
Washington University School of Medicine Washington University School of Medicine 

Digital Commons@Becker Digital Commons@Becker 

Open Access Publications 

2014 

How local excitation-inhibition ratio impacts the whole brain How local excitation-inhibition ratio impacts the whole brain 

dynamics dynamics 

Gustavo Deco 
Universitat Pompeu Fabra 

Adrian Ponce-Alvarez 
Universitat Pompeu Fabra 

Patric Hagmann 
University of Lausanne 

Gian Luca Romani 
G. d'Annunzio University 

Dante Mantini 
University of Oxford 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs 

Recommended Citation Recommended Citation 

Deco, Gustavo; Ponce-Alvarez, Adrian; Hagmann, Patric; Romani, Gian Luca; Mantini, Dante; and Corbetta, 

Maurizio, ,"How local excitation-inhibition ratio impacts the whole brain dynamics." The Journal of 

Neuroscience. 34,23. 7886-7898. (2014). 

https://digitalcommons.wustl.edu/open_access_pubs/2973 

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been 
accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. 
For more information, please contact vanam@wustl.edu. 

https://digitalcommons.wustl.edu/
https://digitalcommons.wustl.edu/open_access_pubs
https://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F2973&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:vanam@wustl.edu


Authors Authors 
Gustavo Deco, Adrian Ponce-Alvarez, Patric Hagmann, Gian Luca Romani, Dante Mantini, and Maurizio 
Corbetta 

This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/
open_access_pubs/2973 

https://digitalcommons.wustl.edu/open_access_pubs/2973
https://digitalcommons.wustl.edu/open_access_pubs/2973


Systems/Circuits

How Local Excitation–Inhibition Ratio Impacts the Whole
Brain Dynamics
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and Maurizio Corbetta8
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The spontaneous activity of the brain shows different features at different scales. On one hand, neuroimaging studies show that long-

range correlations are highly structured in spatiotemporal patterns, known as resting-state networks, on the other hand, neurophysio-

logical reports show that short-range correlations between neighboring neurons are low, despite a large amount of shared presynaptic

inputs. Different dynamical mechanisms of local decorrelation have been proposed, among which is feedback inhibition. Here, we

investigated the effect of locally regulating the feedback inhibition on the global dynamics of a large-scale brain model, in which the

long-range connections are given by diffusion imaging data of human subjects. We used simulations and analytical methods to show that

locally constraining the feedback inhibition to compensate for the excess of long-range excitatory connectivity, to preserve the asynchro-

nous state, crucially changes the characteristics of the emergent resting and evoked activity. First, it significantly improves the model’s

prediction of the empirical human functional connectivity. Second, relaxing this constraint leads to an unrealistic network evoked

activity, with systematic coactivation of cortical areas which are components of the default-mode network, whereas regulation of feed-

back inhibition prevents this. Finally, information theoretic analysis shows that regulation of the local feedback inhibition increases both

the entropy and the Fisher information of the network evoked responses. Hence, it enhances the information capacity and the discrim-

ination accuracy of the global network. In conclusion, the local excitation–inhibition ratio impacts the structure of the spontaneous

activity and the information transmission at the large-scale brain level.

Key words: anatomical connectivity; functional connectivity; large-scale brain model; local feedback inhibition; resting-state activity

Introduction
The spontaneous activity of the brain, i.e., not stimulus- or task-
driven, shows different features at different spatial scales. Indeed,
although long-range activity correlations between brain regions
are highly and strongly structured in spatiotemporal patterns,
known as resting-state networks, on one hand, short-range cor-

relations within local circuits are low or even negligible, on the
other hand.

Numerous neuroimaging experiments demonstrate the exis-
tence of spontaneous long-range correlations, i.e., resting functional
connectivity (FC), by fMRI (Biswal et al., 1995; Greicius et al., 2003;
Fransson, 2005; Fox and Raichle, 2007), MEG (Liu et al., 2010;
Brookes et al., 2011; Luckhoo et al., 2012; de Pasquale et al., 2012),
and EEG-fMRI techniques (Mantini et al., 2007). The topology of
human FC patterns has been studied in detail across different con-
ditions of rest or cognitive tasks (Achard et al., 2006, Bassett et al.,
2006). In humans, a consistent set of functional networks (default,
dorsal attention, ventral attention, vision, somatomotor, auditory,
frontoparietal) have been identified in the resting-state activity
across subjects and across multiple sessions using a variety of methods,
which can be used to generate whole-brain functional parcellations of
the cerebral cortex (Doucet et al., 2011; Power et al., 2011; Yeo et al.,
2011; Hacker et al., 2013). Of particular interest is the default network: a
setofcorrelatedbrainregions thataremoreactivatedat rest thanduring
the performance of cognitive goal-directed tasks (Shulman et al., 1997;
Raichle et al., 2001; Fox and Raichle, 2007).
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In contrast, single-cell recordings in monkeys indicate that
short-range spontaneous correlations between neighboring neu-
rons are low (Ecker et al., 2010), despite a large amount of shared
presynaptic inputs. Different mechanisms have been proposed to
account for this decorrelation including chaotic dynamics (van
Vreeswijk and Sompolinsky, 1996), balance of excitation and in-
hibition (Renart et al., 2010), and feedback inhibition (Tetzlaff et
al., 2012). In theoretical models, these mechanisms all produce
the observed low (�3 Hz for excitatory neurons) and irregular
(Poisson-like) cortical activity observed in vivo (Burns and
Webb, 1976; Softky and Koch, 1993; Wilson et al., 1994).

The aim of this study is to investigate the effect of local deco-
rrelation on both the resting and evoked activity of a large-scale
brain model. Resting-state brain models assume that long-range
functional correlations emerge from the embedding of local dy-
namics in the underlying anatomical connectivity structure
(Honey et al., 2007, 2009; Ghosh et al., 2008; Deco et al., 2009,
2013a,b; Deco and Hughes, 2012). In general, biophysical
resting-state models use single-area dynamical models that, when
isolated, emulate spontaneous state activity, i.e., uncorrelated
low firing rate activity. However, the long-range anatomical cou-
plings break down the asynchronous state, producing intra-area
correlations which are not consistent with the empirical findings.
Here, we show that the regulation of the local feedback inhibition
provides a mechanism for reconciling the two levels of spontane-
ous correlation at different spatial scales and we evaluate its func-
tional consequences for both the resting and the evoked global
brain dynamics.

Materials and Methods
Structural connectivity matrix. Neuroanatomical structure was obtained
using diffusion spectrum imaging (DSI) data and tractography from five
healthy right-handed male human subjects (Hagmann et al., 2008;
Honey et al., 2009). The gray matter was subdivided into 998 regions-of-
interest (ROIs) which are grouped into 33 cortical regions per hemi-
sphere (66 areas in total) according to anatomical landmarks (Table 1).
White matter tractography was used to estimate the fiber tract density
connecting each pair of ROIs, averaged across subjects. Anatomical con-
nectivity among the 66 cortical regions was calculated by summing all
incoming fiber strengths to the corresponding ROIs of the target region,
and dividing it by its region-dependent number of ROIs, resulting in a
nonsymmetric connectivity matrix. This normalization by the number of
ROIs, which have approximately the same surface on the cortex, i.e., the
same number of neurons, is required because neuronal activity is sensi-
tive to the number of incoming fibers per neuron in the target region. As
the dynamical model of one region already takes into account the effect of
its internal connectivity (see below), the connection of a region to itself
was set to 0 in the connectivity matrix for the simulations.

