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ABSTRACT 
 

Minerals trapped as inclusions within other host minerals will develop non-lithostatic 

pressures during both prograde and retrograde metamorphism because of the differences 

between the thermoelastic properties of the host and inclusion phases. There is only a single 

possible path in P--T space, the entrapment isomeke, along which no residual pressure would 

be developed in a host--inclusion system; non-lithostatic pressures are developed in inclusions 

as a result of the external pressure and temperature deviating from the isomeke that passes 

through the entrapment conditions. With modern equation of state and elasticity data for 

minerals now available it is possible to perform precise calculations of the isomekes for 

mineral pairs. These show that isomeke lines are not straight lines in P--T space at 

metamorphic conditions. We show that silicate inclusions in silicate hosts tend to have flat 

isomekes, with small values of ( )
isomeke

TP ∂∂ , because of the small range of thermal 

expansion coefficients of silicate minerals. As a consequence, the general behaviour under 

decompression is for soft silicate inclusions in stiffer hosts to develop excess pressures, 

whereas a stiff silicate inclusion in a softer matrix will experience lower pressures than 

lithostatic pressure. The opposite effects occur for compression after entrapment on the 

prograde path. The excess pressures in inclusions, including allowance for mutual elastic 

relaxation of the host and inclusion, are most easily calculated by using the isomeke as a 

basis. Analysis of the simplest possible model of a host--inclusion system indicates that 

deviations from lithostatic pressure in excess of 1 GPa can be readily produced in quartz 

inclusions within garnet in metamorphic rocks. For softer host minerals such as feldspar the 

pressure deviations are smaller, because of greater elastic relaxation of the host. The 

maximum pressure deviation from lithostatic pressure in the host phase around the inclusion 

is one--third of the pressure deviation in the inclusion. Routines for performing these 

calculations have been added to the EosFit7c software package. 

 
Keywords: non-lithostatic pressures; inclusions; elasticity; isomekes.  
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INTRODUCTION 
Non-lithostatic pressures can arise from two general types of mechanism, kinematic non-

elastic processes such as plate motion or local deformation, and elastic interactions between 

different minerals. Physical constraint in the form of physical confinement often plays a key 

role in generating non-lithostatic stress states. At large scales, it has been suggested that 

constriction of subduction channels of variable width can generate over- or under-pressures 

on subducting sediments (e.g. Mancktelow, 1995, 2008; Raimbourg & Kimura, 2008). At the 

grain or sub-grain scale elastic interactions between minerals can also generate very 

significant non-lithostatic pressures. In this case the confinement can be simply provided by 

one mineral completely enclosing an inclusion of a different phase (e.g. Moulas et al., 2013). 

Or, two phases of related structures (e.g. exsolution lamellae in alkali feldspar) can be 

coherently intergrown so that the bonded interfaces of the two phases are each constrained by 

the partner phase (e.g. Salje et al., 1985; Scheidl et al., 2014). Because the compressibilities 

and thermal expansion of the two phases will differ, a change in pressure and temperature 

would lead to free grains of the free phases undergoing different amounts of strain. However, 

the mutual confinement of the two phases constrains the strains that can occur. Therefore 

instead of the stress inside the grains following the external pressure, additional non-uniform 

stress fields are developed within the constrained two phase system. Note that this occurs as a 

purely elastic phenomenon, and no plastic deformation or brittle failure is required. Such 

stress fields can give rise to either over- or under-pressure with respect to the external 

pressure, whether or not the external pressure is lithostatic. Thus quartz inclusions trapped in 

the cores of garnet during the early stages of metamorphism (e.g. Parkinson, 2000) experience 

pressures less than the external pressure during subsequent prograde subduction to higher 

pressures which may be sufficient to prevent them entering the stability field of coesite (e.g. 

Guiraud & Powell, 2006; Angel et al., 2014b). Over-pressure is well established in diamond, 

where the residual over-pressure in silicate inclusions measured at room conditions is used to 

constrain the conditions of entrapment (e.g. Izraeli et al., 1999; Nestola et al., 2011; Howell et 

al., 2012). These elastic stresses can also be the driving force for plastic deformation of the 

host minerals or their brittle fracture (e.g. van der Molen & van Roermund, 1986). 

In this paper we try to answer the question as to how big can the deviations from 

lithostatic pressure become when they are generated by microstructural constraints such as 

coherent interfaces or enclosure of inclusions, even when the external pressure is purely 

lithostatic. In order to address this question we focus on the simplest case, that of single 

isolated spherical isotropic inclusions in an elastically isotropic host, because this is one of the 

few cases that can provide exact solutions for geologically relevant ranges of pressure and 

temperature (e.g. Angel et al., 2014b). We proceed by first calculating how the pressure in an 

inclusion, completely trapped and isolated by a host phase, changes as the temperature and the 

external pressure changes. We make use of the concept of the thermodynamic isomeke 

(Rosenfeld & Chase, 1961) to first determine the sense of the over- or under-pressure 

developed in the inclusion at various P and T conditions. Then the isomeke is used as a basis 

for calculating the elastic interaction between the host and inclusion; it thus allows the final 

inclusion pressure to be calculated. This approach provides a realistic calculation of the 

deviations from lithostatic pressures that can be developed through elastic interactions 

between elastically isotropic minerals under metamorphic conditions. It thus provides an 

estimate of the maximum deviations from lithostatic pressure that can arise from elastic 

effects due to mutual physical confinement of mineral grains in general. In the last section we 

then consider the stress fields induced in the host by the difference between the inclusion 

pressure and the external pressure.  
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INCLUSION PRESSURES 

 

General considerations 
Consider a mineral grain that grows and entraps another mineral (or grows together with it) 

and then continues to grow to the point at which the inclusion is elastically isolated by the 

host. At this stage no significant stress or temperature gradients exist across the host grain. 

