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Abstract We investigate the effect of magmatic reservoir pressure on the propagation of dikes that

approach from below, using analogue experiments. We injected oil into gelatin and observed how dike

propagation responded to the stress field around a pressurized, spherical reservoir, filled with water. The

reservoir was modeled using two different setups: one simply using an inflatable rubber balloon and the

other by constructing a liquid‐filled cavity. We find that the dike's response is dependent on the sign of the

reservoir pressure (i.e., inflated/overpressurized and deflated/underpressurized) as well as on the dike's

initial orientation (i.e., if its strike is radially, circumferentially, or obliquely oriented to the reservoir). Dikes

that are initially strike radial respond, respectively, by propagating toward or away from overpressurized or

underpressurized reservoirs, taking advantage of the reservoir's hoop stresses. Otherwise‐oriented dikes

respond by changing orientation, twisting and curling into a form dictated by the principal stresses in the

medium. For overpressurized reservoirs, they are coaxed to propagate radially to, and therefore approach,

the reservoir. For underpressurized reservoirs, they generally reorient to propagate tangentially, which

causes them to avoid the reservoir. The magnitude of reservoir pressure controls at which distance dikes can

be affected, and, at natural scales, we estimate that this occurs within a radius of a few tens of kilometers.

This diminishes with time, due to viscous stress relaxation of the crust, which will occur on a timescale of

hundreds of years.

Plain Language Summary Magma commonly moves up toward the surface by creating cracks in

the crust. It flows inside of the cracks and propagates by applying pressure that drives the flow and damages

surrounding rocks. Nature always finds the easiest path for the crack, so if it takes less pressure to push

apart the ground vertically or horizontally, the crack will grow accordingly. As it makes its way to the

surface, it may encounter local stress variations that change its propagating direction. This applies near

magma storage regions, below volcanoes. If such a region is highly pressurized or deflated, then nearby

cracks will “feel” the change in their surrounding conditions and react by aligning in a direction of favorable

stress. This makes it look like they are growing toward or circling around the storage region, respectively. We

studied this behavior using scaled model experiments in laboratory conditions. We use different types of

materials to represent nature, such as gelatin as rock and oil as magma. We were able to show how these

cracks change shape for different reservoir pressures. We found that after a large eruption, subsequent

eruptions are more likely to occur farther from the summit of a volcano.

1. Introduction

When magma ascends from depth toward a shallow magmatic storage region, it can either migrate via an

existing pathway (i.e., a conduit) or fracture open a new pathway in the form of a dike. Deeply sourced feeder

dikes can supply large volumes of mafic magma, which may either arrive to a shallower reservoir andmingle

with the existing magma or bypass the reservoir and erupt at the surface. For example, some monogenetic

eruptions at Sanganguey volcano (Mexico) emit lavas that come directly from a deep reservoir, while others

emit lavas that represent a mixture of deeply and shallowly residing magmas (Crabtree &Waters, 2017). The

path that a feeder dike takes depends on the state of stresses in the crust, and one significant source of stress

can be a pressurized magmatic reservoir, which has been shown can attract feeder dikes (Karlstrom et al.,

2009). Generally speaking, when fresh magma arrives to a magmatic storage region, it is thought to

remobilize the residing magma, which can lead to an eruption (Murphy et al., 2000; Ruth et al., 2016).

Whether a dike propagates toward a shallow reservoir and mingles with the shallow magma, or bypasses

the reservoir, has an effect on the probability, location, and style of eruption, which has important
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implications for hazards and risk management. We therefore want to understand how dikes propagate in the

presence of a pressurized or underpressurized magmatic reservoir.

Dikes are known to be oriented according to the stresses in the crust and open against the least compressive

principal stress, σ3, and propagate perpendicular to this direction (Delaney, 1986). If a dike enters a localized

stress field, such as that due to a pressurized magma storage region, it can twist and curl into its preferred

orientation. For example, Porreca et al. (2006) show that dikes in the Mt. Somma scarp near Vesuvius take

a range of orientations, from radial to circumferential, from inward to outward dipping, and posit that this is

due to varying reservoir pressures at the time of emplacement. This is because a pressurized reservoir favors

radial emplacement, while a depressurized one favors tangential orientation (Bianco et al., 1998). Indeed, at

the well‐exposed Ardnamurchan dike swarm, Anderson (1937) interprets inward dipping circumferential

dikes as sourced from an overpressurized reservoir and outward‐dipping dikes sourced from an underpres-

surized reservoir. More recently at the same location, Magee et al. (2012) show via the anisotropy of magnetic

susceptibility that magma flowwas dominantly horizontal and that the flow aligned similarly to nearby NW‐

SE trending regional dikes. They proposed that the circumferential and regional dikes are linked and that

the local circumferential pattern was due to the reservoir's pressure.

The competition between local and regional stress fields can be evident from a dike's orientation. On the vol-

canoes of the Galapagos Islands, for example, swarms of dikes tend to align either circumferentially near the

edifices or radially a bit further away (Chadwick & Dieterich, 1995). This is because many of the volcanoes

have calderas, whose formation causes unloading of the underlying crust. This generates an extensional

force that causes dikes, originating from the reservoir, to emplace in such orientations (Bagnardi et al.,

2013). This also would cause any subsequent feeder dikes, ascending from below, to deflect laterally away

and eventually erupt at the caldera rim (Chadwick & Dieterich, 1995; Corbi et al., 2016). Away from the col-

lapse structure, the stress field is configured differently, and dikes take on a radial pattern. For another

example, using geophysical monitoring techniques, Gudmundsson et al. (2014) show that during the 2014

Bárðarbunga eruption (Iceland), a dike intruded into the crust from a pressurized reservoir and began to pro-

pagate radially away. Some kilometers away, the dike rotated by ~30° to match the orientation of the

regional stresses.

Dikes can also change orientation due to other factors. Crustal heterogeneities (e.g., layers) play a significant

role, deflecting dikes into sills, in that a strong overlying layer may cause dike propagation to come to arrest

(Rivalta et al., 2005). If the two layers are not strongly coupled together, pressure accumulation at the inter-

face may lead to failure and decoupling, allowing the magma to form a sill (Kavanagh et al., 2015).

Furthermore, a propagating dike or sill can abruptly change orientation at its leading edge, due to the bal-

ance of internal forces and the cohesive strength of the surrounding crust (Galland et al., 2014; Schmiedel

et al., 2017). Galland et al. (2014) show using analogue experiments with silica powder that if a dike or sill

is shallow (overlying compressional forces are low) and has a high viscosity and/or high influx rate (internal

pressure is high), it can divert into a cone sheet.

The direction in which a dike propagates depends on the orientation of the principal stresses in the crust, as

well on the distribution of stresses (i.e., if there is a vertical or horizontal gradient in magnitude). Watanabe

et al. (2002) shows with analogue experiments, injecting silicon oil into gelatin, that a surface load reorients

the stress field to attract dikes. Maccaferri et al. (2011) show similar results numerically, by modeling a

boundary element liquid‐filled crack, for various loadings and dike angles of ascent. In both cases, the strike

of the dike is oriented circumferentially to the loading, and the dike curls inward toward the edifice load. An

edifice's load, however, can induce a compressive state on the underlying crust and inhibit dike propagation

(Pinel & Jaupart, 2003). Dikes that propagate into such a region may either come to arrest or begin horizon-

tal propagation at their lateral edges. Urbani et al. (2018) use analogue modeling to extend this concept to

topography more generally and show that dikes propagate away from topographic highs to erupt in

topographic lows.

It is clear that dikes respond to stresses in the crust in a complex fashion and that their ability to interact with

existing magma bodies has important hazards implications, such as influencing the location of future erup-

tions. We therefore investigate how dikes respond (i.e., how they bend and change orientation or how they

propagate horizontally) to a pressurized (i.e., inflated or deflated) magmatic reservoir using analogue experi-

ments. This allows us to explore such responses simply by varying the initial conditions, which are the initial
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dike orientation and the magnitude of reservoir inflation or deflation. For a small subset of experiments, we

use a different setup to secondarily investigate how dikes behave when they intersect with the reservoir.