Empirical functional connectivity. The empirical resting fMRI FC was
measured in 48 scanning sessions from 24 right-handed healthy young
volunteers (15 females, age range 20 –31 years). Subjects were informed
about the experimental procedures and provided written informed con-
sent. The study design was approved by the local Ethics Committee of
Chieti University. Subjects lay in a supine position and viewed a black
screen with a centered red fixation point of 0.3 visual degrees, through a
mirror tilted by 45 degrees. Each volunteer underwent two scanning runs
of 10 min in a resting-state condition. Specifically, they were instructed to
relax, but to maintain fixation during scanning. The eye position was
monitored at 120 Hz during scanning using an ISCAN eye tracker sys-
tem. Scanning was performed with a 3T MR scanner (Achieva; Philips
Medical Systems) at the Institute for Advanced Biomedical Technologies
in Chieti, Italy. Functional images were obtained using T2-weighted
echo-planar imaging (EPI) with blood oxygenation level-dependent
(BOLD) contrast using SENSE imaging. EPIs (TR/TE � 2000/35 ms)
comprised 32 axial slices acquired continuously in ascending order cov-
ering the entire brain (voxel size � 3 � 3 � 3.5 mm 3). For each scanning

run, initial five dummy volumes allowing the MRI signal to reach steady-
state were discarded. The next 300 functional volumes were used for the
analysis. A three-dimensional high-resolution T1-weighted image (TR/
TE � 9.6/4.6 ms, voxel size � 0.98 � 0.98 � 1.2 mm 3) covering the entire
brain was acquired at the end of the scanning session and used for ana-
tomical reference. Initial data preprocessing was performed using the
SPM5 software package (Wellcome Department of Cognitive Neurology,
London, UK) running under MATLAB (MathWorks). The preprocess-
ing steps involved the following: (1) correction for slice-timing differ-
ences, (2) correction of head-motion across functional images, (3)
coregistration of the anatomical image and the mean functional image,
and (4) spatial normalization of all images to a standard stereotaxic space
(Montreal Neurological Institute; MNI) with a voxel size of 3 � 3 � 3
mm 3. Furthermore, the BOLD time series in MNI space were subjected
to spatial independent component analysis (ICA) for the identifica-
tion and removal of artifacts related to blood pulsation, head move-
ment and instrumental spikes and those that correlate with the white
matter and CSF patterns (Sui et al., 2009; Mantini et al., 2013). The
BOLD artifact removal procedure was performed using the GIFT toolbox
(http://mialab.mrn.org/software/gift/index.html). No global signal re-
gression was performed. For each recording session (subject and run),
the BOLD time series from the 998 ROIs of the brain atlas (Hagmann et
al., 2008) were averaged over the corresponding 66 brain regions. Finally,
we concatenated in time the remaining sessions for each parcel and cal-
culated the correlation matrix (FC).

Computational model. In this study we modeled a cortical area as a
canonical local network composed of interconnected excitatory and in-
hibitory neurons coupled through NMDA, AMPA, and GABA synapses.
In the large-scale brain model, we assumed that the inter-area connec-
tions are constrained by the empirical anatomical matrix that expresses

Table 1. Names and abbreviations (alphabetically) of the brain regions considered

in the human connectome from Hagmann et al. (2008)

Brain region Abbreviation

Bank of the superior temporal sulcus BSTS

Caudal anterior cingulate cortex CAC

Caudal middle frontal cortex CMF

Cuneus CUN

Entorhinal cortex ENT

Frontal pole FP

Fusiform gyrus FUS

Inferior parietal cortex IP

Isthmus of the cingulate cortex ISTC

Inferior temporal cortex IT

Lingual gyrus LING

Lateral occipital cortex LOCC

Lateral orbitofrontal cortex LOF

Medial orbitofrontal cortex MOF

Middle temporal cortex MT

Paracentral lobule PARC

Parahippocampal cortex PARH

Posterior cingulate cortex PC

Pericalcarine cortex PCAL

Precuneus PCUN

Pars opercularis POPE

Pars orbitalis PORB

Precentralgyrus PREC

Postcentralgyrus PSTC

Pars triangularis PTRI

Rostral anterior cingulate cortex RAC

Rostral middle frontal cortex RMF

Superior frontal cortex SF

Supramarginalgyrus SMAR

Superior parietal cortex SP

Superior temporal cortex ST

Temporal pole TP

Transverse temporal cortex TT
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the density of white matter fiber tracts connecting two given brain areas.
However, because the large-scale spiking model is composed of many
thousands of coupled nonlinear differential equations corresponding to
each single neuron and synapse, some approximations need to be done to
simplify the model. For this, we used a dynamic mean field (DMF) tech-
nique (Wong and Wang, 2006) that approximates the average ensemble
behavior, instead of considering the detailed interactions between indi-
vidual neurons. This allow us varying the parameters and, furthermore,
to greatly simplify the system of stochastic differential equations by ex-
pressing it in terms of the first and second-order statistical moments,
means and covariances, of network activity. In the following we present
the details of the model and its simplified versions.

Single area spiking model. To show the effect of feedback inhibition on
the correlations between intra-area neurons and on the firing rate activity
we used a network of integrate-and-fire (IF) spiking neurons with excit-
atory (AMPA and NMDA) and inhibitory (GABA-A) synaptic receptor
types (Deco and Jirsa, 2012). Each local cortical area is modeled by a fully
connected recurrent network of a population of NE excitatory pyramidal
neurons and a population of NI inhibitory neurons. The dynamical evo-
lution of the IF neuron’s membrane potential V(t) is driven by the in-
coming local excitatory and inhibitory inputs within the same cortical
area, long-range excitatory inputs from all other cortical areas, and ex-
ternal inputs. The time evolution of the membrane potential of a given
neuron i obeys the following differential equation:

Cm

dVi�t�

dt
� � gm�Vi�t� � VL�

� gAMPA,ext�Vi�t� � VE�sAMPA,ext�t�

� gAMPA,rec�Vi�t� � VE��
j�1

NE

wijs j
AMPA,rec�t�,

�
gNMDA�Vi�t� � VE�

1 � �NMDAe��Vi�t� �
j�1

NE

wijs j
NMDA�t�

� gGABA�Vi�t� � VI��
j�1

NI

wijs j
GABA�t� (1)

if the membrane potential is below a given threshold Vthr. The neuron
generates a spike, when the membrane potential reaches the threshold
Vthr. The spike is transmitted to other neurons and the membrane po-
tential is instantaneously reset to Vreset and maintained there for a refrac-
tory time �ref during which the neuron is unable to produce further
spikes. In Equation 1, gm is the membrane leak conductance, Cm is the
capacity of the membrane, and VL is the resting potential. The membrane
time constant is defined by �m �Cm/gm. The synaptic input current is
given by the last four terms on the right hand side of Equation 1. The
spikes arriving at the synapse produce a postsynaptic excitatory or inhib-
itory potential given by a conductance-based model specified by the
synaptic receptors, corresponding to: glutamatergic AMPA external ex-
citatory currents, AMPA and NMDA recurrent excitatory currents, and
GABAergic recurrent inhibitory currents. The respective synaptic con-
ductances are gAMPA,ext, gAMPA,rec, gNMDA,rec, and gGABA, and VE and VI

are the excitatory and inhibitory reversal potentials, respectively. The
dimensionless parameters wij of the connections are the synaptic weights
defined as following: the recurrent self-excitation within each excitatory
population is given by the weight wEE � w� � 1.4 (for both AMPA and
NMDA recurrent synapses); recurrent inhibition and connections from
excitatory to inhibitory neurons and vice versa have the weight wII, wIE,
and wEI, respectively. The gating variables sj

i�t� are the fractions of open
channels of neurons and are given by the following:

ds j
I�t�

dt
� �

s j
I�t�

�I

� �
k

��t � t j
k�, for I � AMPA or GABA (2)

ds j
NMDA�t�

dt
� �

s j
NMDA�t�

�NMDA,decay

� 	x j
NMDA�t��1 � s j

NMDA�t�� (3)

dx j
NMDA�t�

dt
� �

x j
NMDA�t�

�NMDA,rise

� �
k

��t � t j
k�. (4)

Where the sums over the index k represent all the spikes emitted by the
presynaptic neuron j (at times tj

k); �AMPA and �GABA represent the decay
times for AMPA and GABA synapses, and �NMDA,rise and �NMDA,decay are
the rise and decay times for the NMDA synapses. All neurons in the
network receive an AMPA-mediated external background input of un-
correlated Poisson spike trains with a mean rate of 
0 � 2.4 kHz. Param-
eter values of the neurons and the synapses are summarized in Table 2.

The values of the local connections were set to wII � wEI � wIE �1.
With these parameter values the spiking activity of the above local net-
work mimics the observed spontaneous activity, i.e., uncorrelated low
activity with mean firing rate equal to 2.92 and 7.54 Hz for the excitatory
units and the inhibitory units, respectively. However, when two or more
local networks are connected through long-range excitatory connec-
tions, the external excitation increases the correlations within the local
networks (see below). To compensate for the excess of excitation, we
postulate a local regulation mechanism, called feedback inhibition con-
trol (FIC), in which the connection weights from inhibitory to excitatory
neurons within each cortical area are adjusted to clamp the firing rate at
�3 Hz for each local excitatory neural population in the large-scale net-
work (see below). In the FIC case, the optimized inhibitory– excitatory
weight of cortical area i is noted wEI � Ji, whereas wII � wIE � 1.

