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Abstract: The current gold standard for COVID-19 diag-
nosis, the rRT-PCR test, is hampered by long turnaround
times, probable reagent shortages, high false-negative
rates and high prices. As a result, machine learning (ML)
methods have recently piqued interest, particularly when
applied to digital imagery (X-rays and CT scans). In this
review, the literature on ML-based diagnostic and prog-
nostic studies grounded on hematochemical parameters
has been considered. By doing so, a gap in the current
literature was addressed concerning the application of
machine learning to laboratory medicine. Sixty-eight arti-
cles have been included that were extracted from the
Scopus and PubMed indexes. These studies were marked
by a great deal of heterogeneity in terms of the examined
laboratory test and clinical parameters, sample size,
reference populations, ML algorithms, and validation ap-
proaches. The majority of research was found to be
hampered by reporting and replicability issues: only four
of the surveyed studies provided complete information on
analytic procedures (units of measure, analyzing equip-
ment), while 29 provided no information at all. Only 16
studies included independent external validation. In light
of these findings, we discuss the importance of closer

collaboration between data scientists and medical labo-
ratory professionals in order to correctly characterise the
relevant population, select the most appropriate statistical
and analytical methods, ensure reproducibility, enable the
proper interpretation of the results, and gain actual utility
by using machine learning methods in clinical practice.

Keywords: complete blood count (CBC); COVID-19; diag-
nostic study; laboratory tests; machine learning; prog-
nostic study; SARS-CoV-2.

Introduction

Almost 2 years after the COVID-19 pandemic, caused by
infection with the novel beta-coronavirus SARS-CoV-2, was
declared by theWorld Health Organization (WHO), there have
been over 405million instances of illness, 5.8million fatalities
globally and over ten billion vaccine doses administered [1].

Early diagnosis is critical in the management of a state
of emergency, both forpatients affectedbyCOVID-19,whose
prognosis may improve because of early therapeutic treat-
ment and for detecting infected asymptomatic subjects [2].
The amplification of viral genomic material (RNA) collected
from the upper airways, in particular oro-pharyngeal and/or
nasopharyngeal swabs, via rRT-PCR (reverse transcription
polymerase chain reaction) is currently the gold-standard
method for diagnosing SARS-CoV-2 infection [3]. However,
due to the method’s sensitivity, the time and cost necessary
for the analysis, the need forspecialized equipment, and the
associated shortage of reagents at the outbreak of the
pandemic, this molecular approach has considerable limits
[4, 5].

The need for improved diagnostic capability for
SARS-CoV-2 infections, with speedy, accurate, and
easily accessible procedures, arose quickly. A common
strategy to overcome the COVID-19 pandemic has been the
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widespread use of SARS-CoV-2 lateral flow assays, rapid
antigen testing of respiratory samples developed by
various diagnostic test manufacturers. While some initial
reports using lateral flowantigens are promising, at least in
terms of specificity, their performance in practice remains
controversial [6, 7]. Some researchers concentrated instead
their efforts on developing machine learning (ML) models
that could aid in the diagnosis and, in some cases, the
prognosis of COVID-19 patients [8].

Machine Learning (ML) is a subset of artificial intelli-
gence (AI). It is a word that refers to a number of compu-
tational methods that allow a machine to learn from
experience and construct algorithms based on data
collection, allowing it to complete tasks [9, 10]. In fact, IA/
ML approaches are finding a wide range of applications in
medicine, as evidenced by the exponential increase of IA/
ML/deep learning (DL) publications in recent years (from
203 papers published in 2005 to 12,563 papers indexed on
PubMed in 2019 and more than 31,000 in 2021) [11]. Radi-
ology, oncology, and surgery are among the specialties in
which IA/ML applications are more prevalent because
these are fields in which models are generated with the
help of imaging and diagnostic examinations. Laboratory
medicine, on the other hand, is still underrepresented, as
Ronzio et al. point out [12].

However, the number of publications in this field is
increasing [12, 13]. Let us consider the number of articles
published in the last 10 years, not just on ML models but,
more broadly, on AI studies using lab medicine data
(Figure 1). The number of papers has increased at an
exponential rate [14]. Herman DS et al. [15], recently

published a review of ML systems that are already used in
clinical laboratories or have been proposed for application
in the recent literature.

Early COVID-19 ML models were based on computed
tomography (CT) or chest radiography data and frequently
supplemented with conventional molecular diagnostic
findings [16, 17].

