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abstract: How individual-level movement decisions in response

to habitat edges influence population-level patterns of persistence

and spread of a species is a major challenge in spatial ecology and

conservation biology. Here, we integrate novel insights into edge

behavior, based on habitat preference and movement rates, into spa-

tially explicit growth-dispersal models. We demonstrate how crucial

ecological quantities (e.g., minimal patch size, spread rate) depend

critically on these individual-level decisions. In particular, we find

that including edge behavior properly in these models gives quali-

tatively different and intuitively more reasonable results than those

of some previous studies that did not consider this level of detail.

Our results highlight the importance of new empirical work on in-

dividual movement response to habitat edges.

Keywords: edge behavior, spatial heterogeneity, population dynamics,

reaction-diffusion equations.

Introduction

Many empirical and theoretical studies have explored the

effects of habitat fragmentation on various species, from

plants and insects to birds and mammals (Shigesada et al.

1986; Debinski and Holt 2000; With 2002; Schtickzelle

and Baguette 2003; Van Houtan et al. 2007; Dewhirst and

Lutscher 2009). A salient feature of fragmented landscapes

are edges, defined broadly as interfaces where landscape

characteristics change abruptly (Lidicker 1999). Such edges

can have several effects on population density and distri-

bution (Ries et al. 2004), often related to individual move-

ment behavior at these landscape features.

Novel experiments and technology provide insights and

data on how individual movement characteristics change

in response to edges. Schultz and Crone (2001) demon-

strated such changes for a prairie butterfly (Icaricia ica-

rioides fenderi) within a patch, outside of a patch, and near
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edges (see also Crone and Schultz 2008); edge behavior

significantly increased residence time in a favorable patch.

Ries and Debinski (2001) showed that a habitat specialist

(Speyeria idalia) and generalist (Danaus plexippus) but-

terfly responded differently to different habitat edges and

that the specialist returned more frequently to a favorable

patch. Reeve et al. (2008) characterized movement rates

of planthoppers (Prokelisia crocea) in three different hab-

itat types and determined that individuals easily crossed

edges between two types but not into unfavorable habitat.

Such behavior is highly species specific; a parasitic wasp

(Anagrus columbi) of these planthoppers shows behavior

that is significantly different from that of its host at the

same edges (Reeve and Cronin 2010). Movement of forest

songbirds is impeded by gaps in the forest cover, and gap-

crossing probability decreases with gap size (Creegan and

Osborne 2005; Robertson and Radford 2009). Wolves and

other large carnivores bias their movement toward forest

edges and linear features, on which they travel farther and

faster to increase their predation success (Whittington et

al. 2005; McKenzie et al. 2012).

Connecting this wealth of information about individual

movement to predictions about population-level outcomes

such as extinction, persistence, and spread is a formidable

task, and there is currently no coherent framework in

place. Cellular automata have been used successfully to

tackle some of these questions, most notably about dis-

persal distances, percolation thresholds, and spatial scales

(With 2002). Such models can include detailed assump-

tions about species and landscapes, and they are easily

accessible to direct numerical simulation and visualization.

However, very few studies consider behavioral response

to habitat edges (e.g., Chapman et al. 2007). Reaction-

diffusion equations and their underlying random walk

models have been applied successfully to spatial ecology

(Cantrell and Cosner 2003), specifically for biological

movement (Turchin 1998) and invasions (Andow et al.

1990). Shigesada et al. (1986) first studied persistence and
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invasions in patchy landscapes but did not consider in-

dividual behavioral response to habitat edges. Conse-

quently, they arrived at the counterintuitive result that slow

movement through unfavorable habitat patches could en-

hance population persistence, whereas fast movement

there could decrease the rate of spread. Ludwig et al. (1979)

considered the critical size of a single patch surrounded

by less favorable matrix, also not incorporating behavior

at habitat edges. Cantrell and Cosner (1999) modeled edge

behavior and habitat preference using skew Brownian mo-

tion (Walsh 1978), which has the undesirable property that

habitat edges can act as sources or sinks of individuals.

More recently, Ovaskainen and Cornell (2003) modeled

random walks across habitat edges, including habitat pref-

erence. Their framework was used to estimate movement

parameters (Reeve et al. 2008; Reeve and Cronin 2010)

and to determine occupancy times (Ovaskainen 2008).

Here, we jointly generalize the work of Ovaskainen and

Cornell (2003)—and earlier Nagylaki (1976)—on edge be-

havior and integrate the results with classical reaction-

diffusion models to assess the effects of edge behavior on

population persistence and spread. We introduce our mod-

eling framework in the next section, while giving detailed

derivations in appendix A (app. A and B are available

online). We reexamine the models by Shigesada et al.

(1986) for periodically arranged patches and by Ludwig

et al. (1979) for a single patch with behavioral response

to edges included. We find that some predictions of both

of these seminal models differ substantially when edge

behavior is considered. Hence, including edge behavior

proves essential to correctly understand population-level

patterns. We proceed to address some questions on be-

havior and patch preference that could not be considered

in the existing reaction-diffusion framework. In the dis-

cussion, we give biological interpretations and identify fu-

ture challenges for empirical and theoretical work.

Models and Methods

Growth and Diffusion in Heterogeneous Landscapes

In reaction-diffusion models, individual movement is de-

scribed by a random walk; reproduction occurs locally on

the same timescale (Okubo and Levin 2001; Cantrell and

Cosner 2003). The equation for the population density

at time t and location x in a homogeneous one-u(t, x)

dimensional habitat is

2
�u � u

p D � f(u), (1)
2

�t �x

where D is the diffusion coefficient and f describes net

growth. Fisher (1937) studied this equation in genetics;

Skellam (1951) applied it to ecology. The population de-

scribed by equation (1) persists in an infinite landscape if

and, with logistic growth ,′f (0) 1 0 f(u) p ru(1 � u)

spreads with speed when introduced locally* 1/2c p 2(Dr)

(Weinberger 1982).

Skellam (1951) and Kierstead and Slobodkin (1953)

considered a single “good” patch, surrounded[�L/2, L/2],

by an inhospitable environment and posed the “minimal

patch size problem” of how large a good patch has to be

to support a population. The answer depends on move-

ment behavior at the boundary. The worst-case scenario

that individuals leave the patch upon reaching the bound-

ary and never return is modeled by “hostile” boundary

conditions . Together with the logisticu(�L/2, t) p 0

growth term, this yields the minimal size .* 1/2L p p(D/r)

Conversely, if individuals never cross the boundary the

population can persist on a patch of any size; this scenario

is modeled by “no-flux” conditions .�u/�x(�L/2, t) p 0

More realistically, density and flux at the boundary are

related by Robin’s boundary conditions (Fagan et al.

1999)

�u
� bu p 0, (2)

�x

which reflect movement behavior at the boundary (Van

Kirk and Lewis 1999; Lutscher et al. 2006). For b p 0

( ), one retrieves no-flux (hostile) conditions,b r �

respectively.