Under these conditions, the host and inclusion are at the same P--T and the inclusion fits 

perfectly within the cavity of the host (Fig. 1). While these P--T conditions are maintained, 

and there is no change in the external stress field, there is no development of stress gradients 

across the host and inclusion, and both phases continue to experience the external pressure 

whether or not that is lithostatic. It is only when the pressure and/or temperature subsequently 

change that non-lithostatic pressures can be generated in the inclusion (Fig. 1). Non-lithostatic 

pressures arise because the inclusion is physically constrained by the host. To illustrate the 

principles, consider the case of a relatively soft inclusion (e.g. quartz) in a stiffer host (e.g. 

garnet) undergoing an isothermal decompression. If the quartz inclusion was not constrained 

by the garnet host it would expand more than the garnet because it is softer. Instead, being 

trapped inside the host, the quartz inclusion is constrained to expand only by the same amount 

as the garnet. After decompression the quartz inclusion therefore has a smaller volume than 

expected for a free quartz crystal at the external pressure and a non-lithostatic pressure is 

therefore developed in the inclusion. 

The details of the elastic stress field in the host and the inclusion, and thus the 

deviation from lithostatic pressure, depend not only upon the volume elasticity of the two 

phases but also on their anisotropic elastic properties, their mutual orientation, the shape of 

the inclusion, and whether the inclusion is elastically isolated or, as is often the case, close 

enough to other inclusions or the surface of the host grain for these to exert an influence on 

the resulting stress fields. These effects can only be evaluated algebraically for a few simple 

specific cases and geometries (Eshelby, 1957). In general they have to be addressed by 

numerical calculations or use of approximations on a case by case basis. As a first step, one 

can obtain an analytical solution for the pressure generated in the inclusion in the simplified 

system of a small isolated spherical inclusion trapped within a large host grain, with both 

phases being elastically isotropic (Fig. 1). Classical analysis (e.g. Goodier, 1933; Eshelby, 

1957) shows that after a change in pressure or temperature such an inclusion has a uniform 

pressure while the host develops a deviatoric stress field but the pressure remains equal to the 

external pressure. Note the common convention that compressional stresses are negative is 

used, and that the pressure in a system under non-uniform stress is defined as the negative of 

the average of the three principal stresses. 

The key assumption (e.g. Goodier, 1933; Eshelby, 1957) is that after trapping by the 

host, the inclusion completely fills the hole in the host and continues to do so at all subsequent 

pressures and temperatures. This is certainly true for changes in P—T, which lead to the 

pressure of the inclusion being greater than zero (c.f. Kouketsu et al., 2014). Under these 

conditions, and if we ignore mutual elastic relaxation which is addressed below, after a 

change in external pressure and temperature the inclusion pressure P* can be calculated 

directly from thermodynamics. The change in the volume of the cavity in the host containing 

the inclusion is determined from the change in external P--T and the equation of state (EoS) 

of the host. Because the inclusion is constrained by the host to fit the volume of the cavity in 

the host, the inclusion pressure P* is determined entirely by the volume change of the host 

and the external temperature, and the EoS of the inclusion. In the absence of further elastic, 

plastic or other relaxation, this calculation is exact, and can be used to follow the evolution of 

the differences between the inclusion pressure and the external pressure during 

metamorphism and subsequent exhumation (e.g. Guiraud & Powell, 2006). However, as 

shown by Angel et al. (2014b), this approach leads to problems in calculating the effects of 
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the mutual elastic relaxation of the host and the inclusion because the elastic properties of 

both phases can change considerably from entrapment to the final P--T conditions of interest. 

An alternative approach is to split the calculation of inclusion pressures into two sequential 

steps along a P--T path to final conditions (Fig. 2). The first step is to consider a temperature 

change from the initial temperature of entrapment Ttrap to the final Tend accompanied by a 

simultaneous change in external pressure such that the pressures in the host and inclusion 

remain equal to each other and equal to the external pressure. The second step is to calculate 

the pressure change in the inclusion during an isothermal change in the external pressure to 

the final Pext. This is possible because the system is being considered as being purely elastic, 

and elasticity is by definition reversible. Thus the final pressure in the inclusion is 

independent of the path taken in P--T space from entrapment to any other final pressure and 

temperature, but the use of this two-step path makes the calculation of the elastic relaxation of 

the system easier. 

 

Isomekes 
The first step in the calculation of inclusion pressures, which assumes a P--T path along 

which no over- or under-pressure is developed, corresponds to the thermodynamic definition 

of an isomeke (Rosenfeld & Chase, 1961; Adams et al., 1975), for the following reasons. The 

fractional volume change 
V

V∂
of a single unconstrained phase, such as the host (H), as a result 

of a change in pressure and temperature is defined by its volume thermal expansion 

coefficient α and its volume compressibility β: 

PT
V

V
∂−∂=

∂
HH

H

H βα        (1) 

From this one obtains the definition of the isochor, or constant volume line, of the free 

host phase as: 

H

H

V β
α

=







∂
∂
T

P
        (2) 

This is not the condition that is applied to the first step of calculation of the host-

inclusion problem because the volumes of the hole in the host VH and the volume of the 

inclusion VI  do change with pressure and temperature even though they remain equal to one 

another. The initial volumes VH0  and VI0 are also equal, so it follows that: 

VH  - VH0 =  VI  - VI0        (3) 

And thus: 

I

I0I

I

I

H

H

H

0HH

V

VV

V

V

V

V

V

VV −
=

∂
=

∂
=

−
     (4) 

It then follows from Eq. (1) that the P--T path for the first step of the calculation is 

defined by PTPT ∂−∂=∂−∂ IIHH βαβα  (Rosenfeld & Chase, 1961). This constrains the 

changes in pressure and temperature along the path to be: 

  
( ) HI

HI

VV HI
ββ
αα

−

−
=








∂
∂

−T

P
    (5) 