These studies have yielded promising results, but they
have also raised serious concerns, due to the high number
of false negatives obtained with chest radiography or the
impossibility of using CT for screening due to factors such
as high radiation dose, high costs, and a limited number of
available instruments [18].

Following that, efforts were focused on the develop-
ment of ML models based on routine blood test data,
beginning with scientific evidence that some blood pa-
rameters are significantly altered in COVID-19 patients and
can thus serve as good disease markers [19–21]. Laboratory
tests have the advantage of saving time andmoney, as well
as being less invasive for the patient, allowing them to be
repeated at regular intervals.

Laboratory tests remain a simple, accessible, near real-
time, and cost-effective biomarker, reflecting the basic
routine blood checks, and they are frequently available in
low-resource settings due to their low cost and lack of
specific assay equipment. Furthermore, laboratory tests
can yield a huge amount of data, so laboratory medicine is
an ideal application for ML [22]. MLmethods can be used to
complement RT-PCR tests to increase the sensitivity of the
latter or to provide its assessors with a pre-test probability
to calculate NPV and PPV. Additionally, rapid blood test

Figure 1: The number of articles connected to artificial intelligence studies based on laboratory medicine data that have been indexed in
PubMed (blue line) and Scopus (red line) in the last 11 years (2011–2021).
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results may be a valuable clue to early (although incon-
clusive) identification of COVID-19 patients, leading to
better treatment/isolation while waiting for gold standard
results [23].

The development of these approaches in the current
health emergency is intended tomeet the need for valuable
models not only for early diagnosis, assisting clinicians in
patient management and allowing timely therapeutic
intervention but also for prognostic/predictive purposes,
i.e., predicting disease progression in order to identify
patients at a higher risk of serious adverse events and thus
requiring closer monitoring [13, 24, 25].

The goal of this review is to examine the various pub-
lished studies on ML approaches developed in this area
from the start of the pandemic to the present, sorting
studies that developed ML models using laboratory data
alone or laboratory data accompanied by vital signs/
symptoms/comorbidities with a focus on heterogeneity in
terms of the input data selection and the accuracy of results
obtained from the various models produced. Some vari-
ables, such as the importance of the selection and stan-
dardization of input data or the external validation of the
model, are vital in employing ML in laboratory medicine to
describe this heterogeneity.

Methods

A systematic search of the literaturewas conducted in PubMed [11] and
Scopus [26] to identify ML models used as diagnostic and prognostic
support tools for COVID-19.

The search was conducted until December 28, 2021, with the re-
sults being filtered for the years 2020 and 2021.
– Terms entered into PubMed: Title/Abstract (“blood tests” OR

“blood exams” OR “laboratory tests” OR “laboratory exams”)
AND (“COVID-19” OR “COVID” OR “SARS-CoV-2” OR “coronavi-
rus”) AND (“machine learning” OR “deep learning” OR “artificial
intelligence”).

– Terms entered into Scopus: Title-ABS-KEY (“blood tests” OR
“blood exams” OR “laboratory tests” OR “laboratory exams”)
AND (“covid-19” OR “covid” OR “sars-cov-2” OR “coronavirus”)
AND (“machine learning” OR “deep learning” OR “artificial
intelligence”).

Studies that met the following inclusion criteria were included:
– Papers written in English.
– Papers available online in letter, article or conference paper

format.
– Papers that presented models built on laboratory data alone or

laboratory data accompanied by vital signs/symptoms/comor-
bidities using ML techniques.

– Papers published in 2020 and 2021 that presented ML models for
diagnostic and prognostic purposes.

Aspects of PRISMA (preferred reporting items for systematic re-
views and meta-analyses) [27] have been considered in reporting this
study.

Results

Literature search results

A PubMed search for the years 2020–2021 yielded 123
publications, and a Scopus search yielded 156. Only 115
publications were reported in both databases, and 98 were
eliminated because they did not match the selection
criteria, leaving 68 studies to be included in this study
(Figure 2).

Of the 68 eligible publications, 34 developed ML
models for diagnostic purposes (the studies labeled D1, D2,
D3, …, D34), and 34 developed ML models for prognostic
tasks (the studies labeled P1–P34).

The complete reference list for the studies chosen is
displayed as Supplementary data (Supplementary Table 1).