Natural landscapes consist of patches of different qual-

ity. Growth conditions vary between patches, and move-

ment behavior changes according to habitat features. Ac-

cordingly, in model (1) diffusivity D and parameters in

function f are constant within a patch but differ between

patches. Choosing logistic growth, the density ui on patch

type i satisfies

2
�u � ui i

p D � u (r � m u ). (3)i i i i i2
�t �x

Mathematically, we require interface conditions that relate

population density and flux between adjacent patches,

similar to condition (2) at a boundary. Ecologically, these

conditions should reflect movement behavior and patch

preferences.

Behavior at Interfaces

Previous authors assumed that population density and flux

are continuous across an interface (Ludwig et al. 1979;

Shigesada et al. 1986; Cruywagen et al. 1996; Lutscher et

al. 2006; Artiles et al. 2008; Vergni et al. 2012). Flux con-

tinuity is a natural condition that implies that all individ-

uals who leave one patch enter the adjacent patch; none

are introduced or lost at the interface. Continuity of den-
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sity may be mathematically reasonable but may (Nagylaki

1976) or may not (Ovaskainen and Cornell 2003) be eco-

logically correct.

Jointly generalizing the work of these authors, we model

individual movement within each patch as a random walk

with a given time and space step. Upon reaching the in-

terface between patch 1 and patch 2, say, individuals

choose to move to patch i with probability ai, where

We can interpret parameters aj as a measurea � a ≤ 1.1 2

of habitat preference. After applying the usual parabolic

scaling, we find that the flux is continuous at an interface

but that the density may be discontinuous. More formally,

if ui and Di denote the density and diffusion rate in patch

i, then the interface conditions read (see app. A, sec. A1,

for details)

�u �u1 2
u p ku and D p D . (4)1 2 1 2

�x �x

Parameter k measures the discontinuous “jump” in density

at the interface. Its value depends on habitat preference

and on the particular assumptions about individual move-

ment in either patch. In this work, we shall consider the

following three scenarios.

Scenario 1. If individuals move from the interface into

patch i at the same rate as they move within patch i, we

obtain (Nagylaki 1976)

k p 1 or u p u (continuous density). (5)1 2

This scenario may correspond to an abrupt change in land

cover (e.g., dense underbrush versus open grassland) and

individuals whose movement rate is strongly affected by

these physical differences. It implies that individuals enter

patches at a low rate if they move slowly in these patches.

Foraging theory, however, suggests that individuals should

move slowly in favorable patches and should enter these

patches with high probability. Scenario 1 cannot accom-

modate these characteristics.

Scenario 2. Suppose individuals move from the inter-

face into patch 1 with probability and into patcha p a1

2 with probability , independently of thea p 1 � a2

movement probability inside patch i. If the step sizes in

different patches may differ but the movement rates may

not, then we obtain (Ovaskainen and Cornell 2003)

a D2
k p (discontinous density 1). (6)�

1 � a D1

Here, an individual chooses a patch according to some

features and inside a patch adjusts step sizes to, say, the

distribution of host plants or other characteristics. In par-

ticular, the individual can choose to move into favorable

habitat with high probability and then make small steps

there to increase residence time.

Scenario 3. In the same setup as scenario 2, if an in-

dividual adjusts the probability of movement inside a

patch but keeps the step size constant, then we arrive at

a D2
k p (discontinous density 2), (7)

1 � a D1

as in Ovaskainen and Cornell (2003). Here, the individual

waits longer between steps in good patches than in un-

favorable ones but moves by the same distance if it moves

at all.

In scenarios 2 and 3, we observe two mechanisms for

a discontinuity in density: habitat preference ( )a ( 0.5

and unequal movement rates ( ). A preference forD ( D1 2

one of the two patches should lead to a significantly higher

density of individuals in the preferred patch. In fact,

is an increasing function of a and equals unitya/(1 � a)

when there is no habitat preference ( ). But highera p 0.5

movement rate in one patch also leads to a lower popu-

lation density near the interface in that patch. As individ-

uals move at a high rate, they move away from the interface

and spread out faster, so that the density near the interface

declines. Previous authors, mentioned above, did not con-

sider habitat preference but used continuous density con-

ditions at the interface also for different diffusion rates in

the two patches. As we explore population patterns re-

sulting from these different interface conditions, the most

striking differences between previous results and ours

emerge in how the diffusion rates influence persistence

and spread.

Results

Persistence Condition

We consider a periodically alternating landscape of favor-

able (type 1) and unfavorable (type 2) patches of length

L1 and L2, respectively (Shigesada et al. 1986). Since per-

sistence conditions emerge at low density, we study the

linearized equations. We assume that the growth rate in

favorable patches is positive ( ) and larger than thatr 1 01

in unfavorable patches ( ). When unfavorable patchesr 1 r1 2

are sinks ( ), we ask for conditions under which ther ! 02

population can still persist at the landscape level, depend-

ing on interface behavior. In nondimensional quantities,

r D1 2
T p r t, X p x, D p ,�1

D D1 1

r r2 1
r p , S p L ,�i ir1 D1

the linear model reads (see app. A, sec. A2)
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A B

C D

Figure 1: Persistence conditions (10) as a function of unfavorable patch size S2 and growth rate in an unfavorable patch r (A, B), patch
sizes S1 and S2 (C), and unfavorable patch size S2 and diffusivity D (D). The three curves correspond to (solid curve), k as in conditionk p 1
(6) (dashed curve), and k as in condition (7) (dash-dot curve). Parameters are as follows: A, and ; B, and ;D p 2 S p 1 D p 0.5 S p 11 1

C, and ; and D, and . We assume that individuals show no habitat preference, so that .D p 2 r p �0.5 S p 1 r p �0.5 a p 0.51

2
�U � U1 1

p � U (in favorable patches), (8)12
�T �X

2
�U � U2 2

p D � rU (in unfavorable patches). (9)22
�T �X

At the interfaces, we impose conditions (4).

Following the analysis in Shigesada et al. (1986), we study

the stability of the zero solution and find the persistence

boundary as the implicit relationship (note )r ! 0

S �r S1 2�k tan p �rD tanh . (10)�( ) ( )2 D 2

We illustrate a few cases of how parameters and interface

conditions affect population persistence. The maximum

size of unfavorable patches that allows persistence is an

increasing function of the growth rate in those patches,

all other things being equal (fig. 1A, 1B). This increasing

relationship holds for all three interface conditions. When

, the maximal length of an unfavorable patch isD 1 1

smallest for and largest for k as in condition (7)k p 1

(fig. 1A). When individuals move more slowly in unfa-

vorable habitat, the ordering is reversed (fig. 1B). The

minimal size of favorable patches that enables persistence

increases with the size of the unfavorable patches (fig. 1C).

This relationship also holds for all three interface condi-

tions. The minimum size of favorable patches is smallest

for k as in condition (7) and largest for continuous density,

provided . When , the situation is again re-D 1 1 D ! 1

versed (app. A, sec. A2; fig. A1).