Large-scale cortical dynamic mean field model. As we will see below, the
adjustment of the local feedback inhibition of each cortical area involves
the recursive adaptation of the inhibitory– excitatory weights. This algo-
rithm requires the computation of the global dynamics during a long
period of time, until the FIC constraint is satisfied in all areas. Therefore,
we used here a reduced DMF (Wong and Wang, 2006) for computing the
global dynamics of the whole cortex. The DMF expresses consistently the
time evolution of the ensemble activity of the different excitatory and
inhibitory neural populations building up the spiking network. In the
DMF approach, each population firing rate depends on the input cur-
rents into that population. On the other hand, the input currents depend
on the firing rates. Hence, the population firing rate can be determined
self-consistently by a reduced system of coupled nonlinear differential
equations expressing the population firing rates and the respective input
currents. The large-scale model interconnects these local subnetworks
according the structural connectivity matrix (SC) defined by the neuro-
anatomical connections between those brain areas in the human, as ob-
tained by DSI and describe above. The inter-area connections are
established as long range excitatory synaptic connections either between
excitatory pools of different areas only or both between excitatory pools
and from excitatory pools to inhibitory the inhibitory pools of different
areas (feedforward inhibition). Inter-areal connections are weighted by
the strength specified in the neuroanatomical matrix SC, denoting the
density of fibers between those regions, and by a global scaling factor G.
The global scaling factor is a free control parameter that we vary system-
atically to study the dynamics of the global cortical system.

In brief, the mean field approach considers the diffusion approxima-
tion according to which sums of synaptic gating variables (Eq. 1) are
replaced by the averaged component and a Gaussian fluctuation term.

Table 2. Parameters for spiking and the DMF model

Excitatory neurons Inhibitory neurons Synapses

NE 160 neurons NI 40 neurons VE 0 mV

Cm 0.5 nF Cm 0.2 nF V1 �70 mV

gm 25 nS gm 20 nS �AMPA 2 ms

VL �70 mV VL �70 mV �NMDA,rise 2 ms

Vthr �50 mV Vthr �50 mV �NMDA,decay 100 ms

Vreset �55 mV Vreset �55 mV �GABA 10 ms

�ref 2 ms �ref 1 ms 	 0.5 kHz

gAMPA,ext 3.37 nS gAMPA,ext 2.59 nS � 0.062

gAMPA,rec 0.065 nS gAMPA,rec 0.051 nS �NMDA 0.28

gNMDA,rec 0.20 nS gNMDA,rec 0.16 nS

gGABA 10.94 nS gGABA 8.51 nS
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Moreover, the first passage time equation, that gives the mean firing rate
of a neuron receiving a noisy input, is approximated by a simple sigmoi-
dal input– output function giving the firing rate as a function of the
inputs (Wong and Wang, 2006). Because the synaptic gating variable of
NMDA receptors has a much longer decay time constant (100 ms) than
the AMPA receptors, the dynamics of the NMDA gating variable domi-
nates the time evolution of the system, while the AMPA synaptic variable
instantaneously reaches its steady-state. We thus have neglected contri-
butions by the AMPA receptors to the local recurrent excitation. All these
approximations greatly simplify the model without compromising its
performance. Indeed, it has been previously shown that these approxi-
mations conserve the first-order (fixed points of the mean activity) and
the second-order (correlation structure) statistics of the original large-
scale spiking model (Deco et al., 2013a) which includes AMPA, NMDA,
and GABA synapses. Finally, in the present study long-range AMPA-
mediated connections are assumed to be instantaneous, thus conduction
delays between distant cortical areas are neglected.

The global brain dynamics are described by the following set of cou-
pled nonlinear stochastic differential equations:

Ii
�E� � WEI0 � w�JNMDASi

�E� � GJNMDA�
j

CijSj
�E� � JiSi

�I� � Iexternal,

(5)

Ii
�I� � WII0 � JNMDASi

�E� � Si
�I� � �GJNMDA�

j

CijSj
�E�, (6)

ri
�E� � H�E��Ii

�E�� �
aEIi

�E� � bE

1 � exp��dE�aEIi
�E� � bE��

, (7)

ri
�I� � H�I��Ii

�I�� �
aIIi

�I� � bI

1 � exp��dI�aIIi
�I� � bI��

, (8)

dS i
�E��t�

dt
� �

Si
�E�

�E

� �1 � Si
�E���ri

�E� � �i�t�, (9)

dSi
�I��t�

dt
� �

Si
�I�

�I

� ri
�I� � �i�t�, (10)

where ri
(E,I ) denotes the population firing rate of the excitatory ( E) or

inhibitory ( I) population in the brain area i. Si
(E,I ) denotes the average

excitatory or inhibitory synaptic gating variable at the local area i. The
input currents to the excitatory or inhibitory population i is given by
Ii
(E,I ). Iexternal encodes external stimulation for simulating task evoked

activity (it is zero for all pools under resting state condition, and 0.02 for
those pools excited in a task condition). Furthermore, w� � 1.4 is the
local excitatory recurrence, and Cij is the structural connectivity matrix
expressing the neuroanatomical links between the areas i and j. The
parameter � can be equal to 1 or 0 and indicates whether long-range
feedforward inhibition (FFI) is considered (� � 1) or not (� � 0). Note
that in the case of FFI the proportion of excitatory–inhibitory long-range
connections and excitatory– excitatory long-range connections is the
same. H (E ) and H (I ) denotes the neuronal input– output functions of
excitatory pools and inhibitory pools, respectively. The input– output
function converts incoming inputs into firing rates. The kinetic param-
eters are � � 0.641/1000 (the factor 1000 is for expressing everything in
ms), and �E � �NMDA and �I � �GABA. The excitatory synaptic coupling
JNMDA � 0.15 (nA) and the local feedback inhibitory synaptic coupling Ji

is 1 for each brain area i in the no-FIC case, and for the FIC case it is
adjusted independently, by the algorithm described below. The overall
effective external input is I0 � 0.382 (nA) scaled by WE and WI, for the
excitatory pools and the inhibitory pools, respectively. In Equations 9
and 10 i is uncorrelated standard Gaussian noise and the noise ampli-
tude at each node is � � 0.01(nA). Equation 9 is derived from Equations
3 and 4, by replacing the sum over presynaptic delta-like spikes by the
mean firing rate ri

(E) and noting that the effective time constant of NMDA
is �NMDA� 	�NMDA,rise�NMDA,decay � 100 ms (Wong and Wang, 2006).
Similarly, Equation 10 is derived from Equation 2. See Table 3 for param-
eter values. The values of WI, I0, and JNMDA were chosen to obtain a low
level of spontaneous activity for the isolated local area model. With these

parameter values the mean spiking activity of the excitatory pool, for an
isolate local network (G � 0), is equal to 3.0631 Hz. Note that this tuning
is necessary because the system of equations (5–10) results from a suc-
cession of approximations, among them the neglect of AMPA receptors,
which inclusion would otherwise highly complicate the reduced model
(Wong and Wang, 2006).

The fixed points of the above dynamical system were calculated by
numerically solving the steady-state system of nonlinear equations (Eqs.
5–10, in the absence of noise) using the MATLAB’s fsolve function.

For comparison to the empirical fMRI BOLD functional connectivity
matrix, we transformed the simulated excitatory synaptic activity, S (E ),
to BOLD signals using the Balloon–Windkessel hemodynamic model
(Friston et al., 2003; Deco et al., 2013a).

FIC. For an isolated node, with the intrinsic parameters described above,
an input to the excitatory pool equal to Ii

E � bE/aE � � 0.026; i.e.,
slightly inhibitory dominated, leads to a firing rate equal to 3.0631 Hz.
Hence, in the large-scale model of interconnected brain areas, we aim to
constraint in each brain area (i) the local feedback inhibitory weight Ji

such that Ii
E � bE/aE � � 0.026 is fulfilled (with a tolerance of

	0.005, implying an excitatory firing rate between 2.63–3.55 Hz). To
achieve this, we apply following procedure: we simulate during a period
of 10 s the system of stochastic differential Equations 5–10 and compute
the averaged level of the input to the local excitatory pool of each brain
area, i.e., Ii

(E). If Ii
E � bE/aE � � 0.026 then we upregulate the

corresponding local feedback inhibition Ji � Ji � 
; otherwise, we down-
regulate Ji � Ji � 
. We recursively repeat this procedure until the con-
straint on the input to the local excitatory pool is fulfilled in all 66 brain
areas.