The first ML diagnostic study applied to laboratory
medicine for the management of COVID-19 patients was
published in June 2020 (D6), and the first prognostic study
was published barely one month later, in July 2020 (P3),
according to the literature search (Supplementary Table 1).
There are 38 papers published in biomedical journals, 23 in
IT-specific publications, and seven IT conference papers
(reported solely in Scopus) among the 68 papers chosen for
this review (Table 1, Supplementary Table 1). The Materials
and Methods sections of the majority of the studies (92%)
lack a detailed explanation of the analyticalmethod and/or
instruments used in the laboratory analyses data to
construct MLmodels (Table 1). Only six papersmention the
instruments used, whereas 39 papers report the unit of
measurement. Twelve papers in medical journals do not
include any information about the laboratory test that was
employed (Table 1). Figures 3–5 describe the characteris-
tics of in the articles reviewed (dataset, purpose of study,
features selected, ML models) for diagnostic and prog-
nostic studies, respectively.

Population characteristics

Diagnostic studies

Publications for diagnostic purposes are based on cohorts
of subjects with a significant degree of variability in
number (ranging from 106 to 115,394). Study D2, for
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example, has 171 participants, 24.6% of whom are
COVID-19 patients, but the group is adequately defined. In
comparison, publication D10, which was published in an
IT-focused journal, includes a large cohort (115,394 par-
ticipants), with only 0.3% of them being COVID-19 posi-
tive. The proportion of COVID-19-positive individuals in
the population studied is significantly varied (0.3–66.0%,
in D10 and D29, respectively). This feature is arguably the
most important for genuinely comparing performance
across studies.

All diagnostic papers were based on data acquired
during the pandemic’s initial phase, which was the first
seven months of 2020. Four of them were developed in the
United States (D1, D3, D5, and D9), five in Italy using

different cohorts (D2, D4, D13–14, and D28), two in the
United Kingdom (D10, D18), one in Egypt (D29), one in Iran
(D26), four in other European countries (Austria (D12),
Spain (D16), Slovenia (D17), and Turkey (D29)) and 17 pa-
pers (D6–D8, D11, D15, D19, D21–D25, D27, D30–D34) are
all related to the same Brazilian cohort and dataset [28]
(Figure 3, up panel).

Prognostic studies

Research for prognostic purposes is often based on smaller
cohorts of patients than those included in diagnostic
studies, and the cohorts are very variable (87 (P4) to 64,733
(P24)). Data for these research projects was obtained in the
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through databases search

(123 in PubMed 
and 156 in Scopus)

Duplicates (n= 113)

Id
en

fic
a

on
Sc

re
en

in
g

166 Studies screened
(115 both DBs, 9 

PubMed, 42 Scopus)

Excluded at first screening (26)
- Editorials (5) 
- Book chapters (4) 
- Review / Meta-analysis (16)
- Preprint (1)

68 Ar cles included
(34 diagnos c (D) and 34 

prognos c (P) studies) 

Studies excluded by reading full-text (72) 
- CT/RX Images data (52)
- Irrilevant study (17)
- No machine learing models (2)
- No laboratory data (1)

El
ig

ib
ili

ty
In

cl
ud

ed

140 Full-text ar cles
assessed for eligibility

Figure 2: Initial number of PubMed and
Scopus publications on COVID-19 patient
with diagnostic and prognostic purposes
using artificial intelligence approaches
(years 2020–2021), number of publications
excluded due to selection criteria and final
number of papers included in the review.

Table : Summary of the information related on laboratory test in the studies selected, differentiated for biomedical journals, IT-specific
journal and IT conference papers. For the detailed list of the studies selected, see Supplementary Table .

Biomedical journals (
papers, %)

IT-specific journal (
papers, %)

IT conference papers (
papers, %)

Total ( papers, D
and P)

Unit of measurement only   –  (%)
Unit of measurement and reference
values

    (%)

Unit of measurement and analyzer  –   (%)
Unit of measurement/analyzer/
analytical principle

  –  (%)

No information     (%)

D, diagnostic study; P, prognostic study.
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initial months of the pandemic in different nations, with
different pandemic curve tendencies, just as it was for the
diagnostic studies, even if three studies did not indicate the
period of data collection (Figure 3, bottom panel). Patients
were tested for COVID-19 using rRT-PCR, and salivary tests
or molecular tests on pharyngeal swabs were also used in
one study (P6).

Description of prognostic tasks

Prognostic models, as shown in Figure 3, have been
developed for a variety of tasks, including the ability to
predict the length of time spent in the hospital, the
requirement for admission to an intensive care unit, the

risk of severity and/or sepsis and the prediction of mor-
tality or a favorable prognosis.

