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Accepted: 16 July 2021 /

© The Author(s) 2021

Abstract

A central question in educational research is how classroom climate variables, such

as teaching quality, goal structures, or interpersonal teacher behavior, are related to

critical student outcomes, such as students’ achievement and motivation. Student rat-

ings are frequently used to measure classroom climate. When using student ratings

to assess classroom climate, researchers first ask students to rate classroom climate

characteristics and then aggregate the ratings on the class level. Multilevel latent vari-

able modeling is then used to determine whether class-mean ratings of classroom

climate are predictive of student outcomes and to correct for unreliability so that the

relations can be estimated without bias. In this article, we adopt an optimal design

perspective on this specific strategy. Specifically, after briefly recapping a promi-

nent model in climate research, we show and explain (a) how statistical power can

be maximized by choosing optimal numbers of classes and students per class given

a fixed budget for conducting a study and (b) how the budget required to achieve

a prespecified level of power can be minimized. Moreover, we present an example

from research on teaching quality to illustrate the procedures and to provide guid-

ance to researchers who are interested in studying the role of classroom climate.

Also, we present a Shiny App that can be used to help find optimal designs for class-

room climate studies. The app can be accessed at https://psychtools.shinyapps.io/

optimalDesignsClassroomClimate
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Organizational research often seeks to identify organization characteristics that pos-

itively affect the people in the organization. In a similar vein, educational research

looks for specific learning environment characteristics that positively predict and

might foster relevant outcomes, such as students’ achievement, motivation, and emo-

tions (e.g., Emmer & Stough, 2001; Pianta et al., 2008; Reyes et al., 2012; Wang

& Degol, 2016). Typical characteristics of the learning environment include vari-

ables that can be subsumed under the umbrella term classroom climate (Marsh et al.,

2012). Over the last several decades, different theoretical frameworks for study-

ing classroom climate constructs have evolved, such as theories involving teaching

quality (e.g., the Three Basic Dimensions of teaching quality; e.g., Praetorius et al.,

2018; Göllner et al., in press; Fauth et al., 2014), goal structures from achievement

goal theory (e.g., Bardach et al., 2020; Kaplan et al., 2002; Rolland, 2012), inter-

personal teacher behavior in terms of agency and communion (e.g., Mainhard et al.,

2011; Rimm-Kaufman et al., 2015; Patrick et al., 2007), and teacher autonomy sup-

port versus control from self-determination theory (e.g., Vansteenkiste et al., 2012).

Researchers’ basic motivation for studying these variables is the assumption that the

context in which students learn can play a significant role in students’ development

(see Seidel & Shavelson, 2007). Recently, Wang et al. (2020) systematically reviewed

and synthesized 61 studies from classroom climate research to achieve integration

along with a more robust understanding of the relations between classroom climate

variables and achievement, motivation, emotions, and other relevant outcomes. Over-

all, the authors found small to medium-sized effects across the different outcomes.

Still, there was considerable variation in the relations, thus justifying further anal-

yses. In addition to the overall confirmation that classroom climate affects relevant

outcomes, the authors found that the sizes of the relations varied with the methodol-

ogy employed in the different studies, such as how the study was designed and which

approach was applied to assess classroom climate.

To investigate how classroom climate is related to the outcomes, researchers typ-

ically rely on sampling designs that yield data with a multilevel structure in which

students are nested within classrooms. Multilevel modeling (e.g., Raudenbush and

Bryk, 2002; Snijders & Bosker, 2012) is then used to regress the outcome variables

on classroom climate constructs (and on reasonable covariates). Multilevel modeling

is the method of choice because it allows researchers to distinguish between differ-

ent levels of the analysis and to investigate relations between variables across these

different levels. For example, features of the classroom climate (i.e., class-level vari-

ables) can be related to students’ achievement and positive self-beliefs (i.e., student

level variables). As Morin et al. (2014) showed in their study, classroom climate (in

terms of classroom mastery goal structure, challenge, and teacher caring) positively

predicted students’ achievement and academic self-efficacy. More recently, progress

has been made in integrating multilevel modeling with latent variable modeling (e.g.,

Bollen, 1989) as the standard, and numerous influential articles have promoted the

use of multilevel latent variable modeling in classroom climate research. For exam-

ple, Marsh et al. (2012) described how sophisticated multilevel latent variable models

can be used to assess the role of classroom climate (see also Bardach et al. 2020;

Morin et al. 2014; Wagner et al. 2013).
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One efficient and widely used way to assess classroom climate is to ask stu-

dents to rate a characteristic of the learning environment (e.g., Downer et al., 2015;

Fauth et al., 2014; Patrick et al., 2007; Stornes and Bru, 2011). Thereby, the refer-

ent of such classroom climate ratings is usually the classroom or the teacher (e.g.,

“In this class, we should. . . ”; “Our teacher tells us. . . ”) rather than some charac-

teristic of the individual student (Marsh et al., 2012). Individual student ratings of

the classroom climate are then aggregated on the class level (i.e., averaged across

the students in a classroom). The class-mean rating reflects the shared perception

of the students in a class with regard to the classroom climate characteristic (cor-

rected for individual idiosyncrasies). This method of assessing a classroom climate

construct is often employed in research on teaching quality as one example (Lüdtke

et al., 2006). For instance, Kunter et al. (2013) used it in their widely cited study on

the role of teachers’ teaching quality and teachers’ professional competence in stu-

dents’ math achievement and enjoyment (see also Lazarides and Buchholz, 2019).