Analytical approximation of the activity covariance. To estimate the
network’s statistics, we approximate deterministic dynamical equations
for statistical moments of network’s gating variables. This “moments’
method” avoids extensive simulations of the entire stochastic system,
that otherwise would be required for estimation of the network mo-
ments. For this, we express the system of stochastic differential equations
(5–10) in terms of the first- and second-order moments of the distribu-
tion of synaptic gating variables: �i

(m), the expected mean gating variable
of a given local neural population of type m (where m� E or I ) of the
cortical area i, and Pij

(mn), the covariance between gating variables of
neural populations of type m and n of local cortical areas i and j, respec-
tively. The moments are defined as follows:

�i
�m��t� � �Si

�m��t�� (11)

Pij
�mn��t� � �Si

�m��t� � �i
�m��t��S j

�n��t� � � j
�n��t���. (12)

Where the angular brackets �.� denote the average over realizations. In
vector form, the system of equations writes as follows:

d

dt
� S� �E�

S� �I� � � � f�E��S� �E�,S� �I��

f�I��S� �E�,S� �I�� � , (13)

where S� � �S��E�, S��I�� � �S1
�E�,…, SN

�E�, S1
�I�,…, SN

�I��, fk
�E��S��E�, S��I�� � �

Sk
�E�

�E

�

(1 � Sk
�E�)�H�E��Ik

�E�� and fk
�I��S��E�, S��I�� � �

Sk
�I�

�I

� H�I��Ik
�I�� for k � 1,.., N.

Taylor expanding S� around �� � �S��; i.e., Si
(m) � �i

(m) � �Si
(m), up to

the first order, we get the following:

Table 3. DMF model variables

Excitatory gating variables Inhibitory gating variables

aE � 310 (nC �1) aI� 615 (nC �1)

bE � 125 (Hz) bI� 177 (Hz)

dE � 0.16 (s) dI� 0.087 (s)

�E � �NMDA � 100 (ms) �I � �GABA � 10 (ms)

WE � 1 WI � 0.7
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fk
�m��S�� � fk

�m���� � � �
i

�fk
�m�

�Si
�E� ��� � � �Si

�E� � �
i

�fk
�m�

�Si
�I� ��� � � �Si

�I�.

(14)

Using this approximation, tacking the average over realizations, and not-
ing that:

��Si
�m��t�� � ��t�� � 0, (15)

we obtain the motion equations for the means of the gating variables and
the covariance of the fluctuations around the mean. For the mean values:

d�i
�E�

dt
�

d

dt
�S� �E�� � �

�i
�E�

�E

� �1 � �i
�E���H�E��ui

�E�� (16)

d�i
�I�

dt
�

d

dt
�S� �I�� � �

�i
�I�

�I

� H�I��ui
�I��. (17)

Where ui
(m) is the mean input current to the neural population m � E, I

of cortical area i, defined as follows:

ui
�E� � WEI0 � w�JNMDA�i

�E� � GJNMDA�
j

Cij� j
�E� � Ji�i

�I� � Iexternal

(18)

ui
�I� � WII0 � JNMDA�i

�E� � �i
�I� � �GJNMDA�

j

Cij� j
�E�. (19)

For the fluctuations:

d

dt
��Si

�m��S j
�n�� � �

p�E,I
�

k

�fi
�m���� �

�Sk
� p� ��Sk

� p��S j
�n��

� �
p�E,I

�
k

�fi
�m���� �

�Sk
� p� ��Sk

� p��Si
�m�� � �2�i j�. (20)

Let P being the covariance matrix between gating variables. P is a block
matrix defined as follows:

P � �S� S�T� � �P�EE� P�EI�

P�IE� P�II� �, where the superscript T is the transpose.

Using Equation 20, we obtain the motion equation of the covariance
matrix:

dP

dt
� AP � PAT � Qn, (21)

Where Qn is the covariance matrix of the noise (which is diagonal for
uncorrelated white noise) and A is the Jacobian matrix of the system. A is
a block matrix defined as follows:

A � �A�EE� A�EI�

A�IE� A�II� �, where Aij
�mn� � ��fi

�m���� �

�Sj
�n� �.

Finally, note that the above derivatives can be written as follows:

�fi
�m���� �

�S j
�n� � � �

1

�m

� �H�E��ui
�E���Em�En��ij

� 1 � �1 � �i
�E����Em�En�

�H�m��ui
�n��

�u
� Kij

�mn�. (22)

Where K � �K�EE� K�EI�

K�IE� K�II��, with Kij
�EI� � � Ji�ij, K�IE� � JNMDAI �

�GJNMDAC, K�II� � � I, and K�EE� � w�JNMDAI � GJNMDAC, where I
and C are the N-by-N identity matrix and anatomical connectivity ma-
trix, respectively.

Equations 20 –22 indicate that the covariance of gating variables is
determined by both the underlying connectivity and the dynamics. In the
stationary regime, the covariance matrix of fluctuations around the
spontaneous state is given by the algebraic equation:

AP � PAT � Qn � 0, (23)

which can be solved using the Eigen-decomposition of the Jacobian ma-
trix evaluated at the fixed points: A � LDL �1, where D is a diagonal
matrix containing the eigenvalues of A, denoted �i, and the columns of
matrix L are the eigenvectors of A. Multiplying Equation 23 by L �1 from
the left and by L �† from the right (the superscript dagger being the
conjugate transpose) we get the following:

P � LML†, (24)

Where M is given by the following: Mij � � Q̃
ïj
/��i � �j

��, and

Q̃ � L�1QnL�†.
Thus, the covariance matrix of spontaneous fluctuations is deter-

mined by the eigenvalues of the Jacobian matrix, which, in turn, is related
to the connectivity matrix and the dynamics. Hence, Equation 24 pro-
vides a direct link between the correlation structure, the underlying con-
nectivity, and dynamics. Indeed, the interpretation of Equation 24 is that
the input covariance (M ) is propagated through the dynamical system
and is mapped to its approximated output (P).

Finally, to compare the results from the above moments’ method to
the empirical functional connectivity, we estimated the correlation ma-
trix, noted Q, between the gating variables of the excitatory populations,

defined as follows: Qij � Pij
�EE�	
Pii

�EE� � Pjj
�EE�.

Power spectrum of linear fluctuations. The power spectrum of fluc-
tuations around the fixed points, �(�), can be obtained by, first,
writing the equation of the fluctuations around the fixed points, given
by the following:

d�S��t�

dt
� A�S��t� � ���t�. (25)

Taking the Fourier transform of Equation 25 we get the following:

�i��S̃��� � A�S̃��� � �̃���. (26)

Hence, �S̃��� � �� J � i���1�̃���. The power spectrum being the
expectation of the Fourier transformed autocorrelation function, we get
the following:

���� � ��S̃����S̃���†� � �2� A � i���1� AT � i���1.

(27)

Thus, the power spectrum of �Sk is as follows:

�k��� � �2�
l

�� Jkl � i��kl�
�1�2. (28)

Model prediction of the empirical connectivity. As a measure of similar-
ity between two FC matrices we used the uncentered Pearson correlation
coefficient between corresponding elements of the upper triangular part
of the matrices, defined as follows:

rc �
�XY�

SD�X�SD�Y�
. (29)

Where X and Y are the vectors containing the upper triangular values of
each matrix, respectively, and SD is the standard deviation. For FC ma-
trices, because the sampling distribution of correlation coefficients is not
normally distributed, we used the Fisher’s z-transformation to convert
the matrix elements before applying any subsequent test. The uncentered
correlation takes into account the difference in the mean values of the FC
matrices. Confidence intervals were obtained using bootstrap resam-
pling (1000 resamples).

For comparing a structural connectivity matrix and a FC matrix we
used the centered Pearson correlation defined as follows:

rc �
��X � �X���Y � �Y���

SD�X�SD�Y�
. (30)

Entropy of binary evoked patterns. The response of the large-scale net-
work to different stimuli was analyzed to investigate its behavior under
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hypothetical task conditions and its information capacity. Stimuli were
constructed by imposing an external input Iexternal � 0.02 (1) to the
excitatory population of 10% of the brain areas, randomly selected, or (2)
to both the excitatory and inhibitory populations of 10% of the brain
areas, randomly selected. The procedure was repeated 1000 times and the
resulting steady-state evoked response of the network were stored.
Evoked patterns were binarized by imposing a threshold above which the
excitatory firing rate of a given area was set to 1 and, otherwise, it was set
to 0 (only the firing rate of the excitatory pools were used, thus the binary
evoked pattern is 66-dimensional). The threshold was defined as �.SD,
where SD is the standard deviation across all evoked patterns and the
multiplier � is a scalar parameter. In this way we obtained binary patterns
containing 66 entries. The entropy of the set of evoked binary patterns R
is defined as follows:

H�R� � � �
i�1

n

pi log2 pi. (31)

Where n is the number of unique patterns and pi is the probability that
pattern i is observed. Only patterns with at least one non-null entry were
analyzed.