These ideas were introduced by Rosenfeld & Chase (1961) and the path was 

subsequently named an isomeke (Adams et al., 1975). It is a path that is dependent upon the 

contrast in thermoelastic properties between the host and inclusion phases. It is never a 

straight line in P--T space for several reasons. First, the slope of the isomeke is 

0
isomeke

=







∂
∂
T

P
 at absolute zero in temperature, as indicated by Rosenfeld & Chase (1961), 

because the thermal expansion coefficients are zero. But at finite temperatures the slope of the 
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isomeke will be non-zero unless the thermal expansion coefficients of the two phases are 

identical. Second, the change in α and β of the host and inclusion phases with pressure and 

temperature will be significantly different. For example, the value of α of quartz changes by a 

factor of more than 3 from room temperature to 500
o
C while that of garnet only increases by a 

factor of 1.7 (Table 1). Over the same temperature range, the volume compressibility of 

quartz increases by a factor of 1.7, whereas that of garnet by only a factor of 1.1.  Therefore 

calculations of isomekes with physically realistic EoS (i.e. with α and β that vary with P--T) 

have to be performed numerically. Routines for performing these calculations have been 

added to the EosFit7 software package (Angel et al., 2014a). All of the calculations described 

in this paper were performed with the EosFit7c program using thermal-pressure equations of 

state with the EoS parameters listed in Table 1. 

Note that isomekes defined by Eq. (5) are generally very different from isochors (Eq. 

2) because the volumes of the two phases change equally along an isomeke line, whereas 

along an isochor a single phase keeps exactly the same volume. The isochors of diamond, for 

example, show strong curvature at low temperatures because the regime of very low thermal 

expansion in diamond extends to above room temperature (Fig. 3a), whereas the isochors of 

garnet exhibit less curvature at geologically relevant temperatures. Because  isomekes of 

diamond with garnet are derived from the differences in thermoelastic properties, the isomeke 

lines are only parallel to the isochors when the isochors of both phases have the same slope, 

for example around 300
o
C in the example shown in Fig. 3a,b. At such points there is no 

change in volume of either phase along the isomeke. At other pressures and temperatures the 

slope of the isomeke is related to the divergence of the two isochors, and the fractional 

changes of the volumes of the two phases are equal to one another from one point to another 

along the isomeke (Eq. 4). Note that the only situation in which the pressure in an inclusion 

would follow its own isochor is when the host is infinitely rigid with 0HH == βα , a 

situation never met in reality. 

As envisaged by Rosenfeld & Chase (1961), the concept of the isomeke first provides 

the basis for determining whether over- or under-pressures are developed in inclusions. 

Consider a garnet inclusion trapped in a diamond at mantle conditions of 5.7 GPa and 1175
o
C 

(Howell et al., 2010, Milani et al., 2015). If the diamond was exhumed along the isomeke 

passing through the entrapment conditions (Fig. 3c), corresponding initially to a rate of 0.3 

GPa per 100
o
C, then the fractional volume change, or volume strain of both the diamond host 

and garnet inclusion would be the same, and the pressure inside the inclusion would remain 

equal to the external pressure, and there would be no stress gradients. Such an exhumation 

path is, of course, unrealistic for diamond; its eruption in kimberlites involves rapid 

decompression at high temperatures. The diamond/garnet pair therefore moves off the 

isomeke line towards the lower-pressure side during eruption. In this case the garnet is 

constrained by the diamond and experiences over-pressure with respect to the external 

pressure. Conversely, were the diamond/garnet pair to be taken to higher pressures after 

entrapment, the diamond would not compress as much as a free crystal of garnet would 

compress. In this case, the stiff diamond host in some sense would protect the soft inclusion 

and the inclusion pressure would then be less than the external pressure (Fig. 3c).  

The qualitative result, which can be extended to any host--inclusion system, is that the 

isomeke line passing through the entrapment conditions divides P--T space into two regimes; 

when the host--inclusion system moves to one side of the entrapment isomeke the inclusion 

pressures exceed the external pressure, to the other side the inclusion is under-pressured 

(Rosenfeld & Chase, 1961). When the host and inclusion phases are exchanged, for example a 

diamond inclusion entrapped in a garnet, the sense of over- or under-pressure is reversed (Fig. 

2d). 
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Elastic relaxation  
While the host and inclusion remain at P--T conditions on the entrapment isomeke, the 

inclusion pressure remains equal to the external pressure.  At P--T conditions away from the 

entrapment isomeke the pressure P* in the inclusion differs from the external pressure but 

remains uniform and hydrostatic (Goodier, 1933). The stress is also uniform and hydrostatic 

in the host, but equal to the external pressure Pext. This however is a virtual state because there 

is a jump in radial stress at the inclusion wall of P* - Pext (Fig. 4a). Therefore the host--

inclusion system is not in mechanical equilibrium. If the host has been moved off the 

entrapment isomeke to the side where the inclusion pressure P* exceeds the external pressure, 

then the stress difference P* - Pext will force the inclusion wall outwards. The inclusion will 

expand and so the pressure (and radial stress) in the inclusion will decrease. The expansion of 

the inclusion will compress the surrounding host, developing a radial stress gradient in the 

host adjacent to the inclusion. This expansion will stop when the radial stress in the host and 

the inclusion are equal (Fig. 4b). Conversely, if the host and inclusion are moved to a P--T on 

the opposite side of the entrapment isomeke where Pext > P*, the inclusion will be compressed 

by the elastic relaxation and the pressure in the inclusion will be increased. This change in 

inclusion pressure is an elastic relaxation, and it modifies the pressure of the inclusion from 

the thermodynamic calculation of P* to the true final pressure Pinc. The final inclusion 

pressure is equal to P* only when the host--inclusion pair remains at a P--T on the entrapment 

isomeke, in which case P* = Pext. 