These simple models can be intuitive and descriptive and allow us to simulate complex three‐dimensional

behavior that cannot readily be modeled via numerical methods.

2. Methods

Throughout this study we refer to dikes in different orientations, relative to the reservoir (Figure S4, in the

supporting information). The following terminology will be adopted:

1. Radial or strike radial: We use in the conventional sense to indicate dikes that are vertically oriented and

whose strikes are radial to the reservoir.

2. Circumferential or strike circumferential: We generally use this in the conventional sense as well, for dikes

whose strikes are oriented tangential to the map‐view projection of the reservoir. Such dikes can propa-

gate radially to the reservoir, in the way that a cone sheet does, but are not “radial dikes.”We use this for

both inward and outward dipping dikes.

3. Oblique: Dikes whose strikes are initially oblique (45°) to the map‐view projection of the reservoir.

4. Coaxial: Dikes whose vertical leading tips are aligned with the center of the map‐view projection of the

reservoir. They are positioned directly below the reservoir.

5. Nonradial: We use this to mean dikes in our experiments that were not radial dikes, meaning circumfer-

ential, oblique, and coaxial dikes.

2.1. Experimental Procedures

We performed the experiments in 40 × 40 × 30 cm (length, width, and height) and 50 × 50 × 50 cm tanks,

filled with 3.75 wt% industrial gelatin (250 bloom). The retailer did not specify the animal source beyond beef

or pork (see the supporting information), though the two sources have been shown to be mechanically simi-

lar (Nur Hanani et al., 2012). We prepared each gelatin in a similar way, by mixing gelatin granules into a pot

of purified water and slowly heating the pot to 60 °C, while constantly stirring with an overhead stirrer (Di

Giuseppe et al., 2009; Tosh et al., 2003). We added a small splash of bleach to the gelatin to mitigate bacteria

growth, which causes the gelatin to become cloudy in appearance. The resulting liquid gelatin is then placed

in our cold room (15 °C) to solidify for 72 hr, with a layer of oil on the surface to prevent evaporation.

Gelatin is an ideal medium for such experiments, as it can scale to the Earth's crust and is transparent, so we

can observe what occurs inside (Di Giuseppe et al., 2009; Galland et al., 2015; Kavanagh et al., 2013; Rivalta

et al., 2015). Due to the slight variations in the preparation (initial temperature, cooling time, and cooking

time/evaporation), it varies somewhat in strength from experiment to experiment, which we measure.

Gelatin is a photoelastic material, so we can measure the gelatin's strength at the beginning of each experi-

ment via the velocities of shear waves, which become visible using a pair of polarizing filters (Figure 1;

Taisne & Tait, 2011). When light passes through these filters, it becomes linearly polarized to a particular

incidence angle. As light passes through the gelatin, its retardation depends on the stress level and the

Figure 1. (a) A drawing of the setup to visualize shear waves. Light passes through polarizing filters, placed in front of and

behind the experimental tank. Stresses perturbation within the gelatin become visible, and, by gently exciting the

gelatin surface, we can see shear waves propagating. (b and c) Two sequential images of a shear wave (dark region) pro-

pagating downward through a solid gelatin. The velocity is used to estimate the gelatin's Young's modulus.
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light's wavelength (Ramesh, 2000). This enables us the see the deviatoric stress in the gelatin and is sensible

enough to visualize propagating stress perturbation generated at the surface. The shear modulus of the

gelatin, G, is directly proportional to the shear wave velocity, vs, via

G ¼ ρvs
2; (1)

where ⍴ is the gelatin's density (Lee et al., 2017). For a weak material like gelatin, these shear waves can be

quite slow (~1 m/s) and are easy to track with a simple camera or the unaided eye. Finally, the Young's mod-

ulus, E, can be found via

E ¼ 2G 1þ νð Þ; (2)

where ν is the Poisson's ratio of the medium.

We injected dikes from the base of the tank using an injection piece attached to a pump, which we used to

supply the liquid. The piece contains a retractable blade inside, which forms an initial precut (Figure 2a),

forcing the dikes into our preferred, vertical orientation. We set the balloon and injector position so that

the dike's initial strike is oriented either radial (experiments 1 and 2), circumferential (experiments 3 and

4), oblique at a 45° angle (experiments 5 and 6), or coaxial (experiment 7) to the reservoir (Figure 2b). For

the injected liquid, we used vegetable oil mixed with chili powder (to provide pigment), which is less dense

than gelatin and rises buoyantly. We generally injected constant volume dikes, in that we pumped in the oil

with a moderately fast influx over a period of a few minutes, turned off the pump, and allowed the dikes to

ascend solely due to their buoyancy. Dikes extended in length, and the tail region remained filled with the

initial liquid. For two experiments, we had constant‐flux conditions, in that we never stopped injecting oil, so

the dike propagated primarily due to the driving pressure (from the pump) and less due to buoyancy.

To model the reservoir, we used two different setups, both of which achieved the primary goal of generating

a stress field around the reservoir. For the first setup we embedded, from above, a simple latex balloon in the

gelatin (while still warm and liquid), with a diameter of ~10 cm and with its center positioned ~15 cm below

the surface. We accessed the balloon using a vertical tube (Figure 2c), which we filled with water to apply

hydrostatic pressure to the balloon and thereby maintain its diameter. After the gelatin solidified, the bal-

loon could be further inflated or deflated (via the tube) to apply a compressive or extensional deviatoric stress

to the system (Figure 2d). With this setup, the balloon acts as a physical barrier, so we could not observe

interchange of liquids between the dike and reservoir, but we could model the stress field around the

Figure 2. Schematic of our experimental setup. A balloon embedded in gelatin is pressurized and a pump injects oil. We record the experiments with cameras from

different perspectives. (a) Our dike injection piece, shown attached to the bottom of an empty tank. It contains a sliding blade that makes an initial cut in the

gelatin, into which oil is pumped. (b) Plan view showing the balloon and injector positioning and offset, for different dike orientations. The injector location is

somewhat constrained and can be rotated in 90° increments, so we move the balloon to control distance and orientation. (c) An embedded balloon in a gelatin is

pressurized or depressurized via a vertical tube (here we show experiment 5; see Table 1 for experimental conditions). (d) The corresponding deviatoric stress field

shown using polarized filters. The repeating rainbow pattern indicates the stress gradient and allows us to minimize boundary effects. (e) An apparatus allows

us to construct a liquid reservoir without a balloon. Hot water is circulated into a balloon to remelt a layer of surrounding gelatin. The balloon is deflated and

surrounded with dyed water. (f) A photo showing the final cavity in a pressurized state (experiment 1).
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reservoir. We used polarized film to visualize the extent of the stress distribution and minimize their inter-

action with the tank walls, therebymitigating boundary effects. Stress visualization helped us ensure that we

injected the dikes into a region of low stress, which allowed us to observe their behavior as they entered the

stress field around the balloon. For the second setup, we wanted to be able to assess the fluid exchange

between the reservoir and dike, and so we designed a specific apparatus to construct a balloon‐less reservoir.

This piece allowed us to embed a pressurized balloon in the gelatin, then deflate it and replace it with dyed

water (Figure 2e). The liquid‐filled cavity could then be further pressurized to perform the experiment

(Figure 2f). The setup is a bit complicated, and so we explain it further in the supporting information.

We recorded the experiments using typical cameras, which took a time lapse of photographs from different

perspectives and allowed us to track the dikes' position and geometry (see Pansino & Taisne, 2018, for data

repository). We took photos in 18‐MP resolution at a frequency of 6 photos per minute, which was high rela-

tive to the dike velocity (generally <1 mm of propagation between photos).