To remove the sampling bias, we corrected the entropy values by using
a quadratic extrapolation procedure (Treves and Panzeri, 1995; Shew et
al., 2011). This procedure evaluates the entropy for random samples of
fractions f from the full set of K patterns to estimate the sample entropy
H(f ). It has been shown that the bias of the entropy can be accurately
approximated as second order expansions in 1/(fK ); i.e., H(f ) � H0 �

k1�(fK )�1 � k2�(fK )�2, where H0 is the true value of the entropy and
k1�(fK )�1 � k2�(fK )�2 is the bias (Treves and Panzeri, 1995). Fitting
(least-square-error procedure) the sample entropy H(f ) with a quadratic
function of 1/(fK ), provides the estimate of the unbiased entropy H0.
Additionally, the fitting provides confidence intervals.

Fisher information. We quantified the encoding accuracy of the large-
scale network response by calculating the Fisher information (FI). As-
suming that the network response is well described by a multivariate
Gaussian distribution, i.e., for weak noise, FI can be written as the sum of
two terms: FI � FImean�FIcov (Abbott and Dayan, 1999), where

FImean�
I� � �� ��
I�TP�
I��1�� ��
I� (32)

FIcov�
I� �
1

2
Trace([P�(
I)P�
I��1]2). (33)

Where �� �
I� and P(
I ) are the stationary mean synaptic activity and the
covariance matrix evoked by an excitatory stimulus of intensity 
I, re-
spectively; �� ��
I� and P�(
I ) are the first derivatives with respect to the
stimulus, evaluated at 
I. The values of �� �
I� and P(
I ) were estimated
using the moment’s equations (Eqs. 16 –19, for the mean, and Eq. 24 for
the covariance), in the presence of an applied stimulus, i.e., Iexternal � 
I.
Only the excitatory parts of �� and P were considered for calculating the
FI. In this study, the stimulus was applied to the excitatory population of
both right and left lateral occipital cortex (LOCC), i.e., Iexternal � 
I for
rLOCC and lLOCC, and Iexternal � 0 for all other cortical areas. The
intensity of the stimulus varied from 
I�0.02 to 
I�0.1 in steps of
0.001.

Betweenness centrality. The centrality of a node within the anatomical
network was quantified using the betweenness centrality measure. This
network measures expresses the number of shortest paths that pass
through a given node. For calculating the betweenness centrality we bi-
narized the anatomical matrix C by imposing a threshold equal to 0.05
above which the anatomical coupling was set to 1 and, otherwise, it was
set to 0.

Results
Local feedback inhibition control
In the present study we investigated the effect of regulating the
local feedback inhibition on the long-range resting correlations
between cortical areas. For this, we used a large-scale model,
composed of local networks, or “nodes,” representing cortical
areas, interconnected by the anatomical connectivity matrix, or

“structural connectivity,” between those cortical areas (Deco and
Jirsa, 2012; Deco et al., 2013a). Large-scale anatomical connec-
tivity data were obtained using DSI and tractography techniques
(Hagmann et al., 2008; see Materials and Methods). Isolated local
brain area models consist of 80% IF excitatory neurons and 20%
inhibitory IF neurons recurrently connected (all-to-all). Intra-
area connection weights were such that when isolated the net-
work emulates the neurophysiological characteristics of the
empirical observed spontaneous state, i.e., low correlations be-
tween the spiking activity of the neurons and low firing rate at �3
Hz (see Materials and Methods for details; Deco and Jirsa, 2012).
When the different brain areas are coupled, however, the addi-
tional excitatory input injected into each brain area by the long-
range pathways breaks the delicate local balance of excitation and
inhibition and induces both local correlations and elevated local
firing rate. To show this effect, we considered an example case
composed of two interconnected single brain areas (Fig. 1a).
Connections between the two brain areas were symmetric. The
introduction of coupling between nodes leads to high synchro-
nized activity in the excitatory pool (Fig. 1b, top). Our working
hypothesis is that local feedback inhibition compensates the ex-
cess of excitation and decorrelates the activity. To test this, we
used a learning algorithm to optimize the strength of the local
inhibitory feedback for each brain area (see Materials and Meth-
ods) such that all excitatory pools have a low firing rate �3 Hz.
This optimization, or “feedback inhibition control,” effectively
reduces the intra-area correlations (the mean correlation coeffi-

Figure 1. The effect of FIC on the spontaneous spiking activity of two coupled model areas.

a, Two network brain areas model with symmetric connections through their corresponding

excitatory pools. The local brain area models consist of 80% excitatory neurons and 20% inhib-

itory neurons recurrently connected such that when isolated the network emulates the neuro-

physiological characteristics of the empirical observed spontaneous state, i.e., low correlations

between the spiking activities of the neurons and low firing rate at 3 Hz. In the FIC scenario, the

feedback inhibition is adjusted to compensate the extra excitation the each excitatory pool

receive when the brain areas model are connected. b, c, Spiking activity of excitatory units from

one brain area without FIC (b, top) and with FIC (c, top). Due to symmetry, the spiking activity in

the other brain area has the same statistics. The averaged activities of both excitatory pools are

plotted in blue and green, for the model without FIC (b, bottom) and the model with FIC (c,

bottom). d, Filled bars, Mean correlation coefficient (	SEM) across all pairwise correlations

within one excitatory pool, without and with FIC (red and blue, respectively). Open bars, Corre-

lation between the mean firing rates of both excitatory pools, without and with FIC (red and

blue, respectively).
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cient is 0.11 	 0.06 and 0.23 	 0.05 with
and without FIC, respectively, p � 10�10,
t test), but, interestingly, allows for a mod-
erate correlation between the mean firing
rates of both excitatory pools (equal to
0.35 and 0.63 with and without FIC, re-
spectively; Fig. 1c,d). In other words, un-
der FIC, “microscopic” activity is partially
decorrelated while “mesoscopic” (popu-
lation level) quantities covary.

This is the key manipulation that we
study in the large-scale model. Before pro-
ceeding any further, it is important to note
that, in the previous example, although
the firing rate is maintained constant, ma-
nipulation of the inhibitory feedback
changes the eigenvalues of the local net-
work, and, thus, modifies the dynamics.

Large-scale models with and without
FIC: stationary states
In the large-scale cortical network, con-
sisting on coupled cortical areas, we com-
pensated the local feedback inhibition
weights (Ji), as previously, to clamp the
firing rate �3 Hz for each local excitatory
neural population i (see Materials and
Methods). Because this local compensa-
tion mechanism, achieved through recur-
sive adjustments of Ji, is computationally
expensive, we used a DMF to reduce the
large-scale spiking network (Wong and
Wang, 2006; see Materials and Methods).
The DMF ignores the interaction between
single neurons within a cortical area and
instead considers the ensemble meso-
scopic dynamics. By reducing the number
of variables, the DMF model allows for the
optimization of feedback inhibition
weights (Fig. 2a,b).

In the following we compared the fixed
points of the model with long-range excit-
atory–excitatory connections (E–E model)
and the model with long-range excitatory– excitatory connec-
tions and local feedback inhibition regulation (FIC model). We
also consider a third model in which the firing rate within each
cortical region is maintained low through long-range connections
from the excitatory populations to the inhibitory populations (feed-
forward inhibition,) in the same proportion as long-range excitato-
ry–excitatory connections and according to the anatomical
connectivity (see Materials and Methods).

In all models the inter-area coupling is scaled by a single global
parameter, G, that changes the network from weakly to strongly
connected and determines the dynamical state of the system. We
first calculated the bifurcation diagrams characterizing the sta-
tionary states of the brain system for the three models (Fig. 2c,d)
as a function of G. In all cases we plot, for the different possible
states, the maximal firing rate activity across all excitatory popu-
lations. The E–E model presents a bifurcation at G � 1.47 sepa-
rating two qualitatively different topologies of the attractor
landscape. For small values of the global coupling G, only one
stable state exists, characterized by a firing activity that increases
as G increases (stable branch). For G larger than the critical value

1.47 a bifurcation occurs and a second fixed point appears which
is not stable (unstable branch). The FIC model has only one
stable state of low firing activity in all cortical areas, for G �
4.45. For larger values of G, long-range interactions are too
strong to be compensated by FIC and the activity diverges. In
the FFI model the maximum firing rate monotonically in-
creases as a function of G.