It is worth noting that not all studies use the same
definition of “risk of severity”: in some, it is defined as
intensive care unit admission,mechanical ventilation and/
or death, while in others, it is defined as ventilation or
death, as well as critical care unit admission or death.

The P8 and P9 research projects produced ML models
to predict ICU admission and mortality for distinct pur-
poses, P19 and P23 predicted mechanical ventilation de-
mand and mortality separately, and P28 predicted the
duration of stay and mortality. The P5 research project
createdmodels for four separate purposes: hospitalisation,
admission to an intensive care unit, the need for mechan-
ical ventilation and mortality.

Figure 3: The top and bottom panels,
respectively, offer an overview of the
variables contained in the diagnostic
(D) andprognostic (P) datasets (number and
type of individuals and their origin, data
collecting time).
The task’s purpose is displayed for P
studies.
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Parameter (features) descriptions

Diagnostic studies

The number and type of parameters (features) utilised
while developing distinct ML models for diagnostic pur-
poses is an important aspect of variability (Figure 4).

All studies evaluate complete blood count (CBC) pa-
rameters, 24 additionally consider clinical chemistry
values, 15 consider coagulation tests and eight studies also
consider blood gas analysis parameters.

Only half of the diagnostic models take demographic
data, such as ethnicity, gender and age, into consideration,
and only a few studies integrate clinical characteristics,
comorbidities and COVID-19-specific symptomatology into
the ML model.

Only a few research projects mention the number of
features (laboratory parameters) incorporated into the
model, without any additional information.

Prognostic studies

CBC and clinical chemistry parameters are frequently
included in prognostic models; however, unlike diagnostic
models, most research considers other variables. In
particular, demographic characteristics are evaluated in
30/34 research projects, whereas comorbidities and vital
signs are considered in 23/34 and 21/34 studies, respec-
tively (Figure 4). Only three research projects address
pharmacological treatments, while nine studies include
symptoms (P15, P19, and P28). Only laboratory test data
were used in four studies (P2, P18, P27, and P29).

Figure 4: Overview of the variables included
in the diagnostic (D) and prognostic
(P) studies (demographic characteristics,
laboratory tests, pharmacological
treatment, vital signs, clinical symptoms,
comorbidities).
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Different sampling methods have only been recorded
in a few studies. For example, the P5 trial reported sam-
pling at four separate times: at the time of positive diag-
nosis, the first 12 h following hospital admission, 12 h
before ICU admission, and 12 h after ICU admission.

Coagulation tests were used in 65% of the research,
while blood gas test data were used in 24% of the in-
vestigations. Inflammatory indicators, including in-
terleukins (ILs), procalcitonin (PCT) and tumor necrosis
factor (TNF), were used in a few studies, as well as cardiac

Figure 5: Overview of the variables included in the diagnostic (D) and prognostic (P) studies of the machine learning applications (type of
algorithm, mode of data validation, performance metric).
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biomarkers such as troponins (TnI/TnT) and brain natri-
uretic peptide (BNP or proBNP).

ML models description

Diagnostic studies

In the diagnostic papers included for this review, a total
of 26 different supervised machine learning models are
used, and in the majority of these studies (27 out of 34),
the same dataset is investigated with multiple models.
Random Forest (RF), support vector machine (SVM),
logistic regression (LR), k-nearest neighbours (KNN),
and gradient boosting (XGBoost) are the main ML
models used in the various investigations (Figure 5).

The principal component analysis (PCA), variational
autoencoder (VAE), generative adversarial networks
(GAN), restricted Boltzmann machine (RBM) and self-
organizing maps (SOM) unsupervised ML models were
used in three investigations (D16, D30, and D33).

Prognostic studies

The objective of the prognosis was examined using one ML
model in 18 of the 34 studies, while the dataset was
investigated by multiple models in the others. Twenty-two
supervised ML models are investigated globally in prog-
nostic studies; RF is the most widely used technique, but
good accuracy values have also been found with other ML
algorithms (Figure 5). Three research projects employ
models that incorporate the usage of numerous algorithms
(P6, P7, and P20).

Performance metric description

Diagnostic studies

In most research, the outcomes of the ML models are
expressed in terms of AUC (Figure 5). The performance of
the studies, given in terms of AUC, spans a wide range,
from a low of 74% (D12) to a high of 99% (D8, D27, D30).
Only ten of the 34 diagnostic investigations disclosed
external validation results, two of which used internal
longitudinal databases and eight of which used cross-
sectional databases.