2.2. Scaling

The scaling and analysis of this study rely on the deviatoric stresses in the medium, in which the magnitude

at any radial distance from the center of reservoir, r, is a function of the reservoir's internal pressure and

radius, respectively, ΔP and rres. This has components that are radial and tangential to the reservoir, respec-

tively, denoted as σrr and σtt:

σrr rð Þ ¼ ΔP rres=rð Þ3 (3)

and

σtt rð Þ ¼ − 1=2ð Þ ΔP rres=rð Þ3: (4)

This assumes the medium behaves as an infinitely‐thick‐walled, spherical pressure vessel (Segall, 2010). A

pressurized reservoir exerts compressive forces on the medium in the radial direction but places it in a state

of extension in the tangential direction. A negative pressure contracts the medium, causing the reverse

effect. The minimum compressive stress, σ3, which a dike opens against, is the lesser of these two compo-

nents, so a nearby dike's preferred orientation (radial or tangential) depends on the sign of the reservoir pres-

sure. The hoop stress (i.e., the σtt component) can have a secondary effect on radially oriented dikes, either

helping or hindering propagation along the nearest edge of the dike.

For comparison with natural systems, we scale the stress distribution against the fracture pressure of the

dike, Pf, which quantifies the amount of pressure necessary for a dike to fracture the medium, and

therefore propagate

σ
* ¼ ∣σ3∣=Pf : (5)

The dimensionless stress, σ*, essentially maintains that the magnitude of stress is proportional to the

strength of the material. This is a similar approach as taken by Daniels and Menand (2015), who scale regio-

nal extensional stresses against dike buoyancy forces; we will also incorporate buoyancy into the scaling.

Following Lister and Kerr (1991),

Pf ¼ Kc=Lb
1=2; (6)

Menand and Tait (2002),

Kc ¼ 2γEð Þ1=2; (7)

and Taisne and Tait (2009),

Lb ¼ Kc=Δ⍴gð Þ2=3: (8)

Lb is the buoyancy length, theminimum length a dike must surpass to buoyantly rise through the crust with-

out any external driving pressure. Kc and γ are, respectively, the fracture toughness and surface energy of the
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medium (both material properties). Δ⍴ is the fluid‐medium density difference, and g is gravity.

Equations (6)–(8) can be combined to relate Pf to the medium's strength properties and the dike's buoyancy:

Pf ¼ 2γEΔ⍴gð Þ1=3: (9)

In our experiments, we injected vegetable oil (~910 kg/m3) into gelatins of 3.75 wt% concentration

(~1,010 kg/m3, measured via a sample's mass and volume offset when submerged in water), leading to a

Δ⍴ of 100 kg/m3 for all experiments (Table 1). We assume γ to be 1 J/m2 (Kavanagh et al., 2013), and E ranges

between 3.3 and 5.3 kPa (derived from direct measurement of G). For ΔP, we estimate the reservoir pressure

using its change of radius due to inflation or deflation, Δrres. The strain associated to the reservoir expansion

or contraction is simply related to the stress at its outer margin via the Young's modulus, assuming small

radius variation:

ΔP ¼ EΔrres=rres: (10)

We label σ*(r) at the reservoir wall margin as ΔP*:

ΔP* ¼ σ
* rresð Þ ¼ ΔP=Pf : (11)

Under these conditions, |ΔP*| ranges from 10−1 to 10. This overlaps with

natural systems, which are estimated to have a similar range of 100–103

at the reservoir boundary, neglecting viscoelastic effects around the reser-

voir and using values listed in Table 2. The maximum magnitude of σ* is

ΔP* at the reservoir boundary and approaches 0 at large radii.

3. Results

3.1. Qualitative Observations

We note two classifications of dike response, which depend on the dike's

initial orientation. Strike‐radial dikes propagated vertically at the outset of

each experiment and, as they approached the reservoir, began to propa-

gate horizontally as well (Figures 3a and 3b). We believe that the dikes

took advantage of the hoop stresses around the reservoir, which encour-

aged lateral movement. For the overpressurized experiment (experiment

Table 1

Experimental Conditions

Parameter (units) Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7

E (Pa) 4,642 2,750 5,272 3,424 3,311 3,719 3,827

Gelatin volume (L) 112 100 48 112 100 100 100

Cold room temperature (°C) 15 15 15 15 15 15 15

Cooling time (days) 5 3 3 4 3 3 4

Dike initial orientation Radial Radial Circum. Circum. Oblique Oblique Coaxial

Δρ (kg/m
3
) 100 100 100 100 100 100 100

Reservoir diameter (cm) 9.9 8.3 10.1 7.6 10.7 7.9 8.6

Reservoir depth (cm) 16.6 8.6 8.8 16.7 14.9 14.3 13.1

Dike—reservoir horizontal offset (cm) 16.3 10.3 11.0 16.1 14.1 14.1 0.0

Pf (Pa) 209 175 218 189 187 194 196

Injection type
a

CV CV CF
b

CV CV CV CF

Volume or rate (ml, ml/min) 120 50 4.25 100 72 144 20

Overpressured/underpressured Over Under Over Under Over Under Under

ΔP (Pa) 124 −378 1,079 −96 325 −545 −356

ΔP* 0.6 −2.2 5.0 −0.5 1.7 −2.8 −1.8

Note. E = Young's modulus; Δρ = gelatin‐dike density contrast; Pf = gelatin fracture pressure; ΔP = reservoir pressure; ΔP* = dimensionless reservoir pressure.
a
Constant volume (CV) or constant flux (CF).

b
At this moment, we did not have good control over the driving pressure of the dike. We believe the pressure was

fairly constant, but there was likely some fluctuation.

Table 2

Comparison of Values Between Experiments and Natural Systems

Symbol (unit) Meaning Experiments
a

Nature

ΔP (Pa) Reservoir pressure 10
2
–10

3
10

5
–10

8b

E (Pa) Young's modulus ~2,500–5,500 10
10.5

Δ⍴ (kg/m
3
) Medium‐liquid

density difference

100 100
c

ɣ (J/m
2
) Surface energy 1

d
1
d

ν Poisson's ratio 0.5 0.25

ΔP* Dimensionless

reservoir pressure

10
−1

–10
1

10
0
–10

3

a
All values in experiments column were measured in our lab, unless
otherwise noted.

b
Karlstrom et al. (2009).

c
Taisne and Tait (2009).

d
Kavanagh et al. (2013).
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Figure 3. Annotated photos (all in cross‐sectional view) depicting different dike responses, depending in the initial dike

orientation (each row) and reservoir pressure state (each column). Photos a, b, c, etc. correspond to experiments 1, 2, 3,

etc. unless otherwise noted; for parameters, see Table 1. For scale, the reservoir in all photos is 10 (+/− 2) cm in diameter.We

label the horizontal and vertical positions as x and z. Black dashed lines outline the dikes and black arrows show their

movement. Photo (a) shows an example from reservoir setup 2 (see section 2.1)while the others show setup 1. (a and b)Hoop

stresses around the reservoir (shown bywhite dashed lines) encourage or inhibit dike opening, causing the dike to propagate

laterally. (c and d) Experiment 3, overpressurized and then underpressurized. Dikes change orientation to open against σ3,

and the preferred path is traced by the dashed white lines. (e and f) Two views are presented to have a sense of the 3‐D

geometry of oblique dikes. The stars indicate contact between the dike and balloon. The dikes rotate horizontally and

vertically into their preferred orientations. (g) The overpressure scenario is omitted, since the dike would go straight into the

reservoir. The dike initially curls into a concentric shell, but the driving pressure forces it to escape this path.
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1; Figure 3a), the hoop stresses were extensional, which helped the dike propagate toward the reservoir,

while the reverse occurred for the underpressurized experiment (experiment 2; Figure 3b). In the underpres-

sure experiment, the dike propagated horizontally away from the reservoir upon encountering its stress field.

After the dike passed around the stress field, it resumed vertical propagation.

Experiment 1 was set up in a way that allowed us to assess how liquid exchange occurred between the

dike and reservoir. We observed that the dike intersected with the reservoir and that the two immiscible

fluids stratified due to density contrast. The dike allowed a relief of pressure in the reservoir (observed

using polarized film) and afterward continued propagating vertically toward the surface. We do not have

pressure data for the dike to be able to quantify our results, but we do discuss these observations later in

section 4.