However, this strategy is not without problems. As Kunter et al. (2013) reported,

reliabilities of class-mean ratings turned out to be around .80 and were thus not

very high when the intraclass correlation that accounts for the number of students

per class (i.e., the ICC(2); Bliese, 2000) was used as the reliability coefficient (see

also Baumert et al., 2010).1 Although values at this level are usually interpreted as

indicating acceptable reliability (LeBreton & Senter, 2008), such values can never-

theless bias the results for the role of the classroom climate. This kind of situation

occurs when a predictor’s lack of reliability is ignored in the analysis, subsequently

biasing the relation between the predictor and the outcome variable (e.g., Buonac-

corsi, 2010; Fuller, 1987). This issue led (Lüdtke et al., 2009) to argue that reliability

should always be checked before computing the relations between class-mean ratings

and outcome variables. As a remedy, Lüdtke et al. (2008) suggested an approach in

which a latent variable (i.e., the latent class mean) is used in place of the not very

reliable manifest class-mean rating (latent aggregation). When this latent aggregation

approach—which the authors names the multilevel latent covariate model—is taken,

relations between classroom climate and outcome variables are estimated without

bias (see also Asparouhov and Muthén, 2007; Croon & van Veldhoven, 2007; Shin

& Raudenbush, 2010). Before we go on, we want to emphasize once more that this

latent variable approach was specifically developed for individuals’ environment rat-

ings that are latently aggregated on the group level to form the climate construct. This

kind of construct is also referred to as a reflective group-level construct in order to

distinguish it from formative group-level constructs (e.g., the percentage of girls in a

class), which are analyzed in contextual studies and do not require this specific latent

variable approach (Marsh et al., 2012). Also, classroom climate as assessed by stu-

dent ratings should be distinguished from other group-level constructs, such as those

that rely on teachers’ self-ratings, for which a different analytical approach should

generally be taken.

The adoption of the latent variable approach in classroom climate research is com-

plicated by the fact that this approach is relatively expensive (i.e., it requires rather

1The ICC(2) does not assess reliability that is due to classical measurement error.
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large samples), and a classroom climate study should be sufficiently powered so that

the study is likely to detect an existing relation between the classroom climate and

the outcome variable and thus to allow for a substantial conclusion. In such studies,

the statistical power to detect such a relation is a function of two sample sizes—the

number of classes and the number of students per class—and two intraclass correla-

tions. However, these sample sizes are usually limited by the study’s budget, which

is why it is preferable to choose numbers in such a way that the highest possible

level of power can be achieved given the budget or, alternatively, that the budget can

be minimized given a certain prespecified level of power. These goals play a signifi-

cant role in study planning and in writing grant proposals. The aim of optimal design

research is to determine how these goals can be achieved. There is extant literature on

power and optimal designs in multilevel research, and some software has been devel-

oped to help researchers design their studies. For example, there is the OD (Optimal

Design) program, which is a stand-alone software developed by Raudenbush and his

team and which provides useful visualizations (e.g., it plots power against sample

sizes), with many more options. Other examples are ML-DEs (Cools et al., 2008)

and MLPowSim, both of which provide R scripts that create macros for running

simulation studies with the special purpose software MLwiN. Yet another example

is PowerUp! (Dong & Maynard, 2013), which is capable of tackling even three-

level models with (cross-level) moderations and mediations. However, the literature

primarily focuses on experiments (e.g., cluster randomized trials) or correlational

studies (e.g., contextual studies) in which the predictors are observed variables (e.g.,

Donner & Klar, 2000; Maas & Hox, 2005; Raudenbush, 1997; Rhoads, 2011; Sni-

jders, 2005; van Breukelen & Candel, 2015). Also, except for PowerUp!, all the

programs deal with relatively prototypical multilevel models. To the best of our

knowledge, optimal designs for studies with latent class means as predictors have not

yet been discussed. Therefore, with the present article, our goals are to fill this gap by

developing optimal designs for these studies and to provide guidance to researchers

who are interested in studying the role of classroom climate.

The article is organized as follows. After briefly recapping (Lüdtke et al.’s 2008)

multilevel latent covariate model, we show and explain (a) how, given a fixed bud-

get, power can be maximized by choosing optimal numbers of classes and students

per class and (b) how, given a prespecified level of power, a study’s budget can be

minimized. Next, we provide an example from research on teaching quality to illus-

trate the procedures. We then present a newly developed Shiny App and show how it

can be used to help find optimal designs in classroom climate research. Finally, we

discuss possible directions for future research, and we provide an outlook on how the

maximum level of power can be further increased and the minimum required budget

can be further decreased by employing a Bayesian estimator—an approach that lends

itself well to situations in which a study’s budget is very limited.

Multilevel Analysis of Classroom Climate

In classroom climate research, the general procedure involves fitting a multilevel

model in which, at the class level, an outcome variable is regressed on the class-mean
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rating of classroom climate. Importantly, the class mean is of primary interest in these

studies rather than the individual students’ ratings because classroom climate is first

and foremost a class-level construct (Marsh et al., 2012), and the class mean captures

this construct best. The class mean reflects the students’ shared perception of the

classroom (or the teacher), whereas the students’ class-mean-centered ratings reflect

individual deviations from this shared perception (Lüdtke et al., 2009). Because these

deviations reflect perceptions that are not shared across the students in a class, and

the class mean reflects what is shared, the relations of these two different measures

with an outcome variable can differ (Snijders & Bosker, 2012). Often, the outcome

variable is also regressed on the students’ (class-mean-centered) ratings at the student

level. However, as Cronbach (1976) already noted, studying these deviations might

be interesting, but this question is relatively unrelated to questions about the class-

level construct and its role in relevant outcome variables (Cronbach, 1976; but see

Göllner et al., 2018, for the argument that individual idiosyncrasies can also be a

valuable source of information).