The final inclusion pressure Pinc, and thus the deviation from external pressure, at any 

P--T away from the entrapment isomeke is therefore comprised of two parts; the pressure P* 

derived directly from the EoS of the two phases, and the adjustment in the inclusion pressure 

due to the mutual elastic relaxation. The calculation of the pressure change in the inclusion 

due to relaxation is not trivial because the changes in inclusion pressure during relaxation are 

accompanied by simultaneous changes in elastic properties. A correct, but numerically 

complex, approach is to apply this correction in step-wise iterative calculations to determine 

the mechanical equilibrium of the host and inclusion at infinitesimal increments in pressure 

and temperature  from entrapment to the final P--T conditions using the full variation of 

elasticity with pressure and temperature (e.g. Gillet et al., 1984; van der Molen & van 

Roermund, 1986). Simpler approaches invoke some approximation to the full EoS of the 

inclusion and provide approximate results. The most widely used method (e.g. Zhang, 1998; 

Izraeli et al., 1999; Guiraud & Powell, 2006; Howell et al., 2012; Kohn, 2014; Kouketsu et 

al., 2014) was originally derived (Zhang, 1998) by assuming that the elastic properties of the 

host and the inclusion do not change over the full range of P--T from entrapment to final 

conditions, which is clearly not valid for changes in pressure and temperature that are 

geologically relevant.  

 The two step approach via the entrapment isomeke simplifies the relaxation problem 

to that accompanying an isothermal pressure change from the pressure on the isomeke to the 

final external pressure. The volume strain 
H

H

V

V∂
of the host in this step is calculated directly 

from its EoS. Because this second step starts from a state without stress gradients and is 

isothermal, the final volume of the inclusion can be derived from the result of Goodier (1933) 

as the volume of the inclusion phase on the entrapment isomeke at Tend multiplied by the 

factor 






 ∂
−+

H

H)1(1
21

V

V
K (Torquato, 2002; Angel et al., 2014b). The corresponding relaxed 

inclusion pressure can then be calculated from this volume change and the full EoS of the 

inclusion (Angel et al., 2014b). The parameter 21K  is an elastic interaction parameter whose 

value is dependent on the elastic properties of both the host and inclusion (Torquato, 2002):  
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H

HI

21

3

4
I GK

KK
K

+

−
=         (6) 

The values of the bulk (KH) and shear (GH) moduli of the host are the values at the 

external pressure, because the pressure in the host remains equal to the external pressure (e.g. 

Zhang, 1998; Tajcmanova et al., 2014, and see discussion below). The appropriate value of 

the bulk modulus of the inclusion (KI) is the effective value of the inclusion bulk modulus 

over the interval of relaxation. When the relaxation is small, the value at P* can be used as a 

good approximation, as can be seen from consideration of the elastic hollow sphere problem 

(e.g. Bower, 2010).  

Elastic relaxation always reduces the difference between the inclusion pressure and the 

external pressure. The amount of elastic relaxation depends on the factor K21. Although this 

varies with temperature and pressure for all host--inclusion pairs, one can draw some general 

conclusions about the magnitude of the relaxation effects. For stiff hosts such as diamond, the 

factor is dominated by the moduli of the host material and, as expected, relaxation is small. 

For garnet inclusions in diamond recovered from upper mantle to room conditions, the 

relaxation is 0.16 GPa. If the host is significantly softer than the inclusion phase then the 

factor K21 becomes large and the relaxation is proportionately larger. For some metamorphic 

inclusion pairs (e.g. kyanite in feldspar) the relaxation can exceed 50% of the difference 

between the unrelaxed inclusion pressure P* and the external pressure. 

 

Metamorphic inclusions 
The amount of over- or under-pressure in the inclusion depends on the difference between the 

external pressure and the pressure on the entrapment isomeke at the same temperature (e.g. 

Fig. 2). Therefore the greatest deviations from lithostatic pressures will be generated in host 

inclusion pairs in which the P--T path following entrapment is perpendicular to the isomeke 

lines for the mineral pair. This is common in metamorphic rocks in which the early low-P and 

low-T stages of prograde metamorphism frequently generate trapped inclusions of silicates in 

newly grown silicate host grains whose thermal expansion coefficients are similar to one 

another. These host--inclusion pairs therefore tend to have shallow isomekes (c.f. Eq. 5), 

while prograde paths in typical subduction metamorphism are steep in P--T space and cross 

the isomekes at high angles. We take as an example the quartz inclusions originally entrapped 

in garnet cores on the prograde path of the Kulet whiteschist (Parkinson, 2000). The isomekes 

for garnet and quartz (Fig. 5a) are strongly curved at metamorphic conditions because of the 

volume effects of the alpha--beta transition in quartz. We have modelled the transition with a 

Landau formalism equivalent to that used by Holland & Powell (2011) but with slightly 

modified coefficients (Table 1) to provide better agreement with the published P--V--T and 

elasticity data. However, because the P--T path does not pass through the boundary, the same 

residual pressures within uncertainties can be obtained by just fitting the P--V--T data with a 

single--phase EoS  (Angel et al., 2014b).  

Consider a quartz inclusion trapped and isolated within the garnet at 0.7 GPa and 

380
o
C. At these conditions the garnet--quartz isomeke is almost horizontal (Fig. 5b) with 

0
isomeke

≈







∂
∂
T

P
 because the thermal expansion coefficients of the two phases are almost 

identical at these conditions. Therefore almost isobaric heating or cooling would move the 

garnet and quartz along the isomeke and produce no internal stress fields and no deviation 

from the external pressure. By contrast a small increase in pressure will develop a significant 

under-pressure in the quartz inclusion because the compressibility of the garnet is 

substantially less than that of the quartz; the volume of the quartz inclusion would not 

decrease as much with an increase in pressure as would be expected for a free quartz crystal 
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subject to the same external pressure. Therefore, for all P--T conditions above the entrapment 

isomeke the quartz inclusion will exhibit an under-pressure. Conversely, at external pressures 

below the entrapment isomeke the quartz inclusion will exhibit an over-pressure with respect 

to the external pressure. Figure 5b shows these deviations from external pressure as contours 

in terms of the temperature and external pressure without allowing for elastic relaxation. It 

shows that along the prograde path of this whiteschist (Parkinson, 2000) there is a rapid 

increase in difference between the external pressure and the unrelaxed inclusion pressure P* 

(Fig. 5b). By peak conditions of ~3.5 GPa and ~780
o
C the unrelaxed pressure P* of the quartz 

inclusion would be only ~1.4 GPa, a deviation of more than 2 GPa from the external pressure. 

