second moment of the degree distribution divided
by the first moment. But it is important to note that in computing the numerator, one first takes average
degrees within groups and then squares those averages. This makes it somewhat different from a second
moment taken across nodes.

48The notation o(1) indicates a factor going to 0 as n goes to infinity and Θ indicates proportionality up
to a fixed finite factor.

29



and the diameter of the largest component satisfies

Diam(A(P,n)) ∈ Θ

(
log n

log(d̃(P,n))

)
.

Proposition 4 tells us that although homophily can change the basic structure of a net-
work, it does not affect the average shortest path distance between nodes in the network.
Moreover, we have a precise expression for that average distance which is the same as for
an Erdös-Rényi random network where links are formed uniformly at random with the same
average degree. Effectively, as we increase the homophily, we increase the density of links
within a group but decrease the number of links between groups. The result is perhaps some-
what surprising in showing that these two effects balance each other to keep average path
length unchanged; more precisely, any deviations from the formula log n/ log(d̃(P,n)) that
are introduced by homophily only affect the result by adjusting a constant in the asymptotics,
and not in the rates.

The intuition behind the proposition can be understood in the following manner. Suppose
that every node had a degree of d and that the network was a tree. Then the k-step
neighborhood of a node would capture roughly dk nodes. Setting this equal to n leads
to a distance of k = log n/ log d to reach all nodes, and given the exponential expansion,
this would also be the average distance. The proposition shows that this is exactly how
the average distance behaves even when the network is not a tree and exhibits substantial
clustering, even when we noise up the network so that nodes do not all have the same degree,
and even when we add substantial homophily to the network.

Corollary 3. Consider a process that has an expected convergence time proportional to
the average distance between nodes. If it is run on two different random network formation
sequences satisfying (i)–(iv) that have the same second order average degree as a function of
n, then the ratio of the expected communication times of the two different random network
sequences goes to 1, asymptotically almost surely.

The above results tell us that average distance is asymptotically not affected by ho-
mophily, and diameter is affected only up to a fixed finite factor, provided there is some
minimal level of inter-group connectivity. Thus direct contagion processes are not affected
by homophily but are affected by the link density in a society.

This provides an interesting contrast with the average-based updating processes, and
helps clarify when and why homophily matters. These results show that homophily is not
affecting average path lengths in a network, and so not changing the distances that infor-
mation has to travel. The density of the network plays that role.49 In the average-based
updating processes that we have considered, it is relative connectivity from group to group

49One other thing is worth pointing out. The multi-type random network model allows for many different
degree distributions, simply by allowing different groups to have different expected degrees. Nonetheless,
the average distance between nodes depends only on the (second order) average degree and not any other
moments, provided (i–iv) are satisfied. Other aspects of the degree distribution can matter in determining
average distance if the conditions are violated. This happens, e.g., in other classes of random graph models
that have extreme variation in the degree distribution (unbounded variance as the number of nodes increases),
as in scale-free networks.
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that matter, and not absolute distances. Homophily is critical in determining such weights
and thus consensus time in processes that are dependent on relative interaction across groups,
while density is inconsequential. In contrast, if all that matters is overall distance, then ho-
mophily will not matter and instead density will matter.

7.3 A Remark on Asymptotics

In Theorem 1 as well as in Proposition 4, a convergence time has a network structure statistic
in the denominator and a log n in the numerator. In particular,

CT
(γ
n
;A(P,n)

)
≈ log(n)

log(1/|hspec(P,n)|) ,

while the average distance satisfies (with a ∼ b meaning that a/b tends to 1 in probability)

AvgDist(A(P,n)) ∼ log n

log(d̃(P,n))
.

Thus it may appear that the asymptotic behavior of these two quantities in n is similar.
This need not be the case. In particular, assumptions (ii) and (iii) above allow for a wide

range of variation in the second-order average degree d̃(P,n): it may grow as slowly as
log2 n or as quickly as n.5/ logn. On the other hand, under the assumptions of Definition 3,
the denominator in the consensus time characterization cannot diverge to infinity. Thus,
the growth rates of diameter and consensus time may behave very differently under the
assumptions for which our results are valid.

Moreover, the two formulas above, taken together, imply some more precise quantitative
information about the comparison between consensus time and the time it takes for an
infection to spread. In particular,

CT
(
γ
n
;A(P,n)

)

AvgDist(A(P,n))
≈ log(d̃(P,n))

log(1/|hspec(P,n)|) .

Thus, when the asymptotics have “kicked in” and the propositions of the paper give close
approximations (which, in numerical experiments, occurs for values of n on the order of
1000), we can make an explicit prediction, with an error bound, about which process is
faster and by how much, knowing only the quantities in the above ratio.

In particular, suppose there are two large multi-type networks with the same second-
order average degree d̃(P,n). One network has a spectral homophily of 1.2, while the other
has a spectral homophily of 5. Then the above ratio of convergence times will be at least 4
times as large for the more homophilous network (because log(1/1.2)/ log(1/5) is about 8.8,
and there is an approximation error of a little more than a factor of 2). By the proposition
above, this change in ratio is not due to the average distance, which stayed essentially the
same, but purely due to the change in consensus time. This highlights the sense in which
homophily matters for average-based updating but not for direct contagion.

Since the approximations ∼ and ≈ in the above expressions work well even for networks
of about 1000 nodes, there is fairly precise quantitative information in these results beyond
the asymptotics in n.
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8 Concluding Remarks

Homophily has long been studied as a statistical regularity in the structure of social in-
teractions. In this paper, we propose a general measure of it – spectral homophily – and
show that it is useful for characterizing the speed of convergence in natural average-based
updating processes.

Homophily slows down convergence of average-based updating according to the simple
formula of Theorem 1, and network density doesn’t matter for the asymptotics of consensus
time. In stark contrast, only density, and not homophily, matters for the speed of contagion
processes.

The different relationships that we have uncovered between network characteristics and
speed of information flow have strong intuitions behind them. Under average-based updating
processes, what is critical to convergence is the weight that nodes put on nodes of other types
relative to those of their own type. Increasing the overall number of links while maintaining
the homophily will not speed up convergence. With direct contagion processes, by definition,
only the average distance between pairs of agents matters. Adding homophily changes who
is close to whom, but it does not change the average lengths of the shortest paths branching
out from each node. While the benchmarks we have analyzed turn out to represent extreme
points, they offer some insight into the key elements of network structure that matter for
learning and diffusion processes.