Feedback inhibition control improves the model’s
FC prediction
We next investigate the structure of the emergent correlations
from the three global brain models. The predictions of the models
were evaluated using the empirical human resting-state FC, ob-
tained by averaging the results across 48 fMRI scanning sessions
from 24 healthy human subjects and projected to the same par-
cellation adopted for the anatomical structural matrix (SC). For
comparison with the empirical data, we considered the FC of
simulated BOLD signals which are obtained by transforming the
model synaptic activity through a hemodynamic model (see Ma-
terials and Methods). We calculated the similarity between the

Figure 2. The effect of FIC on the spontaneous mean-field activity of the large-scale brain model. a, A dynamic mean field (DMF)

reduction of the model was used to study the large-scale model of the brain, composed of N nodes, each containing one excitatory

and one inhibitory neural population. The inter-area connections are established as long range synaptic AMPA-mediated instan-

taneous connections between the excitatory pools in those areas. In the case of the model with feedforward inhibition (FFI)

long-range synaptic AMPA-mediated instantaneous connections from the excitatory pool of a given area to the inhibitory pool of

a different area were also considered (dashed arrows). Inter-areal connections are weighted by the strength specified in the

neuroanatomical matrix SC, denoting the density of fibers between those regions, and scaled by a global factor G. The local

recurrent excitation is NMDA-mediated. In the FIC condition, the local feedback inhibition (Ji) was adjusted such that the excitatory

pool of each local brain area has a low firing rate �3 Hz. b, Adjacency matrix of the neuroanatomical connectivity. c, Attractor

landscape as a function of the global coupling strength G, for the three large-scale models, (E–E: long-range excitatory– excitatory

connections; FIC: long-range excitatory–excitatory connections and local feedback inhibition regulation; FFI long-range excitatory–

excitatory connections and long-range feedforward inhibition). Each point represents the maximum firing rate activity among all

excitatory pools. In the E–E model, for low values of G, the network converges to a single stable state; for G � 1.47 (vertical line),

a bifurcation appears whereby a new unstable state coexists together with the spontaneous state. In the FIC model, for G � 4.45,

the optimization of feedback inhibition weights makes the network to converge to a single stable state of low firing activity; for

G � 4.45, the low firing activity solution becomes unstable. In the FFI model the maximum firing rate monotonically increases as

a function of G. d, The stationary-state of excitatory pools (firing rate vector of dimension N�66) is shown for G�2.0 for the three

large-scale DMF models. Blue, FIC model (stable state); the inset shows the stationary firing rates as a function of the local feedback

inhibition strength; red, E–E model (stable state); red, open bars, E–E model (unstable state); magenta, FFI model (stable-state).
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model FC and SC, and the similarity between the model FC and
the empirical FC, for each model (Fig. 3a,b; see Materials and
Methods). Importantly, note that, for a given G, the large-scale
underlying connectivity (i.e., G � SC) is the same for the three
models, while the local connectivity is different for the FIC

model. We found that, in the E–E, the underlying structural con-
nectivity is maximally expressed in the simulated FC at the edge
of the critical value of G (Fig. 3a, red trace). Similarly; the empir-
ical FC is optimally fitted by the model near criticality (Fig. 3b, red
trace). For the FFI model and for the network with FIC, the
region where the SC is maximally expressed by the simulated FC
and where the empirical data are optimally fitted is much broader
(Figs. 3a,b, blue and magenta traces). Furthermore, the level of
agreement between the model and the data reached at the maxi-
mum is improved in the FIC case.

We further compared the FC of the two models for the corre-
sponding optimal value of G, equal to 1.3, 4.7, and 3.3 for the E–E
model, the FFI model, and the FIC model, respectively (Fig. 3c–
e). The scatter plot between the model and the empirical correla-
tion coefficients is closer to the identity line for the FIC model
than for the two other models, as can be appreciated by linear
regression of the data. The agreement between the model FC and
the empirical FC is significantly higher for the FIC model than
both for the E–E model (p � 10�7 Meng’s z test for dependent
correlations (Mz-test) and for the FFI model (p � 10�7, Mz-
test). We also tested the ability of each model to predict the FC of
individual fMRI scanning sessions. For this we used the following
jackknife procedure: for each of the n � 48 scanning sessions we
calculated the FC and we computed the agreement between the
single-session FC and the FC of each model for which G was
optimized using the averaged FC over the remaining n � 1 ses-
sions. The procedure was repeated such that each scanning ses-
sion was held out once. The resulting distributions of similarity
values for each model are shown in Figure 3f. The FIC model
gives significantly better predictions of the single-session FC ma-
trices than both the E–E model and the FFI model (ANOVA, p
�10�7).

Moreover, we further quantified the agreement between the
simulated FC matrices and the empirical FC by comparing their
first principal component (PC), or “dominant spatial mode”. For
a given covariance matrix, the dominant spatial mode is given by
the first eigenvector of the matrix. We calculated the vector pro-
jection between the first PC of the empirical data and the first PC
of the three models, calculated for the corresponding optimal
values of G, as previously (Fig. 4). We found that, under FIC, the
network approximates better the first PC of the empirical data
than do the E–E model and the FFI model.

Altogether, the above results show that the quality of the op-
timal fitting is better under the FIC condition compared with the
unconstrained case. One could argue that the increase in the FC
prediction for the FIC model is merely due to the optimization of
the connection weights, which makes the model more complex
than the other two models. However, note that the parameters of
the FIC model where optimized to bound the firing rate of each
network node only and not in the optimization of the prediction
of the empirical FC which uses only one free parameter (G) as for
the other two models.

Correlation of linear noise fluctuations, an
analytical approximation
The reduction of the spiking network through dynamic mean
field approximation allowed investigating the large-scale model
under the FIC condition. However, the nonlinear and stochastic
nature of the DMF equations hinders analytical insights and ex-
amination of the dynamics needs to be treated numerically. In
particular, estimation of second-order statistic of large networks
requires long and multiple time-consuming numerical simula-
tions. In the following, we further reduce the dynamical system

Figure 3. Model prediction of the empirical functional connectivity. a, The similarity (corre-

lation coefficient) between the empirical anatomical connectivity (SC) matrix and the model FC

was calculated, as a function of the global coupling parameter G, for the three different models.

In the E-E model, the highest correlation is achieved at the edge of the bifurcation (dashed

vertical red line). Shaded areas represent the 95% confidence interval of the similarity measure.

b, Similarity (correlation coefficient) between the empirical fMRI FC and the model FC as a

function of the global coupling parameter G, for the three models. Shaded areas represent the

95% confidence interval of the similarity measure. c–e, Comparison between the empirical FC

matrix and the FC generated by each of the three models, E–E (c), FIC (d), and FFI (e), for the

corresponding optimal values of G, equal to G � 1.3, G � 3.3, and G � 4.7, respectively. Solid

lines indicate linear regressions. Ellipses are 95% confidence ellipses. rc indicates the level of

similarity reach for each model. f, For each individual fMRI scanning session the FC was pre-

dicted after optimization of the parameter G using the FC matrix averaged over the remaining

47 scanning sessions. The distribution of similarity measures is presented for each of the three

models. The mean similarity is significantly higher for the FIC model compared with the mean

similarity of models E–E and FFI (ANOVA, *p � 10 �7).
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by expressing it in terms of the first and second-order statistics,
means and covariances, of the distribution of gating variables and
by deriving deterministic differential equations for these statistics
(see Materials and Methods). Briefly, the moments’ equations for
the reduced nonlinear DMF are derived by Taylor expanding the
dynamical equations around the mean values of gating variables
and expressing motion equations for the covariances of the fluc-
tuations around the means. This analytical simplification is es-

sential, because it provides an explicit link between structure,
dynamics, and FC. Indeed, within this linear approximation, the
covariance matrix of spontaneous fluctuations is determined by
the eigenvalues of the Jacobian matrix (A) of the large-scale net-
work, which in turn is related to the local and large-scale connec-
tivity matrix and the dynamics (see Materials and Methods).
Hence, because manipulating the feedback inhibition strength
within local networks changes the eigenvalues of A, the correla-
tion structure is modified, even though the firing rates of all
model cortical areas remain constant. Using this linear approxi-
mation, we calculated the similarity between the correlation ma-
trix of excitatory gating variables, noted Q, and the empirical FC
matrix. Note that, in this case, the model correlations matrix is
not based on BOLD signals, but on the excitatory gating variable
of all cortical areas. We found that the agreement between Q and
the empirical FC is higher for the FIC model than for the other
two models (Fig. 5a,b). Moreover, the empirical distribution of
correlation coefficients is better approximated by the FIC model
than for the other two models (Fig. 5c,d).