Elastic relaxation leads to additional compression of the inclusion because Pext > P*, and it 

raises the final pressure of the inclusion to ~1.9 GPa (Fig. 5c). Note that in order for the 

pressures in these quartz inclusions to reach pressures in the stability field of coesite, it would 

be necessary for the peak external pressure to reach in excess of 5.8 GPa at 780
o
C, once 

elastic relaxation is accounted for.  

The amount of relaxation also increases with the difference between external pressure 

and the isomeke pressure; compare the contours in Fig. 5c with those in Fig 5b. As a 

consequence both the prograde and retrograde paths of the inclusion deviate significantly 

from that predicted without relaxation (Fig. 5, and see also Guiraud & Powell, 2006), so the 

correct form of elastic relaxation is important for calculating non-lithostatic pressures at all P-

-T points except those on the entrapment isomeke. When the retrograde path of the host 

crosses the entrapment isomeke, the system is returned to a state without stress gradients and 

both the host and inclusion will experience a uniform pressure, unaffected by the model for 

relaxation (Fig. 5b,c). As exhumation subsequently proceeds beyond the isomeke the 

deviation from the external pressure will increase again, with the inclusion pressure being 

higher than the external pressure. At room conditions this remnant over-pressure can be used, 

along with the elastic properties of the two phases, to infer the entrapment isomeke and thus 

constrain the conditions of entrapment and elastic isolation of the inclusion.  

The general conclusions drawn for the quartz--in--garnet system also apply to other 

soft and, respectively, stiff phases of silicate minerals, because of their common property of 

having flat isomekes (Eq. 5) due to the similarity of thermal expansion coefficients. 

Obviously, as we have discussed for garnet with diamond, the sense of over- or under-

pressure in the inclusion generated by the host--inclusion system moving off the entrapment 

isomeke is reversed when the host and inclusion phases are swapped. Thus, the stiffer garnet 

host and softer quartz inclusion generates excess inclusion pressures at external pressures 

below the entrapment isomeke. For a host--inclusion system in which, instead, the inclusion is 

stiffer than the host, the opposite occurs. Thus, for example, inclusions of stiff kyanite (K0 ~ 

160 GPa, Table 1) in relatively compressible alkali feldspar (K0 ~ 55 GPa) will exhibit excess 

inclusion pressures at external pressures above the entrapment isomeke (Fig. 6). The over-

pressure in the inclusion arises because the hole in the host containing the inclusion 

compresses following the equation of state of the host. Since the host is more compressible 

than the inclusion, the inclusion will be constrained to have a smaller volume than it would 

have as a free phase, and hence be over-pressured with respect to the external pressure. 

Exactly the converse occurs on decompression; the hole in the host containing the inclusion 

expands more than a free inclusion phase would expand under the external pressure, thus 

allowing the inclusion to expand more than a free phase at the external pressure. Therefore the 

inclusion has a pressure less than the external pressure. 

This has important implications for the interpretation of the zoned rims of plagioclase 

around kyanite within alkali feldspar in felsic granulites (e.g. Tajcmanova et al., 2011). The 

rims are typically zoned in anorthite (An) content, with the denser An--rich plagioclase being 

adjacent to the kyanite. In one example, the rims were developed during approximately 

isothermal decompression from 1.6 -- 1.8 GPa and 850 -- 1000
o
C to pressures of 0.4 -- 0.6 
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GPa. It has been suggested (Tajcmanova et al., 2014) that the preservation of the rims 

indicates that a pressure gradient was developed around the inclusion due to it being trapped 

by the alkali feldspar, with higher pressures in the parts of the rims adjacent to the inclusion.  

However, if the kyanite is part of the peak metamorphic assemblage as indicated by the 

presence of garnet inclusions in the feldspar (Tajcmanova et al., 2011), then the isomekes 

(Fig. 6) show that the kyanite would exhibit lower pressures than the external pressure during 

decompression because the kyanite inclusion is stiffer than the feldspar host. The contrast in 

compressibilities of kyanite and feldspar is so great that isothermal decompression of the 

feldspar from 1.8 GPa to 1.0 GPa is sufficient to reduce the unrelaxed inclusion pressure to 

ambient pressure. Inwards elastic relaxation of the soft feldspar actually maintains a 

significant residual pressure on the inclusion of 0.7 GPa, still leading to a reduction in 

pressure relative to external pressure of ~0.3 GPa. Simple decompression of a kyanite 

inclusion within a feldspar host cannot therefore generate excess pressures in the inclusion. 

The sign and magnitude of the calculated inclusion pressures are insensitive to which feldspar 

(alkali feldspar or the plagioclase rim) is considered as the host phase, because the difference 

in thermal expansion coefficients for feldspar is small (e.g.  Hovis et al., 1999; Tribaudino et 

al., 2010) and the contrast in compressibility between kyanite and all feldspar is much greater 

than the difference in compressibility between feldspar (e.g. Angel, 2004; Ross et al., 

unpublished data; Friedrich et al., 2004). Because the isomekes are flat, the calculated 

inclusion pressures are also insensitive to the difference between entrapment and final 

temperatures. The only way in which the simple host--inclusion elastic mechanism can 

generate over-pressures in these kyanite inclusions during the retrograde decompression is for 

the inclusions to have been formed and elastically isolated at pressures significantly lower 

than the recorded peak pressures. Entrapment at ~1 GPa, for example, would result in 

calculated relaxed inclusion pressures of ~2.1 GPa at the reported peak pressure of 1.8 GPa, 

an over-pressure of just 0.3 GPa.  The consequences of this result require examination of the 

stress state in the host surrounding the inclusion. 