Persistence conditions as a function of diffusivity in

unfavorable patches differ significantly among the three

interface conditions. For continuous density, the maxi-

mum size of unfavorable patches decreases as diffusivity

increases. In fact, there is a critical diffusivity below which

the population persists for arbitrarily large unfavorable

patches (Shigesada et al. 1986). The two other interface

conditions predict that the maximum unfavorable patch

size increases with diffusivity D, either in a decelerating

fashion (interface condition [6]) or even in an accelerating

fashion (interface condition [7]; see fig. 1D).

The amount of favorable habitat required for persistence

is a decreasing function of preference for favorable patches,

since individuals are less likely to leave a favorable patch.
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Figure 2: Persistence boundary as a function of habitat preference.
The fraction of favorable habitat ( , where ) requiredS /S S p S � S1 1 2

for persistence decreases with strength of preference (a). Fixed pa-
rameters are (so that the discontinuous conditions are iden-D p 1
tical) and .r p �0.5

Figure 3: Minimal patch size as a function of diffusivity in the*S
matrix for the continuous density (solid curve), discontinuous 1
(dashed curve), and discontinuous 2 (dash-dot curve) interface con-
ditions. We assume no habitat preference ( ) and .a p 0.5 r p �2

Conversely, the maximum length of unfavorable habitat

that allows for persistence increases with preference for

good habitat. If preference for favorable habitat is large

enough, a population persists even for extremely long un-

favorable patches (fig. 2).

Focal Patch Surrounded by Matrix Habitat

As a special case, we consider a single focal patch of good

habitat surrounded by a nonlethal matrix habitat (Ludwig

et al. 1979). We obtain the minimal size required for per-

sistence on this focal patch by taking the limit inS r �2

equation (10) and solving for S1 as

��rD
*S p 2 arctan . (11)( )k

For a hostile matrix (i.e., ) one obtains, indepen-r r ��

dently of k, the critical value , which is the thresh-*S p p

old for hostile boundary conditions (Skellam 1951).

The qualitative behavior of with respect to parameter*S

r is independent of k; its dependence on the diffusion rate

differs strikingly between the three cases for k. For con-

tinuous density, as considered by Ludwig et al. (1979), the

critical length increases when diffusivity in the matrix in-

creases; in the discontinuous 2 scenario the critical length

decreases as diffusivity in the matrix increases, and in the

discontinuous 1 scenario the result is independent of D

(see fig. 3). The minimal patch size is a monotonically

decreasing function of a, that is, higher preference for the

focal patch implies a smaller critical patch size (app.*S

A, sec. A2; fig. A2).

Rate of Spatial Spread

When persistence is guaranteed, a locally introduced pop-

ulation will spread at an asymptotically constant speed, as

was demonstrated numerically by Shigesada et al. (1986)

and proved analytically by Weinberger (2002) for .k p 1

The spread rate (c) and its dependence on parameters are

arguably the most important quantities in the management

of nonnative invasive species (Hastings et al. 2005). We

illustrate how this speed depends on interface conditions

and patch preference (for detailed calculations, see app.

A, sec. A3).

Spread rate increases with growth rate in unfavorable

patches (r ; see fig. 4). If , the speed is slowest forD 1 1

continuous density and fastest for discontinuous condition

(7); otherwise, the order is reversed (app. A, sec. A3; fig.

A4). Points with correspond to points on the per-c p 0

sistence boundary in figure 1A. Curves for different S2

intersect for some value . Hence, increasing the sizer ! 1

of unfavorable patches can increase the spread rate if the

movement rate is higher in these patches. Only if unfa-

vorable patches have a sufficiently negative growth rate

will increasing S2 result in slower spread. The spread rate

decreases with the size of unfavorable patches; the speed

is highest for condition (7) and lowest for ifk p 1 D 1

; the order is reversed if (app. A, sec. A3; figs. A5,1 D ! 1

A6).

For both discontinuous interface conditions, spread rate

increases with D. When diffusivity in unfavorable patches

is small, the population does not spread. As the size of

unfavorable patches increases, the threshold diffusivity for

population spread also increases (figs. 5B, A3B). Again,

zero spread rate corresponds to curves in the persistence

plot (fig. 1D). For continuous interface conditions, how-
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A

B

Figure 4: Spread rates as a function of intrinsic growth rate in the
unfavorable patch. A corresponds to continuous density at interfaces
( ), and B corresponds to discontinuous density as in conditionk p 1
(6). Condition (7) is qualitatively similar to B, but speeds are higher
(see app. A, sec. A3; fig. A3A). Parameters are and .D p 2 a p 0.5

A

B

Figure 5: Spread rates as a function of diffusivity in unfavorable
patches. A corresponds to continuous density at interfaces ( ),k p 1
and B corresponds to discontinuous density as in condition (6).
Condition (7) is qualitatively similar to B (see app. A, sec. A3; fig.
A3B). Parameters are and .r p �0.5 a p 0.5

ever, the situation is strikingly different (fig. 5A). For any

size of unfavorable patches, the spread rate is positive for

small D. This finding reflects the result shown in figure

1D, that a population can persist in arbitrarily large un-

favorable patches when D is small enough. When S2 is

large enough, the spread rate is a hump-shaped function

of D (fig. 5A). Spatial spread halts for large enough D. For

comparison, figures 5A, A4A, and A6A and are as in Shi-

gesada et al. (1986).

Spread rate (c) depends on habitat preference (a) via

two opposing mechanisms. Higher preference for favor-

able patches ( ) increases the effective growth ratea 1 0.5

and thereby the spread rate. High preference for favorable

patches also prevents individuals from leaving these

patches and moving larger distances in space, which de-

creases the spread rate. If there is a strong preference for

unfavorable patches (a near 0), the population cannot

persist or spread, so that (fig. 6). When the pref-c p 0

erence for favorable patches increases, the population be-

comes viable and spreads. The positive effect of a on the

spread rate dominates for low to intermediate values of

a; as preference for favorable patches becomes very strong

( ), negative effects dominate, and c decreases to 0.a ≈ 1

In the limit when the period of landscape heterogeneity

(L) is small compared with the diffusion coefficients, we

derive an explicit approximate expression for the spread

rate. We expand the spread rate formula (eq. [A32]), sort

by powers of L1 and L2, and obtain the approximation (in

dimensional parameters) where2 1/2ˆc p 2(AD S Ar S L ) ,H A

L � L /k1 2
AD S p ,H 2(L /D ) � [(L /k)/(D /k )]1 1 2 2

r L � r L /k1 1 2 2
Ar S p , (12)A

L � L /k1 2

L � L1 2
L̂ p

L � L /k1 2

are the harmonic mean of the weighted diffusion constant

and the arithmetic mean of the growth rate with weights

L1 and , as well as the effective period.L /k2
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Figure 6: Spread rate as a function of preference for the favorable
patches. The minimal value of a that allows spread increases as the
size of the unfavorable patch size increases. Parameters are (soD p 1
that the two discontinuous conditions are the same) and .r p �0.5

A

B

Figure 7: Persistence boundary (A) and invasion speed (B) when gap-
crossing depends on gap size. Parameter values are andD p 1 r p

.�0.5

Patch Preference Depends on Patch Attributes

We treated parameters as independent, but in reality de-

pendencies and trade-offs exist. Entangling these effects

and determining their net outcome provides important

future applications of our model. We illustrate the power

of our approach with a few examples.