Note that the decrease of the fitting of the empirical FC for
small values of G observed in simulations of BOLD signals (Fig.
3b) is more pronounced that the one obtained using the linear
prediction of Q (Fig. 5a). This discrepancy arises from the distri-
bution of functional correlation coefficients rij. Indeed, if the
values are narrowly distributed, as for G approaching zero for all
models (Fig. 5c), the precise estimation of the correlation struc-
ture through stochastic simulations would require a large num-
ber of simulation steps, so that the estimation error of rij becomes
very small compared with the variance of the distribution of rij.
Opposite to this, the analytic solution does not suffer from the
sampling error and, thus, it correctly estimates the fine structure
of Q with infinite resolution.

Furthermore, the linear approximation allows for an analyti-
cal estimation of the time-scale of the gating variables’ fluctua-
tions. Since the hemodynamic model used to simulate the BOLD
fMRI signal can be seen as a low-pass filter that passes frequencies
�1 Hz (Robinson et al., 2006), only gating variables correlations
at slow time scales are transmitted through the hemodynamic
model. We thus calculated the power spectrum of fluctuations
around the spontaneous state, by taking the Fourier transform of
the equation governing the time evolution of fluctuations (see
Materials and Methods; Fig. 5e). We found that in the FIC model
the power of low-frequency (�1 Hz) fluctuations is maintained
high for all values of G, whereas for the other two models slow
fluctuations are expected for small values of G only.

Altogether, the linear approximation shows that the FIC
model better approximates the functional correlations and main-
tains the dynamics in a slow time-scale, so that the correlation
structure of gating variables is seen through the hemodynami-
cally filtered response.

Feedback inhibition control increases the dynamical
repertoire of the network evoked activity
To examine the functional implications of FIC, we analyzed the
response of the model network to exogenous stimuli, which are
assumed to represent ideal task-related signals. We simulated
1000 different hypothetical task conditions by stimulating exog-
enously 10% of the brain areas, randomly selected. Stimulation
was modeled by imposing an external input to the excitatory
pools, i.e., for the set of stimulated excitatory pools we imposed
Iexternal � 0.02. The increased excitatory activity induces an
evoked pattern of activity at the stationary state. We first calcu-
lated, for each model, the activity of cortical excitatory pool av-

Figure 4. Prediction of the principal mode. The first PC of the empirical covariance matrix of

BOLD signals (turquoise) and the first PC of the model covariance matrix generated by each of

the three models, for the corresponding optimal values of G. The projection (scalar product)

between the first PC of the empirical data and the first PC of model data are equal to 0.57 	

0.05, 0.87 	 0.02, and 0.71 	 0.03 for the E–E, FIC, and FFI models, respectively.
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eraged over all stimuli, for the corresponding optimal values of G
(Fig. 6a). Interesting, in both the E–E model and the FFI model,
the activity is systematically much higher for some nodes,
whether they are directly stimulated or not. These nodes are cen-
tral nodes of the network, as revealed by their corresponding
betweenness centrality (Fig. 6b), a network measure that quanti-
fies the number of shortest paths that pass through a given node.
Note that, as previously shown (Hagmann et al., 2008), central
cortical areas are members of the default mode network (Fig. 6c).

We next characterized the information capacity of the large-
scale model by quantifying the size of the repertoire of different
evoked patterns of both models. Indeed, a network that has few
degrees of freedom, i.e., few different evoked patterns, has a low
capability to transmit information. We thus hypothesized that
the networks without FIC, due to their tendency to elevated the
firing rate of central nodes in response to distinct stimuli, have
less information capacity. We quantify this by calculating the
entropy Hevoked of binary evoked patterns (see Materials and
Methods) to measure the extent of the repertoire of evoked ac-
tivity. Binary patterns were constructed by imposing a threshold
and setting the steady-state evoked activity of a given area to 0 or
1 whether it is below or above the threshold, respectively. The
threshold was defined as �.SD, where SD is the standard deviation
across all possible evoked responses of each model. Several values
of the multiplier � were tested. For each of the three large-scale
models, we compared the entropy of evoked patterns to the max-
imum entropy by computing the reduction of entropy, defined as

H � (Hmax � Hevoked)/Hmax, where the maximum entropy

Hmax is equal to log2(n) for a set of n pos-
sible binary patterns. Values of 
H close
to 0 indicate that the network has a large
repertoire size, close to the maximum rep-
ertoire size, while values near 1 indicate a
limited repertoire size. We found that, un-
der FIC, the model has more entropy than
the two other models (Fig. 6d), and,
hence, it has a larger information capacity.
The same result is obtained when stimuli
are imposed to both the excitatory and the
inhibitory population of the cortical areas
(Fig. 6e).

Feedback inhibition control increases
the accuracy of the external
stimulus encoding
At last, we further asses the sensibility to ex-
ternal stimuli of the large-scale network. For
this, we calculated the FI, which gives an up-
per bound to the accuracy that any popula-
tion code can achieve (Abbott and Dayan,
1999). The FI takes into account the change
of both the mean activity and the covariance
with respect to a small variation of the stim-
ulus strength to quantify the ability for stim-
ulus discrimination (see Materials and
Methods). Here, a “visual” stimulus was
modeled by imposing an equal external in-
put to both the right and the left LOCC. We
used the moment’s equations to precisely
estimate the evoked stationary mean and
covariance for varying stimulus intensity.
The FI was calculated for each of the large-
scale models (Fig. 6f), where G was set to the

corresponding optimal value for each model. We found that the
regulation of feedback inhibition increases the FI, thus in-
creasing the accuracy of the stimulus encoding. Relaxing the
FIC condition leads to a decrease of the FI because the central
nodes are systematically activated in response to the stimulus,
thus saturating the network response, although the FIC pro-
vides a graded response of the stimulated nodes with practi-
cally no activation of the other nodes (Fig. 6g).

Discussion
In this study, we investigated the impact of the local FIC on a
large-scale model of the brain. We found several important and
functionally relevant effects of the local FIC on both the sponta-
neous and the evoked patterns of activity of the large-scale model.
First, we showed that the FIC significantly enhances the model’s
prediction of the fMRI human resting functional connectivity,
even for single fMRI scanning sessions. Furthermore, we found
that the optimal parameter space where the model best approxi-
mates the empirical FC is enlarged in the FIC condition. This is
important since a common result of all previous resting-state
models is that the optimal parameter space is confined at the edge
of criticality (Honey et al., 2007, 2009; Ghosh et al., 2008; Deco et
al., 2009, 2013a,b; Deco and Hughes, 2012) posing the problem of
fine tuning for which self-organization rules remain unknown.
Opposite to this, it has been shown that inhibitory synapses can
rapidly adapt to changes in the local network activity to scale the
activity in cortical circuits (Hartmann et al., 2008), thus provid-
ing a natural implementation of the FIC by biological synapses. In

Figure 5. Linear fluctuations. a, Similarity (correlation coefficient) between the empirical BOLD FC and the correlation structure

of gating variables as obtained by the moments’ method, for the three models. Shaded areas represent the 95% confidence interval

of the similarity measure. In the FIC case, the same local feedback inhibition weights (Ji) used in Figure 2a,b were used here. b,

Comparison of the maximum similarity between the empirical BOLD FC and the correlation structure of gating variables for the

three models. c, Correlation coefficients of all pairwise correlations between excitatory gating variables of the 66 cortical areas as

a function of the global coupling G, for the three models. Top, The red line indicates the bifurcation of the E–E model. d, Inverse of

the Kullback–Leibler divergence (DKL) between the empirical distribution of correlation coefficients and the distribution of corre-

lation coefficients between gating variables for each model. e, Mean power spectrum of the excitatory gating variables as a

function of the global coupling G, for the three different models. Top, The white line indicates the bifurcation of the E–E model.
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this view the local FIC may provide a homeostatic mechanism
that generates the observed resting-state FC. Nevertheless, in the
present study we have regulated the inhibitory-to-excitatory cou-
pling, but manipulating other local weights to adjust the ratio
between excitation and inhibition in the large-scale model may
lead to similar results and would provide a local decorrelation
mechanism, providing that excitation and inhibition balance
each other (Renart et al., 2010).

