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Abstract: The CAZy database is a web-server for sequence-
based classification of carbohydrate-active enzymes that 
has become the worldwide and indispensable tool for 
scientists engaged in this research field. It was originally 
created in 1991 as a classification of glycoside hydrolases 
(GH) and currently, this section of CAZy represents its 
largest part counting 172 GH families. The present Opinion 
paper is devoted to the specificity of α-amylase (EC 3.2.1.1) 
and its occurrence in the CAZy database. Among the 172 
defined GH families, four, i.e. GH13, GH57, GH119 and 
GH126, may be considered as the α-amylase GH families. 
This view reflects a historical background and traditions 
widely accepted during the previous decades with respect 
to the chronology of creating the individual GH families. 
It obeys the phenomenon that some amylolytic enzymes, 
which were used to create the individual GH families and 
were originally known as α-amylases, according to current 
knowledge from later, more detailed characterization, 
need not necessarily represent genuine α-amylases. 
Our Opinion paper was therefore written in an effort to 
invite the scientific community to think about that with 
a mind open to changes and to consider the seemingly 
unambiguous question in the title as one that may not 
have a simple answer.
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1  Introduction
The current CAZy database (http://www.cazy.org/) 
that primarily catalogues structurally related catalytic 
domains of Carbohydrate-Active enZymes (CAZymes) [1] 
has its origin in the brilliant idea of Bernard Henrissat, 
who in 1991 classified glycoside hydrolases (GH) into 
families based on amino acid sequence similarities [2]. The 
overall classification concept most probably originated 
from classifying cellulases into families revealed by 
hydrophobic cluster analysis of their sequences [3]; an 
approach that has also been applied to α-amylases [4]. 
Currently (November 2021), there are 172 GH families and 
the entire CAZy database, in addition to GH classification, 
covers sections devoted to glycosyltransferases (GT; 
114 families), polysaccharide lyases (PL; 42 families), 
carbohydrate esterases (CE; 19 families) and auxiliary 
activities (AA; 17 families); a section devoted to fully 
sequenced and annotated genomes is also a part of the 
database [2,5-10]. Due to ~10% of CAZymes being multi-
modular [11,12], an independent classification is included 
of carbohydrate-binding modules (CBM; 88 families) [1,13]. 
The unmatched scope and impact of the CAZy database 
motivated a Wikipedia-like project entitled “CAZypedia” 
(http://www.cazypedia.org/), which was initiated over 
a decade ago [14] as an original source for documentary 
presentation of key information on individual families 
that is truly complementary to CAZy.

α-Amylase (EC 3.2.1.1) is one of the enzymes attracting 
profound research interests, especially from the beginning 
of the 1990s at which time ideas to define a family around 
the α-amylase became evident. Thus, based on both 
experimental [15-19] and in silico studies [20-24], the 
so-called α-amylase enzyme family was established. By the 
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opinion of the research community engaged in this field, 
this family in fact became synonymous with family GH13 
of the CAZy database [2,25-29]. It was from the start in 1991 
already clear that family GH13 was large and polyspecific, 
as compared to, e.g. families GH14 (β-amylases) and 
GH15 (glucoamylases) [2]. Later GH15 attained additional 
enzyme specificities too [1]. Currently, the family GH13 
ranks among the largest GH families [1]. The update of the 
GH classification in 1996 delivered a second α-amylase 
family, namely GH57 [6]. According to the CAZy database 
today [1], the α-amylase specificity might be present 
also in families GH119 and GH126 [30] (details will be 
explained below). It is worth mentioning that with regard 
to α-amylase containing GH families, 15 of the 88 CBM 
families in CAZy are so-called starch-binding domains 
(SBD) and/or glycogen-binding domains, which occur in 
multi-domain enzymes from the four GH families [31].

This Opinion paper offers the authors’ views on the 
α-amylase enzyme specificity and the corresponding four 
GH families as found in the CAZy database [1]. It is not the 
intention to comprehensively cover all relevant details as 
would be the case of a typical Review; and only selected 
key references are included.