Other experiments, with nonradial dikes, had a second class of response, in which dikes curled and twisted

into new orientations (Figures 3c–3g). They reoriented according to σ3, so for overpressurized experiments

(experiments 3 and 5; Figures 3c and 3e), the dikes curled inward to propagate toward the reservoir. For

underpressurized experiments (experiments 4, 6, and 7; Figures 3d, 3f, and 3g), σ3 is radial to the reservoir,

so the dike reoriented to propagate tangentially around it. After these dikes passed around the reservoir, they

began to escape its stress field, and their paths transitioned from curved to linear. As a result, they never

formed perfect shells around the reservoir; instead, they took more of a tulip‐flower‐petal like shape. Both

oblique and coaxial dikes changed orientation to become circumferential dikes.

In addition to these two classifications of dike response, we noticed that dikes generally propagate either

toward or away from the reservoir, depending on the reservoir's pressure state (i.e., overpressurized or

underpressurized). Overpressurized reservoirs tend to attract dike, either due to hoop stresses or σ3 orienta-

tion, and in each case the dike intersected with the reservoir. Conversely, underpressurized reservoirs pre-

vented dikes from approaching the reservoir, and in each case the dike was forced horizontally away, to

then erupt at the surface.

3.2. Quantifying Dike Response

We characterize dike response via visual analysis. As noted, radial dikes responded by propagating laterally,

while other, nonradial dikes responded by changing orientations. We analyze these two responses sepa-

rately. For experiments with nonradial dikes (experiments 3–7), only a single photo taken at the end was

necessary to quantify the results, since the shape of the dike records its history of interaction with the stress

field (Figure 4a). We traced its shape in an illustration software to assist with detection of the dike, which

sometimes was obscured by features that would hinder automated dike tracking (e.g., polarized light fringes;

dike overlapping the reservoir). We processed the output in Matlab to measure the dike's position as a func-

tion of depth, relative to the balloon reservoir (Figure 4b). These dikes respond to reservoir stress by chan-

ging orientation, so we analyze the magnitude of orientation change as a proxy for dike response

(Figure 4c), using the parameter ∂2x/∂z2, where x and z are, respectively, the horizontal and vertical compo-

nents of the dike's position. In short, we quantify the location of each pixel in a photo of the dike and see how

it compares with its neighboring pixels.

For dikes with initially strike‐radial orientations, we note that two locations on the dike are important to

describe how the dikes behaved: the point nearest to the reservoir and a point that indicates where the dike

fractured the medium and grows the crack's surface as it propagates (Figure 4d). We used each frame of a

time lapse to determine the location of the nearest point on the dike to the reservoir and pairs of sequential

frames to determine where the dike was in the process of fracturation. We analyzed these frame pairs in

Matlab, and, by taking the difference between the two, we could highlight this crescent‐shaped new surface

(Figure 4e). We calculated the geometric center to represent this area and track how it moves horizontally

due to the reservoir's stress field, which we quantify using the parameter ∂x/∂z (Figure 4f).

To be able to compare our experiments with nature, we first normalize the radius, r; the x and z components

of the radius; and the dike breadth, B, by the reservoir radius, rres, into dimensionless forms, respectively, r*,

x*, z*, B*:

r* ¼ r=rres; (12)

x* ¼ x=rres; (13)
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z* ¼ z=rres; (14)

B* ¼ B=rres: (15)

We similarly use the dimensionless form of the dike response parameters, so instead of ∂2x/∂z2, we use ∂2x*/

∂z*2; ∂x/∂z is inherently dimensionless.

As nonradial dikes ascend from below, they change orientation as a function of σ* (introduced in section 2.2

). In the case of overpressurized experiments, this is a straightforward, power law relationship. In the case of

underpressurized reservoirs, when these dikes bypass the reservoir, they leave its stress field and transition

from curved to linear trajectory. When this occurs, the change of orientation response, ∂2x*/∂z*2, drops. The

relationship between σ* and ∂2x*/∂z*2 for a dike entering the stress field is different from the relationship for

one leaving the stress field. We therefore analyze data for the first relationship only, to be able to compare

with overpressurized experiments and to be able to characterize where a dike “feels” the stress due to the

reservoir. All nonradial experiments are plotted together (Figure 5a) and form a common power law trend:

∂2x*=∂z*2 ¼ 61:4σ*2:4: (16)

For the strike‐radial dikes, we performed a similar analysis. These dikes remained vertically oriented and

preferred to rise vertically, due to their buoyancy. They only deviated from vertical propagation because of

the stress field due to the reservoir (Figures 3a and 3b), as hoop stresses close to the reservoir are relatively

high. In the underpressurized experiments, the dike eventually passed around the stress field and continued

to propagate vertically. Similar to nonradial dikes, we analyzed the response as the dike entered the stress

field to compare the two experiments and quantify where the dike begins to “feel” the stress due to the

Figure 4. (a) In some experiments, the dike was not easy to see (experiment 7). (b) In such cases, we manually traced the

dike in an illustrating software (black region), which helped us to quantify its path in Matlab (yellow + signs). For dikes

that were distinct from the background, we did no manual tracing. (c) For nonradial dikes, the response is quantified

by how abruptly it changes orientation, via the parameter ∂
2
x/∂z

2
. (d) Sequential photos (overlapped) of a propagating

dike (experiment 2). Two important points on the dike: that nearest to the reservoir center (red star) and the geometric

center of where fracturation is occurring between sequential frames (marked by the green star). Also included is the center

of the roughly penny‐shaped head region of the dike (blue star). (e) In Matlab, subtracting one photo from the next

in a sequence highlights the differences between the two and illustrates where the dike was growing. The “two important

points” are automatically located (green/red dots). (f) We analyze strike‐radial dikes by tracking their change of horizontal

position, represented by ∂x/∂z.
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reservoir. As noted, we found that the dike's response, ∂x/∂z, is a function of the stress at two points on the

dike's surface: its nearest point to the reservoir, σ*near (Figure 4d, red star), and the geometric center of where

fracturation is occurring, σ*frac (Figure 4d, green star). When we view its behavior against the difference in

stress between these two points, a power law relationship emerges (Figure 5b):

∂x=∂z ¼ 1:73 σ
*
near−σ

*
frac

� �0:69
: (17)

3.3. Quantifying the Effective Radius of Interaction

At this moment, we can describe the degree to which a dike deflects as a function of the stresses in the crust.

Dikes that feel very little stress deflect to a very small degree. We want to understand how close a dike needs

to be to a reservoir before it is significantly affected by the stress field and the radius at which this occurs we

define as a critical radius, r*crit.

3.3.1. Nonradial Dikes

For circumferential, oblique, and coaxial orientations, dikes respond to the medium stresses by changing

orientation, which becomes pronounced as they approach σ* of 0.1 (Figure 5a). We define this value as a cri-

tical stress, σ*crit, and it tells the location of r*crit. For σ* at the reservoir's wall, ΔP*, we use equations (3), (5),

and (12) to derive:

r*crit∼ ΔP*=σ*
crit

� �1=3
: (18)

For σ*crit = 0.1, the critical radius is therefore a function of only ΔP*. In section 4.1, we will convert these

dimensionless findings into plausible values for nature.