Nevertheless, note that the agreement between the model’s FC
and the empirical FC is not perfect. This imperfect fitting is ex-
pected principally due to the missed of connections of the diffu-
sion tensor/spectrum imaging (DTI/DSI) tractography, used
here to estimate the anatomical connectivity that constrains the
large-scale connectivity of the model. Indeed, precise prediction
of the FC strongly depends on the quality of the estimated struc-
tural connectivity. However, interhemispherical connections are
not well captured by the DTI/DSI tractography (Hagmann et al.,
2008) and the anatomical matrix used here did not include sub-
cortical routes that are known to play an important role in shap-
ing the spontaneous activity of the brain (Robinson et al., 2001;
Freyer et al., 2011). Estimation of subcortical connections is a
challenging issue because DTI systematically leads to more con-
nections for proximal regions than distal ones, and thus, subcor-
tical structures are particularly subject to this bias (Jones, 2008).
Moreover, neural structure is different in the cortex and subcor-
tical nuclei, for example, the thalamus is composed of GABAergic
interneurons in the reticular nucleus of the thalamus and
thalamocortical relay neurons in relay nuclei, for which relative
number of neurons is unknown (Izhikevich and Edelman, 2008),

and thus, how both the cortex and the subcortical nuclei can be
described in a parsimonious model is an open question.

In addition, we have made several simplifying assumptions that
may impose an upper bound to the agreement between the model
predictions and the empirical observations. Specifically, in this study
we consider that all connections between brain areas are instanta-
neous, thus neglecting the effects of conduction delays which are
likely to shape the brain dynamics, giving rise to complex spatiotem-
poral patterns, oscillations, multistability, and chaos (Roxin et al.,
2005; Ghosh et al., 2008; Deco et al., 2009). Indeed, a recent MEG
study found robust frequency-specific lagged coherence between in-
terhemispheric functional connections in the dorsal attention net-
work, or between the dorsal attention and other networks (e.g.,
visual and somatomotor; Marzetti et al., 2013). Considering the de-
lays would make more complex the model and add a new parameter
to explore: the propagation velocity.

In this work, we assumed that functional connectivity is a
stationary process that arises from the interplay between the un-
derlying anatomical connectivity structure and the neural dy-
namics on the stationary regime. This assumption is commonly
made by the current resting-state models that seek to link the
structural and the functional connectivity (Honey et al., 2007,
2009; Ghosh et al., 2008; Deco et al., 2009, 2013a,b; Deco and
Hughes, 2012). However, recent studies have demonstrated that
the correlations among brain regions evolve over time (Chang
and Glover, 2010; Kiviniemi et al., 2011; de Pasquale et al., 2012;
Hutchison et al., 2013; Allen et al., 2014). Because nonstationari-
ties are likely to substantially contribute to the resting-state activ-
ity (Messé et al., 2014), it is thus crucial to analyze and model the

Figure 6. The effect of FIC on the evoked activity of the large-scale brain model. a, Mean activity in each local brain area (with respect to the activity averaged over all brain areas) for each model

obtained in response to 1000 different hypothetical task conditions. Tasks were simulated by imposing an external input Iexternal � 0.02 to the excitatory population of 10% of the brain areas,

randomly selected. Dark colors indicate the areas composing the default mode network. b, Betweenness centrality (BC) of each brain area. BC was calculated from the anatomical connectivity matrix.

It represents the number of shortest paths passing through a given node. c, The default mode network is composed of midline frontal and parietal areas, posterior inferior parietal lobule, and medial

and lateral temporal lobe regions. d, The entropy Hevoked of evoked binary patterns was calculated for different activity thresholds, defined as �.SD, were SD is the standard deviation across all

possible evoked responses. Bars indicate the reduction of entropy 
H, for the three different models, for different values of � (� � 2.5, 3, or 4). 
H was defined as 
H � (Hmax � Hevoked)/Hmax,

where Hmax is the maximum entropy for the set of n patterns, i.e., Hmax � log2(n). Error bars indicate estimation errors (50%) given by the quadratic extrapolation procedure, used for the entropy

sampling bias correction. e, Entropy reduction when external stimuli are imposed to both the excitatory and the inhibitory populations. The values of � are lower than in (d) to avoid patterns with

null entries. f, The encoding accuracy of the models was calculated using the FI. The FI was calculated for various stimulus intensities (
I ). The stimulus was applied to the excitatory population of

both right and left LOCC; i.e., Iexternal � 
I for rLOCC and lLOCC, and Iexternal � 0 for all other cortical areas. g, Evoked response of the network for the E–E model (top), the FFI model (middle), and

for the FIC model (bottom). The colors indicate the intensity (
I ) of the applied stimulus. The arrows indicate the stimulated nodes.
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time-varying behavior of the functional connectivity. How non-
stationary functional connectivity emerges in the brain network
remains an open question that needs further investigation.

In the present study, we assumed that the spontaneous activity
throughout the cortex is low. This is supported by early record-
ings of cortical activity in vivo (Burns and Webb, 1976; Softky and
Koch, 1993; Wilson et al., 1994), as well as recent experiments in
mammalian neocortex using diverse recording techniques, such
as whole-cell patch-clamp, sharp-electrode recordings and
Ca 2�-imaging, in different brain states (awake or under anesthe-
sia), indicating that the spontaneous activity of pyramidal neu-
rons in sensory cortices ranges between 1–5 Hz, with further
laminar differences (Sakata and Harris, 2012; for review, see
Barth and Poulet, 2012). Nevertheless, more investigation com-
paring the spontaneous activity of different sensory and associa-
tion cortices is needed.

By studying the large-scale patterns evoked by external inputs,
we showed that, if the FIC constraint is relaxed, external stimu-
lation of the brain model leads to a systematic large activation of
cortical areas that are components of the default mode network.
This is unlikely to occur in the real brain, because only few exper-
imental conditions leading to activation of the default mode net-
work have been reported. Indeed, a myriad of reports shows that
the default network is deactivated during attentionally demand-
ing and goal-directed tasks (Shulman et al., 1997; Raichle et al.,
2001; Fox and Raichle, 2007; Thomason et al., 2008; Christoff et
al., 2009). Nevertheless, the default mode network is activated by
cognitive processes that are internally driven, such as, memory re-
trieval (Sestieri et al., 2011), internal mentation (Mason et al., 2007;
Bar, 2009), and self-reference (Gusnard and Raichle, 2001;
D’Argembeau et al., 2005). However, these internal processes are
more likely to be initiated spontaneously, possibly due to spontane-
ous fluctuations in the cortex, as recently proposed in the context of
self-initiated movements (Schurger et al., 2012), and thus, they may
not be well modeled by imposing external inputs to some cortical
areas. Altogether, we believe that the systematic activation of cortical
areas belonging to the default mode network, observed in the evoked
responses of the brain models without FIC, is not consistent either
with current experimental data or with current assumptions about
the generation of internal mental states. Here we showed that regu-
lating the local level of feedback inhibition in the brain has an im-
portant role at the global level, because it attenuates the response of
cortical areas in the default mode network.

A further effect of local FIC on large-scale brain patterns is to
increase the entropy of the evoked activity patterns, thus increasing
the dynamic repertoire of the network. Hence, the local FIC en-
hances the information capacity of the global network, i.e., it in-
creases the ability of the network to map different inputs into
distinguishable network outputs. This result complements previ-
ously reported evidence showing that neural systems tend to maxi-
mize the entropy at the level of single neurons (Tsubo et al., 2012)
and neural populations (Shew et al., 2011). It has been shown that
when excitation is sufficiently restrained by inhibition in local corti-
cal networks, the information capacity of cortical circuits is increased
(Shew et al., 2011; Deco and Hughes, 2012). Furthermore, we
showed that regulation of the feedback inhibition enhances the stim-
ulus discriminability, i.e., it increases the sensitivity of the network to
a small variation of the stimulus. Hence, our results indicate that the
control of the excitation–inhibition ratio at the local level has impor-
tant implications for information transmission at the large-scale
brain level. Moreover, because the feedback inhibition acts as an
active mechanism for reducing pairwise correlations in local net-

works (Tetzlaff et al., 2012; Fig. 1), it improves the encoding and
readout within local circuits.

In summary, we had identified several effects of local regula-
tion of feedback inhibition on brain dynamics at the large scale: it
changes the characteristics of the emergent resting and evoked
activity in a crucial way. Regulating the local excitation–inhibi-
tion ratio provides a better and more robust prediction of human
empirical resting state connectivity, together with more realistic
responses to external inputs and higher information capacity and
encoding accuracy.
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