Cantrell and Cosner (1999) considered a core habitat

area surrounded by a buffer zone and allowed patch pref-

erence to depend on the difference in habitat quality (i.e.,

a was a function of ; see app. B, sec. B1). Thisr � r1 2

intuitively reasonable assumption leads to the surprising

result that a larger core area is needed for persistence if

the buffer is of high quality. This effect arises because a

high-quality buffer attracts individuals who may subse-

quently leave the buffer and enter hostile surroundings; a

poor-quality buffer, by contrast, creates an aversion to the

unfavorable habitat, so that individuals remain in the good

habitat and do not enter hostile surroundings. We repro-

duced these predictions in our model.

Alternatively, preference of a favorable patch may de-

pend on the distance to the next favorable patch. For

example, certain bird species that prefer wooded areas

(e.g., for cover and protection) may cross open areas (and

risk predation) if the nearest wooded area is within rea-

sonable distance (in particular, if it is visible) but not when

it is far away (Creegan and Osborne 2005; Robertson and

Radford 2009). We explored this possibility by setting

patch preference in the periodic environment to

a (1 � dS )0 2
a(S ) p (13)2

2a � dS0 2

with scaling parameter (Cantrell and Cosner 1999).d 1 0

This function has the following desirable properties. With-

out bad patches, there is no preference ( ). Pref-a(0) p 1/2

erence for favorable patches increases with the length of bad

patches. For large unfavorable patches, preference is a �0

, whereby 1 corresponds to no-flux conditions.[1/2, 1]

The critical length of favorable patches is a hump-

shaped function of the size of bad patches (S2). The two

opposing mechanisms are as follows. An increase in S2

leads to higher population loss in unfavorable patches and

hence requires larger good patches for persistence. An in-

crease in S2 also decreases the probability of entering un-

favorable patches and, hence, decreases mortality and al-

lows for smaller S1. At small S2 the first effect dominates,

whereas for larger S2 the second effect is stronger (fig. 7).

For the rate of spatial spread, increasing S2 increases loss

rates and thereby decreases speed. Increasing S2 also in-

creases a, which, as in figure 6, can increase or decrease

speed when varied independently. The combined effect

here acts to decrease the rate of spatial spread. However,

higher retention in the favorable patches (i.e., larger a0)

gives higher spread rates, everything else begin equal (fig.

7).

Finally, we model a simple network of two favorable

patches, each too small to sustain a population, joined by
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a movement corridor, where net growth is negative (see

app. B, sec. B2, for details and figures). All other things

being equal, higher corridor mortality requires a shorter

corridor for persistence (fig. B2). Individuals could offset

high corridor mortality by faster movement. Choosing an

appropriate increasing function (in dimensional terms,

, similar to eq. [13]) enhances persistence forD p D (r )2 2 2

discontinuous but not for continuous interface conditions.

If instead patch preference increases with mortality (i.e.,

), two effects can occur. If maximal preferencea p a(r )2

for favorable patches stays below a certain threshold, there

is still a maximal distance between the two patches for

persistence. If maximal preference is above the threshold,

the population can persist even if the patches are very far

apart (fig. B3). Preference for the good patch becomes so

strong that few individuals leave. When individuals in-

crease patch preference and movement rate in response to

decreasing corridor quality, the combined effect increases

population persistence even more (fig. B4).

Discussion

As a result of natural disturbances and human activities,

landscapes increasingly consist of patches with different

characteristics and suitability for different species. Whether

a species persists or invades in such a landscape depends

on how individuals move in these patches and how they

respond to interfaces between different habitat types. A

wealth of data is available on movement behavior in dif-

ferent habitat types (Ries and Debinski 2001; Schultz and

Crone 2001; Whittington et al. 2005; Reeve et al. 2008),

and there is a long history of studying habitat selection

and patch preference of animals (Rosenzweig 1981; Brown

1988; Fryxell 2008; Beyer et al. 2010). Yet there was no

modeling framework in place to combine this small-scale

information and use it to predict population-scale pat-

terns. Here, we extend the applicability of reaction-dif-

fusion models to patchy landscapes by deriving appro-

priate interface conditions and thereby provide such a

theoretical framework. We reanalyze several classical mod-

els in ecology and demonstrate how crucially important

the correct implementation of interface behavior is to pre-

dicting population persistence and spread.

Our derivation of interface conditions generalizes the

work by Ovaskainen and Cornell (2003), and it includes

the conditions of Nagylaki (1976) as a special case. Hence,

we can compare the resulting differences on a mechanistic

basis. Specifically, in the absence of habitat preference, the

rate of moving into a patch is 1/2 for the discontinuous

conditions, whereas it equals the movement rate in that

patch for continuous conditions. We first discuss the effect

of differential movement rates, assuming no patch pref-

erence.

Effects of Movement Differentials

When individuals move faster in unfavorable habitat

( ), a population persists under considerably weakerD 1 1

conditions than those found by previous authors (figs. 1A,

1D, 3) and spreads faster through a heterogeneous land-

scape (figs. 4, A5), at least when unfavorable patches are

sinks. When individuals move faster in favorable patches,

these findings are reversed. The mechanism behind these

results is that under continuous conditions individuals

move into unfavorable habitat with a higher probability

when and with a lower probability when . ThisD 1 1 D ! 1

correlation between movement into and within a patch

contradicts foraging theory, which suggests that individ-

uals should move fast within but rarely into unfavorable

patches. For example, if forest habitat is disrupted by high-

way, individuals should enter the highway at a low rate

but once there move fairly quickly—a scenario that the

continuous conditions cannot accommodate.

Empirically, individuals may move faster in unfavorable

patches, trying to reach a favorable patch (Chapman et al.

2007; Reeve et al. 2008). Yet they may move more slowly

because of physical obstructions or energy requirements.

It is unclear which net effect would emerge (Hastings et

al. 2005). We show that whether individuals move faster

or slower in certain patches critically affects population

patterns and needs to be considered carefully. This suggests

that classifying patches by quality needs to include growth

potential and individual movement ability (see also Fahrig

2007). For example, the growth potential of a species in

agricultural and residential development could be similar,

but agricultural land may present fewer obstacles to move-

ment.

Two previous counterintuitive results do not appear

here. A population cannot invade when unfavorable

patches are large by moving slowly through them (fig. 1D),

nor will an invasion slow down when movement in bad

patches is fast (fig. 5; Shigesada et al. 1986). This difference

arises since movement into and within patches was cou-

pled in previous studies but not in ours. Persistence is

ensured by entering bad patches at a low rate, not by

moving slowly there. An invasion slows because of fre-

quent movement into bad patches, not because of fast

movement there.

Finally, when individuals move faster in less favorable

habitat with , increasing the size of less favorabler 1 0

habitat may unexpectedly speed up an invasion (fig. 4).