3.3.2. Radial Dikes

We perform a similar analysis to scale up the results from the radially oriented dikes (Figures 3a and 3b). In

section 3.2, we noted that the degree to which a dike is horizontally deflected depends on the stress differ-

ence between nearest point on the dike (Figure 4d, red star) and a point at the geometric center of newly cre-

ated surface (Figure 4d, green star). For a dike whose center (Figure 4d, blue star) is located at xcent and zcent,

assuming a penny‐shaped crack, the dimensionless stress of the nearest point, σ*near, is

σ
*
near ¼ ΔP*= r* xcent ; zcentð Þ−B*=2

� �3
: (19)

Figure 5. (a) Results from the nonradial dikes. The rate at which the dike changes orientation, ∂
2
x*/∂z*

2
, is a function of

dimensionless stress, σ*. We show this as a semi log plot since some points are a bit less than zero on the vertical axis. We

include a best‐fitting power law curve (black, dashed line). (b) The stress difference between two points on a dike,

σ*near–σ*frac, form a relationship with the degree to which it deflects horizontally, ∂x/∂z. We again plot a best‐fitting curve.
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The geometric center of where fracturation is occurring, located at xfrac and zfrac, does not have a set location;

we only know that it is somewhere on the dike. However, we can easily calculate the stress, σ*frac, for any

point on the dike:

σ
*
frac ¼ ΔP*=r* xfrac; zfrac

� �3
: (20)

With σ*near and σ*frac, we can estimate ∂x/∂z at any point, via equation (17). The deflection of the dike is also

defined as the degree to which the center of the crack moves horizontally as it ascends:

∂x=∂z ¼ xfrac−xcent
� �

= zfrac−zcent
� �

: (21)

When combining equations (17), (18), (20), and (21), no analytical solution can be derived for the location of

xfrac and zfrac. Instead, we numerically model its location in Matlab by finding the point which best allows

equations (17) and (21) to be equal, for a corresponding initial location of the dike center (Figure 4d, blue

star), as function of ΔP* and B* (some solutions are shown in Figure 6). In this way, for any point at xcent
and zcent, we locate the point at xfrac and zfrac, estimate σ*near and σ*frac, via equations (19) and (20), and

finally estimate ∂x/∂z using either equations (17) or (21). This methodology allows us to map out ∂x/∂z for

anyΔP* and B* (Figure 6). It is worth noting that in the negativeΔP case, xfrac is further away than xcent, since

dikes deflect away from the reservoir, while the reverse is true for positive ΔP; even so, the stress difference

tends to be dominated by σ*near, so the ∂x/∂z maps for both −ΔP and +ΔP look similar.

To find the r*crit for these radial dikes, we define a critical deflection at ∂x/∂z= 0.1, in which the dike deflects

horizontally 1 m for every 10 m it ascends; we choose this value since it is at the lower limit of our experi-

mental observations (Figure 5b). The ΔP* and B* parameters affect r*crit, so we attempt to define an

Figure 6. Maps of ∂x/∂z (color bar) for different dimensionless dike sizes, B*, and dimensionless reservoir pressures, ΔP*.

These are generated numerically using Matlab, by finding the location of xfrac and zfrac that allows equations (17) and (21)

to be equal, for any location of the dike center, then displaying the corresponding value of ∂x/∂z. We define that

the dike begins to respond where ∂x/∂z > 10
−1

(which we set as the lower limit of the color bar). The horizontal and

vertical axes are dimensionless positions with the reservoir center at (0,0). The white region in the upper, left corner

represents the locations where the dike touches the reservoir and is therefore larger for large‐breadth dikes (right column).

Deflection is larger at higher pressures (bottom row).
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empirical relationship between the three, so that we can know if the dike

is within the r*crit, without having to consider its nearest point or the

geometric center of new surface creation. We consider B* on the range

of 10−1–101, to analyze dikes much smaller and much bigger than the

reservoir. They follow a power law, such that r*crit = aσ*bB*c, so we find

a best‐fitting surface, for the variables a, b, and c, which allows us to make

an estimate of critical radius for a range of pressures and dike size

(Figure 7). We will scale this information to natural systems in the

next section.

r*crit ¼ 2:87ΔP*0:24B*0:15: (22)

4. Discussion

4.1. Dimensions of the Critical Radius

We scale the dimensionless results presented above for plausible natural

conditions, using equations (18) and (23), respectively, for nonradial and

radial dikes. For these equations, r*crit can be described as functions of

ΔP* and B*. We performed an analysis for 100 < ΔP* < 103, which correspond to ΔP of 105–108 Pa, assuming

values of E and Δρ listed in Table 2 and therefore a fracture pressure magnitude of 105 Pa. The parameters

r*crit and B* are proportional to the reservoir's radius and can be easily converted back to dimensions via

equations (12) and (15). In this example we consider the dike's horizontal breadth to be 1 or 10 km. We

therefore view the critical radius against reservoir radius; reservoir pressure; and, for radial dikes, dike

breadth (Figure 8). For example, a 1‐km radius reservoir will likely affect dikes within a 2‐ to 20‐km radius,

depending on the reservoir pressure, numbers on the same order of magnitude as previous numerical

models (Karlstrom et al., 2009).

4.2. Spherical Nature of the Reservoir

We model the magma storage region as a spherical reservoir because it is practical to construct in the lab

using a balloon and, although the balloon reservoir in our experiments did not always deform perfectly

Figure 7. A surface showing at what distance strike‐radial dikes begin to

respond, r*crit (color bar), against dike size, B*, and reservoir pressure,

ΔP*. Overpressure and underpressure conditions yield similar r*crit.

Figure 8. We estimate the radius, rcrit, at which dikes begin to deflect, for varying reservoir radius, rres, and pressure (color shading) at natural scale. (a) For non-

radial dikes, estimated via equation (18). Line shading represents estimates for different reservoir pressures. (b) For radial dikes via equation (23). Shadings and

pressures are as in (a). Dashed and solid lines represent horizontal dike breadths of 1 and 10 km, respectively.

10.1029/2018JB016311Journal of Geophysical Research: Solid Earth

PANSINO AND TAISNE 285



uniformly (probably due to heterogeneous strength of the balloon material; see Figure 3b), it models a

simple, spherical (or nearly spherical) stress field. It should be noted, however, that the shape of the

reservoir controls the shape of the surrounding stress field and, in turn, how dikes will propagate in

its vicinity.

Unfortunately, we arrive to the problem that no one really knows the geometry of an active magma storage

region. Field evidence of extinct systems indicates that intrusive bodies are built incrementally by layering

of sills (Barnett & Gudmundsson, 2014; Menand, 2011; Menand et al., 2010). Ground deformation data,

however, imply that reservoirs commonly undergo inflation when pressurized, which at the surface can

be modeled as a point expansion (Pascal et al., 2014). Whether the actual form of a reservoir is roughly

elliptical or is a stack of hydraulically connected sills and dikes remains open to debate. Gudmundsson

(2012) points out that elliptical reservoirs are thermally stable, while protrusions (dikes and sills) extending

from such a body are prone to solidification. We feel that a hydraulically connected network of dikes and

sills, when pressurized, may exert a stress field on the crust that at a distance, can be approximated to a

point expansion. At any rate, the stresses due to inflation are evident on the earth's surface, so we can be

sure that they exist elsewhere in the crust as well and that dikes will be encouraged to deflect wherever they

are present.

It is likely that aspect ratio of a natural magmatic reservoir dictates the degree to which our findings are

applicable. Highly elongated (e.g., very flat, very tall, and narrow) reservoirs will generate a stress field that

is fundamentally different to what wemodel, and dikes would therefore have a different response fromwhat

we observed. We expect low to moderate aspect ratio reservoirs to affect dikes in a similar fashion to our

study. Moderately oblate ellipses concentrate stress on their out horizontal margins (Gudmundsson, 2006,

2012), which should affect dike further away than a spherical geometry. Conversely, prolate ellipsoids

concentrate stress on the vertical margins of the reservoir, meaning dikes would be affect only when nearer.

4.3. Relation to Various Volcanic Behavior

4.3.1. Reservoir‐Avoiding Dikes

Our findings that dikes can propagate around a reservoir (Figures 3d and 3f) relate to some observations

made in nature. Anderson (1937) documented outward‐dipping, circumferential dikes at Ardnamurchan

dike swarm and hypothesized their orientation was due to an underpressurized reservoir, though he

modeled the dikes as originating from the reservoir (ring dikes), rather than below. Magee et al. (2012)

proposed that those dikes indeed flowed around the reservoir (albeit laterally), supplied from regional dikes.

At theMt. Somma scarp (next to Vesuvius), Porreca et al. (2006) made similar observations of dikes that have

a variety of orientations, ranging from circumferential to oblique to radial, and determine that these

orientations may have been a result of the reservoir pressure (overpressured or underpressured) at the time

of emplacement. In either example, we would expect a dike originating from below the reservoir (passing

around it) to be mafic in composition. This seems to be the case at the Mt. Somma scarp, in which exposed

dikes and lavas are more mafic than many of the other products (both plinian and interplinian) in the

locality (Ayuso et al., 1998).

