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Abstract. The Deformable Parts Model (DPM) has recently emerged
as a very useful and popular tool for tackling the intra-category diversity
problem in object detection. In this paper, we summarize the key insights
from our empirical analysis of the important elements constituting this
detector. More specifically, we study the relationship between the role
of deformable parts and the mixture model components within this de-
tector, and understand their relative importance. First, we find that by
increasing the number of components, and switching the initialization
step from their aspect-ratio, left-right flipping heuristics to appearance-
based clustering, considerable improvement in performance is obtained.
But more intriguingly, we observed that with these new components, the
part deformations can now be turned off, yet obtaining results that are
almost on par with the original DPM detector.

1 Introduction

Consider the images of category horse in Figure 1 (row1) from the challenging
PASCAL VOC dataset [1]. Notice the huge variation in the appearance, shape,
pose and camera viewpoint of the different horse instances – there are left and
right-facing horses, horses jumping over a fence in different directions, horses
carrying people in different orientations, close-up shots, etc. How can we build a
high-performing sliding-window detector that can accommodate the rich diver-
sity amongst the horse instances?

Deformable Parts Models (DPM) have recently emerged as a useful and pop-
ular tool for tackling this challenge. The recent success of the DPM detector
of Felzenszwalb et al., [2] has drawn attention from the entire vision commu-
nity towards this tool, and subsequently it has become an integral component
of many classification, segmentation, person layout and action recognition tasks
(thus receiving the lifetime achievement award at the PASCAL VOC challenge).

Why does the DPM detector [2] perform so well? As the name implies, the
main stated contribution of [2] over the HOG detector described in [3] is the
idea of deformable parts. Their secondary contribution is latent discriminative
learning. Tertiary is the idea of multiple components (subcategories). The idea
behind deformable parts is to represent an object model using a lower-resolution
‘root’ template, and a set of spatially flexible high-resolution ‘part’ templates.
Each part captures local appearance properties of an object, and the deforma-
tions are characterized by links connecting them. Latent discriminative learning
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involves an iterative procedure that alternates the parameter estimation step
between the known variables (e.g., bounding box location of instances) and the
unknown i.e., latent variables (e.g., object part locations, instance-component
membership). Finally, the idea of subcategories is to segregate object instances
into disjoint groups each with a simple (possibly semantically interpretable)
theme e.g., frontal vs profile view, or sitting vs standard person, etc, and then
learning a separate model per group.

A common belief in the vision community is that the deformable parts is the
most critical contribution, then latent discriminative learning, and then subcat-
egories. Although the ordering somewhat reflects the technical novelty (interest-
ingness) of the corresponding tools and the algorithms involved, it is interesting
to check whether is that really the order of importance affecting the performance
of the detector in practice.

In this paper, we empirically analyze the relative importance of deformable
parts and subcategories within the DPM detector. First, we find that (i) by in-
creasing the number of subcategories in the mixture model, and (ii) switching
from their aspect-ratio, left-right flipping heuristics to appearance-based cluster-
ing, considerable improvement in performance is obtained. But more intriguingly,
we observed that with these new subcategories, the part deformations can be
turned off, with only minimal performance loss. These observations reveal that
the conceptually simpler notion of subcategories is indeed an equally important
contribution in the DPM detector. Their careful use can potentially alleviate the
need for deformable parts in the DPM detector for many practical applications
and object classes.

2 Understanding Subcategories

In order to deal with significant appearance variations that cannot be tackled by
the deformable parts, [2] introduced the notion of multiple components i.e., sub-
categories [4, 5, 6, 7, 8] into their detector. The first version of their detector [9]
only had a single subcategory. The next version [2] had two subcategories that
were obtained by splitting the object instances based on aspect ratio heuristic. In
the latest version [10], this number was increased to three, with each subcategory
comprising of two bilaterally asymmetric i.e., left-right flipped models (effectively
resulting in 6 subcategories). The introduction of each additional subcategory
has resulted in significant performance gains (e.g., see slide 23 in [11]).