 

PRESSURE IN THE HOST 
To this point we have been calculating the pressures in the inclusion generated by the host--

inclusion system moving off the entrapment isomeke, and we have noted that classical 

analysis shows that the stress field in an isotropic spherical inclusion is uniform, isotropic and 

can be described as a hydrostatic pressure. The stress field in the host is more complex than 

that in the inclusion, as can be understood by considering the expansion of the inclusion from 

the virtual state (Fig. 4a) to the relaxed final state (Fig. 4b). The change in the size of the 

inclusion not only changes the radial stress in the host, but also changes the two tangential 

stresses in the host; an expanding inclusion (when P* > Pext) compresses the host in a radial 

direction but leads to tension in the tangential directions. The classic elasticity solutions 

(Goodier, 1933; Eshelby, 1957) show that, relative to the external pressure, the two tangential 

stresses are exactly equal to one half of the radial stress but, being in tension instead of 

compression, are of opposite sign (Fig. 7a). The counter--intuitive result is that while the 

normal stresses in the host have changed after elastic relaxation, the pressure, equal to the 

average of the three normal stresses, remains equal to the external pressure at all points (e.g. 

Zhang, 1998; Tajcmanova et al., 2014). Because thermodynamic properties are primarily 

dependent on the pressure and, with the exception of materials close to structural phase 

transitions, much more weakly dependent on deviatoric stresses, there will be no significant 

effect of the presence of the inclusion and its stress field on the thermodynamic properties of 

the host. Thus the properties of the host under these conditions essentially remain those of the 

host under hydrostatic pressure. The deviatoric stress field, not just the pressure step (Whitney 

et al., 2000), developed in the host around the inclusion will tend to promote cracking of the 

host when the tangential stress becomes purely tensional (van der Molen & van Roermund, 
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1986). Tajcmanova et al. (2014) pointed out that the host can be cracked in such a way that 

the inclusion pressure is not released at all; they drew an excellent analogy with a multi-anvil 

press which maintains the sample pressure even though the strong anvils are not in direct 

contact with one another and the tangential stresses in the anvils are partly relaxed.  Applied 

to the inclusion model, such cracking could, at most, fully relax the two tangential stress 

components in the host so that they become equal to the external pressure (Fig. 7b).  If the 

inclusion pressure is maintained completely then the radial stress component adjacent to the 

inclusion wall remains equal to Pinc (see also fig. 3 of Tacjmanova et al., 2014). Then the 

average of the three normal stresses (one radial, two tangential) in the host adjacent to the 

inclusion will be (Pinc + 2Pext)/3, which is (Pinc – Pext)/3 above the external pressure (van der 

Molen & van Roermund, 1986). This gradient in the average normal stress is, by definition, a 

gradient in pressure. Because the fully relaxed multi-anvil model is the limiting case, the 

pressure in the host adjacent to the inclusion will always lie between Pext (when there are no 

cracks) and (Pinc + 2Pext)/3 when the system is fully relaxed from cracking. 

The thermodynamic properties of a cracked host phase within the stress field around 

an inclusion will therefore be different from those for an uncracked host phase that is at the 

external pressure. It has been suggested that such pressure gradients are responsible for the 

preservation of compositional gradients in plagioclase rims around kyanite inclusions in felsic 

granulites (Tajcmanova et al., 2014). As described above, and shown in Fig. 6, the kyanite 

inclusion could be over-pressured if it was elastically isolated in the ternary feldspar host at 

pressures significantly below the pressures inferred for growth of the plagioclase rims. In 

order to generate the 0.6 GPa gradient in pressure in the host inferred from the zoning of the 

plagioclase rim (Tajcmanova et al., 2014), the inclusion pressure would have to be 1.8 GPa 

above the external pressure. To achieve this excess pressure in the inclusion, the system 

would have to experience an increase in external pressure of at least 4 GPa after entrapment 

of the kyanite by the feldspar. Therefore, if the zoned plagioclase rims truly indicate a 

pressure gradient existed in the host, the calculations show this could not have been 

developed during exhumation as a result of the differences in thermoelastic properties of the 

kyanite inclusion and feldspar host. We emphasise that these calculations apply to an isolated 

host and inclusion system with the host subject to the lithostatic pressure. Other boundary 

conditions may be more appropriate, but can generally be considered in terms of the pressure 

applied to the host by the external microstructure. Then it is clear that over-pressure may be 

generated on decompression were the feldspar host to be in turn completely encapsulated in a 

stiffer third mineral, even though the current microstructure of the felsic granulites described 

by Tajcmanova et al. (2014) does not appear to have evidence of such a phase. 

 

CONCLUSIONS 
Pressures in inclusions can deviate significantly from the external pressure applied to their 

hosts, even if the external pressure is lithostatic. Such pressure deviations will always occur 

during the metamorphic evolution of a rock whenever one mineral is mechanically 

constrained by another, and the pressure and/or temperature conditions change away from the 

entrapment isomeke. Deviations from external pressure of the order of 1.5 GPa can be readily 

developed in common mineral assemblages such as quartz within garnet during prograde and 

peak metamorphism of continental rocks (Fig. 5c), even without bulk plastic deformation of 

the rock and even in the presence of fluids to ensure hydrostatic lithostatic pressures. The 

deviations from lithostatic pressure within the inclusion are greater when the contrast in 

compressibilities between host and inclusion is large. The deviations are less when the host 

phase is softer because of the elastic relaxation of the host around the inclusion (Eq. 6).  