A special variant of this general procedure of relating classroom climate vari-

ables to outcomes is the multilevel latent covariate model, which was suggested by

Lüdtke et al. (2008) and published in Psychological Methods, a journal with a much

broader readership that includes researchers from organizational research for which

climate variables are also of interest. This model is considered the method of choice

because it allows researchers to obtain unbiased estimates of the relations between

classroom climate and outcome variables even when the ICC(2) values are not very

high. Although other methods exist (e.g., Grilli and Rampichini, 2011; Croon & van

Veldhoven, 2007; Zitzmann, 2018; see also Zitzmann & Helm, 2021), we focus on

this model because it is well-known (the model has been cited more than 600 times;

Google Scholar, April 2021) and has also often been applied by researchers. To

explain the model and its use in classroom climate research in a manner that is easy

to understand, we use an example from research on teaching quality. This research

has established the notion that student achievement is positively related to classroom

management (e.g., Kounin, 1970; Matheny & Edwards, 1974; Lewis, 2001; Helmke

et al., 1986; Praetorius et al., 2018; Kunter et al., 2007). Classroom management

consists of two core components: identifying and strengthening desirable student

behaviors and preventing undesirable ones (Hochweber et al., 2014). Teachers scor-

ing high on classroom management communicate clear rules and effectively prevent

disruptions while they are teaching in order to maximize the amount of time that the

students are engaged in learning, thereby promoting students’ learning progress. To

assess classroom management, students are asked, for example, whether they agree

that their teacher does not have to wait a long time for students to quiet down (see,

e.g., Wagner et al., 2016; Göllner et al., 2018).

Instead of averaging these ratings across the students in the same class to com-

pute the class-mean rating, the ratings can be subjected to latent variable software

that uses the latent class mean instead of the class-mean rating (latent aggregation).

One such type of software is Mplus (Muthén & Muthén, 2012), which performs the

latent aggregation of the students’ ratings by default when the multilevel module is

used unless this option is overwritten (see also the R package lavaan; Rosseel, 2012).

More specifically, Mplus decomposes the students’ individual ratings of classroom
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management into two components: the latent class mean, which is referred to as the

between part in Mplus because this component varies only between classes (or teach-

ers), and the individual deviation from the latent class mean, which is the within part

because it varies only within classes (Asparouhov & Muthén, 2007). More formally,

the decomposition can be written as:

CMgmtij = CMgmtbetween,j + CMgmtwithin,ij (1)

for students i = 1, . . . , n in classes j = 1, . . . J . CMgmt is an abbreviation for

classroom management. When applying (Raudenbush & Bryk’s 2002) notation for

multilevel models, the following student-level regression shows the relation between

student achievement with the within part of a student’s rating:

Student Level: Achij = β0j + βwithin · CMgmtwithin,ij + εij (2)

where βwithin is the within slope, which assesses the relation between achievement

(Ach) and the within part, and εij are residuals, which exist because, as is true for all

regression type models, it is not reasonable to assume that the outcome variable can

be perfectly predicted by a single predictor. Because the within part of a student’s

rating reflects only that student’s idiosyncratic perception (i.e., what is not shared

with other students), the within slope is typically not of much interest in classroom

climate research. What is more important is how achievement is associated with the

between part, which reflects the students’ shared perception and thus captures the

climate construct classroom management best. To assess this relation, the intercept

β0j , which varies between classes (i.e., the between part of achievement), is regressed

on the between part at the class level:

Class Level: β0j = α + βbetween · CMgmtbetwenn,j + δj (3)

where α is the overall intercept, and βbetween is the between slope, which assesses the

relation between achievement and classroom management. δj are residuals. Combin-

ing the class-level regression with the student-level regression yields the multilevel

latent covariate model:

Achij = α + βwithin · CMgmtwithin,ij + βbetween · CMgmtbetwenn,j + δj + εij . (4)

Because classroom climate research is primarily interested in whether and to what

extent the classroom climate construct is related to achievement, the most interest-

ing parameter in the model is the between slope. Hence, the optimal design should

address how this parameter can be obtained in an optimal and cost-efficient way.2 By

this, we mean (a) how the power to detect a relation between classroom management

and achievement can be maximized by choosing sample sizes that are optimal given

a budget for conducting the study and (b) how the study’s budget can be minimized

given a prespecified level of power. Next, we present procedures that address these

questions.

2This solution might not be optimal for other parameters, for example, the within slope. See the

“Discussion” section for a cautionary note on this limitation.

516 Educational Psychology Review (2022) 34:511–536



Optimal Designs

The concept of power is closely related to the variability of the results from esti-

mating the between slope in repeated samples. These results can be very different,

particularly when the numbers of classes and the number of students per class are

not very large. The less variable the results are, the narrower the confidence inter-

vals (CIs) for these results are because the width of the confidence interval is a

direct function of the standard error, which is an estimate of the scatter of the

results. The narrower the CIs, the less often these CIs will include zero, and the

more often the relation between the classroom climate and the outcome variable

will be detected. Thus, to achieve a high level of power, the variability needs to

be small.

As demonstrated by Grilli and Rampichini (2011) and, more recently, Zitzmann

et al. (2021), see also Zitzmann et al. (2021), the variability of the results for the

between slope in Lüdtke et al.’s (2008) model can be computed by using the first-

order Taylor expansion. If we assume that the students’ ratings and their achievement

are standardized variables (standardized at the student level), an approximation is

given by:

Var ≈
1

J − 1
·
{[

ICC(1)Ach

ICC(1)CMgmt

+
1 − ICC(1)CMgmt

n · ICC(1)CMgmt

·
(

ICC(1)Ach

ICC(1)CMgmt

+
1 − ICC(1)Ach

1 − ICC(1)CMgmt

)]

+

[

−1 −
2 ·

(

1 − ICC(1)CMgmt

)

n · ICC(1)CMgmt

·
βwithin

βbetween

]

· β2
between

}

.

