
How Long Did It Take To Fix Bugs?
Sunghun Kim, E. James Whitehead, Jr.

University of California,
Santa Cruz, CA, USA

{hunkim, ejw}@cs.ucsc.edu

ABSTRACT
The number of bugs (or fixes) is a common factor used to measure
the quality of software and assist bug related analysis. For
example, if software files have many bugs, they may be unstable.
In comparison, the bug-fix time—the time to fix a bug after the
bug was introduced—is neglected. We believe that the bug-fix
time is an important factor for bug related analysis, such as
measuring software quality. For example, if bugs in a file take a
relatively long time to be fixed, the file may have some structural
problems that make it difficult to make changes. In this report, we
compute the bug-fix time of files in ArgoUML and PostgreSQL
by identifying when bugs are introduced and when the bugs are
fixed. This report includes bug-fix time statistics such as average
bug-fix time, and distributions of bug-fix time. We also list the
top 20 bug-fix time files of two projects.
Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – Restructuring, reverse engineering, and
reengineering, D.2.8 [Software Engineering]: Metrics – Product
metrics, K.6.3 [Management of Computing and Information
Systems]: Software Management – Software maintenance.

General Terms
Management, Measurement

1. INTRODUCTION
The number of bugs is commonly used to measure software
quality. For example, if a file has 100 cumulative bugs over its
development history, we may assume the file is more instable than
one that had no bugs in its history. We believe that both bug
counts and bug-fix times are important factors for bug related
analysis. We can determine the bug-fix time by identifying bug-
introducing changes (fix-inducing changes [5]) and corresponding
bug fixes. The bug-fix time can be used to measure software
quality. For example, if bugs in a software file take a long time to
be fixed, it may indicate the file is instable or we need to pay
more attention to the file.

We compute the bug-fix time of two open source projects,
ArgoUML (period 1/2002 - 3/2003) and PostgreSQL (period
07/1996-11/2000), and report bug-fix time statistics. Our goal is
to demonstrate how bug-fix time can be used as a factor for bug
related analysis.

2. EXPERIMENT SETUP
To compute bug-fix time, we need to identify bug-introducing
changes and their corresponding fixes, and then measure the time
between them. For example, suppose a bug was introduced (in file
‘foo’) at revision 3 and it was fixed at revision 9 as shown in
Figure 1. We compute the bug-fix time by subtracting the commit
time of revision 3 from that of revision 9.

Figure 1. Bug-fix time example.
We first extract change histories of the two projects using the
Kenyon infrastructure [1]. We next identify bug fixes by mining
change logs. There are two ways to identify a bug-fix: searching
for keywords such as "Fixed" or "Bug" [4] and searching for
references to bug reports like “#42233” [2, 3, 5]. We use the
keyword-based change log search to identify bug fixes. We
identify bug-introducing changes by applying the fix-inducing
change identification algorithms described in [5]. We then obtain
the commit time of the identified bug-introducing changes and
their corresponding bug fixes from project histories. From the
commit times, we compute each bug-fix time and the average
bug-fix time of each file.

3. BUG-FIX TIME
In this section we report bug-fix time statistics of two projects.

3.1 Bug Numbers and Fix Time
We show the distribution of bug counts for each bug-fix time in
Figure 2 and Figure 3. Bug fixes times in buggy files range from
100-200 days (the spikes in Figure 2 and Figure 3).

Figure 2. Distributions of bug counts by bug-fix time of
ArgoUML.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MSR ’06, May 22-23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005…$5.00.

173

Table 1. Top 20 files with greatest bug-fix times

Rank ArgoUML Files
Bug fix

time
(days)

Bug
count PostgreSQL Files

Bu fix
time

(days)

Bug
count

1 argouml/src_new/org/argouml/uml/ui/UMLInitialValueComboBox.java 332 9 pgsql/src/backend/commands/define.c 504 19
2 argouml/src_new/org/argouml/uml/ui/UMLAttributesListModel.java 328 6 pgsql/src/backend/access/rtree/rtree.c 482 14
3 argouml/src_new/org/argouml/ui/NavigatorConfigDialog.java 324 9 pgsql/src/backend/utils/hash/dynahash.c 474 17
4 argouml/src_new/org/argouml/kernel/ProjectMember.java 320 7 pgsql/src/backend/utils/cache/inval.c 472 16
5 argouml/src_new/org/argouml/uml/ui/UMLTaggedBooleanProperty.java 318 7 pgsql/src/include/storage/bufpage.h 450 14
6 argouml/src_new/org/argouml/uml/ui/ActionSaveGraphics.java 317 6 pgsql/src/backend/utils/cache/relcache.c 444 84
7 argouml/src_new/org/argouml/uml/ui/UMLMultiplicityComboBox.java 317 6 pgsql/src/backend/catalog/pg_proc.c 425 18
8 argouml/src_new/org/argouml/uml/cognitive/critics/WizAssocComposite.java 315 6 pgsql/src/backend/optimizer/path/allpaths.c 422 37
9 argouml/src_new/org/argouml/ui/FindDialog.java 312 7 pgsql/src/backend/executor/nodeMergejoin.c 419 17