Hence, barrier zones (Sharov and Liebhold 1998) are ef-

fective to control invasions only if growth potential is suf-

ficiently low there; otherwise, an invasion may move faster.

These results provide strong theoretical evidence for the

importance of including detailed movement behavior at in-

terfaces in population models. Empirical evidence comes
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from fitting harvesting data for marine protected areas

(Langebrake et al. 2012). Different ecological situations will

require different conditions, and we hope that our results

will spark empirical work to test different scenarios. For

example, one could impose a particular step size by varying

spacing between host plants (Turchin 1998, p. 79) while

keeping the overall density constant. Alternatively, one could

impose temporal movement restrictions to vary movement

rates while keeping the spacing of host plants constant.

Effects of Patch Preference

Patch preference (a) introduces into reaction-diffusion

models behavioral details that could not be included pre-

viously (but see Cantrell and Cosner 1999). Individuals

preferentially choose patches for such reasons as higher

resource quality or abundance (Brown 1988; Fryxell 2008)

and lower predation risk (Brown 1988; Verdolin 2006).

Qualitatively, patch preference affects persistence and

spread in a relatively predictable way, but our model pro-

vides quantitative and sensitivity results. Minimal patch

size decreases as preference for the patch increases, and

sensitivity to changes in a is greatest when a is either 0

or 1 (fig. A2). In a patchy landscape, a population can

tolerate large bad patches if individuals have a strong-

enough preference for favorable patches (fig. 2). The rate

of spread is maximized at intermediate values of patch

preference (fig. 6).

Patch preference helps understand the less intuitive re-

sults about differential movement from the expressions for

jump size k in conditions (6) and (7). Faster movement

in bad patches (higher D) and higher preference for good

patches (higher a) both increase k. Hence, faster move-

ment in unfavorable patches has an effect similar to that

of higher preference for favorable patches. This observa-

tion intuitively explains some results on differential move-

ment, but we caution against scaling motility and pref-

erence into a single parameter, since motility also affects

population flux at an interface, whereas preference, at least

in our formulation, does not.

How General Are These Results?

Cantrell and Cosner (1999) modeled habitat preference

via “skew Brownian motion” (Walsh 1978), where habitat

preference appears in the flux conditions at an interface.

They studied persistence conditions for a species living in

a protected core area surrounded by a buffer zone and

found that a suitable buffer zone can reduce the required

size of the core habitat. We implemented the same scenario

with our interface conditions (see app. B, sec. B1, for

details). The persistence conditions for our model differ

from the ones found by Cantrell and Cosner (1999) only

by a factor of D or D1/2, depending on k. Hence, the results

with respect to a are robust across model implementations,

and we conjecture that there is some deeper mathematical

connection between the two approaches than first meets

the eye. In particular, the derivation of skew Brownian

motion might depend on using Fickian flux or biological

diffusion in reaction-diffusion models (Turchin 1998; Gar-

lick et al. 2011).

More previous works on dynamics in patchy landscapes

should be reexamined in the light of our findings. Condi-

tions for invasion and coexistence between two competing

microbes as derived by Cruywagen et al. (1996) will change,

as will the results on persistence and invasion in advective

environments (Lutscher et al. 2006; Vergni et al. 2012).

Our model is limited to a single spatial dimension and

to local movement without temporal variation. Ovaskainen

and Cornell (2003) also derive interface conditions in higher

dimensions. For long-distance dispersal, one needs to start

from an individual-level implementation of the mechanism,

just as we did here. In our model, patch preference acts

locally only at the interface. Kawasaki et al. (2012) modeled

patch preference as attraction from greater distances. Some

of their results are similar to ours (e.g., the hump-shaped

dependence of c on a), but their model did not include

differential movement.

Extensions

Ecologists gather a wealth of small-scale data on movement

near interfaces and struggle to explain observations of pop-

ulation densities across edges (Ehrlich 1997; Lidicker

1999). Ries et al. (2004) present a qualitative model for

mechanisms leading to positive, neutral, or negative edge

effects. We suggest a mechanistic model that incorporates

essential information about interface behavior, which was

previously impossible in reaction-diffusion equations. We

provide a detailed analysis of linear, low-density aspects.

The one-dimensional setup could also be applied to cor-

ridor design (Andreassen et al. 1996). In the future, we

will study nonlinear aspects, such as steady state distri-

butions, and their profile across habitat edges. Some of

these questions were already addressed when studying

clines in genetics, at least for the continuous case (Nagylaki

1976; Slatkin 1973). We can study the effect of patch pref-

erence or differential movement on marginal population

dynamics, thereby extending the work of Antonovics et

al. (2006), who did not include these factors. Similarly, we

suggest reexamining, with appropriate interface condi-

tions, the work of Fagan et al. (2009) on how an Allee

effect, together with critical patch size and gap-crossing

ability, generates geographic range limits. Finally, we spec-

ulate that for interacting species, habitat preference could

depend on a competitor or a predator. It will be partic-
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ularly interesting to see how the results of Strohm and

Tyson (2009) on the existence of limit cycles between pred-

ator and prey in fragmented habitats depend on the im-

plementation of interface conditions. Ultimately, a full

mechanistic understanding of the wealth of edge effects

classified by Ries et al. (2004) will require integration of

information across spatial and temporal scales. We suggest

that this work is one crucial piece in that great puzzle.
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Appendix A from G. A. Maciel and F. Lutscher, “How Individual

Movement Response to Habitat Edges Affects Population

Persistence and Spatial Spread”

(Am. Nat., vol. 182, no. 1, p. 000)

Mathematical Derivation and Analysis

A1. Derivation of Interface Conditions

In this appendix, we show how to generalize the work of Ovaskainen and Cornell (2003) and derive interface conditions

(4). The different values of k then result from different assumptions about the behavior and random walk characteristics.

We consider an individual moving along a straight line in discrete time steps. We take position as the interfacex p 0

between two different habitat types, labeled 1 (for ) and 2 (for ). Inside habitat type i, individuals may jumpx 1 0 x ! 0

distance Dxi to the right or left with equal probability per time step. At the interface, individuals move to patch 1 with

probability a1 and to patch 2 with probability a2. An individual will remain at the interface with probability 1 � a � a .1 2

Given these assumptions, we have the following master equation for the probability density function ,P(�Dx , t)2

, and , which represent the probability per unit length of finding an individual at positions �Dx2, 0, andP(0, t) P(Dx , t)1

Dx1, respectively:

p2
Dx P(�Dx , t � Dt) p Dx P(�2Dx , t) � (1 � p )Dx P(�Dx , t) � a Dx P(0, t), (A1)2 2 2 2 2 2 2 2 0

2

p p2 1
Dx P(0, t � Dt) p Dx P(�Dx , t) � Dx P(Dx , t) � (1 � a � a )Dx P(0, t), (A2)0 2 2 1 1 1 2 0

2 2

p1
Dx P(Dx , t � Dt) p Dx P(2Dx , t) � (1 � p )Dx P(Dx , t) � a Dx P(0, t), (A3)1 1 1 1 1 1 1 1 0

2

where Dx1 and Dx2 are the step lengths in patch types 1 and 2 and p1 and p2 are the respective probabilities of moving in

each step.