The support vector machine (SVM) model produced
the best accuracy value based on an external validation of
the reported data, with an AUC of 98% (D13).

Prognostic studies

The performancemeasures formostmodels constructed for
prognostic purposes were provided in terms of AUC,
although 10/34 projects only reported accuracy, sensitivity
and specificity.

Accuracy values of around 80% were reported for the
three prognostic purposes listed in the previous paragraph
(hospitalization, ICU admission and need for mechanical
ventilation), while AUC values of more than 90% were re-
ported in models that were able to predict mortality or an
increased risk of developing a severe form of COVID-19
(Figure 5).

Discussion

Sixty-eight publications that applied AI andML techniques
in the COVID-19 context utilizing only laboratory data were
chosen from the 166 papers identified by search strings in
Scopus and PubMed for our review. The majority of the
COVID-19 diagnostic investigations used imaging to create
ML models. These studies often produce satisfactory find-
ings, but they are associated with greater expenses, longer
timeframes, and more complex patient management, as
well as an increased risk of infection inside the hospital
and radiology department as compared to models gener-
ated with only laboratory data [29].

Several factors should be addressed while developing
a meaningful ML model for COVID-19 patients, including
the model’s objective, the patients to whom it should be
applied, the parameters (or features) chosen, the ML al-
gorithm, the performance metrics and the model’s valida-
tion. It is important to note that such evaluation includes
both clinical and laboratory factors, as well as mathemat-
ical and statistical aspects.

Only or primarily considering computational aspects
can result in models that are not particularly useful or
usable. To overcome this, several professions should
collaborate in the construction, validation and application
of the ML model. The many papers reviewed here will be
discussed in light of the aforementioned factors.

Patient selection heterogeneity

The papers reviewed show a great deal of variation in pa-
tient selection. The majority of the diagnostic models were
developed using emergency department (ED) patient
groups, with inpatients and outpatients being included in
the remaining investigations. It is worth noting that the
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patients’ origins were not specified in some studies (D8,
D11–12, D15, D20–25, D27, D30–D34).

In several papers, the MLmodel has been evaluated in
cohorts of unselected patients, with the only inclusion
criteria being the availability of the molecular swab result;
some biochemical tests and, sometimes, age, sex or
ethnicity (D1, D3, D7–10). This inaccuracy in patient char-
acterization is common in studies that used the same
Brazilian dataset that is freely available online [28]. In-
clusion criteria shape the training distribution, and hence
affect its representativeness with respect to the target
population from which instances will be drawn upon
which the machine will produce new prediction/classifi-
cations. Therefore, inclusion criteria can affect prospective
(actual) accuracy (or better yet robustness) in that they
limit the range of types of clinical cases (i.e., instances or
phenotypes) about which the machine will be capable to
exhibit a certain performance. In other words, inclusion
(and exclusion criteria) in the collection of the training
dataset represent sources of bias to take into account to
expect a specific actual accuracy on the new cases after
training.

In a few studies, the authors may assert that they
incorporated some clinical parameters into their study, but
they do not provide any of them (D5, D12).

In certain cases, only a partial description (the exis-
tence of COVID-19-like symptoms) (D3, D8, D14–15, D17,
D21–22, D25–26) is provided, and/or some exclusion
criteria, such as the presence of specific comorbidities, are
also mentioned (D2). Finally, in certain research, subjects’
clinical presentation was taken into account and accu-
rately documented (D4), and/or the pattern was analysed
in distinct subgroups (the entire sample or the subgroup of
asymptomatic vs. symptomatic patients) (D4).

Even the clinical characteristics of a COVID-19 patient,
such as clinical presentation, prevalence by age (which has
changed over time), the introduction of new therapies (e.g.,
hyper-immune plasma) and biochemical and instrumental
tests, show extreme heterogeneity. From this perspective, a
model constructed using a dataset from a specific sub-
group that achieved high diagnostic accuracy in one clin-
ical environment may perform poorly in another. "The
Importance of Being External" is the provocative title of a
recent study. According to the authors, there is currently a
gap in the literature regarding how to evaluate external
validation results and, hence, assess the robustness of ML
models [30]. Via the use of eight external validation CBC
datasets collected across three continents during different
pandemic waves, authors reported that the correlation
between accuracy and similarity should serve as a warning
sign that reproducing good performance across very

heterogeneous settings can be overambitious and unreal-
istic [30].