4.3.2. Eruptive Cycles

We can continue to consider the effects of underpressure reservoirs in the context of observations made by

Takada (1997), who documents a cyclic pattern at several volcanoes, including Fuji, Etna, and Mauna Loa.

Takada finds that flank vents following a major eruption tend to be located far away from the central vent

and that subsequent events become progressively nearer as the central edifice approaches another period

of activity, which occurs on a time frame of 400–1,000 years. An eruption deflates the reservoir to some

degree and places the surrounding crust in a state of extension, which inhibits dike propagation close to

the reservoir. In this case, an ascending dike will likely be deflected away from the volcanic center and could

then erupt as a flank eruption (Figure 9). Further eruptions sourced from the reservoir would be unlikely

until either the stresses in the crust relaxed, thus allowing dikes to penetrate the magma storage region,

or magma somehowmanaged to enter the reservoir and repressurize it (i.e., magma supplied to the reservoir

by a stable, long‐lived conduit). As the reservoir repressurizes, the extensional stresses weaken, and the

deflection of dikes becomes less pronounced. This pattern of behavior is difficult to explain by assuming

the dikes are sourced from an overpressurized reservoir. After a major eruption, a volcano would not have

the high internal pressure necessary to drive a dike far away.
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If we assume the crust behaves like a Maxwell material, the stress surrounding the reservoir relaxes with

time, t, such that

σ tð Þ ¼ 2 G ε0 exp −G t=ηð Þ ¼ ΔP= 1þ vð Þ½ � exp −G t=ηð Þ; (23)

where ε0 is the initial strain and G and η are the crust's shear modulus and viscosity (Segall, 2010). This

assumes the initial strain is linearly related to the reservoir pressure, ε0 ≈ ΔP/E, since the material behaves

elastically on this short initial timescale, and that G= E/2(1 + v). Using equations (18) and (23), we estimate

the r*crit as a function of time and the initial pressure (Figure 10), for values of η = 1,020 Pa/s (Di Giuseppe

et al., 2009) and G = 30 GPa. The initial magnitude of r*crit depends strongly on the initial pressure, but the

long‐term value of r*crit becomes small on the order of 100 years for any initial pressure. This has some agree-

ment with Takada's (1997) findings, in which dikes cycle through this relaxation/pressurization pattern on

the order of hundreds to 1,000 years.

4.3.3. Eruption Triggering

An important observation from our experiments is that dikes that breach a magmatic reservoir do not neces-

sarily cease propagation (Figures 11a and 11b). In experiment 1, the dike was attracted to the overpressur-

ized reservoir, and, after it made contact, the dike continued to propagate. In our experiment, the two

immiscible liquids stratified by density and the reservoir liquid (neutrally

buoyant in gelatin) provided no buoyant force to continue propagation;

therefore, propagation was driven by buoyancy of the oil (the liquid filling

the dike) and by the slight overpressure of the reservoir. In a natural ana-

logue, the magma in a reservoir would be equally or more buoyant than

the magma in a mafic dike. It could therefore flow inside of the dike

and take advantage of the existing fracture to propagate toward the

surface (Figure 11c).

This has implications for eruption triggering, in that a basaltic dike may

help to open a pathway along which more‐evolved magmas from a

shallow reservoir can migrate. Takeuchi (2004) shows that some cata-

clysmic eruptions of very viscous magma were preceded by precursory

eruptions of magma generally a few orders of magnitude less viscous.

It is conceivable that such eruptions are initiated by deeply sourced

basaltic dikes which, upon breaching the reservoir, encourage eruption

via a combination of mechanisms: (1) remobilization of the residing

magma (Murphy et al., 2000; Ruth et al., 2016); (2) providing a low‐

viscosity lubricating layer inside of the dike, which the viscous evolved

magma slides along (Watts et al., 1999); (3) providing a large fracture,

which requires less pressure to open widely than a small fracture

(Rubin, 1995).

Figure 9. Proposed mechanism for the cyclic pattern of flank eruptions, driven by reservoir depressurization. Summit eruptions depressurize the reservoir and

place the crust in a state of extension, which deflects dikes away. As the stress decreases, either due to repressurization or stress relaxation, the deflection

becomes less pronounced. Eventually, dikes are no longer deflected and the cycle can repeat.

Figure 10. Time evolution of the critical radius of nonradial dike deflection

due to viscoelastic relaxation. Shading represents different initial magni-

tudes of reservoir pressure. The initial stress relaxes with time, so the critical

radius diminishes.

10.1029/2018JB016311Journal of Geophysical Research: Solid Earth

PANSINO AND TAISNE 287



4.4. Driving Pressure

We note that our results have been influenced to some degree by the dikes' driving pressures, which is espe-

cially obvious in experiment 7 (Figure 3g). Dikes with a significant internal pressure seem to propagate

according to their own internally derived local stress field (i.e., they propagate along a straight path) and only

alter course when affected by a significant external stress (e.g., reservoir stresses and regional stresses). As

they escape the external stress field, they continue propagating straight. This behavior is also exhibited to

a lesser degree for other experiments that had an underpressurized reservoir. It seems that this balance

between internal and external pressure sources may dictate the degree to which a dike deviates from its

quasi‐static path. We account for this to some degree in our scaling of experiments, in that σ* is scaled by

the dike's fracturation pressure (which itself is a function of buoyancy and the Young's modulus); however,

the internal pressure can be much higher than the fracturation pressure, which is likely the case in a

constant‐flux experiment (experiment 7). Constant‐volume experiments should have an internal pressure

close to the fracturation pressure.

5. Conclusions

We present an investigation on how dikes respond to the stress field around a pressurized magma storage

region and found two classifications of response. Nonradial dikes reorient to open against σ3 and therefore

propagate either radially or tangentially to an overpressurized or underpressurized reservoir, respectively.

Radial dikes do not change orientation, but rather propagate laterally at their fringes due to the hoop stresses

around the reservoir. Overpressurized reservoirs generate extensional hoop stresses, which help a dike to

propagate toward the reservoir, while the reverse occurs for an underpressurized reservoir.

These two classes of interaction behave as functions of the stress distribution due to the reservoir and, in

both cases, the higher the stress, the more pronounced the reaction. For nonradial dikes, it is a function

of the stress at the dike's vertical leading tip. For radial dikes, the stress has a more complex role, and we find

that lateral propagation functions according to the stress difference between two points: the point nearest to

the reservoir and a point at the center of where fracturation is occurring as it propagates.

Dikes that ascend near a reservoir are likely to cause volcanic crises, regardless of the state of pressure. By

quantifying a volcano's reservoir pressure, however, we can anticipate whether dike will propagate toward

or away from it and therefore whether it is likely to cause an eruption near to, or far from, the central vent,

information that is vital for hazards management purposes. The degree to which we accurately estimate

competing stress sources, that is, the driving pressure of a dike, the local stresses due to the reservoir and

broader regional stresses, will dictate our ability forecast where dikes are likely to erupt.

References
Anderson, E. M. (1937). IX.—The dynamics of the formation of cone‐sheets, ring‐dykes, and caldron‐subsidences. Proceedings. Royal

Society of Edinburgh, 56, 128–157. https://doi.org/10.1017/S0370164600014954

Ayuso, R. A., De Vivo, B., Rolandi, G., Seal, R. R., & Paone, A. (1998). Geochemical and isotopic (Nd‐Pb‐Sr‐O) variations bearing on the

genesis of volcanic rocks from Vesuvius, Italy. Journal of Volcanology and Geothermal Research, 82(1‐4), 53–78. https://doi.org/10.1016/

S0377‐0273(97)00057‐7

Figure 11. (a and b) An example from experiment 1 (cross‐sectional view), showing that dike propagation may continue

after a dike intersects a reservoir. (c) A model for the extraction of viscous reservoir magma into a basaltic dike. The basalt

lubricates and propagates the fracture, while the overpressure and buoyancy of the reservoir magma open the fracture

wide.