(5)

This equation is insightful with regard to the various quantities on which the vari-

ability depends. First and foremost, it shows that the variability is a function of the

sample size, which means that the variability will decrease when the number of

classes (J ) gets larger and all other quantities are held constant. This is an exam-

ple of the well-known effect of sample size on the variability of the results from

repeated samples: The larger the sample size, the less variable and thus the more

similar the results. The same will be true when the number of students per class

(n) gets larger. Second, the intraclass correlation of student achievement (ICC(1)Ach)

influences the variability. This ICC(1) assesses the amount of variance between stu-

dents that can be attributed to differences between the classes (e.g., Snijders &

Bosker, 2012) The variability of the results will increase when the ICC(1) gets higher.

Third, the variability also depends on the ICC(1) of the students’ ratings of class-

room management (ICC(1)CMgmt) in such a way that when this ICC(1) gets higher,

the variability will decrease. It is interesting to note that the two ICC(1) values

have different effects on the variability: Whereas the ICC(1) of the students’ rat-

ings decreases the variability, the ICC(1) of the achievement variable increases it.

Fourth, another quantity that influences the variability is the between slope (βbetween).

The larger this slope, the smaller the variability of the results for this slope will be.

Fifth, the within slope (βwithin) also influences this variability, with larger values for

this slope leading to smaller values for the variability of the results for the between

slope.
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It would be preferable if the between slope was assessed with the smallest pos-

sible variability and thus with maximum power. This requires the variability to be

minimized, which is the topic of the next section.

Maximizing Power Given a Fixed Budget

As Eq. 5 shows, the variability in the results for the between slope critically depends

on the number of classes and the number of students per class. To decrease this

variability—and thus to increase the power to detect the relation between class-

room management and achievement—the sample sizes must be increased. However,

sampling additional classes and students per class imposes further costs. Because

the study’s budget is typically limited, it is thus preferable to choose numbers in

such a way that the variability will be as small as possible. In order to obtain

these optimal sample sizes, a constrained optimization problem must be solved.

The goal is to find the two sample sizes that minimize the variability subject to

a constraint.

One way in which a researcher can profit from optimal design research is when

the study’s budget is fixed and the researcher’s aim is to maximize power. Thus,

the variability is the objective function of the optimization problem in this case.

As the constraint under which the variability is minimized, we consider the fol-

lowing simple cost function, which determines the relations between the fixed

budget to be spent on data collection and the numbers of classes and students per

class:

budget = J · costs per class + N · costs per student (6)

where N = n · J is the overall number of students. Note that the budget in

this cost function includes only costs that depend on one or the other of the

two sample sizes. That is, the budget does not include the salary of the princi-

pal investigator, for example. A great deal of the costs per class are composed of

the wages of the people who administer the questionnaires and tests in schools

(personnel costs) and the costs of getting these people there (travel costs). Exam-

ples of the costs per student are the printing costs for the student’s test booklet,

the costs for scanning, and the costs for coding the student’s responses. Once the

objective function and the constraint are defined, the optimization problem can be

solved.

An efficient way to find the numbers of classes and students per class needed to

minimize the variability subject to the cost function is, first, to rearrange the cost

function in such a way that the number of students per class (n) is expressed as a

function of the number of classes (J ): n = budget−J ·costs per class
J ·costs per student

. Then, this expression

is substituted for n in the formula for the variability. As a consequence, the objective

function is no longer a function of the number of students per class, and thus, the

optimal number of classes can be found via unidimensional optimization using R’s

(R Development Core Team, 2016) general-purpose optimizer optim( ), which uses

the Nelder-Mead algorithm (Nelder & Mead, 1965). The optimal number of students
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Fig. 1 Optimal numbers of classes and students per class and the maximum power to detect the relation

between classroom management and achievement as a function of the ICC(1) of student achievement for a

fixed budget of 15,000e, costs per class of 100e, and costs per student of 10e. The ICC(1) of the students’

ratings of classroom management is set to .2, and the standardized between and within slopes are both .2

per class is obtained by inserting the optimal number of classes into the expression

for n.3

To apply this procedure in study planning, researchers must first think about

values for the quantities that influence the variability (and thus the power). More

specifically, they must consider how large the ICC(1)s of the two variables will be.

Fortunately, ICC(1)s are well-studied in educational research, and thus, the ICC(1)s

can be set equal to the values that previous studies have reported for the variables.

Recently, Stallasch et al. (2021) provided an overview of ICC(1)s for a broad array of

student outcome variables, and Baumert et al. (2010), Kunter et al. (2013), Lazarides

and Buchholz (2019), and Marsh et al. (2012), and many more scholars reported

ICC(1)s of students’ ratings of classroom climate variables.

To sensitize researchers to the consequence that their choice of the ICC(1) of stu-

dent achievement will have, Fig. 1 illustrates the effect of this ICC(1) on the optimal

sample sizes and the maximum power for a given budget of 15,000e (see the figure’s

caption for detailed information about the values assumed for the other quantities

3To assess the relation of interest with maximum power, we seek to determine the lowest possible vari-

ability of the between slope. Technically speaking, this is an example of A-optimality, which is generally

achieved by minimizing the trace of the parameters’ covariance matrix. A-optimality is to be distin-

guished from D-optimality, which minimizes the determinant of this matrix. In optimal design research,

D-optimality is often preferred over A-optimality (van Breukelen, 2013). However, when the covariance

matrix consists of only one entry as in our case (i.e., only one variance), A- and D-optimality will yield

identical solutions. Thus, our solution is D-optimal as well.
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Fig. 2 Optimal numbers of classes and students per class and the maximum power to detect the relation

between classroom management and achievement as a function of the ICC(1) of students’ ratings of class-

room management for a fixed budget of 15,000e, costs per class of 100e, and costs per student of 10e.