These considerations are essential in the case of pre-
dictive models.

The predictive models examined here include a great
deal of variation in the population’s inclusion criteria and
the study’s prognostic end-point.

Mortality (at various time points) (P2–3, P5, P7), a se-
vere form of COVID-19 characterized by respiratory failure
requiring mechanical ventilation and/or admission to the
intensive care unit (P1, P4–5), the risk of sepsis (P30) or
delirium (P13), the likelihood of being hospitalized and
length of stay (P28) or a favorable prognosis (P6) were all
considered as end-points (Figure 3). Comparisons among
models are challenging due to the variability of end-point
selection.

How the ML models use medical laboratory
data

The selection of laboratory tests is a second crucial part of
applying the ML model to a patient with a suspected
(diagnostic models) or certain (predictive models) diag-
nosis of COVID-19.

It is important to remember that, while rRT-PCR is
considered the gold-standard diagnostic approach, it has
limits in terms of sensitivity and specificity, and some
additional criteria (e.g., CT and/or clinical presentation)
are frequently used to correctly classify patients [23]. As a
result, the analytical procedure for COVID-19 diagnosis
utilized in the various studies with which the ML model is
evaluated is undoubtedly another source of variability.

The laboratory professional should play a vital role in
the selection of laboratory tests to be employed in ML
models. Although theMLmodel can theoretically highlight
a previously unknown link between a marker and pathol-
ogy, the features selection should be interested in, or at
least include, variables that have already been reported in
the scientific literature as associated or altered in the
various stages of COVID-19 disease.

A vast number of laboratory tests have been reported
to be changed, with putative relevance for monitoring,
stratification and prognosis. Specifically, there have
been hematological (leukocytosis, lymphopenia, neu-
trophilia, anemia, thrombocytopenia), biochemistry
(hypoalbuminemia, elevated lactate dehydrogenase,
aspartate aminotransferase, alanine aminotransferase,
total bilirubin, creatinine, troponin, C-reactive protein),
infection indicator (interleukins and procalcitonin) and
coagulation (increased D-Dimer and prothrombin time)
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alterations [18–21, 31, 32]. However, during COVID-19,
rapid changes in these parameters are possible, which
could be especially problematic for the ML model and its
application. The importance of specific laboratory tests
may thus change not only during different stages of the
disease but also during different eras of the pandemic
[14, 30].

The selection of lab tests, similar to patient selection,
has a significant degree of variety. There are ML models
that use only CBCparameters (D1–2, 6–7, D13–15, D18, D20,
D28, P18, P20, P25, P33), others use CBC and clinical
chemistry and others also use coagulation tests and/or
blood gas tests (Figures 3 and 4).

In addition to laboratory tests, prediction models took
into account additional factors, such as clinical history,
comorbidities and pharmacological therapy. There are
parsimonious models with a small number of variables
(less than 10 in D1, D29, P2 and P18) and, more typically,
models with a large number of predictors (more than 50 in
D4, D10, D21–25 and D27 and P3, P12, P14–15 and P30–31).

The selection of parameters is typically contentious,
and it does not appear to be done in consultation with a
laboratory medicine expert. For example, a diagnostic
model that includes a marker that cannot be requested
urgently and has little or no diagnostic significance (such
as urea, which was included in various studies, or cholin-
esterase, included in D12), as well as one that has partic-
ularly long analytical times or is excessively expensive, is
not very applicable. Curiously, a prognostic study (P27)
based on 28 laboratory parameters (including CBC, coag-
ulation and clinical chemistry tests) detected Urea as the
most important feature to predict the mortality for patients
with COVID positivity. Similarly, a diagnostic or predictive
model containing amarker that is rarely found in a hospital
laboratory would be useless (i.e., glucose-6-phosphate
dehydrogenase included in P28, ILs included in P30 (IL1,
IL6, IL8, IL10) and BNP, proBNP, or even atrial natriuretic
peptide (ANP) included in P28). Some papers included
generic “troponin” (P8, P16, P23) or a generic “bilirubin”
(D10) without stating which one (total, direct or indirect
bilirubin) it is.