We expand the terms on the left-hand side in Taylor series of Dt and terms containing 2Dx1 and 2Dx2 in series of Dx1

and Dx2. We obtain the equations

p2 2 …Dx P(�Dx , t) p Dx P(�Dx , t) � (1 � p )Dx P(�Dx , t) � a Dx P(0, t) � O((Dx ) ) � O(Dx Dt) � , (A4)2 2 2 2 2 2 2 2 0 2 2
2

p p2 1 …Dx P(0, t) p Dx P(�Dx , t) � Dx P(Dx , t) � (1 � a � a )Dx P(0, t) � O(Dx Dt) � , (A5)0 2 2 1 1 1 2 0 0
2 2

p1 2 …Dx P(Dx , t) p Dx P(Dx , t) � (1 � p )Dx P(Dx , t) � a Dx P(0, t) � O(Dx Dt) � O((Dx ) ) � . (A6)1 1 1 1 1 1 1 1 0 1 1
2

Now, multiplying equation (A4) by a1 and equation (A6) by a2 and then subtracting the resulting equations, after few

algebraic manipulations we find the relation

2 2 …a p Dx P(�Dx , t) p a p Dx P(Dx , t) � O((Dx ) ) � O((Dx ) ) � O(Dx Dt) � O(Dx Dt) � . (A7)1 2 2 2 2 1 1 1 1 2 1 2

Taking the parabolic limits as Dx1, Dx2, and Dt tend to 0, we find the interface condition

Dx2 � �a p lim P(0 , t) p a p P(0 , t). (A8)1 2 2 1( )Dx r0 Dxi 1

Here, 0� denotes the limit as x approaches 0 from above and below. Since individuals move independently, this relation

is also valid for the population densities.
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2

Continuous-interface conditions. If we assume that step sizes are the same in the two patch types ( ) andDx p Dx1 2

that individuals move into a patch with the same probability as left or right within a patch ( ), we get thea p p /2i i

continuity condition

� �P(0 , t) p P(0 , t). (A9)

This case was already derived by Nagylaki (1976).

Discontinuous-interface conditions. We recall the definition of the diffusion coefficient in each patch as D pi

. If we assume , we can simply multiply both sides of equation (A8) by and arrive2 2lim [p Dx /Dt] Dx p Dx Dx /DtDt, Dx r0 i i 1 2 1i

at condition (7). If instead , we obtain an additional factor , which can be expressed via diffusionp p p Dx /Dx1 2 1 2

coefficients as , so that we arrive at condition (6).1/2(D /D )1 2

A condition for the derivatives of the population density at the interface can be derived by writing the following

relation between fluxes:

�u �u u (2Dx , t) � u (Dx , t) u (�2Dx , t) � u (�Dx , t)1 2 1 1 1 1 2 2 1 2
D (Dx , t) � D (�Dx , t) p D � D . (A10)1 1 2 2 1 2

�x �x Dx Dx1 2

From relations (A3) and (A1), after expanding and rearranging terms we have

Dx 20
u (2Dx , t) � u (Dx , t) p u (Dx , t) � a u (0, t), (A11)1 1 1 1 1 1 1 0

Dx p1 1

Dx 20
u (�2Dx , t) � u (�Dx , t) p u (�Dx , t) � a u (0, t). (A12)2 2 2 2 2 2 2 0

Dx p2 2

Substituting these relations in equation (A10), we have

�u �u 11 2
D (Dx , t) � D (�Dx , t) p [Dx p u (Dx , t) � Dx p u (�Dx , t) � 2(a � a )Dx u (0, t)] . (A13)1 1 2 2 1 1 1 1 2 2 2 2 1 2 0 0

�x �x Dt

Noting that the term between brackets is simply relation (A2), we find, after taking the limits of Dx1 and Dx2 tending to 0,

�u �u1 2� �D (0 , t) � D (0 , t) p 0, (A14)1 2
�x �x

which is the flux conservation in equation (7).

A2. Persistence Conditions for a Single Species in a Periodically Varying Environment

We present more detailed calculations that lead to the persistence conditions in an infinite, periodically alternating

landscape, following Shigesada et al. (1986). The nonlinear, dimensional model is

2
�u � u1 1

p D � u (r � m u ) (in favorable patches), (A15)1 1 1 1 12
�t �x

2
�u � u2 2

p D � u (r � m u ) (in unfavorable patches). (A16)2 2 2 2 22
�t �x

After linearizing, the quadratic terms in ui with factor mi disappear. We start by introducing the nondimensional variables,

r D r1 2 2
T p r t, X p x, D p , r p ,�1

D D r1 1 1

and write the linearized equations (for variables Ui) in nondimensional form,

2
�U � U1 1

p � U (in favorable patches), (A17)12
�T �X

2
�U � U2 2

p D � rU (in unfavorable patches). (A18)22
�T �X
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3

Assuming exponential solutions ( ), we get the equationslTU (X, T ) p e V(X) i p 1, 2i i

2
� V1

� (1 � l)V p 0 (in favorable patches), (A19)12
�X

2
� V (�r � l)2

� V p 0 (in unfavorable patches), (A20)22
�X D

which have solutions

� �V (X) p A cos 1 � lX � B sin 1 � lX ,( ) ( )1 (A21)

l�r � l �r �
′ ′V (X) p A cosh X � B sinh X .��2 ( ) ( )D D

Since this problem is periodic in space, it reduces to one period only, and interface conditions (4) become

�V �V1 2� � � �V (0 ) p kV (0 ), (0 ) p D (0 ), (A23)1 2
�X �X

�V �V1 2� � � �V (S ) p kV (�S ), (S ) p D (�S ), (A24)1 1 2 2 1 2
�X �X

where and are the nondimensional patch sizes.1/2 1/2S p (r /D ) L S p (r /D ) L1 1 1 1 2 1 1 2

Alternatively, one can use periodicity and symmetry and write conditions (A24) equivalently as

�V �V1 2
(S /2) p 0 p (�S /2). (A25)1 2

�X �X

From these interface conditions, we find a linear system of four equations for parameters A, A′, B, and B ′. A positive

solution exists if the determinant of the system vanishes. This condition leads to the following equation for l:

�S �r � l S(�r � l)D1 2� �1 � l tan 1 � l p tanh . (A26)( ) �( )2 k D 2

The persistence boundary is given by setting We derived these conditions under the assumption that unfavorablel p 0.

patches are characterized by a negative growth rate, so that When , so that unfavorable patches still allowr ! 0. 0 ! r ! r2 1

for population growth, the square roots on the right-hand side of equation (A26) become purely imaginary. The same

trigonometric identities as in Shigesada et al. (1986) can be used to obtain a real-valued equation.

In the main text, we illustrate how the persistence boundary depends on growth rate and patch size for different values

of D. As a function of the two patch sizes, the order of the persistence boundaries with respect to interface conditions

with (fig. 1C) is reversed when (fig. A1). Figure A2 shows how the minimal size of an isolated patchD 1 1 D ! 1

decreases with patch preference.