The ICC(1) of student achievement is set to .2, and the standardized between and within slopes are both .2

and the costs in this illustration).4 The solid and dashed lines are the optimal num-

bers of classes and students per class, respectively, and the dotted line represents the

maximum power to detect the between slope. As can be seen, the higher the ICC(1)

is (when all other quantities are held constant), the larger the optimal number of

classes will be, and the smaller the optimal number of students per class will be. This

means that given the abovementioned budget and the costs, a researcher would be

well-advised to allocate the budget primarily to the classes when the ICC(1) of the

outcome variable and thus the amount of unexplained variance in this variable at the

class level are expected to be rather large. Furthermore, a higher ICC(1) will reduce

the power to detect the between slope (because the amount of variance explained at

the class level will decrease).

The impact of the ICC(1) of the students’ ratings of classroom management is

shown in Fig. 2. Again, when a higher ICC(1) is selected, the optimal number of

classes will increase and the optimal number of students per class will decrease.

However, unlike the ICC(1) of student achievement, a higher ICC(1) of students’

ratings of classroom management will increase the power to detect the between slope.

Besides the ICC(1)s, researchers must consider the sizes of the two slopes. Com-

pared with the ICC(1)s, less research has been conducted on the slopes of the

4These results were generated from a formula for the variance of the between slope that provided an

approximation that is more precise than the one presented in Eq. 5 because this formula also included

terms involving higher order factors, such as 1
n2(n−1)

or 1
n2 .
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classroom climate variables so far. See Bardach et al. (2020), Kunter et al. (2013),

and Lazarides and Buchholz (2019), and Lüdtke et al. (2006) for examples of such

research. Moreover, different procedures have been applied to standardize the slopes,

thus further complicating the adoption of values from previous research. For exam-

ple, in Mplus, the between slope is standardized with respect to the between variances

of the variables. In contrast to Mplus, Marsh et al. (2009) suggested that the between

slope be standardized with respect to the total variance of the outcome variable but

only the between variance of the classroom climate variable—a suggestion that we

adopted here.

Figure 3 shows how the size of the standardized between slope (standardized

according to Marsh et al.’s (2009) formula) affects the optimal sample sizes and the

maximum power to detect the between slope. The figure shows that the larger this

slope is chosen to be, the smaller the optimal number of classes will be, and the larger

the optimal number of students per class will be. Moreover, a larger standardized

between slope will increase the power to detect the between slope.

Figure 4 shows the influence of the size of the standardized within slope. Unlike

the standardized between slope, the larger this slope is, the larger the optimal number

of classes will be, and the smaller the optimal number of students per class will be.

It is interesting to note that the size of the standardized within slope tends to have

Fig. 3 Optimal numbers of classes and students per class and the maximum power to detect the relation

between classroom management and achievement as a function of the standardized between slope for a

fixed budget of 15,000e, costs per class of 100e, and costs per student of 10e. The ICC(1) of student

achievement and the ICC(1) of students’ ratings of classroom management are both set to .2, and the

standardized within slope is .2
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Fig. 4 Optimal numbers of classes and students per class and the maximum power to detect the relation

between classroom management and achievement as a function of the standardized within slope for a

fixed budget of 15,000e, costs per class of 100e, and costs per student of 10e. The ICC(1) of student

achievement and the ICC(1) of students’ ratings of classroom management are both set to .2, and the

standardized between slope is .2

a positive effect on the power to detect the between slope, indicating the potential

advantage of a larger standardized within slope.

To summarize so far, we explained how the two sample sizes can be chosen

in such a way that, given a fixed budget, the variability of the between slope

will be as small as possible, and thus, the power to detect the relation between

classroom management and achievement will be as high as possible. Also, we

discussed and illustrated the consequences that the choice of values for the two

ICC(1)s and the standardized slopes will have on these optimal sample sizes and

on the power. We adopted the perspective that the study’s budget is fixed, and

the researcher wants to find the design with the maximum level of power. In

the following section, we change the perspective and discuss another application

scenario.

Minimizing a Study’s Budget Given a Prespecified Level of Power

The maximum power might not be sufficient for a given fixed budget, which makes

it necessary to reconsider the budget. Optimal design research can help researchers

find the numbers of classes and students per class that minimize the budget required

to achieve a certain level of power to detect the relation between classroom man-

agement and achievement. These numbers constitute the most cost-effective design

with the desired level of power. Thus, in this optimization problem, Eq. 6 is the
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objective function, and the constraint under which the budget is minimized is the

power:

%Pow = 100 ·
[

1 − F

(

1.96 −
βbetween√

Var

)

+ F

(

−1.96 −
βbetween√

Var

)]

(7)

where F denotes the cumulative normal distribution function (see, e.g., Kelcey et al.,

2017). Again, the optimal sample sizes can be found with the help of optim(), and

we briefly discuss the consequences that the choice of the values for the different

quantities will have on the optimal sample sizes and on the smallest budget that can

be achieved.

The effect of the ICC(1) of student achievement is illustrated in Fig. 5. Again,

the solid and dashed lines represent the optimal numbers of classes and students per

class, respectively. The dotted line is the smallest budget needed to achieve a power of

80% to detect the relation between classroom management and achievement. Eighty

percent is a typical choice in study planning. The figure shows that the higher the

ICC(1) is (and thus, the larger the amount of unexplained variance at the class level

is), the larger the optimal number of classes will be, and the smaller the optimal

number of students per class will be when all other quantities are held constant. Thus,

when a researcher wants to achieve a power of 80% and expects the ICC(1) of the

outcome variable to be rather large, he or she should spend the budget primarily on

the classes. Also, with a higher ICC(1), the minimum budget needed to achieve a

power of 80% will increase.