2  The main α-amylase family GH13
The main α-amylase family is embodied by family GH13 
as well-established during the past few decades [1,25-30] 
and now widely accepted in the scientific community. The 
GH13 family is huge and counts (November 2021) more than 
124,300 sequences from all three domains of life covering 
more than 30 different enzyme specificities (Table 1) [1,30]. 
At the higher hierarchical level, CAZy has implemented 
clans comprising more than one GH family and GH13 
belongs to the clan GH-H together with families GH70 and 
GH77 [32-35]. Both of the latter families contain enzymes 
(Table 1) which possess fair hydrolytic side activities 
toward starch [36-45]. At a lower hierarchical level, GH13 
has been divided into subfamilies [46]. Currently, CAZy lists 
44 curator-approved GH13 subfamilies [1], and more are 
awaited soon [46-49]. Notably, before this official division 
of family GH13 into subfamilies in 2006 [46], two other 
subfamilies had been established of oligo-1,6-glucosidases 
and neopullulanases, based on specific differences in 
conserved sequence regions (CSR) [50]. Each of these two 
old subfamilies, in fact covers several enzyme specificities 
and official CAZy GH13 subfamilies [51-53].

Basic characteristics of family GH13 - and in a wider 
sense of clan GH-H - can be summarized as follows 
[28,30,32,35,39,54-63]: (i) employing a retaining reaction 

mechanism; (ii) adopting a (β/α)8-barrel (i.e. the so-called 
TIM-barrel) fold for the catalytic domain; (iii) possessing a 
catalytic triad of an aspartic acid (nucleophile), a glutamic 
acid (proton donor) and an aspartic acid (transition-state 
stabilizer) situated at or near the C-termini of TIM-barrel 
strands β4, β5 and β7, respectively; and (iv) sharing 
4-7 CSRs in their amino acid sequences. The GH70 was 
established [1] as a family whose members contain a 
circularly permuted catalytic TIM-barrel domain compared 
to that of the main α-amylase family GH13 [64]. However, 
it is of note that a group inside the GH70 – represented by 
4,6-α-glucanotransferases GtfC – was confirmed to have 
the TIM-barrel without circular permutation [65].

With regard to the individual GH13 subfamilies, some 
have been established and known for a long time to group 
typical fungal (GH13_1), bacterial liquefying (GH13_5), 
plant (GH13_6), archaeal (GH13_7), insect (GH13_15), 
animal (GH13_24), bacterial saccharifying (GH13_28) 
and actinobacterial (GH13_32) α-amylases [46,66-69]. 
Currently, most of these above-mentioned and originally 
taxonomically pure subfamilies, also contain other taxa [35]. 
For example, some bacterial α-amylases have already been 
characterized from GH13_6 (originally only plant sources) 
and from GH13_7 (originally only archaeal sources), i.e. 
α-amylase from Massilia timonae in the GH13_6 [70], 
whereas the counterpart from Sinomicrobium sp. 5DNS001 
in GH13_7 [71]. Moreover, an additional archaeal α-amylase 
subfamily GH13_43 was recently established for α-amylases 
from haloarchaeons [72]; subfamily GH13_7 thus obviously 
being reserved for α-amylases from hyperthermophilic 
archaeal thermococci [1,67]. With regard to, for example, 
fungal α-amylases, these were originally placed in the 
subfamily GH13_1 with Taka-amylase A from Aspergillus 
oryzae as the main representative [54], but α-amylases from 
fungi were later found in other subfamilies, such as GH13_5 
[73], GH13_32 [74] and GH13_42 [75,76].

In addition to the GH13 subfamilies mentioned above 
having α-amylase specificity, subfamily GH13_36 contains 
α-amylases with an expanded enzyme specificity towards 
pullulan and cyclodextrins and can hydrolyse both α-1,4 and 
α-1,6-linkages [52]. Notably, this subfamily was originally 
recognised as intermediate to the so-called oligo-1,6-
glucosidase and neopullulanase subfamilies [50]. Moreover, 
the α-amylase family GH13 contains some non-enzymatic 
transport proteins, rBAT and 4F2hc [77-81], recently 
suggested to represent “fake” or orphan α-glucosidases 
[82]. These proteins, typically found in mammals (or higher 
Metazoans), in most cases lost either completely or in part the 
GH13 catalytic residues, but still exhibited an unambiguous 
sequence homology in CSRs outside the regions bearing the 
GH13 catalytic machinery [35].



How many α-amylase GH families are there in the CAZy database?   3

The α-amylase family GH13 consists mainly of enzymes 
from three enzyme classes: (i) hydrolases (EC 3); (ii) 
transferases (EC 2); and (iii) isomerases (EC 5). Perhaps, the 
most intriguing observations in recent years were a group 

of amylolytic enzymes represented by the experimentally 
characterized, but, until now, still insufficiently specified 
“amylase” BmaN1 from Bacillus megaterium [49]. It is 
closely related to α-amylases represented by the α-amylase 

Table 1: Specificities in the α-amylase GH families.a

Family Enzyme EC No.