10 argouml/src_new/org/argouml/uml/DocumentationManager.java 312 15 pgsql/src/backend/utils/fmgr/dfmgr.c 408 17
11 argouml/src_new/org/argouml/uml/ui/ActionNew.java 310 12 pgsql/src/backend/commands/trigger.c 408 25
12 argouml/src_new/org/argouml/cognitive/ui/ToDoPerspective.java 306 6 pgsql/src/backend/utils/cache/catcache.c 407 32
13 argouml/modules/php/src/org/argouml/language/php/generator/GeneratorPHP.java 305 11 pgsql/src/backend/utils/init/postinit.c 399 46
14 argouml/src_new/org/argouml/uml/cognitive/critics/CrNameConflict.java 305 6 pgsql/src/backend/executor/nodeHash.c 393 19
15 argouml/src_new/org/argouml/uml/ui/UMLComboBoxEntry.java 304 6 pgsql/src/backend/executor/nodeAgg.c 391 53
16 argouml/src_new/org/argouml/cognitive/critics/ui/CriticBrowserDialog.java 304 8 pgsql/src/backend/rewrite/rewriteDefine.c 385 29
17 argouml/src_new/org/argouml/uml/ui/ActionAddOperation.java 292 15 pgsql/src/backend/access/gist/gist.c 384 19
18 argouml/src_new/org/argouml/uml/ui/ActionDeleteFromDiagram.java 289 10 pgsql/src/backend/nodes/readfuncs.c 382 60
19 argouml/src_new/org/argouml/uml/ui/ActionAddTopLevelPackage.java 289 6 pgsql/src/backend/catalog/pg_type.c 376 22
20 argouml/src_new/org/argouml/language/ui/SettingsTabNotation.java 287 15 pgsql/src/backend/commands/rename.c 376 24

Figure 3. Distributions of bug counts per bug-fix time of
PostgreSQL.

Figure 4. Bug-fix time (days) of the two projects. Two boxes
indicate 50% of bug-fix time (25% to 75% quartile). The middle
line in boxes indicates the median value of bug-fix time.

Figure 4 shows the bug-fix time of the two projects using box
plots. They show that fixing 50% of the bugs requires appx. 100
to 300 days (the two boxes in Figure 4). The median bug-fix time
is about 200 days.

3.2 Number and Bug-fix Time
Table 1 lists the top 20 files with greatest bug-fix times, whose
bug counts are greater than average. The listed files may need
attention to determine why bug fixes take such a long time and
may need to be refactored to permit faster bug fixes in the future .

4. CONCLUSION
By mining software histories of two projects, ArgoUML and
PostgreSQL, we computed and analyzed the bug-fix time of each
file. We believe that bug-fix time is useful, and should be widely
used for bug related analysis.

5. REFERENCES
[1] J. Bevan, E. J. Whitehead, Jr., S. Kim, and M. Godfrey,

"Facilitating Software Evolution with Kenyon," Proc. of
the 2005 European Software Engineering Conference and
2005 Foundations of Software Engineering (ESEC/FSE
2005), Lisbon, Portugal, pp. 177-186, 2005.

[2] D. Cubranic and G. C. Murphy, "Hipikat: Recommending
pertinent software development artifacts," Proc. of 25th
International Conference on Software Engineering (ICSE),
Portland, Oregon, pp. 408-418, 2003.

[3] M. Fischer, M. Pinzger, and H. Gall, "Populating a
Release History Database from Version Control and Bug
Tracking Systems," Proc. of 2003 Int'l Conference on
Software Maintenance (ICSM'03), pp. 23-32, 2003.

[4] A. Mockus and L. G. Votta, "Identifying Reasons for
Software Changes Using Historic Databases," Proc. of
International Conference on Software Maintenance (ICSM
2000), San Jose, California, USA, pp. 120-130, 2000.

[5] J. Sliwerski, T. Zimmermann, and A. Zeller, "When Do
Changes Induce Fixes?" Proc. of Int'l Workshop on
Mining Software Repositories (MSR 2005), Saint Louis,
Missouri, USA, pp. 24-28, 2005.

174