One can also compare our results to those of rational learning models which have been
studied elsewhere, with the goal of understanding which models are more appropriate in dif-
ferent settings. Mueller-Frank’s (2011) study of dynamic Bayesian updating in an arbitrary
network entails that adding links to a network can only decrease the heterogeneity of ob-
served outcomes. In average-based updating, adding links can strictly increase the observed
heterogeniety of choices (by decreasing the rate of convergence) if those links are added in
a way that increases homophily. Thus, these two models make different predictions about
comparative statics, and these predictions are testable.50 While there have been some stud-
ies of how segregation based on exogenous characteristics like race affects certain observed
outcomes such as school performance and happiness (e.g. Echenique, Fryer, and Kaufman
(2006)), we are not aware of any empirical work that has explored in detail whether such
segregation leads to slower convergence to consensus or even greater cross-sectional varia-
tion in beliefs or behaviors.51 Field experiments may be a valuable tool to approach these
important questions (see the discussion in Section 2.4.5).

Beyond the conclusions about dynamics on networks, our results relating the second
eigenvalues of the interaction matrix to homophily, as well as the representative agent theo-
rem, could be useful more broadly. These provide general theoretical tools for a parsimonious
mean-field approach to studying networks with homophily. The representative agent updat-
ing matrix (and thus the spectral homophily) can be estimated consistently as long as we
can obtain a consistent estimate of the relative interaction probabilities an agent has with
various types. For example, in the network data on high school friendships in the National
Longitudinal Study of Adolescent Health, the relative frequencies of friendships among the

50Of course, some additional theoretical work would have to be done to make the predictions directly
comparable; the comparison of the results in this discussion is somewhat heuristic.

51The work of Bisin, Moro, and Topa (2011) asks some related questions in the course of a structural
empirical exercise focused on smoking behavior in schools.
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various races may be reasonably estimated based on the relative frequencies of nominations
in surveys. On the other hand, the absolute densities of links between various races are
much more difficult to infer, due to subjects’ imperfect recall and an upper limit on the
number of friends that can be named in the survey. This suggests econometric questions –
which, to the best of our knowledge, are open – about how to estimate relative interaction
frequencies most efficiently, and how the resulting estimators of spectral homophily behave.
The approach also naturally raises the issue of what other global properties of large networks
can be estimated accurately using convenient summary statistics that avoid collecting too
much local information; this is a potential avenue of further research.

Our results suggest the importance of understanding homophily in order to understand
the functioning of a society. This is, of course, a first step and suggests many avenues
for further research, of which we mention only some obvious ones. One clear avenue for
future research is considering processes that are not in either of the benchmark classes
that we have examined here, but some hybrid or alternative process. The techniques used in
deriving our conclusions are tailored to these two processes, and so making headway on other
classes will most likely involve developing some substantial new theoretical approaches.52 For
example, an interesting area to explore and to compare results with would be the study of
coordination games on networks (different from the ones we have studied), where it has
also been found that network structure can affect both the strategic choices (e.g., Morris
(2000), Young (1998), Jackson (2008b)) and the speed of convergence (e.g., Ellison (2000)
and Montanari and Saberi (2008)). Another interesting question is how belief dynamics look
in a model of Bayesian updating with heterogeneous priors (depending on an agent’s type,
which may correlate with network position), and whether that sort of process can be readily
distinguished in the data from myopic updating under homophily.

The study of how homophily affects communication naturally raises the issue of how
advances in technology and changes in the media affect the structure of agents’ information
networks and the outcomes of communication. As pointed out by Rosenblat and Mobius
(2004), technology that makes interactions easier may lead to greater network density (and
lower average path length) even as it increases homophily among groups: agents may interact
more but use the better technology to seek out agents more like themselves to interact with.
Our results tie this back to the speed of convergence to a consensus in different processes
and show that average-based updating may become slower after the introduction of a new
communication technology.

Mass media outlets play a key role in the flow of information. Thus, it is important
to be able to incorporate their effects into models of communication. In our setting, this
issue raises three broad questions – a conceptual one, an emprical one, and a theoretical one
– which we believe to be fruitful avenues for future work. The conceptual one is how to
model a media outlet in the type of framework studied in this paper. It can be modeled as
a “forceful agent” with its own agenda that influences others more than it is influenced (see,

52There are also interesting questions regarding what sort of updating people employ. An average-based
updating rule makes the most sense when it is difficult for people to communicate precisely what signals
they have observed and also what others have observed and so forth, but instead can only communicate
aggregated beliefs. In cases where it is easy to communicate signals directly, such as tagged information
about precisely what other agents have observed, it may be that the weights that agents use in updating
adjust more over time. There is some preliminary evidence in this direction in a paper by Mobius and Szeidl
(2010).
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e.g. Acemoglu, Ozdaglar, and ParandehGheibi (2010)), or as a very widely observed agent
that simply aggregates and rebroadcasts along others’ information.

However the media may be modeled, there is an empirical question of how agents are
influenced by the various media content that they consume. Gentzkow and Shapiro (2011)
show that the consumption of online media content, as measured by website visits, exhibits
much less segregation than typical offline face-to-face interaction (somewhat surprisingly,
in view of the potential for greater choice-driven segregation discussed above). Given the
persistence of disagreement, it is reasonable to consider the possibility, as Gentzkow and
Shapiro do, that agents weight and process the different information they receive very differ-
ently depending on its source. A liberal may consult conservative media but not change his
or her views, or even move to the left as a result. Thus it is important to be able to estimate
the weights that describe agents’ updating and to understand how those weights depend on
the media outlet and the issue under discussion.

There is then a theoretical question of how to extend our results when there is heterogene-
ity in the weights agents place on different neighbors, which can include media outlets. The
baseline model considered in this paper has every neighbor who is listened to being weighted
equally. When heterogeneity in weights is present, the correct specification of the group-level
updating matrix should change to account for these weights. We conjecture that, once this
is done, analogs of our results – ones that reduce the study of updating in large networks
to the study of homophily in small deterministic representative agent matrices – should be
available. However, such results do not seem easy to obtain using the proof techniques we
have used, and would constitute a substantial technical advance as well as a valuable tool
for applied modeling and estimation.
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9 Appendix A: Proofs of Results

9.1 Islands Homophily

We begin by proving the fact that spectral homophily is equal to the more simply defined
islands homophily in the special case of the islands model.

Proposition 1. If (P,n) is an islands network with parameters (m, ps, pd), then

hislands(m, ps, pd) = hspec(P,n).

Proof of Proposition 1: Note

F(P,n) =
pd

ps + (m− 1)pd
Em +

ps − pd
ps + (m− 1)pd

Im,

where Em denotes the m-by-m matrix of ones and Im denotes the m-by-m identity matrix.
Then, the eigenvalues of this matrix can be computed directly. The only nonzero eigenvalue
of the first matrix is

mpd
ps + (m− 1)pd

with multiplicity 1; and adding
ps − pd

ps + (m− 1)pd
Im

just shifts all the eigenvalues by adding to them the constant multiplying the identity. Thus
the second-largest eigenvalue of F(P,n) (after the eigenvalue 1) is

ps − pd
ps + (m− 1)pd

.