An overview of the laboratory tests, summarised in
macro-categories as hematological clinical chemistry and
coagulation tests, included in the diagnostic (D) and
prognostic (P) studies shown in Figure 6. To the hetero-
geneity of the numbers of tests used by the different
studies, the variety of the expression of the data is also
added. For example, WBC differential count data are
expressed as percentages, absolute counts or both or in an
undeclared unit. Similarly, prothrombin time (PT) is
expressed in s, in INR, in terms of percent or in both in s and

INR, and in more than 40% of the papers, the unit is not
specified (Figure 6, Table 1).

Many factors can influence the representativeness of
datasets obtained from hemato-chemical parameters for
assessing the robustness of a model: differences in testing
equipment (concepts of harmonization), reference ranges/
ethnic variability, disease manifestations/phenotypic
variability and how humans react to contextual factors
(biological variation) make the reference population
incredibly vast and diverse; thus, very different datasets
can be obtained [30, 33]. This could explain why ML based
on lab data has not taken off as it has in othermedicalfields
[13].

The analytical aspect is, in reality, another significant
factor to consider (unit of measurement, reference interval,
analytical method, instrumentation, traceability).
Consider, for example, the non-specificity of Jaffe methods
as compared to enzymatic methods in measuring serum
creatinine, a parameter used in the majority of the studies
examined, as well as the impact that the standardisation
process has had on the quality of its measurement [34, 35].
It is clear that, at least for some laboratory parameters,
information about analytical methods is essential. In this
regard, a mini-review dedicated to D Dimer outcomes in
COVID-19 patients is clearly interesting. In this mini-
review, there are misunderstandings in terms of how the
data are reported, resulting in significant misrepresenta-
tion [36]. In our review, more than 90% of the papers
selected do not provide sufficient information to
adequately characterise laboratory data, and more than
40% do not declare the units of measurement (Table 1).

The use of only CBC data in algorithms developed via
ML for diagnostic and prognostic purposes seems to be
more appropriate, especially given the robustness of the
model based on its reproducibility, rather than the practi-
cability and economic issues [23, 37–40]. In fact, compared
to other hemato-chemical parameters, CBC data are char-
acterized by limited within-subjects and between-subjects
biological variation [41–43], which supports the repro-
ducibility of results for the same patient at different times,
as well as negligible analytical variation [44], which en-
sures the reproducibility of the same data across labora-
tories, equipment and heterogeneous populations.

Most diagnostic and predictive models do not offer
information on analytic methods and/or instruments,
with the exception of a handful (D4, D13, D20, D28, P20)
(Table 1). Reviewing the cited papers gives the impression
that the authors did not rationally select laboratory pa-
rameters but, rather, developed the various models simply
by using all of the data available in the management sys-
tems of individual healthcare facilities.
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Due to the large expansion, in recent years, of research
using AI techniques, including ML, and the resulting poor
reproducibility of the models created [45], it has become
imperative to draft standards that could improve the
quality of AI studies in the medical area. The MINIMAR

(MINimum Information for Medical AI Reporting) guide-
lines, which were recently published, were established
with this goal in mind [46]. MINIMAR includes a minimum
list of information that should be included in publications,
but it makes no mention of how to record laboratory test

Figure 6: Overview of the laboratory tests included in the diagnostic (D) and prognostic (P) studies.
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findings, which is crucial to a study’s reproducibility, with
this being, ironically, the guidelines’ goal. Haymond S
et al., in an opinion just published [47], summarize prac-
tices that should be applied in the development, reporting
and review of ML applications without any indication of
how clinical lab data should be characterised.

It is no surprise that recommendations for studies
involving laboratory medicine results [48–51] always
include a request for a thorough description and charac-
terisation of the methods employed to generate them (in-
strument used, analytical principle, unit of measurement,
method optimization, generation, specificity). The analyt-
ical processes should measure the same quantity in order
to achieve comparable and reliable results, and a
description of the analytical approach used to gather lab-
oratory data is required to identify themeasurand precisely
[52]. Even if the various challenges linked to stand-
ardisation and harmonisation and, consequently, the
reliability and reproducibility of laboratory results, are not
addressed here, as laboratory experts, we are also aware
that, if these factors are not considered, the potential for
laboratory data to be misused is extremely significant.

ML model types and their validation

The majority of the algorithms utilised are supervised al-
gorithms, with only three diagnostic studies and one
prognostic study (D16, D30, D33, P21) developing ML
models based on unsupervised methods.

In a nutshell, supervised algorithms attempt to create a
model from"labelled" trainingdata,which can thenbeused
to generate predictions about future data. In the unsuper-
vised instance, on the other hand, only input data are pro-
vided, and the goal is to model the underlying structure or
distribution of the data and discover unknown patterns [53].