Fig. 5 Optimal numbers of classes and students per class and the minimum budget required for a power

of 80% to detect the relation between classroom management and achievement as a function of the ICC(1)

of student achievement for costs per class of 100e and costs per student of 10e. The ICC(1) of students’

ratings of classroom management is set to .2, and the standardized between and within slopes are both .2
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Figure 6 shows the impact of the ICC(1) of students’ ratings of classroom man-

agement. As can be seen, selecting a higher ICC(1) will decrease both the optimal

numbers of classes and students per class and the minimum budget required to

achieve a power of 80%.

A slightly different pattern emerges when a larger standardized between slope is

selected. The impact of the size of this slope on the optimal sample sizes and the

minimum required budget is shown in Fig. 7. The choice of a larger standardized

between slope will decrease the optimal number of classes but will increase the opti-

mal number of students per class. Moreover, the larger this slope is, the lower the

minimum budget required to achieve a power of 80% will be.

How the size of the standardized within slope affects the optimal sample sizes and

the minimum required budget is shown in Fig. 8. A larger slope will slightly decrease

the optimal numbers of classes and students per class as well as the minimum budget

required to achieve a power of 80%, indicating once more the possible advantage of

a larger standardized within slope.

To summarize, we mentioned how the two sample sizes can be chosen in such a

way that given a certain level of power to detect the relation between classroom man-

agement and achievement, the budget required to achieve this power will be as small

as possible. We also illustrated how the two ICC(1)s and the standardized slopes will

change these optimal sample sizes and the minimum budget. Next, we show how

the different procedures for obtaining optimal designs can be applied in research on

teaching quality.

Fig. 6 Optimal numbers of classes and students per class and the minimum budget required for a power

of 80% to detect the relation between classroom management and achievement as a function of the ICC(1)

of students’ ratings of classroom management for costs per class of 100e and costs per student of 10e.

The ICC(1) of student achievement is set to .2, and the standardized between and within slopes are both .2
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Fig. 7 Optimal numbers of classes and students per class and the minimum budget required for a power

of 80% to detect the relation between classroom management and achievement as a function of the stan-

dardized between slope for costs per class of 100e and costs per student of 10e. The ICC(1) of student

achievement and the ICC(1) of students’ ratings of classroom management are both set to .2, and the

standardized within slope is .2

Illustrative Example

To illustrate the application, we consider the study by Arens and Morin (2016) and

make use of their results. The sample used by the authors was the German sample

from the Progress in International Reading Literacy Study 2006 (PIRLS), which con-

sisted of 414 classes with 18 students per class. Arens and Morin (2016) investigated

the role that teachers’ support plays in students’ reading achievement. The concept

of support captures different ways to support students’ learning, such as individual-

ized feedback and encouragement, and these forms of support have been shown to be

positively related to achievement (Hamre & Pianta, 2005; Hughes et al., 2008; Klem

& Connell, 2004; Kunter et al., 2013). The extent to which a teacher supports his or

her students was assessed by asking the students whether the teacher gives advice to

students on how to do better, for example (see also Morin et al., 2014). Along with

students’ scores on a reading achievement test, these ratings were then subjected to

a multilevel latent variable model in Mplus, which performs the latent aggregation

as described above and computes the relation between the teachers’ support and the

students’ achievement (while controlling for other variables).

We first consider what the optimal design would have been for a fixed budget.

Because we do not know the PIRLS’ budget and costs, we assume a fixed budget of

60,000e for the sampling of classes and students and costs of 68.20e and 7.05e per

class and student, respectively. The costs correspond with the costs in one of our own
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Fig. 8 Optimal numbers of classes and students per class and the minimum budget required for a power

of 80% to detect the relation between classroom management and achievement as a function of the stan-

dardized within slope for costs per class of 100e and costs per student of 10e. The ICC(1) of student

achievement and the ICC(1) of students’ ratings of classroom management are both set to .2, and the

standardized between slope is .2

large-scale studies and involve personnel costs and travel costs as well as printing,

scanning, and coding costs. Also, it is necessary to consider particular values for the

quantities that influence the variability (and thus the power) of the between slope.

Arens and Morin (2016) reported ICC(1)s of the achievement test and the students’

ratings of support of .32 and .12, respectively. Thus, we chose these values for the

ICC(1)s. Also, the authors reported the standardized within slope, which was 0.159

(see their Table 2).5 Arens and Morin (2016) found that the standardized between

slope, which describes the relation between support and achievement, was nonsignif-

icant. Thus, for the standardized between slope to be detected in the study, we chose

.1 (i.e., one-tenth of a standard deviation), which is rather small but is in line with the

authors’ reasoning. Applying our procedure for determining the design with the max-

imum power given a fixed budget to these values provided optimal numbers of 395

classes and 12 students per class. Thus, the optimal design had 19 classes less and 6

students per class less than the actual sample sizes used in the German PIRLS. How-

ever, a study with this optimal design would have a power of only 73% to detect a

5This is the conditional slope (i.e., it was adjusted for other predictors and covariates). However, because

the study did not report the value for the unconditional slope, we used the value of the conditional slope

here, although these two values could have been different.
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standardized between slope of .1, which would not be deemed sufficient. Therefore,

next, we ask what design with a sufficiently high level of power would have been the

most cost-efficient one.

We chose a power of 80%, which is considered sufficiently high. All other quan-

tities were the same as before. Under this specification, we obtained an optimal

design with 469 classes and 12 students using our procedure for finding the most

cost-efficient design with a power of 80%. The required budget was 71,250e. It

is interesting to note that the optimal number of students per class did not change.

Only the optimal number of classes increased by 74, indicating that in order to

achieve higher power, more classes must be sampled. The optimal design differed

from the actual design of the PIRLS, which raises the question of whether the

actual design was sufficiently powered. The answer is a clear yes because the power

was 83%.