Theorem 2 gives the convergence in probability of T(A(P,n)) to this expression. Simple
algebra shows that this is the same as hislands(n).

9.2 The Main Technical Results

For the main results, we begin by fixing some notation and reviewing some important back-
ground results. Given a vector s, define

〈v,w〉s =
∑

i

(viwi)si.

This is just the Euclidean dot product weighted by the entries of the vector s. For any
stochastic matrix T (a nonnegative matrix in which every row sums to 1) let

1 = λ1(T), . . . , λn(T)

denote the eigenvalues of T ordered from greatest to least by magnitude. Recall that s(A)
is defined by si(A) = di(A)/D(A), the degree of agent i divided by the sum of degrees in
the network. In the proof of Lemma 2, we use the fact that T(A) is self-adjoint relative to
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〈·, ·〉s(A). That is, for every v and w, we have

〈T(A)v,w〉s(A) = 〈v,T(A)w〉s(A),

which is immediate to check. This implies, by a standard theorem from linear algebra, that
T(A) is diagonalizable, and moreover that there is a basis of eigenvectors orthogonal to each
other under 〈·, ·〉s(A).

With these basic observations in hand, we prove Lemma 2.

Lemma 2. Let A be connected, λ2(T(A)) be the second largest eigenvalue in magnitude of
T(A), and s := mini di(A)/D(A) be the minimum relative degree. If λ2(T(A)) 6= 0, then
for any 0 < ε ≤ 1:

⌊
log(1/(2ε))− log(1/s1/2)

log(1/|λ2(T(A))|)

⌋
≤ CT(ε;A) ≤

⌈
log(1/ε)

log(1/|λ2(T(A))|)

⌉
.

If λ2(T) = 0, then for every 0 < ε < 1 we have CT(ε;A) = 1.

Proof of Lemma 2: In the proof, we fix A and drop it as an argument; we also drop the
argument T of the eigenvalues, as it is fixed throughout.

We first show that, if λ2 6= 0, then

CT(ε) ≤
⌈

log(1/ε)

log(1/|λ2|)

⌉
.

Take any b ∈ [0, 1]n, which should be thought of as the initial beliefs b(0). Let Ui be
the projection onto the eigenspace of T corresponding to λi. Note that under 〈·, ·〉s, these
eigenspaces are orthogonal, as mentioned above. Define U =

∑n
i=2 Ui. This is the projection

off the eigenspace corresponding to λ = 1. Then:

‖(Tt −T∞)b‖2s =
∥∥∥∥∥

n∑

i=2

λt
iUib

∥∥∥∥∥

2

s

spectral theorem applied to T

=
n∑

i=2

|λi|2t‖Uib‖2s orthogonality of the spectral projections

≤ |λ2|2t
n∑

i=2

‖Uib‖2s

= |λ2|2t
∥∥∥∥∥

n∑

i=2

Uib

∥∥∥∥∥

2

s

orthogonality of the spectral projections

= |λ2|2t‖Ub‖2s definition of U

≤ |λ2|2t‖b‖2s projections are contractions

≤ |λ2|2t
n∑

i=1

si b ∈ [0, 1]n and definition of 〈·, ·〉s

= |λ2|2t entries of s sum to 1.
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Assume λ2 6= 0. Under this assumption, if

t ≥ log(1/ε)

log(1/|λ2|)

then
‖(Tt −T∞)b‖s ≤ ε,

from which the bound follows upon observing that CT(ε) must be an integer. The above
calculations also show that when the second eigenvalue is identically 0, then consensus time
must be 1.

Now we show that, if λ2 6= 0, then

⌊
log(s1/2/(2ε))

log(1/|λ2|)

⌋
≤ CT(ε).

Let w be an eigenvector of T corresponding to λ2, scaled so that ‖w‖2s = s/4. Then the
maximum entry of w is at most 1/2 and the minimum entry is at least −1/2. Consequently,
if we let e denote the column vector of ones and define b = w+ e/2, then b ∈ [0, 1]n. Now,
using the fact that e is a right eigenvector corresponding to λ1 = 1 and spectral projections
are orthogonal, it follows that:

‖(Tt −T∞)b‖2s = |λ2|2t‖U2w‖2s
= |λ2|2t‖w‖2s
=

s

4
|λ2|2t.

Therefore, if

t ≤ log(s1/2/(2ε))

log(1/|λ2|)
then

‖(Tt −T∞)b‖s ≥ ε,

from which the remaining bound follows upon observing that CT(ε) must be an integer.
We can tighten this bound under the assumptions of Definition 3.

Proposition 5. Consider a sufficiently dense sequence of multi-type random networks sat-
isfying the three regularity conditions in Definition 3. The regularity conditions imply that
there exist constants α and β such that, for high enough n, (i) mink nk/n ≥ α > 0; and
(ii) [mink dk(P,n)]/[maxk dk(P,n)] ≥ β > 0. Then, for any δ > 0, for high enough n, with
probability at least 1− δ

⌊
log(1/

√
8ε)− log(1/

√
αβ)

log(1/|λ2(T(A(P,n)))|)

⌋
− 1 ≤ CT(ε;A(P,n)) ≤

⌈
log(1/ε)

log(1/|λ2(T(A(P,n)))|)

⌉
.

Thus, for small ε, the consensus time CT(ε;A(P,n)) is approximately proportional to
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log(1/ε)
log(1/|λ2(T(A(P,n)))|)

. Essentially the same proof establishes that, under the same assumptions,

⌊
log(1/

√
8ε)− log(1/

√
αβ)

log(1/|hspec(P,n)|)

⌋
− 1 ≤ CT(ε;A(P,n)) ≤

⌈
log(1/ε)

log(1/|hspec(P,n)|)

⌉
.

The proof of the proposition appears below, after the proof of Proposition 6, which introduces
key machinery.

The Representative Agent Theorem

Theorem 2 and Proposition 5 require related machinery, which we will develop and apply in
this section. First, we introduce some notation.

Throughout the appendix, we often drop the arguments (P,n) on the matrix A and
other random matrices obtained from it, keeping in mind that these are random objects that
depend on the realization of the multi-type random network A(P,n). Let D(A) denote
the diagonal matrix whose (i, i) entry is di(A), the degree of agent i. Let R be the n-by-n
matrix given by Rij = Pkℓ if i ∈ Nk, j ∈ Nℓ. The expected degree of node i is wi :=

∑
j Rij.