GH13 α-Amylase 3.2.1.1

Oligo-1,6-glucosidase 3.2.1.10

α-Glucosidase 3.2.1.20

Pullulanase 3.2.1.41

Amylopullulanase 3.2.1.1/41

Sucrose α-glucosidase 3.2.1.48

Cyclomaltodextrinase 3.2.1.54

Maltotetraose-forming amylase 3.2.1.60

Isoamylase 3.2.1.68

Dextran glucosidase 3.2.1.70

Trehalose 6-phosphate hydrolase 3.2.1.93

Maltohexaose-forming amylase 3.2.1.98

Maltotriose-forming amylase 3.2.1.116

Maltogenic amylase 3.2.1.133

Neopullulanase 3.2.1.135

Maltooligosyltrehalose 
trehalohydrolase

3.2.1.141

Maltopentaose-forming amylase 3.2.1.-

Sucrose hydrolase 3.2.1.-

Cyclic α-maltosyl-1,6-maltose 
hydrolase

3.2.1.-

Amylosucrase 2.4.1.4

Sucrose phosphorylase 2.4.1.7

Glucan branching enzyme 2.4.1.18

Cyclodextrin glucanotransferase 2.4.1.19

4-α-Glucanotransferase 2.4.1.25

Glucan debranching enzyme 2.4.1.25/3.2.1.33

Oligosaccharide α-4-
glucosyltransferase

2.4.1.161

α-1,3-Glucan synthase 2.4.1.183

Isocyclomaltooligosaccharide 
glucanotransferase

2.4.1.248

Family Enzyme EC No.

Sucrose-6(F)-phosphate 
phosphorylase

2.4.1.329

Glucosylglycerate phosphorylase 2.4.1.352

Glucosylglycerol phosphorylase 2.4.1.359

α-1,4-Glucan: phosphate 
α-maltosyltransferase

2.4.99.16

Isomaltulose synthase 5.4.99.11

Maltooligosyltrehalose synthase 5.4.99.15

Trehalose synthase 5.4.99.16

hc-rBAT protein -

4F2hc antigen -

GH70 Dextransucrase 2.4.1.5

Alternansucrase 2.4.1.140

α-1,3-Branching glucansucrase 2.4.1.362

Mutansucrase 2.4.1.372

α-1,6/α-1,2-Branching 
glucansucrase

2.4.1.373

Reuteransucrase 2.4.1.-

4,3-α-Glucanotransferase 2.4.1.-

4,6-α-Glucanotransferase 2.4.1.-

GH77 4-α-Glucanotransferase 
(amylomaltase)

2.4.1.25

GH57 α-Amylase 3.2.1.1

Maltogenic amylase 3.2.1.133

Amylopullulanase 3.2.1.1/41

Cyclomaltodextrinase 3.2.1.54

α-Galactosidase 3.2.1.22

Non-specified amylase 3.2.1.-

Glucan branching enzyme 2.4.1.18

4-α-Glucanotransferase 2.4.1.25

GH119 α-Amylase 3.2.1.1

GH126 α-Amylase 3.2.1.1

a Details concerning the individual enzymes can be found in text. The 4-α-glucanotransferase from the family GH77 is known also as 
amylomaltase and disproportionating enzyme.
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BaqA from Bacillus aquimaris [47,48], but by comparing 
with the group defined by α-amylase BaqA, it may possess 
an aberrant catalytic machinery [49].

3  The second α-amylase family 
– GH57
The family GH57 was established in 1996 by the second 
published update of the GH classification [6]. The 
main reason for creating this family was two presumed 
α-amylases – one from the bacterium Dictyoglomus 
thermophilum [83] and the other from the archaeon 
Pyrococcus furiosus [84]. Their amino acid sequences 
were obviously different from those already classified 
in family GH13 [30], although efforts to reveal sequence 
features joining GH13 and GH57 persisted at the time, 
mainly owing to the lack of structural data [85]. The 
sequence-structural independence of family GH57 from 
the main α-amylase family GH13 was definitively settled 
by the first solved GH57 three-dimensional structure of 
4-α-glucanotransferase from Thermococcus litoralis [86], 
identification of its catalytic nucleophile [87] as well as of 
the entire catalytic machinery in the related Thermococcus 
hydrothermalis amylopullulanase [88]. CSRs typical for 
family GH57 were established by the latter study [88].