A3. Minimal Speed of Traveling Waves

We follow the calculations in Shigesada et al. (1986) to find the minimal traveling wave speed. We seek traveling

periodic waves of the linearized system of the form

*U(X, T ) p f (Z)g(X), Z p X � CT (C p S/T ), (A27)

where C is the velocity of the propagating wave front and S is the spatial period ( ). is the time required*S p S � S T1 2

for the front to travel one spatial period. We further require that as and that As above,f (Z) r 0 Z r � g(X) p g(X � S).

we write on favorable and unfavorable patches, respectively. Inserting equation (A27) into equations (A17) andg p g1, 2

(A18), we find and�sZf (Z) p Ae

′′ ′ 2g � 2sg � (1 � s � Cs)g p 0, (A28)1 1 1

2(r � Ds � Cs)
′′ ′g � 2sg � g p 0, (A29)2 2 2

D
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where s is a damping factor. Matching conditions at interface points Xn are

lim g (X) p lim kg (X), (A30)1 2
XrX XrXn n

′ ′lim (g (X) � sg (X)) p lim D(g (X) � sg (X)). (A31)1 1 2 2
XrX XrXn n

Solving the equations for with these interface conditions, we find the dispersion relationg (X)i

2 2 2 2(q k � q D )1 2
cosh s(S � S ) p cosh (q S ) cosh (q S ) � sinh (q S ) sinh (q S ), (A32)1 2 1 1 2 2 1 1 2 2

2Dq q k1 2

where and .1/2 1/2q p (Cs � 1) q p [(Cs � r)/D]1 2

Thus, given a fixed set of parameters, C relates to s through this condition. We observe that C is a convex function of

s, so that a minimum speed, Cmin, exists. We illustrate how this minimum speed depends on parameters. Below, we show

that the minimum speed is the actual spreading speed for the nonlinear equation.

We illustrate the dependence of the spreading speed on parameters r (fig. 4) and D (fig. 5) for continuous ( ) andk p 1

discontinuous 1 (k as in eq. [6]) interface conditions in the main text. Comparison with figure A3 shows that the results

for discontinuous 1 and 2 interface conditions are qualitatively similar. Figure A4 shows the dependence on r in the

reverse case for all interface conditions. Figures A5 and A6 illustrate the dependence of c on the size of badD ! 1

patches.

Minimal Speed of the Linear Model and Asymptotic Spreading Speed of the Nonlinear Model

The minimal speed of the linear model (eq. [A18]) is an upper bound of the asymptotic spreading speed of the nonlinear

model (eq. [A16]) because the nonlinear functions are bounded by their linearization at 0, riui. To show thatu (r � m u )i i i i

the linearization at low density indeed gives the correct spreading speed for the nonlinear equations, we employ the

analysis of Weinberger (2002). The theory by Weinberger applies to periodically heterogeneous habitats where the density

function u for the species is continuous. Because of the interface conditions, the density function u in our model is not

continuous for Therefore, we rescale the density in patch type 2 by , that is, we set and .k ( 1. 1/k w p u w p ku1 1 2 2

Then the resulting equations for wi are continuous at the interfaces. Hence, the results by Weinberger (2002) guarantee

that the asymptotic spreading speed coincides with the minimum speed of the linearized equations. In particular, the

asymptotic spreading speed is independent of the carrying capacities of the species in the different patch types.

Figure A1: Persistence conditions (10) as a function of patch sizes S1 and S2. The three curves correspond to (solid curve), k ask p 1

in condition (6) (dashed curve), and k as in condition (7) (dash-dot curve). Fixed parameters are and . We assume thatD p 0.5 r p �0.5

individuals show no habitat preference, so that .a p 0.5
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Figure A2: Minimal patch size as a function of probability a of moving to the focal patch. Choosing , the expressions forD p 1

discontinuous 1 and discontinuous 2 are identical. Parameter values are and .D p 1 r p �2

A

B

Figure A3: Spread rates as a function of intrinsic growth rate (A) or diffusivity (B) in unfavorable patches for interface condition (7).

Parameters are , , andD p 2 S p 1 a p 0.5.1
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B

A

C

Figure A4: Spread rates as a function of intrinsic growth rate in the unfavorable patch. A corresponds to continuous density at interfaces

( ), B corresponds to discontinuous density as in condition (6), and C reflects condition (7). Parameters are , , andk p 1 D p 0.5 S p 11

.a p 0.5
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A

B

C

Figure A5: Spread rates as a function of size of unfavorable patches. A corresponds to continuous density at interfaces ( ),k p 1

B corresponds to discontinuous density as in condition (6), and C reflects condition (7). Parameters are , , and .D p 2 r p �0.5 a p 0.5



Appendix A from G. A. Maciel and F. Lutscher, How Edges Affect Persistence and Spread

8

A

B

C

Figure A6: Same as figure A5, but with .D p 0.5
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Further Applications

B1. Applications to Refuge Design

Following Cantrell and Cosner (1999), we study a landscape that has a core habitat in which population growth is high,

surrounded by a buffer zone where population growth is less than in the core. The buffer zone is, in turn, surrounded by

hostile environment. In one spatial dimension, we represent this setup as a patch of size 2L1 of core habitat, with a patch

of length L2 attached at each end. To ease direct comparison with the work of Cantrell and Cosner (1999), we present the

calculations in dimensional form here. Using the symmetry of the configuration, we need to consider only half the core

habitat with one buffer attached. Hence, we have the model equation (Cantrell and Cosner 1999)

2
�u � u1 1

p D � r u (1 � u ), 0 ! x ! L1 1 1 1 12
�t �x (B1)

2
�u � u2 2

p D � r u (1 � u ), �L ! x ! 0.2 2 2 2 22
�t �x

At the boundary between the buffer and the hostile exterior, we have . At the center of the core habitat,u (�L , t) p 02 2

symmetry requires the boundary condition . At the interface between core and buffer, Cantrell and(�u /�x)(L ,t) p 01 1

Cosner (1999) used the conditions

2 2
� u � u2 1� �D � r u (0 , t) p D � r u (0 , t),2 2 2 1 1 12 2( ) ( )�x �x (B2)

�u �u2 1� �(1 � a)D (0 , t) p aD (0 , t).2 1
�x �x

As in the main text, parameter a defines the preference of the core habitat.