We let wmin = mini wi be the minimum expected degree, wmax = maxi wi be the maximum
expected degree, and w̄ = 1

n

∑
i wi be the average expected degree.

Let V =
∑

i wi be the sum of expected degrees and v =
∑

i di(A) the sum of realized
degrees.

For any matrix T, let ‖T‖ = sup‖v‖=1〈v,Tv〉, where the inner product is the standard
Euclidean dot product. Define E to be the n× n matrix of ones, and let

J = D(A)−1/2AD(A)−1/2 − v−1D(A)1/2ED(A)1/2 (7)

and
K = D(R)−1/2RD(R)−1/2 − V −1D(R)1/2ED(R)1/2. (8)

Now we note a basic fact from linear algebra.

Fact 1. D(A)−1/2AD(A)−1/2 and T(A) = D(A)−1A are similar matrices, so that they
have the same eigenvalues, and that v−1D(A)1/2ED(A)1/2 is the summand of the spec-
tral decomposition of D(A)−1/2AD(A)−1/2 corresponding to the eigenvalue 1. The same
reasoning applies when we replace A by R and v by V .

Why is this true? One gets from D(A)−1A to D(A)−1/2AD(A)−1/2 by the following
transformation: multiplying on the left by D(A)1/2 and on the right by D(A)−1/2. The
eigenvalue 1 summand of the spectral decomposition of T(A) is v−1ED(A) and applying
this same transformation to that matrix yields the claim. The argument in the second case
is analogous.

Next, Theorem 2 can be reduced to the following proposition, which will also be useful
for proving Proposition 5.

Proposition 6. If wmin/ log
2 n is high enough, then with probability at least 1− δ we have

‖J−K‖ < δ.

41



Before proving the proposition, we show why Theorem 2 is a consequence. Recall the
statement of this theorem:

Theorem 2. Consider a sequence of multi-type random networks described by (P,n) that is
sufficiently dense and satisfies the conditions of no vanishing groups and comparable densities
from Definition 3. Then for large enough n,

|λ2(T(A(P,n)))− λ2(F(P,n))| ≤ δ,

with probability at least 1− δ.

Proof of Theorem 2 using Proposition 6: It is clear that D(R)−1R has the same
eigenvalues as F, so to prove the claim it suffices to prove that the former matrix has second
eigenvalue close enough to that of D(A)−1/2AD(A)−1/2.

By Fact 1, we know that ‖J‖ is the second largest eigenvalue in magnitude of the matrix
D(A)−1/2AD(A)−1/2, and ‖K‖ is the second largest eigenvalue in magnitude of the matrix
D(R)−1/2RD(R)−1/2. Thus, by the triangle inequality, if we can show that with probability
at least 1−δ we have ‖J−K‖ < δ, then the proof is done. This is the content of Proposition
6.

We will turn to the proof of Proposition 6 right after stating the following lemma that
is essential to it and several other results. It is from the proof of Theorem 3.6 of Chung Lu
and Vu (2004), and follows from the Chernoff inequality.

Lemma 4. Fix any δ > 0. If wmin/ log n is large enough, the following statement holds with
probability at least 1− δ for all i simultaneously: |di − wi| < δwi.

Proof of Proposition 6: Write

J−K = B+C+U+M where Bij =
Aij√
didj

(
1−

√
didj√
wiwj

)

Cij =
Aij −Rij√

wiwj

Lij =

√
wiwj

V

(
1−

√
didj√
wiwj

)

Mij = (V −1 − v−1)
√

didj.

By the triangle inequality,

‖J−K‖ ≤ ‖B‖+ ‖C‖+ ‖U‖+ ‖M‖,

so it suffices to bound the pieces individually.
Now we list two lemmas from Chung Lu and Vu (2004) which will be used in the following

argument. Their paper deals with a special case of the multi-type random graph model in
which Rij = wiwjρ for a constant ρ, but their arguments that we use rely only on very simple
features of the expected entries of the adjacency matrix which also hold without change in
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our setting. Only one step of a proof is at all different, and we discuss that below in the
proof of Lemma 5.

Lemma 5. Fix any δ > 0. Then there exists some c > 0, independent of n, so that if
wmin/ log

2 n is high enough, with probability at least 1− δ:

‖C‖ ≤ 2c√
w̄

+
c log n√
wmin

.

Proof of Lemma 5: The only step of the proof of this last lemma that does not work exactly
as in the proofs of Theorems 3.2 and 3.6 of Chung Lu and Vu (2004) is their equation (3.2).
Let Cr

ij denote the (i, j) entry of Cr. This step asserts (in our notation) that for t ≥ 2, we
have

E[Ct
ij] ≤

(1−Rij)Rij + (−Rij)
t(1−Rij)

(wiwj)t/2
≤ Rij

(wiwj)t/2
≤ wiwj/V

(wiwj)t/2
≤ 1/V

(wmin)t−2
.

We will prove a slightly weaker statement that is still sufficient to make the rest of the proof
go through unchanged. The step which is slightly different is the penultimate inequality. We
will show that

Rij ≤ c · wiwj/V (9)

for some real number C ≥ 0, and conclude that

E[Ct
ij] ≤

c/V

(wmin)t−2
,

which suffices for the Chung-Lu-Vu proof.
We can rewrite (9) as

Rij

(
∑

i′,j′

Ri′j′

)
≤ c

(
∑

j′

Rij′

)(
∑

i′

Ri′j

)
. (10)

To show that this is true, we proceed as follows. Due to the no vanishing groups condition,
we can find some c1 > 0, independent of n, so that

∑
j′ Rij′ ≥ c1nRij and

∑
i′ Ri′j ≥ c1nRij,

since the groups of i and j must both grow at a rate of at least n. Thus,

n2R2
ij ≤ c−2

1

(
∑

j′

Rij′

)(
∑

i′

Ri′j

)
. (11)

As a result of the comparable densities condition, we have a constant c2 so that

∑

i′,j′

Ri′j′ ≤ c2n
2Rij,
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from which we deduce

Rij

(
∑

i′,j′

Ri′j′

)
≤ c2n

2R2
ij. (12)

Combining (12) with (11) above, we conclude (10), as desired.

It follows that, if wmin/ log
2 n is high enough, we have ‖C‖ < δ/4 with probability at

least 1− δ/4.

Lemma 6. Fix any δ > 0. If wmin/ log
2 n is high enough, the following statement holds with

probability at least 1− δ:

‖M‖ ≤ 1√
w̄
.