Shiny App

We created an interactive web application (Shiny App) to help researchers plan class-

room climate studies and learn about optimal designs and the impact of the quantities

that need to be considered when planning such studies. Thus, our app has a twofold

function. First and foremost, it is a tool for finding optimal designs. Second, this

app allows researchers to examine how optimal designs will change depending on

the choice of the values for the two ICC(1)s and the standardized slopes. A correct

understanding of these aspects is central to planning a study, and the app can help

researchers develop this understanding.

Figure 9 shows screenshots of the app. The app consists of two tabs, which cor-

respond to the two application scenarios: The first one involves finding the sample

sizes that maximize the power to detect the relation of interest when the study’s

budget is fixed, and the second one involves finding the design that minimizes the

budget required to achieve a given level of power. When the app is accessed, it

defaults to some reasonable values. In Scenario 1, a fixed budget of 20,000e is

assumed. The costs per class and costs per student are set to 68.20e and 7.05e,

respectively. The ICC(1)s of students’ achievement and students’ ratings of class-

room climate are both set to .2, and the standardized between and within slopes are

also both .2. For these values, the app returns an optimal number of 130 classes,

an optimal number of 12 students per class, and a power of 98%. In Scenario 2, a

power of 80% is assumed instead of a fixed budget, and all other quantities are the

same as those used in Scenario 1. The output of the app shows optimal numbers of

classes and students per class of 61 and 12, respectively, and a required budget of

9,311e. The users can adjust the initial values by modifying the input fields. Each

time a new value is entered, the output is updated immediately by R, which runs

in the background of the app. For example, when the standardized between slope

is increased by inputting 0.3 in Scenario 1, the output changes to 116 classes, 15

students per class, and a power of 100%. Similarly, when the slope is increased in

Scenario 2, the output changes to 21 classes, 14 students per class, and a budget

of 3,526e.
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Fig. 9 Shiny App

Discussion

Classroom environment is an important context not only for learning but also for

other aspects of students’ development, such as motivation and emotions (Wang

et al., 2020). It is therefore imperative that researchers identify positive predictors

of students’ development, such as classroom climate. In this article, we discussed

how classroom climate research can profit from optimal designs. In particular, we

extended the standard of knowledge by describing (a) how the power to detect

a relation between the classroom climate and an outcome variable can be max-

imized by choosing optimal sample sizes given a fixed budget for conducting a

study and (b) how the study’s budget can be minimized given a certain prespeci-

fied level of power. After we explained the procedures, we presented a Shiny App,

which is useful to researchers who are interested in studying the role of classroom

climate. In the following, we present and discuss further theoretical and practical

considerations.

528 Educational Psychology Review (2022) 34:511–536



Statistical Considerations

Even though we focused primarily on the multilevel latent covariate model and its

application in classroom climate research, it should be mentioned that there are fur-

ther developments that are routinely applied in this field (e.g., the doubly latent

model; Marsh et al., 2009). However, although these models are more complex, the

multilevel latent covariate model still provides their building block. Moreover, one

particular challenge associated with the application of doubly latent models is that

estimation problems can occur (see Lüdtke et al., 2011), and this is why less complex

models, such as the multilevel latent covariate model, can be an even better choice

(see Zitzmann & Helm, 2021).

An optimal design can only be obtained with exact values for the quantities on

which the variability depends. However, these exact values are usually not known for

sure in the planning phase of a study, and thus, the optimal design is only “locally

optimal,” meaning that it is optimal only for the specific values that the researcher

specified for the quantities and can be suboptimal for other values. This issue is

known as the local optimality problem. One workaround for this problem involves

choosing the maximin design, which maximizes the minimum variability (and thus

minimizes the maximum power) across a range of reasonable values for the quantities

(e.g., van Breukelen & Candel, 2015).

Our app is based on the evaluation of approximate formulas that were devel-

oped elsewhere (see Grilli & Rampichini, 2011; Zitzmann et al., 2021). Of course,

optimal designs can also be found by running tailored computer simulations. How-

ever, these studies are computationally very demanding and time-consuming, and

often, an expert from the field of statistics is needed to conduct them. By con-

trast, the application of our app does not require such experts, and the app is easy

to use once the underlying model and the different quantities involved are under-

stood. In educational research, it is often deemed important that an empirical study

be well-designed, particularly when the implementation of the study depends on

the success of a grant proposal. The app can help researchers design their studies,

and it allows them to evaluate studies that were already conducted by determin-

ing whether the designs were close to optimal. Furthermore, the app can be used

as a didactic tool to teach students about optimal designs in classroom climate

research.

A Cautionary Note

In the multilevel latent covariate model, students’ ratings of their classroom (or their

teacher) are latently aggregated on the class level, and this latent class mean is related

to the outcome variable. Because student ratings are used to assess the climate, and

the class mean reflects the shared perception of the students in a class, the latent

class mean may be referred to as a reflective class-level construct. Such constructs

should not be confused with group-level constructs that are assessed by asking teach-

ers to rate themselves. Reflective class-level constructs were discussed in depth by

Lüdtke et al. (2008), who distinguished them from formative group-level constructs

(e.g., the percentage of girls in a class), which are used in context research. Thus, the
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distinction between reflective and formative group-level constructs is closely related

to Marsh et al.’s (2012) distinction between climate and contextual variables.

Although the terminology differs, a similar distinction is made in organizational

psychology (e.g., Bliese, 2000; Kozlowski and Klein, 2000).