Given this observation, what happens if we further increase the number of
subcategories in their model? In Section 4, we will see that this does not trans-
late to improvement in performance. This is because the aspect-ratio heuristic
does not generalize well to a large number of subcategories, and thus fails to
provide a good initialization. Nonetheless, it is possible to explore other ways to
generate subcategories. For example, subcategories for cars can be based either
on object pose (e.g., left-facing, right-facing, frontal), or car manufacturer (e.g.,
Subaru, Ford, Toyota), or some functional attribute (e.g., sports car, utility ve-
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hicle, limousine). Figure 1 illustrates a few popular subcategorization schemes
for horses.

What is it that the different partitioning schemes are trying to achieve? A
closer look at the figures reveals that they are trying to encode the homogeneity
in appearance. It is the visual homogeneity of instances within each subcategory
that simplifies the learning problem leading to better-performing classifiers (Fig-
ure. 2). What this suggests is, instead of using semantics or empirical heuristics,
one could directly use appearance-based clustering for generating the subcate-
gories. We use this insight to define new subcategories in the DPM detector, and
refer to them as visual subcategories (in contrast to semantic subcategories that
involve either human annotations or object-specific heuristics).

3 Learning Subcategories

We first briefly review the key details of using subcategories in the DPM detector,
and then explain the details specific to their use in our analysis.

Given a set of n labeled instances (e.g., object bounding boxes) D = (<
x1, y1 >, . . . , < xn, yn >), with yi ∈ {−1, 1}, the goal is to learn a set of K

subcategory classifiers to separate the positive instances from the negative in-
stances, wherein each individual classifier is trained on different subsets of the
training data. The assignment of instances to subcategories is modeled as a la-
tent variable z. This binary classification task is formulated as the following
(latent SVM) optimization problem that minimizes the trade-off between the l2
regularization term and the hinge loss on the training data [2]:

arg min
w

1

2
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k=1

||wk||
2 + C
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i=1

ǫi, (1)
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zi

i > 1 − ǫi, ǫi > 0, (2)

zi = arg max
k

sk
i , (3)

sk
i = wk.φk(xi) + bk. (4)

The parameter C controls the relative weight of the hinge-loss term, wk denotes
the separating hyperplane for the kth subclass, and φk(.) indicates the cor-
responding feature representation. Since the minimization is semi-convex, the
model parameters wk and the latent variable z are learned using an iterative
approach [2].

Initialization As mentioned earlier, a key step for the success of latent sub-
category approach is to generate a good initialization of the subcategories. Our
initialization method is to warp all the positive instances to a common feature
space φ(.), and to perform unsupervised clustering in that space. In our ex-
periments, we found the Kmeans clustering algorithm using Euclidean distance
function to provide a good initialization.
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Monolithic Classifier [3]

Aspect-ratio split [2, 7] Poselet split [12]

Viewpoint split [13, 14] Taxonomy split [15]

Visual Subcategories (this paper)

Fig. 1. The standard monolithic classifier is trained on all instances together. Viewpoint

split partitions the data using viewpoint annotations into left, right, and frontal subcat-
egories. Poselets clusters the instances based on keypoint annotations in the configura-
tion space. Taxonomy split groups instances into subordinate categories using a human-
defined semantic taxonomy. Aspect-ratio split uses a simple bounding box aspect-ratio
heuristic. Visual subcategories are obtained using (unsupervised) appearance-based
clustering (top: few examples, bottom: mean image)
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Visual Subcategories Semantic Subcategories

Fig. 2. A single linear model cannot separate the data well into two classes. (Left)
When similar instances (nearby in the feature space) are clustered into subcategories,
good models can be learned per subcategory, which when combined together separate
the two classes well. (Right) In contrast, a semantic clustering scheme (based on human
annotations) also partitions the data but leads to subcategories that are not optimal
for learning the category-level classifier.