It follows that, when wmin/ log
2 n is high enough, we have ‖M‖ < δ/4 with probability

at least 1− δ/4.
To bound ‖B‖ and ‖U‖, we will use Lemma 4 and two simple facts about the matrix

norm, whose proofs are immediate. Let abs(X) denote the matrix whose (i, j) entry is |Xij|.

Lemma 7. 1. For any matrix X, ‖X‖ ≤ ‖ abs(X)‖.

2. Suppose there are two nonnegative matrices, X and Y and a constant c > 0 such that
for each i, j, we have Yij < cXij. Then ‖Y‖ ≤ c‖X‖.

To show that, with probability at least 1 − δ, we have ‖B‖ < δ/4, define B̂ = abs(B);
by Lemma 7(1) it suffices to show ‖B̂‖ < δ/4. Note

B̂ij =
Aij√
didj

∣∣∣∣∣1−
√

didj√
wiwj

∣∣∣∣∣ .

By Lemma 4 we have with probability at least 1− δ/4 that

∣∣∣∣∣1−
√

didj√
wiwj

∣∣∣∣∣ < δ/4

and so, noting that
‖D(A)−1/2AD(A)−1/2‖ = 1

and using Lemma 7(2), the claim is proved.
Precisely the same argument works to show that with probability at least 1 − δ/4, we

have ‖U‖ < δ/4, with V −1D(R)1/2ED(R)1/2, which also has norm 1, playing the role of
D(A)−1/2AD(A)−1/2.

Combining all the bounds shows that, with probability at least 1−δ we have ‖J−K‖ < δ,
as desired.

This completes the proof of the proposition.

The results established so far in this section will now be used to prove Proposition 5.
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Proof of Proposition 5: We will reuse for new purposes some of the variable names used
solely inside the proof of Proposition 6, but the variables defined for the whole subsection
will be unchanged.

The upper bound is a direct consequence of Lemma 2. For the lower bound, define ζ = ε2.
We will show that there is an initial vector of beliefs b so that ‖T(A)tb−T(A)∞b‖2s(A) ≥ ζ
for at least

z :=

⌊
log(1/

√
8ε)− log(1/

√
αβ)

log(1/|λ2(T(A))|)

⌋
− 1

steps. This will suffice for the proof. The reason for the transformation is to make notation
less cumbersome by working with the square of the norm rather than norm itself.

Write C = D(R)−1R and T = T(A). That is, C is the version of T in the world where
realizations of link random variables are replaced by their expectations. Also, note that we
can write z above equivalently as

z =

⌊
log(1/8ζ)− log(1/αβ)

2 log(1/|λ2(T)|)

⌋
.

There are three steps to the proof. In Step 1, we show that for Ctb to converge within 2ζ
of its limit when distance is measured by ‖ · ‖2s(A) takes at least z − 1 steps for some b. In
Step 2, we use Proposition 6 to show that for any η > 0, we can find a high enough n so
that ‖T−C‖ < η with probability at least 1− η. In Step 3, we rely on Step 2 to show that,
if η is chosen small enough, then Ctb and Ttb are at most ζ apart for at least z − 1 steps
under the inner product 〈·, ·〉s(A). This proves the proposition.

Step 1. Let v be a right eigenvector of C corresponding to eigenvalue λ̂2 := λ2(F) (this
is also the second eigenvalue in magnitude of C by Fact 1). By multiplying v by a scalar if
necessary, we may assume that the entry with largest magnitude is 1/2. By Assumption 1 of
this proposition, λ̂2 is nonzero. Given this and the fact that C is constant on a given type,
it follows that v is constant on a given type. Thus, by Assumption 2, there are at least αn
entries in v equal to 1/2. And from this it follows, by the definition of s(C) and Assumption
3, that

〈v,v〉s(C) ≥ nα ·
(
1

2

)2

· wmin

nwmax

≥ αβ

4
.

Setting bi = vi + 1/2, we see as at the end of the proof of Lemma 2 that

‖Ctb−C∞b‖2s(C) ≥
αβ

4
|λ2(C)|2t,

which yields the lower bound on convergence time we want with λ2(C) instead of λ2(T).
But in view of Assumption 1 and Theorem 2, for high enough n we can replace C by T and
lose at most an additive factor of 1 in the bound.

Step 2. Recall that C = D(R)−1R and T = T(A). Also put

U = D(A)−1/2JD(A)1/2
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and
M = D(R)−1/2KD(R)1/2.

Recalling the definitions of J and K from (7) and (8) above, we see that

T−C = v−1ED(A)− V −1ED(R) +U−M.

So by the triangle inequality, it suffices to bound ‖v−1ED(A)−V −1ED(R)‖ and ‖U−M‖.
Fix a γ > 0. By Lemma 4, if wmin/ log

2 n is high enough, the following event occurs with
probability at least 1−γ for all i simultaneously: |di−wi| < γwi. (Given the assumptions of
this proposition, high enough n ensures the condition of the lemma is met.) Call this event
E1. Thus, on E1,

‖v−1ED(A)− V −1ED(R)‖ < γ,

and so it suffices to take care of the other term.
By Proposition 6, we know that if wmin/ log

2 n is high enough, then on an event E2 of
probability at least 1− γ we have ‖J−K‖ < γ. As above, for high enough n the condition
is met. Now let

F = D(A)−D(R),

G = (D(R) + F)1/2 −D(R)1/2,

and
H = (D(R) + F)−1/2 −D(R)−1/2.

Observe

‖U−M‖ = ‖(D(R) + F)−1/2J(D(R) + F)1/2 −D(R)−1/2KD(R)1/2‖
= ‖(D(R)−1/2 +H)J(D(R)1/2 +G)−D(R)−1/2KD(R)1/2‖
= ‖D(R)−1/2(J−K)D(R)1/2 +D(R)−1/2JG+HJD(R)1/2‖
≤ ‖D(R)−1/2(J−K)D(R)1/2‖+ ‖D(R)−1/2JG‖+ ‖HJD(R)1/2‖+ ‖HJG‖

Using Lemma 4 and standard series approximation arguments, for high enough n we can
ensure ‖G‖ ≤ γ‖D(R)1/2‖ and ‖H‖ ≤ γ‖D(R)−1/2‖ on an event E3 of probability at least
1− γ. Using the fact that ‖J‖ ≤ 1, the Cauchy-Schwartz inequality yields that each of the
middle two terms above is bounded by γ. For the last term, note that

‖HJG‖ ≤ γ2‖D(R)1/2‖ · ‖D(R)−1/2‖ ≤ γ2 ·
(
wmax

wmin

)1/2

≤ γ2

β1/2
.