Perhaps the most important difference between reflective and formative group-

level constructs is that in reflective group-level constructs, the individuals act as

indicators of a latent variable (i.e., the latent group mean; Croon & van Veldhoven,

2007), and thus, like the indicators in domain sampling theory (e.g., Ghiselli et al.,

1981), the individuals can be considered a sample from a potentially infinitely large

number of individuals per group (e.g., the number of potential raters of a learning

environment), whereas in formative group-level constructs, the individuals stem from

a finite number of individuals per group (e.g., the size of the class; Lüdtke et al.,

2008). Hence, in reflective group-level constructs, the sampling ratio approaches

zero by definition, whereas in formative constructs, this ratio can range up to 100%

(i.e., when all individuals are sampled). The multilevel latent covariate model is most

appropriate for reflective class-level constructs as discussed in the present article

(Lüdtke et al., 2008), and the analytical approach will generally differ when formative

class-level constructs are analyzed. This means that our app, which is based on this

specific multilevel model, is a convenient tool for finding optimal designs when the

predictor in the model is a reflective class-level construct. However, even though we

generally recommend that users avoid using the app when the predictor is a formative

construct, the app can still be a valid tool in this case when a certain additional con-

dition is met. A central assumption of the app is that the sampling ratio approaches

zero. Thus, the app can be a valid tool even when a formative class-level construct is

analyzed, provided that only a small number of students are sampled per class. This

argument is supported by extensive simulation work showing that when the sampling

ratio is very small, the multilevel latent covariate model can perform reasonably well

(Lüdtke et al., 2008). Because the app is based on this model, this finding speaks for

the usefulness of the app also when a formative class-level construct is analyzed and

the sampling ratio is very small.

In this article, we focused on the between slope of the multilevel latent covari-

ate model, which is most important to researchers interested in studying the role of

classroom climate because it assesses the relation between the classroom climate and

the outcome variable. Our procedures find designs that are optimal for estimating

the between slope. However, these procedures might not provide optimal solutions

for other parameters, for example, when the focus is on the within slope, which

assesses the role of students’ idiosyncratic perceptions and might reflect dyadic

effects between students and teachers to some extent (Göllner et al., 2018).

As with most optimal design research, some caution should be exercised when

applying the results in small sample contexts because some of the assumptions that

are made might not be realistic in these contexts. For example, to compute the power

(Eq. 7), we implicitly assumed that we were estimating the between slope without

bias. However, whereas this is true in large samples (N > 1, 000), results tend to

be biased when sample sizes are small (e.g., McNeish, 2017). As a consequence, the

power formula and thus the optimal design found under a prespecified level of power

can deviate from what is really optimal.
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A practical challenge is the decision of how to proceed when the optimal number

of students per class exceeds the typical class size of 25 students. A simple rule of

thumb for coping with this issue is to set this number to 25 and then increase the

number of classes to compensate for the loss of power. This natural boundary points

to the need to take into account not only the optimality of a design when planning the

study but also the suboptimality of possible boundary conditions.

Future Research and Conclusions

We did not consider additional covariates and their influence on optimal designs in

classroom climate research—a limitation that is worth addressing in future research.

For example, it can make sense theoretically to also include a lagged outcome to

control for students’ previous achievement (e.g., Köhler et al., 2021). Moreover, we

did not consider data with a three-level structure (e.g., when students are nested in

classes, and classes are nested in schools). To our knowledge, a closed form expres-

sion for the variability of the results for the between slope at the school level (i.e.,

the relation between the school climate and the outcome) has not yet been derived.

However, this expression is a necessary prerequisite for our procedures for obtain-

ing optimal designs, which are very time-efficient (i.e., results are delivered in less

than 1 s). Thus, it would be a valuable task to obtain the expression so that the pro-

cedures can be extended to yield optimal designs also for the three-level extension

of the multilevel latent covariate model. Finally, we focused on traditional Maxi-

mum Likelihood (ML) estimation, but as Hamaker and Klugkist (2011) pointed out,

Bayesian estimation can offer a promising alternative. Zitzmann et al. (2015) even

showed how this type of estimation can be fruitfully applied to Lüdtke et al.’s (2008)

model to assess the role of the classroom climate, which was also the model of inter-

est here. The main feature of Bayesian estimation is the so-called prior distribution,

a vehicle that can be used to adjust results in an advantageous way. What is most

important for the present work is that the prior can be specified in such a way that the

variability of the results for the between slope will be small. Zitzmann et al. (2021)

showed how a weak prior for the slope can achieve this goal. More formally, when

this prior is specified, the variability will be w2Var—a factor times the variability in

Eq. 5. Because this factor is less than 1, the variability will be reduced in comparison

with the variability in Eq. 5. As a consequence, the maximum level of power will be

increased given a fixed budget, and the minimum budget required to achieve a pre-

specified level of power will be reduced. Thus, Bayesian estimation in combination

with a weak prior appears to be an attractive option, particularly when a study’s bud-

get is very limited. It would thus be very interesting to further investigate the benefits

of Bayesian estimation in optimal designs in future research.

To conclude, it is widely assumed that the learning context plays a significant role

in students’ development, and a number of studies have already been conducted to

address the role that classroom climate plays in students’ achievement, motivation,

and emotions. However, as Wang et al. (2020) pointed out, although a strong theory

exists for the notion that classroom climate influences relevant outcomes, empiri-

cal evidence for this causal claim is still thin, thus calling for more studies. The
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present article addressed the important question of how the role of classroom cli-

mate can be studied optimally and cost-efficiently. To assist researchers with study

planning, we developed a Shiny App, which can be accessed online via the follow-

ing link: https://psychtools.shinyapps.io/optimalDesignsClassroomClimate. It is our

hope that the app will further contribute to the widespread use of optimal designs in

educational research. In closing, we want to emphasize once more that the applica-

tion of the app is not limited to the educational context, but it may also be useful to

researchers from other areas of research in which climate variables are of interest,

such as organizational research focusing on organizational climate and other climate

variables.
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Zitzmann, S., Lüdtke, O., Robitzsch, A., & Hecht, M. (2021). On the performance of Bayesian approaches

in small samples: A comment on Smid, McNeish, Miočević, and van de Schoot (2020). Structural
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