Family GH57 could be characterized by the following 
criteria [30,86-92]: (i) employing a retaining reaction 
mechanism; (ii) adopting a (β/α)7-barrel catalytic domain 
fold, a so-called incomplete TIM-barrel, including a 
bundle of a few α-helices succeeding the barrel; (iii) 
having catalytic machinery consisting of a glutamic acid 
(nucleophile) and an aspartic acid (proton donor) situated 
at or near the C-termini of (β/α)7-barrel strands β4 and β7, 
respectively; and (iv) sharing 5 CSRs in their amino acid 
sequences.

This family, like the main α-amylase family GH13, is 
polyspecific, although the number of different specificities 
is less than 10 compared to the more than 30 found in GH13 
[1,30] (Table 1). Currently (November 2021), family GH57 has 
almost 4,000 sequences from prokaryotes, roughly divided 
3:1 between Bacteria and Archaea [1]. However, it is worth 
remarking that the two founding family members are in 
fact 4-α-glucanotransferases [93,94], but were originally 
supposed to be α-amylases from D. thermophilum [83] and 
P. furiosus [84]. Moreover, yet another member that may be 
crucial for naming family GH57 as “α-amylase” family is 
the α-amylase from Methanocaldococcus jannaschii [85], 
which is an amylopullulanase and not a strict α-amylase  
as it showed > 80% activity on pullulan compared to on 

soluble starch [95]. Nevertheless, the family GH57 has 
become well-known as the second α-amylase family 
[30,92].

Family GH57 contains a few examples of so-called dual 
enzyme specificities. Thus the α-amylase from Thermotoga 
maritima showed also α-glucan branching [89,96-99] and 
the amylopullulanase from Staphylothermus marinus 
had also cyclomaltodextrinase specificity [100]. Finally, 
for some specificities, namely of α-amylase, α-glucan 
branching enzyme and 4-α-glucanotransferase, GH57 
members referred to as so-called enzyme-like proteins 
were revealed to have either incomplete or to fully lack 
catalytic machinery [101,102]. Until now, no experimental 
evidence has demonstrated the eventual activity/
specificity of the corresponding proteins.

4  The family GH119
The eventual third α-amylase family in CAZy GH119 was 
established in 2006 based on the report on α-amylase 
IgtZ from Bacillus circulans [103]. This prokaryotic family 
having only 38 bacterial members (November 2021) is 
one of the smallest GH families in CAZy [1]. α-Amylase 
IgtZ is still the only experimentally characterized GH119 
member and has been shown to act on maltotetraose, 
larger maltooligosaccharides, amylose and soluble starch, 
producing glucose and maltooligosaccharides up to 
maltopentaose [103]. In addition to the catalytic domain, 
the IgtZ sequence includes three SBDs - two of family 
CBM25 and one CBM20 [31,103] - as well as at least one 
fibronectin type III domain [29], that quite frequently 
occurs with various GH families and is also in other CAZy 
sections of GTs, PLs, CEs and AAs [104].

It should be pointed out that there is still a serious 
lack of information concerning the catalytic domain 
fold and machinery of GH119 [30]. A retaining reaction 
mechanism was confirmed by polarimetric analysis of 
the anomeric configuration of maltooligosaccharides 
released by α-amylase IgtZ from maltopentaosyl trehalose 
[103]. Trehalose was even the major hydrolysis product 
in reactions on higher maltooligosyl trehaloses [103] 
suggesting the substrate specificity of α-amylase IgtZ 
as maltooligosyl trehalose trehalohydrolase [105]. This 
behaviour may indicate that B. circulans α-amylase as the 
founding family GH119 member does not necessarily have 
strict α-amylase specificity.

In fact, the only source of structural knowledge on 
GH119 until now is an in silico study from 2012 [106] that 
predicted the catalytic domain fold as an incomplete TIM-
barrel closely related to that of family GH57 and a highly 
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convincing prediction of five CSRs and catalytic machinery 
shared with family GH57. However, without experimental 
evidence of a solved three-dimensional structure and 
functional characterization of mutants of the two putative 
catalytic residues, it is not possible to consolidate the 
proposed close relationship of the two families [30].