So it suffices to take care of the first term in our expansion of ‖U −M‖ above. This is
accomplished by noticing that, on E1 ∩ E2,

53

‖D(R)−1/2(J−K)D(R)1/2‖ ≤ dmax(A)1/2

dmin(A)1/2
· ‖J−K‖

53dmin(A) and dmax(A) are the minimum and maximum degrees.
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≤ 1 + γ

1− γ
· w

1/2
max

w
1/2
min

· ‖J−K‖ definition of E1

≤ 1 + γ

(1− γ)β
· ‖J−K‖ Assumption 3

≤ (1 + γ)γ

(1− γ)β
definition of E2.

Together, these facts show that for high enough n, on E1 ∩ E2 ∩ E3, which occurs with
probability at least 1− 3γ, we have

‖T−C‖ ≤ γ +
(1 + γ)γ

(1− γ)β
+ 2γ +

γ2

β1/2
.

By choosing γ so that the right hand side is less than η and 3γ < η (to take care of the
probability), the step is complete.

Step 3. Fix t ≤ z − 1. Write T = C+Y, where ‖Y‖ ≤ η. Note that

(T+Y)t = Tt +
t∑

q=1

Xq,

where Xq is a sum of
(
t
q

)
terms, each of which is a product of q copies of Y and t− q copies

of T in some order. By the fact that ‖T‖ = 1 and ‖Y‖ ≤ η, we have ‖Xq‖ ≤
(
t
q

)
ηq for each

q ≥ 1. Then, by the triangle inequality,

∥∥∥∥∥

t∑

q=1

Xq

∥∥∥∥∥ ≤
t∑

q=1

(
t

q

)
ηq ≤ 2z−1η

1− η
.

Thus,

Yt := ‖Ct −Tt‖ ≤ 2z−1η

1− η
.

Take b and v to be the vectors constructed in Step 1. Then, for high enough n,

〈Ttb−T∞b,Ttb−T∞b〉s(A) = 〈Ttv,Ttv〉s(A)

= 〈(Ct +Yt)v, (C
t +Yt)v〉s(A)

≥ 〈Ctv,Ctv〉s(A) + 2〈Ytv,C
tv〉s(A)

≥ (1− η)〈Ctv,Ctv〉s(C)

+ 2〈Ytv,C
tv〉s(A) Lemma 4

≥ 2(1− η)ζ + 2〈Ytv,C
tv〉s(A) definition of z

≥ 2(1− η)ζ − 2‖Ytv‖s(A) · ‖Ctv‖s(A) Cauchy-Schwartz

≥ 2(1− η)ζ − 2‖Ytv‖s(A) see below

≥ 2(1− η)ζ − 2‖Ytv‖ def’n of ‖ · ‖s(A)
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≥ 2(1− η)ζ − 2zη

1− η
.

The step whose explanation is missing is straightforward; no entries in v have magnitude
exceeding 1/2 and multiplication by the stochastic matrix C preserves this property. Since
s(C) is a probability distribution, ‖Ctv‖s(C) ≤ 1 holds by definition of the inner product.

Choosing η so that 2(1− η)ζ − 2zη
1−η

> ζ, the proof is complete.

9.3 Consequences

The main consequence of the machinery above is, of course, Theorem 1.

Theorem 1. Consider a sufficiently dense sequence of multi-type random networks satisfy-
ing the three regularity conditions in Definition 3. Then, for any γ > 0:

CT
(γ
n
;A(P,n)

)
≈ log(n)

log(1/|hspec(P,n)|) .

Proof of Theorem 1: We will index objects by n to make explicit the sequence of networks
and use the notation A(n) = A(P(n),n(n)) and T(n) = T(A(n)).

First, note that with a probability going to 1, A is connected: apply Proposition 4 noting
that h(n) is bounded away from 1 so that its condition (iv) applies, and (i)-(iii) apply given
the islands model and wmin ≥ log2(n). Thus, we can apply Lemma 2.

By the assumed regularity conditions, the minimum expected degree divided by the
maximum expected degree remains bounded. Lemma 4 above guarantees that this is true of
the realized degrees, too, with a probability tending to 1 as n grows. Thus, the expression
− log(1/s1/2) of Lemma 2 can be bounded below by −1

2
log(cn) for some positive constant

c. In view of this, we can conclude from Lemma 2 that with a probability going to 1

⌊
log(n/(2γ))− 1

2
log (cn)

− log(|λ2(T(n))|)

⌋
≤ CT(γ/n;A(n)) ≤

⌈
log(n/γ)

− log(|λ2(T(n))|)

⌉
.

This implies that with a probability going to 1:

⌊ 1
2
log(n)− log(2γ)− 1

2
log (c)

− log |λ2(T(n))|

⌋
≤ CT(γ/n;A) ≤

⌈
log(n)− log(γ)

− log(|λ2(T(n))|)

⌉
. (13)

Next, applying Theorem 2,

|λ2(T(n))− hspec(P(n),n(n))| p−→ 0. (14)

Since hspec(P(n),n(n)) is bounded away from 1, by (14), we deduce that for any 1 > δ > 0,
with a probability going to 1

1− δ

− log(|hspec(P(n),n(n))|) ≤ 1

− log(|λ2(T(n)|) ≤ 1 + δ

− log(|hspec(P(n),n(n))|) .

The result then follows from (13) the fact that (log n)/(log c) → ∞.
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Proposition 2. Consider a sequence of multi-type random networks (P,n) and another
(P′,n) where P′ = cP for some c > 0. Under the conditions of Theorem 1, the ratio of
consensus times

CT
(
γ
n
;A(P,n)

)

CT
(
γ
n
;A(P′,n)

)

converges in probability to 1.

Proof of Proposition 2: Observe that F(P,n) is invariant to the density adjustment in
the statement of the proposition; thus, applying Proposition 5, we conclude the claim in the
corollary.

Corollary 2. Consider a sufficiently dense sequence of two-group random networks (as
described above) satisfying the three regularity conditions in Definition 3. Then for any
γ > 0:

CT
(γ
n
;A(P,n)

)
≈ log(n)

log(1/|htwo(ps, pd,n)|)
.

Proof of Corollary 2: To apply Theorem 2, we need to compute the second eigenvalue of

F(P) =

[ n1ps
n1ps+n2pd

n2pd
n1ps+n2pd

n1pd
n1pd+n2ps

n2ps
n1pd+n2ps

]
,

or

F(P) =

[ n1ps
np1

n2pd
np1

n1pd
np2

n2ps
np2

]
.

This has a second eigenvalue of
n1ps
np1

− n1pd
np2

which is also equal to

−n2pd
np1

+
n2ps
np2

.

Thus, the second eigenvalue is also equal to

1

2

(
n1ps − n2pd

np1
+

n2ps − n1pd
np2

)
.