However, it is worth noting the number of distinct al-
gorithms (of varying complexity levels) that were used
(Figure 5). Specifically, RF (23 out of 34 diagnostic models,
15 out of 34 predictive models) and LR (17/34 and 12/34,
respectively) are the most commonly employed supervised
algorithms (Figure 5).

The validation process employed in the various
research projects is a second point to consider. Split-
sample validation, that is, hold-out (by splitting the data
into training and test), K-fold cross-validation (which is
more resilient than the former), K-fold nested/repeated CV,
and bootstrapping approaches for obtaining confidence
intervals, is the most commonly used technique. These
methods have a variety of benefits and drawbacks [54, 55],

and they are examples of internal validation, which is
particularly valuable in ensuring model stability. External
validation, on the other hand, permitsmeasuring amodel’s
reproducibility and generalisability to the timing and space
of data collection by using a dataset that is not the same as
that used to train themodel. Internal-external validation, a
mixture of the two techniques, is also conceivable, and
especially effective in situations in which the amount of
accessible data is restricted. The authors reported external
validation with one or more validation datasets for one-
third of the diagnostic models studied (Figure 5). Another
important factor to consider is the size of the dataset
employed, which influences the validation algorithm and
procedure used, as well as the model’s correctness. The
sample sizes for the diagnostic models range from 170 (D2)
to 115,394 (D10), while the predictive models have sample
sizes ranging from 87 (P4) to 64,733 (P24).

Model implementation

Twoother factors are critical to themodel’s application: the
dataset’s representativeness and availability, as well as the
algorithm’s explainability, robustness and fairness. It is
also crucial to make the models publicly available by
developing online tools that allow users to evaluate the
algorithms that have been developed.

The availability of all of the data used to create the
model enables a conclusive evaluation of the model’s
validity and the verification of its applicability. This is
especially important in the context of Big Data, machine
learning techniques and other scenarios characterised by
great computational complexity: it is a necessary compo-
nent of real reproducible science [56]. To do this, the
original data, source code and detailed descriptions of all
analytical methods utilised are required. Many authors are
currently unwilling to disclose their data for a variety of
reasons; nonetheless, such sharing, as well as data open-
ness in general, is a necessary condition for science to
progress on a solid foundation. Although only one research
project (D10) made its source code available (at https://
github.com/andrewsoltan/CURIAL-manuscript), the data-
sets for some others are publicly available (D4, D8, D14–15,
D21, D23–24, D27, D30, D33–34; P10–12, P15, P20, P26, P29,
P32).

The availability of IT tools that allow the model to be
implemented by the end-user (the physician) is a second
essential factor. These tools can be realised as apps that are
directly integrated into the management systems of spe-
cific operating units or the laboratory’s middleware. Once
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the laboratory findings are obtained, this will have the
advantage of automating the compilation of input fields,
lowering both reaction time and the rate of input errors. In
this regard, it is worth noting that some of the diagnostic
and predictive models under consideration have been
applied in real-world applications that can be found on the
Internet (D4, D14, D17, P10, P26).

Conclusions

Some pertinent conclusions can be drawn in light of what
has been covered thus far:
– In terms of the type of patients, their number, the

laboratory parameters chosen, the algorithms utilised
and their validation, the research projects considered
are marked by extraordinary heterogeneity.

– The use of diagnostic and prognostic models necessi-
tates an accurate patient description and an appro-
priate characterization of the lab test used in terms of
unit, instrument and analytical principle, as well as
the statistical and analytical methods used (and, if
possible, the publication of the dataset and source
code). Additionally, the availability of a web applica-
tion or, potentially, a computer tool incorporated into
hospital management systems, facilitates the model’s
implementation and usability.

– Effective collaboration between data scientists and
clinicians is essential in obtaining clinically useful
models; however, laboratory medicine professionals
should gain a thorough understanding of Big Data and
machine learning algorithms to understand their po-
tential and correctly interpret their results.

The authors of "A Brief Guide to Medical Professionals in
the Age of Artificial Intelligence" [57] expect that clinicians
will devote time to learning the fundamentals of these new
technologies so that they can assess clinical study oppor-
tunities. The clinical laboratory community’s involvement
is, in fact, critical to ensuring that laboratory data are
sufficiently available and incorporated conscientiously
into strong, safe and clinically successful ML-aided di-
agnoses [15].
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