The pressure and stress differences that are generated during the metamorphic history 

are not by themselves preserved in rocks recovered to room conditions because the 

mechanism that generates the excess pressure is purely elastic, and thus completely reversible. 
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When the external pressure and temperature returns to the entrapment isomeke, for example, 

there is no remnant excess pressure in the inclusion (e.g. Fig. 5) and there is no elastic record 

of the system having been to higher P--T. However, provided the entrapment isomeke does 

not pass through room conditions, the inclusion in the recovered sample will exhibit a 

pressure different from room pressure.  

Mechanical or thermodynamic effects may however provide evidence of excess 

inclusion pressures during metamorphism. The most obvious and direct type of mechanical 

evidence is brittle fracturing (cracking) of the host grain due to the combination of pressure 

deviation from lithostatic pressures in the inclusion, and the deviatoric stresses developed in 

the host. Even if such cracks develop on decompression below the entrapment isomeke, their 

presence indicates that the elastic stresses were not released during the previous metamorphic 

history of the rock to that point. Second, the difference between inclusion pressures and 

external pressure may have driven plastic deformation of the host mineral, evidence for which 

will be preserved in the deformation microstructure of the host grain around the inclusion. 

Plastic deformation and brittle fracture cannot change the inclusion pressure beyond the value 

of the external pressure at which they occur; they can only promote full or partial relaxation 

of the stress gradients and thus reset the inclusion pressure. If the system subsequently 

remains elastically isolated, the pressure of the recovered inclusion will then reflect the 

conditions of this resetting, and not the original entrapment. The elastic signal from host--

inclusion systems therefore needs to be considered carefully just as isotopic or chemical 

systems need interpretation in the context of possible re-equilibration. 

Thermodynamic evidence of non-lithostatic pressures can be provided by the host and 

the inclusion separately. After entrapment the inclusion is not only isolated chemically, but it 

is also protected from lithostatic pressure. Thus the quartz in the garnet cores of the Kulet 

whiteschist did not transform to coesite at peak conditions because it was never subjected to 

pressures in the coesite stability field even though the host garnet was (Fig. 5c); the quartz did 

not transform because it was elastically isolated, not because it was chemically isolated from 

fluids. More generally, preservation of apparently metastable inclusion phases through peak 

conditions may be, in some cases, evidence of non-lithostatic pressures. Similarly, the 

preservation of apparent non-equilibrium assemblages or compositional profiles in the host 

adjacent to inclusions may also indicate that significant non-lithostatic pressures were 

generated during metamorphism by elastic interactions although the maximum excess 

pressure that can be generated within the host is only one--third of that generated in the 

inclusion. 

In summary, the calculation of elastically generated stresses in simple constrained 

systems such as a single isolated inclusion is useful because it provides an indication of the 

sign and magnitude of the non-lithostatic stress gradients that can be generated by mechanical 

constraints between two minerals and the nature of the controlling factors. The concept of the 

isomeke (Rosenfeld & Chase, 1961) provides a basis for both the qualitative and quantitative 

evaluation of the development of non-lithostatic pressure gradients in host--inclusion systems 

due to elastic interactions. First, as a qualitative tool, the entrapment isomeke divides P--T 

space in to two regions in which the inclusion will exhibit respectively over- or under-

pressures with respect to external pressure. Thus soft silicate inclusions in stiffer silicate hosts 

will exhibit over-pressures after decompression. Stiffer silicate inclusions in softer hosts will 

exhibit under-pressures after decompression. As a quantitative tool, the isomeke provides the 

basis for calculating the magnitude of deviations from external pressure. The deviation 

depends on the difference between the external (lithostatic) pressure and the pressure on the 

entrapment isomeke at the same temperature. Non-lithostatic pressure in the inclusion 

therefore depends on the entrapment conditions, the external P--T and the thermoelastic 

properties of the host and inclusion phases.  
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Extension to more realistic physical systems involving elastic anisotropy and non-

spherical inclusions can proceed by treating the anisotropy as a deviatoric effect relative to the 

isotropic case that we have described here. Because deviatoric stresses are self-relaxing, in the 

sense that the directions of higher stress undergo greater stress relaxation, and deviatoric 

stresses do not, to first order, change the volume and hence the thermodynamic properties of 

minerals, the magnitudes of non-lithostatic pressures calculated for the single inclusion 

problem remain relevant for real systems. When inclusions are not isolated elastically the 

overlap of their stress fields allows for further mutual elastic relaxation beyond that calculated 

here. Provided that the inclusions are of the same phase, and entrapped at the same time, this 

further relaxation means that the single inclusion model provides realistic estimates of the 

maximum deviations from lithostatic pressure. 
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FIGURE CAPTIONS 

 

Fig. 1: The basic concepts of inclusion entrapment and isolation leading to non-lithostatic 

pressures. During entrapment and subsequent growth of the host the pressure in both the host 

and the inclusion remains equal to the external lithostatic pressure. The inclusion pressure can 

only deviate from the external pressure after elastic isolation followed by a change in external 

P--T. 

 

 

Fig. 2: The use of the isomeke concept to calculate in two steps the pressure in an inclusion 

entrapped at Ptrap and Ttrap, using the example of quartz trapped in garnet on the prograde path. 

The calculation first considers moving the host and inclusion along the entrapment isomeke to 

the final temperature Tend where the stress in both the inclusion and the host is uniform and 

equal to the pressure Pfoot defined by the isomeke. At this temperature Tend the volume change 

of the host garnet due to isothermal compression from Pfoot to the external pressure can be 

calculated from the EoS of the host garnet. The final pressure of the quartz inclusion Pinc can 

be calculated directly from this volume change and the elastic parameters of the host and 

inclusion. It is comprised of two parts, the unrelaxed inclusion pressure P* determined solely 

by the equations of state of the host and inclusion, plus the pressure change on relaxation 

∆Prelax.  