This can be rewritten as
1

2

(
2n1ps − np1

np1
+

2n2ps − np2
np2

)

or
1

2

(
2n1

n

ps − p1
p1

+
2n2

n

ps − p2
p2

+
2n1 + 2n2 − 2n

n

)
.

This simplifies to
n1

n

ps − p1
p1

+
n2

n

ps − p2
p2

=
n2

n
h1 +

n1

n
h2.

The result then follows from Theorem 2.
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9.4 Explicit Opinion Dynamics

Proof of Proposition 3: The proof proceeds in three steps. First, we show that the
consensus limit of b(t) is, for large enough n, within δ/2 of the consensus limit of b(t) with
probability at least 1− δ/2. Second, we note that, with probability at least 1− δ/2, there is
some fixed time T such that for all large enough n, b(t) for t ≥ T is permanently within δ/2
of its consensus limit. Thus, the claim of the proposition holds for times t ≥ T . Third, we
show that the claim of the proposition holds for times t < T by recalling C from the proof
of Proposition 5 and writing

b̂(t) = Ctb(0)

b(t) = Ttb(0),

then using the fact that we can ensure that the spectral norm of Ctb−Ttb is small for any
given finite number of steps, using the argument of Step 2 of Proposition 5.

Step 1. By several applications of Chernoff’s inequality to the Bernoulli random vari-
ables Aij, it follows that with probability at least 1 − δ/4, the following inequalities hold
simultaneously for all pairs (i, k) where k is the type of i:

∣∣∣∣
di(A(P,n))

D(A(P,n))
− dk(Q(P,n))

D(Q(P,n)))

∣∣∣∣ < δ/4.

By the weak law of large numbers, with probability at least 1− δ/(4m) the average belief of
agents in group k is within δ/(4m) of the expected belief µk of an agent in group k (recall
that m is thet total number of groups). Combining these observations, it follows that with
probability at least 1− δ/2, the consensus belief of the society,

∑

i

di(A(P,n))

D(A(P,n))
bi(0)

is within 1− δ/2 of the consensus belief of the representative agents, namely

∑

k

dk(Q(P,n))

D(Q(P,n)))
µk.

Step 2. This step follows directly from Proposition 5 after noting that the ℓ2 norm used in
the statement of the present proposition is within a constant factor of the weighted ℓ2 norm
used in the definition of CT, since the ratio of any two degrees is bounded by a constant
(indepenent of n) with high probability.

Step 3. The only subtlety to note that is not given in the sketch above is that, once again,
it does not matter whether we refer to the weighted ℓ2 norm or an unweighted one in defining
spectral norm, for the same reason given above in Step 2.
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9.5 What Spectral Homophily Measures

The proof of Lemma 3 uses the Courant-Fischer variational characterization of the second-
largest eigenvalue of F(P,n). We saw above that F(A) is similar to

D(P,n)−1/2F(P,n)D(P,n)−1/2,

where D(P,n)−1/2 is a diagonal matrix with the degree of group k in position (k, k). Since
this matrix is symmetric, we know that the eigenvalues of F(P,n) are all real. Letting
β1(F(P,n)) ≥ β2(F(P,n)) ≥ · · · ≥ βn(F(P,n)) be the eigenvalues of F(P,n) ordered as
real numbers, the Courant-Fischer result is as follows.

Proposition 7.

βn(F(P,n)) = inf
0 6=v∈Rm

{〈v,F(P,n)v〉
〈v,v〉

}
. (15)

β2(F(P,n)) = sup
0 6=v∈Rm s.t.

〈v,e〉=0

{〈v,F(P,n)v〉
〈v,v〉

}
, (16)

where the inner product everywhere is defined by 〈v,w〉 =
∑

k∈M vkwksk, where sk =
dk(Q(P,n))∑
ℓ dℓ(Q(P,n))

.

Lemma 3. If Q(P,n) is connected (viewed as weighted network), then

|hspec(P,n)| ≥ |DWH(P,n)|.

Proof of Lemma 3:
The arguments P,n will be dropped throughout, and we will use d to refer to the

vector with dk = dk(Q(P,n)) =
∑

ℓ Qkℓ. We will construct a v satisfying 〈v, e〉d = 0
so that the absolute value of the quantity 〈v,Tv〉d/〈v,v〉d is equal to |DWH(B)|. Since
|λ2| = max{|β2|, |βn|}, this shows that |λ2| ≥ |DWH(B)| using Proposition 7.54 Since B is
arbitrary, that proves the lemma (recalling the definition of hspec(P,n)).

Set r = |B| and define

vk =

{
1

rdk
if k ∈ B

− 1
(m−r)dk

if k /∈ B.

Let D =
∑

i di and note

〈v,v〉d =
∑

k∈M

v2k · dk

=
∑

k∈B

dk
(rdk)2

+
∑

i∈Bc

dk
((m− r)dk)2

=
1

r2

∑

k∈B

1

dk
+

1

(m− r)2

∑

k∈Bc

1

dk
. (17)

54Note that s(A) and d(A) differ only by a normalization and so this does not affect the results.
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Also,

〈v,Tv〉d =
∑

k∈M

vk

(
∑

ℓ

Fkℓvℓ

)
dk

=
∑

k∈M

∑

ℓ∈M

vkFkℓvℓdk

=
1

r2

∑

k,ℓ∈B

FkℓFℓk +
1

(n− r)2

∑

i,j∈Bc

FkℓTℓk −
2

r(n− r)

∑

i∈B,j∈Bc

FkℓFℓk.

Dividing 〈v,Tv〉d by 〈v,v〉d and using the definition of W yields the result.
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10 Appendix B: Linear Updating with Persistent Opin-

ions

In our baseline linear updating model of communication set out in Section 2.4, agents update
beliefs based exclusively on the current beliefs of their neighbors, and possibly their own.
Let us consider the alternative updating rule under which each agent always places positive
weight on his or her own initial position – the one that he or she held at time t = 0. Let us
fix a network A and write T for T(A). This rule is given by:

b(t+ 1) = (1− α)b(0) + αTb(t). (18)

From this one can deduce directly that

b(t) =

[
(1− α)

t−1∑

r=0

(αT)r + (αT)t

]
b(0). (19)

This model differs from the baseline model (in which α = 0) in the sense that beliefs need
not converge to consensus, regardless of the structure of the updating matrixT. Nevertheless,
it will still be useful to consider as a benchmark the consensus beliefs that the agents would
converge to if they updated without any persistent weight on their own initial positions.
These hypothetical consensus beliefs are given by

c = T∞b(0).

In the baseline model, our proxy for differences of opinion was the consensus time. In
this case, a more direct measure is available. Define the disagreement distance as

DD(A) = lim sup
t

max
b(0)∈[0,1]

‖b(t)− c‖s(T).