10.1029/2018JB016311Journal of Geophysical Research: Solid Earth

PANSINO AND TAISNE 288

Acknowledgments

This work comprises Earth Observatory

of Singapore contribution no. 222. This

research is supported by the National

Research Foundation Singapore (award

NRF2015‐NRF‐ISF001‐2437) and the

Singapore Ministry of Education under

the Research Centres of Excellence

initiative. It has also been partly funded

by the Dr. Stephen Riady Geoscience

Scholars Fund. Our data are available at

https://doi.org/10.26074/5zwv‐7j56.

This is under DR‐NTU, a local instance

of Dataverse, supported by Nanyang

Technological University. For more

information, please see the supporting

information.

https://doi.org/10.1017/S0370164600014954
https://doi.org/10.1016/S0377-0273(97)00057-7
https://doi.org/10.1016/S0377-0273(97)00057-7


Bagnardi, M., Amelung, F., & Poland, M. (2013). A new model for the growth of basaltic shields based on deformation of Fernandina

volcano, Galápagos Islands. Earth and Planetary Science Letters, 377‐378, 358–366. https://doi.org/10.1016/j.epsl.2013.07.016

Barnett, Z. A., & Gudmundsson, A. (2014). Numerical modelling of dykes deflected into sills to form a magma chamber. Journal of

Volcanology and Geothermal Research, 281, 1–11. https://doi.org/10.1016/j.jvolgeores.2014.05.018

Bianco, F., Castellano, M., Milan, G., Ventura, G., & Vilardo, G. (1998). The Somma‐Vesuvius stress field induced by regional tectonics:

Evidences from seismological and mesostructural data. Journal of Volcanology and Geothermal Research, 82(1‐4), 199–218. https://doi.

org/10.1016/S0377‐0273(97)00065‐6

Chadwick, W. W. Jr., & Dieterich, J. H. (1995). Mechanical modeling of circumferential and radial dike intrusion on Galapagos volcanoes.

Journal of Volcanology and Geothermal Research, 66(1‐4), 37–52. https://doi.org/10.1016/0377‐0273(94)00060‐T

Corbi, F., Rivalta, E., Pinel, V., Maccaferri, F., & Acocella, V. (2016). Understanding the link between circumferential dikes and eruptive

fissures around calderas based on numerical and analog models. Geophysical Research Letters, 43, 6212–6219. https://doi.org/10.1002/

2016GL068721

Crabtree, S. M., & Waters, L. E. (2017). The petrologic history of the Sanganguey volcanic field, Nayarit, Mexico: Comparisons in a suite of

crystal‐rich and crystal‐poor lavas. Journal of Volcanology and Geothermal Research, 336, 51–67. https://doi.org/10.1016/j.

volgeores.2017.02.005

Daniels, K. A., & Menand, T. (2015). An experimental investigation of dyke injection under regional extensional stresses. Journal of

Geophysical Research: Solid Earth, 120, 2014–2035. https://doi.org/10.1002/2014JB011627

Delaney, P. (1986). Field relations between dikes and joints: Emplacement processes and paleostress analysis. Journal of Geophysical

Research, 91(B5), 4920–4938. https://doi.org/10.1029/JB091iB05p04920

Di Giuseppe, E., Funiciello, F., Corbi, F., Ranalli, G., & Mojoli, G. (2009). Gelatin as rock analogs: A systematic study of their rheological

and physical properties. Tectonophysics, 473(3‐4), 391–403. https://doi.org/10.1016/j.tecto.2009.03.012

Galland, O., Burchardt, S., Hallot, E., Mourgues, R., & Bulois, C. (2014). Dynamics of dikes versus cone sheets in volcanic systems. Journal

of Geophysical Research: Solid Earth, 119, 6178–6192. https://doi.org/10.1002/2014JB011059

Galland, O., Holohan, E., van Wyk de Vries, B., & Burchard, S. (2015). Laboratory modelling of volcano plumbing systems: A review. In

Advances in volcanology (pp. 1–68). Berlin, Heidelberg: Springer. https://doi.org/10.1007/11157_2015_9

Gudmundsson, A. (2006). How local stresses control magma‐chamber ruptures, dyke injections, and eruptions in composite volcanoes.

Earth Science Reviews, 79(1‐2), 1–31. https://doi.org/10.1016/j.earscirev.2006.06.006

Gudmundsson, A. (2012). Magma chambers: Formation local stresses, excess pressures, and compartments. Journal of Volcanology and

Geothermal Research, 237‐238, 19–41. https://doi.org/10.1016/j.jvolgeores.2012.05.015

Gudmundsson, A., Lecoeur, N., Mohajeri, N., & Thordarson, T. (2014). Dike emplacement at Bardarbunga, Iceland, induces unusual stress

changes, caldera formation, and earthquakes. Bulletin of Volcanology, 76(10), 869. https://doi.org/10.1007/s00445‐014‐0869‐8

Karlstrom, L., Dufek, J., & Manga, M. (2009). Organization of volcanic plumbing through magmatic lensing by magma chambers and

volcanic loads. Journal of Geophysical Research, 114, B10204. https://doi.org/10.1029/2009JB006339

Kavanagh, J.,. L., Boutelier, D., & Cruden, A. R. (2015). Themechanics of sill inception, propagation and growth: Experimental evidence for

rapid reduction in magmatic overpressure. Earth and Planetary Science Letters, 421, 117–128. https://doi.org/10.1016/j.epsl.2015.03.038

Kavanagh, J.,. L., Menand, T., & Daniels, K.,. A. (2013). Gelatin as a crustal analogue: Determining elastic properties for modelling mag-

matic intrusions. Tectonophysics, 582, 101–111. https://doi.org/10.1016/j.tecto.2012.09.032

Lee, B. J., Kee, S.‐H., Oh, T., & Kim, Y.‐Y. (2017). Evaluating the dynamic elastic modulus of concrete using shear‐wave velocity mea-

surements. Advances in Materials Science and Engineering, 2017, 1651753. https://doi.org/10.1155/2017/1651753

Lister, J. R., & Kerr, C. (1991). Fluid‐mechanical models of crack propagation and their application to magma transport in dykes. Journal of

Geophysical Research, 96(B6), 10,049–10,077. https://doi.org/10.1029/91JB00600

Maccaferri, F., Bonafede, M., & Rivalta, E. (2011). A quantitative study of the mechanisms governing dike propagation, dike arrest and sill

formation. Journal of Volcanology and Geothermal Research, 208(1‐2), 39–50. https://doi.org/10.1016/j.jvolgeores.2011.09.001

Magee, C., Stevenson, C., O'Driscoll, B., Schofield, N., & McDermott, K. (2012). An alternative emplacement model for the classic

Ardnamurchan cone sheet swarm, NW Scotland, involving lateral magma supply via regional dykes. Journal of Structural Geology, 43,

73–91. https://doi.org/10.1016/j.jsg.2012.08.004

Menand, T. (2011). Physical controls and depth of emplacement of igneous bodies: A review. Tectonophysics, 500(1‐4), 11–19. https://doi.

org/10.1016/j.tecto.2009.10.1016

Menand, T., Daniels, K. A., & Benghiat, P. (2010). Dyke propagation and sill formation in a compressive tectonic environment. Journal of

Geophysical Research, 115, B08201. https://doi.org/10.1029/2009JB006791

Menand, T., & Tait, S. (2002). The propagation of a buoyant liquid‐filled fissure from a source under constant pressure: An experimental

approach. Journal of Geophysical Research, 107(B11), 2306. https://doi.org/10.1029/2001JB000589

Murphy, M. D., Sparks, R. S. J., Barclay, J., Carroll, M. R., & Brewer, T. S. (2000). Remobilization of andesite magma by intrusion of mafic

magma at the Soufriere Hills volcano, Montserrat, West Indies. Journal of Petrology, 41(1), 21–42. https://doi.org/10.1093/petrology/

41.1.21

Nur Hanani, Z. A., Roos, Y. H., & Kerry, J. P. (2012). Use of beef, pork and fish gelatin sources in the manufacture of films and assessment of

their composition and mechanical properties. Food Hydrocolloids, 29(1), 144–151. https://doi.org/10.1016/j.foodhyd.2012.01.015

Pansino, S. & Taisne, B. (2018). Datasets relating to: How magmatic storage regions attract and repel propagating dikes. https://doi.org/

10.26074/5zwv‐7j56

Pascal, K., Neuberg, J., & Rivalta, E. (2014). On precisely modelling surface deformation due to interacting magma chambers and dykes.