We compare this approach with ours using interface conditions (4) as in the main text. To find persistence conditions,

we linearize equations (B1) at low density and search for solutions of the form . On each of the twoltu (x, t) p e f (x)i i

habitat parts, function f can be represented by a series of sine and cosine functions, that is, the eigenfunctions of the

diffusion operator. The coefficients in the series expansion of f can be found by applying the interface conditions. After

lengthy but standard calculations, we find that growth rate l and model parameters are related by

1/2 1/2cot (r � l/D ) L tanh (l � r /D ) L( ) ( )(1 � a) D 1 1 1 2 2 22
p (B3)

1/2 1/2
a D (r � l/D ) (l � r /D )1 1 1 2 2

in the model by Cantrell and Cosner (1999) and by

1/2 1/2cot (r � l/D ) L tanh (l � r /D ) L( ) ( )1 D 1 1 1 2 2 22
p (B4)

1/2 1/2k D (r � l/D ) (l � r /D )1 1 1 2 2

with our interface conditions. In particular, the persistence boundary is the curve obtained by setting . (As for eq.l p 0

[A26] before, we need to employ various trigonometric identities in case .)r 1 02

Recall that k contains the factor Therefore, somewhat surprisingly, even though habitat preference wasa/(1 � a).

implemented in very different ways, the two resulting implicit expressions for l differ only by a factor of orD /D1 2

, depending on the choice of k.1/2(D /D )1 2

Cantrell and Cosner (1999) showed graphically that increasing any of L1, L2, r1, r2, or a increases the growth rate (l).

These results still hold in the case of discontinuous interface conditions. The minimal size of the focal patch ( ) as a*L1

function of diffusivities D1 and D2 is shown in figure B1. These results are similar to those from the section “Focal Patch
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Surrounded by Matrix Habitat.” In fact, as , the two models are equivalent. When habitat preference a is aL r �2

function of the difference in habitat quality ( ), Cantrell and Cosner (1999) found the somewhat counterintuitiver � r1 2

result that increasing habitat quality in the buffer zone can decrease the population growth rate l and thereby increase the

minimal core length . The same effect occurs with the interface conditions studied here.*L1

B2. Applications to Reserve Networks

We consider the situation where a reserve consists of two favorable patches that are linked by a movement corridor. In

one spatial dimension, we represent this setup as two patches of size L1 with positive population growth rate ( ),r 1 01

separated by a “corridor” patch of length L2 with negative growth rate ( ). We are interested in how the quality ofr ! 02

the corridor affects persistence of the population.

We assume hostile boundary conditions at those ends of the favorable patches that do not border the corridor. At the

interface between the favorable patches and the corridor, we impose interface conditions (4), as in the main text. This

setup is similar to the one used by Cantrell et al. (2012) to study the effects of model formulation on persistence

conditions.

Using the symmetry of the arrangement, we obtain the linearized equations

2
�u � u1 1

p D � r u , 0 ! x ! L1 1 1 12
�t �x (B5)

2
�u � u2 2

p D � r u , �L /2 ! x ! 0.2 2 2 22
�t �x

The boundary conditions are ; symmetry leads to the condition , and interfaceu (L , t) p 0 (�u /�x)(�L /2, t) p 01 1 2 2

conditions (4) are imposed at . Note that this system is very similar to the equations studied in the previousx p 0

sections.

When , each patch individually exceeds the critical patch size for hostile boundary conditions and the1/2L 1 p(D /r )1 1 1

population will persist, independently of the presence of a corridor. When , then the combined size of the1/22L ! p(D /r )1 1 1

two favorable patches is below the critical patch size. Hence, even if the two patches are adjacent ( ), theL p 02

population will go extinct. Therefore, we choose and determine conditions on L2, r2, and1/2 1/2
p(D /r ) /2 ! L ! p(D /r )1 1 1 1 1

movement parameters, under which the population can persist in the network of two patches and corridor.

When all other parameters are fixed, higher mortality in the corridor requires a shorter corridor for population

persistence. However, if individuals increase their movement rate in the corridor as mortality increases, persistence

requirements could become less severe. We explore this possibility by setting

D (1 � d Fr F)0 1 2
D(Fr F) p , (B6)2

2D � d Fr F0 1 2

the same functional form as for patch preference a in the section “Patch Preference Depends on Patch Attributes.” The

results are illustrated in figure B2. With discontinuous interface conditions, the persistence region increases if individuals

move faster due to higher mortality. However, with continuous interface conditions ( ), the persistence regionk p 1

decreases if individuals move faster because of higher mortality. Hence, again we find that the previously used interface

conditions produce a counterintuitive result, since movement within and into the corridor are correlated.

Instead of increasing motility in the corridor, individuals could also respond to decreasing corridor quality by decreased

use of the corridor, that is, increased preference for the good patches. We model this behavior by setting

a (1 � d Fr F)0 2 2
a(Fr F) p . (B7)2

2a � d Fr F0 2 2

This choice will increase persistence of the population somewhat if a0 is below a certain threshold. Above that

threshold, a population can persist for an arbitrarily large distance between the two good patches as long as the corridor

quality is low enough (fig. B3). The explanation for this phenomenon is that high preference for a good patch will

effectively create a no-flux boundary, and with no individuals lost through that part of the patch boundary, the population

can persist.

The positive effects of increasing motility and patch preference as decreasing corridor quality give even more

opportunity for population persistence (fig. B4).
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A

B

Figure B1: The critical length of the core habitat, surrounded by a buffer zone. The population persists for . The solid curve*L 1 L1 1

corresponds to , the dashed curve to k as in condition (6), and the dash-dot curve to k as in condition (7). The other parameters arek p 1

, , , and . The plot in A has , and the plot in B has .a p 0.5 L p 1 r p 2 r p �1 D p 1 D p 12 1 2 2 1
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A

B

C

Figure B2: The critical length of the corridor between two favorable patches as a function of mortality in the corridor. The population

persists for L2 below the curve. The solid curves in A correspond to , the dashed curves in B correspond to k as in condition (6),k p 1

and the dash-dot curves in C correspond to k as in condition (7). The black curves indicate constant , whereas the gray curvesD p 12

represent D2 varying with r2. The other parameters are , , , , , and .1/2
a p 0.5 r p 2 D p 1 D p 5 d p 1 L p 3p(D /r ) /41 1 0 1 1 1 1
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A

B

Figure B3: The critical length of the corridor between two favorable patches as a function of mortality in the corridor when patch preference

depends on r2. The population persists for L2 below the curve. The black curves correspond to constant a, and the gray curves correspond

to a as in equation (B7). The value is below the threshold in A, and is above it in B. Parameters are for blacka p 0.9 a p 1 a p 0.50 0

lines, , , , and . Since , there is no difference between discontinuous 1 and 21/2r p 2 D p D p 1 d p 0.1 L p 3p(D /r ) /4 D p D1 1 2 2 1 1 1 1 2

interface conditions.
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A

B

Figure B4: The critical length of the corridor between two favorable patches as a function of mortality in the corridor when patch preference

and motility depend on r2. The population persists for L2 below the curve. The black curves correspond to constant a, and the yellow

curves correspond to varying only D2. The green curves arise when only a depends on r2, and the gray curves arise when both parameters

increase with . The values are in A and in B. Other parameters are , , , , , andFr F a p 0.9 a p 1 D p 5 r p 2 D p 1 d p 1 d p 0.12 0 0 0 1 1 1 2

. The fixed parameters (where applicable) are and . These plots are for the case of discontinuous 11/2L p 3p(D /r ) /4 D p 1 a p 0.51 1 1 2

interface conditions.