Calibration One difficulty in merging subcategory classifiers is to ensure that
the scores output by individual SVM classifiers (learned with different data dis-
tributions) are calibrated appropriately, so as to suppress the influence of noisy
ones. Note that, although the subcategory classifiers are coupled in the latent
SVM formulation (1), a careful observation reveals that the classifiers are ac-
tually being learned independently. The coupling of classifiers only happens via
the latent step (3) (i.e., the assignment of positive and negative instances to
the different subcategories). Subsequently the SVM learning per subcategory is
independent [2, 14].

We address this problem by transforming the output of each SVM classifier
by a sigmoid to yield comparable score distributions [16]1(Figure 3). Given a
thresholded output score sk

i for instance i in subcategory k, its calibrated score
is defined as

gk
i =

1

1 + exp(Ak.sk
i + Bk)

, (5)

where Ak, Bk are the learned parameters of the logistic loss function arg minAk,Bk∑n

i=1
ti log gk

i + (1 − ti) log(1 − gk
i ) with ti = Or(W k

i ,Wi), where Or(w1, w2) =
|w1∩w2|
|w1∪w2|

∈ [0, 1] indicates the overlap score between two bounding boxes [17], Wi

is the ground-truth bounding box for the ith training sample, and W k
i indicates

the predicted bounding box by the kth subcategory. In our experiments, we
found this calibration step to help improve the performance (mean A.P. increase
of 0.5%).

1 Even though the bias term bk is used in equation (4) to make the scores of multiple
classifiers comparable, we have found that it is possible for some of the subcategories
to be very noisy (specifically when K is large and the subcategories have unequal
distribution of positives across them), in which case their output scores cannot be
compared directly with other, more reliable ones.
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(a) ‘Noisy’ Subcategory (b) ‘Good’ Subcategory

Fig. 3. The classifier trained on a noisy subcategory (horses with extreme occlusion and
confusing texture) performs poorly on the validation dataset. As a result, its influence
is suppressed by the sigmoid. While a good subcategory (horses with homogeneous
appearance) classifier leads to good performance on the validation data and hence its
influence is boosted by the calibration step.

4 Experimental Analysis

We performed our analysis on the PASCAL VOC 2007 comp3 challenge dataset [1].
We used the standard PASCAL VOC comp3 test protocol, which measures de-
tection performance by average precision (AP) over different recall levels. As our
baseline system, we use the latest release of the DPM detector [10] (without the
bounding-box prediction and context-rescoring steps). Figure 4 compares the
results obtained using the different methods with respect to the baseline for the
20 PASCAL object categories.

The first sub-figure shows the improvements offered by using visual sub-
categories (with K=15) in the DPM detector. The mean relative improvement
(over the baseline) across 20 classes is 9.4% (the mean A.P. improves from 0.32
to 0.35). Figure 7 shows the top detections obtained for train category. The
individual detectors do a good job at localizing instances of their respective sub-
categories. In Figure 5, the discovered subcategories for symmetric (pottedplant)
and deformable (cat) classes are displayed.

(a) Subcategories, with part deformations (b) Subcategories, no part deformations (c) [10], no part deformations

Fig. 4. Performance difference with respect to the baseline [10] (x-axis: 20 VOC classes,
y-axis: difference in A.P.).

Given the high-degree of alignment across the instances within each subcat-
egory, it is interesting to now check the importance of modeling the deforma-
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tions across the parts within each subcategory. Would a simpler model (without
deformations) suffice for training the discriminative detectors? We tested this
hypothesis with an experiment by turning off the deformable parts. More specif-
ically, rather than sampling “parts” from the high-resolution HOG template
(sampled at twice the spatial resolution relative to the features captured by the
root template) and modeling the deformation amongst them, we directly use all
the features from the high-resolution template. This update to the DPM detec-
tor results in a simple multi-scale (two-level pyramid) representation with the
finer resolution catering towards improved feature localization.