Geophysical Journal International, 196(1), 253–278. https://doi.org/10.1093/gji/ggt343

Pinel, V., & Jaupart, C. (2003). Magma storage and horizontal dyke injection beneath a volcanic edifice. Earth and Planetary Science Letters,

221(1‐4), 245–262. https://doi.org/10.1016/S0012‐821X(04)00076‐7

Porreca, M., Acocella, V., Massimi, E., Mattei, M., Funciciello, R., & De Benedetti, A. A. (2006). Geometric and kinematic features of the

dike complex at Mt. Somma, Vesuvio (Italy). Earth and Planetary Science Letters, 245(1‐2), 389–407. https://doi.org/10.1016/j.

epsl.2006.02.027

Ramesh, K. (2000). Digital photoelasticity—Advanced techniques and applications. Berlin Heidelberg: Springer. https://doi.org/10.1007/

978‐3‐642‐59723‐7

Rivalta, E., Böttinger, M., & Dahm, T. (2005). Buoyancy‐driven fracture ascent: Experiments in layered gelatin. Journal of Volcanology and

Geothermal Research, 144(1‐4), 273–285. https://doi.org/10.1016/j.jvolgeores.2004.11.030

Rivalta, E., Taisne, B., Bunger, A.,. P., & Katz, R.,. F. (2015). A review of mechanical model of dike propagation: Schools of thought, results

and future directions. Tectonophysics, 638, 1–42. https://doi.org/10.1016/j.tecto.2014.10.003

10.1029/2018JB016311Journal of Geophysical Research: Solid Earth

PANSINO AND TAISNE 289

https://doi.org/10.1016/j.epsl.2013.07.016
https://doi.org/10.1016/j.jvolgeores.2014.05.018
https://doi.org/10.1016/S0377-0273(97)00065-6
https://doi.org/10.1016/S0377-0273(97)00065-6
https://doi.org/10.1016/0377-0273(94)00060-T
https://doi.org/10.1002/2016GL068721
https://doi.org/10.1002/2016GL068721
https://doi.org/10.1016/j.volgeores.2017.02.005
https://doi.org/10.1016/j.volgeores.2017.02.005
https://doi.org/10.1002/2014JB011627
https://doi.org/10.1029/JB091iB05p04920
https://doi.org/10.1016/j.tecto.2009.03.012
https://doi.org/10.1002/2014JB011059
https://doi.org/10.1007/11157_2015_9
https://doi.org/10.1016/j.earscirev.2006.06.006
https://doi.org/10.1016/j.jvolgeores.2012.05.015
https://doi.org/10.1007/s00445-014-0869-8
https://doi.org/10.1029/2009JB006339
https://doi.org/10.1016/j.epsl.2015.03.038
https://doi.org/10.1016/j.tecto.2012.09.032
https://doi.org/10.1155/2017/1651753
https://doi.org/10.1029/91JB00600
https://doi.org/10.1016/j.jvolgeores.2011.09.001
https://doi.org/10.1016/j.jsg.2012.08.004
https://doi.org/10.1016/j.tecto.2009.10.1016
https://doi.org/10.1016/j.tecto.2009.10.1016
https://doi.org/10.1029/2009JB006791
https://doi.org/10.1029/2001JB000589
https://doi.org/10.1093/petrology/41.1.21
https://doi.org/10.1093/petrology/41.1.21
https://doi.org/10.1016/j.foodhyd.2012.01.015
https://doi.org/10.26074/5zwv-7j56
https://doi.org/10.26074/5zwv-7j56
https://doi.org/10.1093/gji/ggt343
https://doi.org/10.1016/S0012-821X(04)00076-7
https://doi.org/10.1016/j.epsl.2006.02.027
https://doi.org/10.1016/j.epsl.2006.02.027
https://doi.org/10.1007/978-3-642-59723-7
https://doi.org/10.1007/978-3-642-59723-7
https://doi.org/10.1016/j.jvolgeores.2004.11.030
https://doi.org/10.1016/j.tecto.2014.10.003


Rubin, A. M. (1995). Propagation of magma‐filled cracks. Annual Review of Earth and Planetary Sciences, 23(1), 287–336. https://doi.org/

10.1146/annurev.ea.23.050195.001443

Ruth, D. C. S., Cottrell, E., Cortés, J. A., Kelley, K. A., & Calder, E. S. (2016). From passive degassing to violent strombolian: The case of the

2008 eruption of Llaima volcano, Chile. Journal of Petrology, 57(9), 1833–1864. https://doi.org/10.1093/petrology/egw063

Schmiedel, T., Galland, O. & Breitkreuz, C. (2017). Dynamics of sill and laccolith emplacement in the brittle crust: Role of host rock

strength and deformation mode.

Segall, P. (2010). Earthquake and volcano deformation (pp. 203–205). Princeton, NJ: Princeton University Press.

Taisne, B., & Tait, S. (2009). Eruption versus intrusion? Arrest of propagation of constant volume, buoyant, liquid‐filled cracks in an elastic,

brittle host. Journal of Geophysical Research, 114, B06202. https://doi.org/10.1029/2009JB006297

Taisne, B., & Tait, S. (2011). Effect of solidification on a propagating dike. Journal of Geophysical Research, 116, B01206. https://doi.org/

10.1029/2009JB007058

Takada, A. (1997). Cyclic flank‐vent and central‐vent eruption patterns. Bulletin of Volcanology, 95(B6), 8471–8556. https://doi.org/

10.1029/JB095iB06p08471

Takeuchi, S. (2004). Precursory dike propagation control of viscous magma eruptions. Geology, 32(11), 1001–1004. https://doi.org/10.1130/

G20792.1

Tosh, S. M., Marangoni, A. G., Ross Hallett, F., & Britt, I. J. (2003). Aging dynamics in gelatin gel microstructure. Food Hydrocolloids, 17,

503–513.

Urbani, S., Acocella, V., & Rivalta, E. (2018). What drives the lateral versus vertical propagation of dikes? Insights from analogue models.

Journal of Geophysical Research: Solid Earth, 123, 3680–3697. https://doi.org/10.1029/2017JB015376

Watanabe, T., Masuyama, T., Nagaoka, K., & Tahara, T. (2002). Analog experiments on magma‐filled cracks: Competition between

external stresses and internal pressure. Earth, Planets and Space, 54(12), e1247–e1261. https://doi.org/10.1186/bf03352453

Watts, R. B., de Silva, S. L., Jimenez de Rios, G., & Croudace, I. (1999). Effusive eruption of viscous silicic magma triggered and driven by

recharge: a case study of the Cerro Chascon‐Runtu Jarita Dome Complex in Southwest Bolivia. Bulletin of Volcanology, 61(4), 241–264.

https://doi.org/10.1007/s004450050274

10.1029/2018JB016311Journal of Geophysical Research: Solid Earth

PANSINO AND TAISNE 290

https://doi.org/10.1146/annurev.ea.23.050195.001443
https://doi.org/10.1146/annurev.ea.23.050195.001443
https://doi.org/10.1093/petrology/egw063
https://doi.org/10.1029/2009JB006297
https://doi.org/10.1029/2009JB007058
https://doi.org/10.1029/2009JB007058
https://doi.org/10.1029/JB095iB06p08471
https://doi.org/10.1029/JB095iB06p08471
https://doi.org/10.1130/G20792.1
https://doi.org/10.1130/G20792.1
https://doi.org/10.1029/2017JB015376
https://doi.org/10.1186/bf03352453
https://doi.org/10.1007/s004450050274