The quantity ‖b(t) − c‖s(T) gives the average magnitude by which a message sent along a
random link in the network at time t differs from the hypothetical consensus. The quantity
DD(A) measures how large this difference can be (persistently) in the worst case (compare
with the discussion of consensus time in Section 2.4.4).

We have the following result.

Proposition 8.

1− α

1− αλ2(T(A(P,n)))
· s
4
≤ DD(A(P,n)) ≤ 1− α

1− αλ2(T(A(P,n)))
. (20)

where λ2(T) is the second-largest eigenvalue in magnitude of T, and s is the smallest entry

of the vector s(A) defined by s(A) =
(

d1(A)
D(A)

, . . . , dn(A)
D(A)

)
.

The proof appears below. This result (and the proof) may be compared with Lemma
2, which makes a similar statement about the consensus time. The lower bound in this
proposition has the deficiency that it is proportional to s, which decays as n grows. To remedy
this, suppose now that A(P,n) is a multi-type random graph and n is large. Then under
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the regularity conditions of Definition 3, it is possible to obtain an analogue of Proposition
5 in Appendix A, which makes the bounds well behaved even as n grows. That is, using an
argument analogous to the proof of Proposition 5, one can drop the s, replace λ2(T(A(P,n)))
by hspec(P,n), and get upper and lower bounds that match except for a constant; we will
not repeat the derivations. The conclusion is that DD(A) behaves like

1− α

1− αhspec(P,n)
.

The key comparative statics are as follows: the maximum sustainable disagreement dis-
tance is increasing and convex in homophily, attaining a maximum of 1 as homophily reaches
the maximum value of 1. As α increases (which corresponds to agents putting less weight
on initial beliefs), the disagreement distance decreases.

Proof of Proposition 8: Let us drop the arguments A(P,n) and keep in mind that all
matrices are random variable.s Defining S = T∞, we can write c as

c =

[
(1− α)

t−1∑

r=0

(αS)r + (αS)t

]
b(0).

Define V = T− S, and note that, since S is the summand of the spectral decomposition of
T corresponding to eigenvalue 1, we have Tr = S+Vr (recall the proof of Lemma 2). Thus,

‖b(t)− c‖s(A) =

∥∥∥∥∥

[
(1− α)

t−1∑

r=0

αrVr + αtVt

]
b(0)

∥∥∥∥∥
s(A)

.

Now, the spectral radius of V is |λ2|. From this it follows that if b(0) ∈ [0, 1]n, then

‖b(t)− c‖s(A) ≤ (1− α)
t−1∑

r=0

αr|λ2|r + αt|λ2|t

Taking t → ∞ furnishes the upper bound.
For the other inequality, let w be an eigenvector of T corresponding to λ2, scaled so that

‖w‖2s = s/4. Then the maximum entry of w is at most 1/2 and the minimum entry is at least
−1/2. Consequently, if we let e denote the column vector of ones and define b(0) = w+e/2,
then b(0) ∈ [0, 1]n. Then we have

‖b(t)− c‖s(A) =

∥∥∥∥∥

[
(1− α)

t−1∑

r=0

αrVr + αtVt

]
b(0)

∥∥∥∥∥
s(A)

=

[
(1− α)

t−1∑

r=0

αrλr
2 + αtλt

2

]
s

4
.

Once again, taking t → ∞ furnishes the lower bound.
While Proposition 8 shows that the persistence of disagreement in this model is closely

related to the extent of homophily, it may be desirable to have a closer analog of Theorem
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1, in which the convergence speed is related to the spectral homophily. The following result
shows that this is possible. Let b(∞) denote limt→∞ b(t).

Proposition 9. For any t ≥ 0,

1− α

1− α|λ2|
· (α|λ2|)t ·

s

4
≤ sup

b(0)∈[0,1]n
‖b(t)− b(∞)‖s(A) ≤

1− α

1− α|λ2|
· (α|λ2|)t,

where λ2(T) is the second-largest eigenvalue in magnitude of T, and s is the smallest entry

of the vector s(A) defined by s(A) =
(

d1(A)
D(A)

, . . . , dn(A)
D(A)

)
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Although we can no longer discuss the speed of convergence to a consensus, as one is no
longer reached, we can still measure the speed at which beliefs converge to their limit, or
more precisely, how big the differences between the current beliefs and the limit beliefs are
over time. The worst-case difference between the step t beliefs and the limiting ones (which
is what the quantity

sup
b(0)∈[0,1]n

‖b(t)− b(∞)‖s(A)

measures) is decaying in α|λ2|t. Once again, under the regularity conditions of Definition 3,
we can drop the s, replace λ2(T) by hspec(P,n), and get upper and lower bounds that match
except for a constant. The techniques to do this are the same as those of Proposition 5. Thus,
the rate of convergence is again determined by spectral homophily, with faster convergence
when it is lower. However, the quantity that determines the rate is also proportional to α,
meaning that the less weight agents place on their initial beliefs, the faster convergence is.

Proof of Proposition 9: Earlier we noted that

b(t) =

[
(1− α)

t−1∑

r=0

(αT)r + (αT)t

]
b(0).

Define V = T − S, where S is, as in Proposition 8, the first (eigenvalue 1) term in the
spectral decomposition of T, which is also equal to T∞. Then we have

b(∞)− b(t) =

[
(1− α)

∞∑

r=t

(αV)r

]
b(0).

Using the same spectral arguments as in the proof of Lemma 2, and using the fact that the
spectral norm of V − I is at most 2 we find that for any b(0) ∈ [0, 1]n

‖b(t)− b(∞)‖s(A) ≤ (1− α)
∞∑

r=t

(α|λ2|)r =
1− α

1− α|λ2|
· (α|λ2|)t,

where we are dropping the argument T(A) on the eigenvalue λ2.
For the other inequality, let w be an eigenvector of T corresponding to λ2, scaled so that

‖w‖2s = s/4. Then the maximum entry of w is at most 1/2 and the minimum entry is at least

55Recall the ‖ · ‖ notation from Section 2.4.4,
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−1/2. Consequently, if we let e denote the column vector of ones and define b(0) = w+e/2,
then b(0) ∈ [0, 1]n. Then, using the same techniques as in Lemma 2, we have

‖b(t)− b(∞)‖s(A) =

∥∥∥∥∥

[
(1− α)

∞∑

r=t

(αV)r

]
b(0)

∥∥∥∥∥
s(A)

= (1− α)
∞∑

r=t

(α|λ2|)r ·
s

4

=
1− α

1− α|λ2|
· (α|λ2|)t ·

s

4
.

This completes the proof.
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