Fig. 5. The visual subcategories discovered for pottedplants correspond to different
camera viewpoints, while cats are partitioned based on their pose. The baseline sys-
tem [10] based on the aspect-ratio, left-right flipping heuristic cannot capture such
distinctions (as many of the subcategories share the same aspect-ratio and are sym-
metric).

Figure 4(b) displays the results obtained. We observe that for 11 of the 20
classes (e.g., pottedplants, tvmonitor, trains, etc) there is no difference in per-
formance. For 6 classes (e.g, person, sofa, etc), turning off deformations hurt the
performance, while for 3 classes (diningtable, sheep, etc) performance actually
improves. On average, using this two-level pyramid representation for the visual
subcategories yields a mean A.P. of 0.31 that is almost on par as the full de-
formable parts baseline (0.32). These observations suggest that, in practice, the
relatively simpler concept of visual subcategories is indeed an equally important
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contribution in the DPM detector. They can potentially alleviate the need for
part deformations for many object categories.

Computational Issues. In terms of computational complexity, the two-scale
visual subcategory detector (K=15) involves one coarse (root) and one fine reso-
lution template per subcategory, totaling a sum of 30 HOG templates. Whereas
the DPM detector has K=6 subcategories each with one root and eight part
templates, totaling 54 HOG templates, which need to be convolved at test time.
In terms of model learning, the DPM detector has the subcategory, as well as
the part deformation parameters (six) as latent variables for each of the 24 parts
(total of 145 latent variables), while the visual subcategory detector only has the
subcategory label as latent. Therefore it not only requires fewer rounds of latent
training than required by the DPM detector (leading to faster convergence), but
also is less susceptible to getting stuck in a bad local minima. As emphasized
in [2], simpler models are preferable, as they can perform better in practice than
rich models, which often suffer from difficulties in training.

Number of subcategories. One important parameter is the number of sub-
categories K. We analyze the influence of K by using different values (K =
[3, 6, 9, 12, 15, 20, 25, 50, 100]) for a few classes (‘boat’, ‘dog’, ‘train’, ‘tv’) on the
validation set. We plot the variation in the performance over different K in
figure 6. The performance gradually increases with increasing K, but stabilizes
around K=15. We used K = 15 in all the detection experiments.

Fig. 6. Variation in detection accuracy as a function of number of subcategories for
four distinct VOC2007 classes. The A.P. gradually increases with increasing number of
subcategories and stabilizes beyond a point.

Initialization. Proper initialization of subcategories is a key requirement for the
success of latent variable models. We analyzed the importance of appearance-
based initialization by comparing it with the aspect-ratio based initialization
of [2]. Simply increasing the number of subcategories from K = 6 to 15 in case
of aspect-ratio clustering drops the mean A.P by 1.2%, while appearance-based
clustering improves the mean A.P. by 2.3%. (When K = 6, aspect-ratio and
appearance produced similar result.)

We noticed minimal variation in the final performance on multiple runs with
different Kmeans initialization. We found the (latent) discriminative reclustering
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step helps in cleaning up any mistakes of the initialization step. (Also we observed
that most of the reclustering happens in the first latent update.)

Fig. 7. As the intra-class variance within subcategories is low, the learned detectors
perform quite well at localizing instances of their respective subcategories. Notice that
for the same aspect-ratio and viewpoint, there are two different subcategories (rows
4,5) discovered for the train category.

5 Conclusion

Given that deformable parts can potentially model exponentially large number
of object deformations [2], it is expected that their performance would be far
more superior and generalizable in comparison to the use of a fixed number of
subcategories. However our empirical analysis has surprisingly pointed out that
there is only a minimal performance difference between the use of part defor-
mations compared to the use of subcategories. Further, the fact that a simple
method (more subcategories, no parts) does almost as well as the relatively more
complex method (fewer subcategories, with parts) is informative as the former is
conceptually easy to understand and implement, computationally efficient, and
generates easily interpretable models.
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