 

 

Fig. 3: (a) The isochors for diamond and an eclogitic garnet as calculated from their EoS 

(Table 1). The diamond isochors are curved because of the strong variation in thermal 

expansion coefficient below 400
o
C. (b) The isomekes of garnet with diamond are only 

parallel to the isochors when the isochors of the two phases are parallel to one another, for 

example around 300
o
C. (c,d) Entrapment conditions for garnet in diamond (Howell et al., 

2010) and diamond in garnet (Zhang et al., 2012) are shown as grey ellipses. The isomekes 

through entrapment conditions divide P--T space. On one side of the entrapment isomeke the 

inclusion has a higher pressure than the external pressure, on the other side an under-pressure. 

The sense of over- or under-pressure is reversed if the host and inclusion phases are 

exchanged as can be seen by comparing (c) and (d). 

 

Fig. 4: Sketches of the radial stress against radius in an ideal host--inclusion system.  (a) Prior 

to relaxation the radial stress in the host is equal to the external pressure Pext, but the radial 

stress in the inclusion is P* due to the constriction of the inclusion phase to the final volume 

of the host. There is therefore a step in stress at the inclusion--host boundary. (b) As a 

consequence, the inclusion expands until the internal stress becomes equal and opposite to the 

radial stress in the host. A radial stress gradient is therefore developed in the host, and the 

inclusion is at the final pressure Pinc.  

 

 

Fig. 5: The relationship between isomekes and deviations of inclusion pressures from external 

pressure, as illustrated for quartz trapped in a garnet (Parkinson, 2000). (a) Isomekes of α--

quartz and garnet calculated from their EoS parameters (Table 1). (b) Contours of the 

deviation of unrelaxed inclusion pressures P* from the external pressure for a quartz trapped 

at 0.7 GPa and 380 
o
C (Parkinson, 2000) plotted in terms of the temperature and external 

pressure. The contour values are given in the white boxes on the left-hand side of the diagram. 

Note that the contours of excess pressure are only parallel to the isomekes along the 

entrapment isomeke (black line). (c) The deviation of relaxed inclusion pressures Pinc (grey 
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contours) from the external pressure for the same inclusion. The real P--T of the inclusion 

during burial and exhumation shown in (c) differs significantly from the un-relaxed 

calculation shown in (b), except at the point that the retrograde P--T path for the inclusion 

crosses the entrapment isomeke at the same point and time as the host. 

 

 

Fig. 6: Isomekes calculated for kyanite and an average alkali feldspar (Table 1). Because 

kyanite is stiffer, kyanite inclusions trapped in feldspar at estimated peak conditions will 

always exhibit under-pressures during the retrograde decompression. The entrapment 

conditions and retrograde path shown are for the felsic granulites described by Tajcmanova et 

al. (2011). 

 

 

Fig. 7: Radial and tangential normal stress components around an inclusion after elastic 

relaxation of an inclusion with Pinc > Pext (after Tajcmanova et al., 2014). (a) In an un-cracked 

host the radial stress at the inclusion wall is equal to the inclusion pressure (c.f. Fig 6b), and 

the two normal tangential stresses are tensional and equal to ( ) 23 incext PP − . As a 

consequence there is no gradient in pressure in the host (e.g. Zhang, 1998). (b) If cracking of 

the host around the inclusion releases the tangential stresses without releasing the inclusion 

pressure (multi-anvil model) then the pressure in the host at the inclusion wall becomes 

( ) 32 incext PP + and there is a pressure gradient in the host (Tajcmanova et al., 2014). 

 

 

 

 

 

 

 

TABLE CAPTION 

 

Table 1: EoS Parameters used in example calculations. 
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Table 1: EoS Parameters used in example calculations 

Phase K0T: 

 GPa 
0K ′  0α x 10

-

5
: 

K
-1
 

E
θ : 

K 

Notes 

Example 1      

diamond 444 4.0 0.2672(3) 1500 (Angel et al., 2015) 

garnet  169.2 5.88 2.135 477 Derived for an estimated average composition of eclogitic diamond inclusions of 

Py41Al33Gr26Sp1 by interpolation from properties of end-members. 

      

Example 2      

garnet 174.7 5.3 2.748 757 Derived from the core composition of the garnet (Parkinson, 2000) by interpolation from 

properties of end-members. 

α-quartz 37.12 5.99 3.64 - 

 

These are room pressure and temperature values of parameters. Calculations were performed 

with a Landau model for the alpha--beta phase transition, fitted to the P-V data of Angel et al. 

(1997) the -T-V data of Carpenter et al. (1998) and the room-pressure bulk moduli (Ohno et al., 

2006). The room-pressure transition temperature of 574
o
C and the slope of the transition 

boundary dTr/dP = 255 
o
C.GPa

-1
 were used as fixed constraints in the EoS model. 

Example 3      

kyanite 160.1 4.05 1.92 630 Holland &  Powell (2011) 

feldspar 55 4.0 2.5 470 Average K0T and 0K ′  from PV data (Ross et al., unpublished data). Average thermal expansion 

coefficient from Hovis et al. (1999). Average 
E

θ from Holland & Powell (2011). 

 

All parameters are for the Birch-Murnaghan EoS for the purely compressional part (K0T and 0K ′ ) in combination with the thermal pressure EoS 

of Holland & Powell (2011). The reference pressure and temperature for the EoS are 0 GPa and 298 K. 0α is the volume thermal expansion 

coefficient at the reference conditions, and 
E

θ is the Einstein temperature. 

For relaxation calculations, the following shear moduli parameters were used. Diamond G0 = 535 GPa; garnet G0 = 94 GPa, dG/dP = 1.3, 

dG/dT = -0.0135 GPa.K
-1
; feldspar G0 = 35 GPa, the value for albite from Brown et al. (2006). The temperature and pressure derivatives of the 

shear moduli of feldspar are unknown. 
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