5  The family GH126
The fourth GH family to be considered as α-amylase 
family, is family GH126, established in 2011 based on a 
paper describing the three-dimensional structure of the 
CPF_2247 protein from the Clostridium perfringens genome 
[107]. The structure adopts an (α/α)6-barrel fold and thus 
differs from the classical and incomplete TIM-barrels, 
respectively, in families GH13 and GH57 [29,30,54,86]. The 
(α/α)6-barrel fold is well-known, e.g. from family GH15 of 
glucoamylases [108-110]. With regard to family GH126, it 
is of a special interest from both a sequence and three-
dimensional structure point of view where it resembles 
β-glucan-active enzymes from families GH8 and GH48, 
constituting clan GH-M [90]. These β-glucosidases employ 
an inverting reaction mechanism [111,112] and it seems 
rather strange that the similar GH126 amylolytic enzyme 
CPF_2247 would be an α-amylase that by definition is a 
retaining enzyme [28]. Although the catalytic machinery 
was not determined in family GH126 as no ligand was 
seen in the crystal structure of the CPF_2247 protein 
[107], both catalytic residues of members in clan GH-M, a 
glutamic acid and an aspartic acid playing the roles of the 
general acid and general base, respectively [111,112], have 
counterparts in GH126 [107].

Based on biochemical analyses [107], it is beyond 
doubt that the protein CPF_2247 is an α-glucanase and 
the remaining uncertainty is whether or not it represents a 
true α-amylase [30]. The enzyme exhibited activity towards 
amylose and glycogen (but neither on pullulan nor for that 
sake on cellulose) and produced maltooligosaccharides 
from maltose through maltoheptaose, whereas it released 
glucose from maltooligosaccharides, maltopentose being 
the minimal substrate [107]. This means that the former 
activity agrees with being α-amylase-like and endo-acting, 
while the latter may represent an exo-mode of action 
similar to α-glucosidases [30].

It is of note that a three-dimensional structure has 
been determined of one more family GH126 member, PssZ 
from Listeria monocytogenes [113], which was found to be a 
glycosidase specific to a biofilm matrix exopolysaccharide 
consisting of N-acetylmannosamine and galactose in a 2:1 
ratio [114].

Currently (November 2021), family GH126 counts 
more than 1,300 bacterial members [1]. Although the first 
actinobacterial sequence (from a Brevibacterium genus) 
was recently classified in this family [1], from its creation, 
GH126 was known as prokaryotic with members solely 
originating from the phylum Firmicutes [115]. However, a 
recent in silico study, aimed to disclose potential GH126 
members outside of Firmicutes, convincingly identified 17 
bacterial proteins from several other phyla (Proteobacteria, 
Actinobacteria and Bacteroidetes), hence expanding the 
taxonomic occurrence [116]. Seven CSRs were proposed 
for family GH126, along with elucidating evolutionary 
relationships within the family [115]. Additionally, based 
on structural comparison of both the CPF_2247 α-amylase 
and the PssZ protein with representatives of other GH 
families containing (α/α)6-barrel catalytic domains, an 
evolutionary relationship was proposed of GH126 with 
family GH76 [115]. This included sharing one of the two 
catalytic residues of the B. circulans GH76 α-mannanase 
[117] that is an α-glycan-active enzyme employing a 
retaining reaction mechanism [1].

6  Conclusions
The question from the title of this Opinion paper – 
“How many α-amylase GH families are there in the 
CAZy database?” – has a very simple answer namely 
that there are four GH α-amylase families, GH13, GH57, 
GH119 and GH126, in CAZy. However, in the light of its 
background history, traditions that may persist even in 
science and especially the genuine scientific knowledge 
achieved until now, this seemingly clear answer may 
be a bit more complicated or at least ambiguous. The 
true α-amylase enzyme specificity – represented by 
for example Taka-amylase A from Aspergillus oryzae 
– may strictly speaking be found only in family GH13, 
since for the three remaining families GH57, GH119 and 
GH126 conclusive proof of the presence of this α-amylase 
specificity among their members still lags behind. Thus 
for family GH57, the two original “α-amylase” members 
from Dictyoglomus thermophilum and Pyrococcus 
furiosus are 4-α-glucanotransferases, whereas the third 
“α-amylase” from Methanocaldococcus jannaschi seems to 
be an amylopullulanase. With regard to family GH119, its 
central member, the “α-amylase” from Bacillus circulans, 
exhibited also specificity as a maltooligosyl trehalose 
trehalohydrolase. Finally, for the Clostridium perfringens 
“α-amylase” - the founding member of family GH126 - 
doubts still exist about its endo- versus exo-mode of action 
as well as if this amylolytic enzyme employs a retaining 
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or an inverting reaction mechanism. Therefore, the aim of 
this article is not to provide the reader with a dogmatic 
unchangeable learning, but to offer an open view based 
on what we know so far and permit the α-amylase-positive 
scientific community to see the full complexity of this 
exciting issue.
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