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ABSTRACT 1 

 2 

 It is now widely recognized that the El Niño-Southern Oscillation (ENSO) occurs in 3 

more than one form, with the canonical eastern Pacific (EP) and more recently recognized 4 

central Pacific (CP) ENSO types receiving the most focus.  Given that these various ENSO 5 

“flavors” may contribute to climate variability and long-term trends in unique ways, and that 6 

ENSO variability is not limited to these two types, this study presents a framework that treats 7 

ENSO as a continuum but determines a finite, maximum number of statistically distinguishable 8 

representative ENSO patterns.  A neural network-based cluster analysis called self-organizing 9 

map (SOM) analysis paired with a statistical distinguishability test determine nine unique 10 

patterns that characterize the September – February tropical Pacific SST anomaly fields for the 11 

period from 1950 through 2011.  These nine patterns represent the flavors of ENSO, which 12 

include EP, CP, and mixed ENSO patterns.  Over the 1950-2011 period, the most significant 13 

trends reflect changes in La Niña patterns, with a shift in dominance of La Niña-like patterns 14 

with weak or negative west Pacific warm pool SST anomalies until the mid 1970s, followed by a 15 

dominance of La Niña-like patterns with positive west Pacific warm pool SST anomalies, 16 

particularly after the mid 1990s.  Both an EP and especially a CP El Niño pattern experienced 17 

positive frequency trends, but these trends are indistinguishable from natural variability.  18 

Overall, changes in frequency within the ENSO continuum contributed to the pattern of tropical 19 

Pacific warming, particularly in the equatorial eastern Pacific and especially in relation to 20 

changes of the La Niña-like rather than El Niño-like patterns.   21 

 22 

 23 

 24 
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1. Introduction 25 

 The El Niño-Southern Oscillation (ENSO) is the dominant mode of tropical atmosphere-26 

ocean interaction on interannual timescales, with impacts that span much of the globe 27 

(Ropelewski and Halpert 1987; Trenberth and Caron 2000).  Typically, ENSO episodes have 28 

been identified through the monitoring of sea surface temperature (SST) anomalies in the 29 

equatorial Pacific region, most notably the so-called Niño 3.4 region (5ᵒS - 5ᵒN, 120 - 170ᵒW).  30 

However, recent studies have made it increasingly clear that traditional definitions of ENSO 31 

episodes fail to distinguish two unique types of El Niño episode, the canonical El Niño that is 32 

centered in the eastern equatorial Pacific and the more recently recognized El Niño that is 33 

centered farther west near the International Date Line.  This latter type, which has been referred 34 

by various names such as the “dateline El Niño” (Larkin and Harrison 2005), “El Niño Modoki” 35 

(Ashok et al. 2007), “warm pool El Niño” (Kug et al. 2009), and “central Pacific El Niño” (Yeh 36 

et al. 2009), has received increased attention because of its unique underlying dynamics (Kao 37 

and Yu 2009; Kug et al. 2009; Newman et al. 2011a,b; Yu and Kim 2011), global impacts 38 

(Larkin and Harrison 2005; Weng et al. 2007; Ashok et al. 2007; Mo 2010; Hu et al. 2012), and 39 

potential trends under global warming (Yeh et al. 2009) relative to those of the eastern Pacific 40 

(EP) El Niño.  On the basis of climate model simulations analyzed in the IPCC Fourth 41 

Assessment Report, Yeh et al. (2009) suggest that the relative frequency of central Pacific (CP) 42 

El Niño episodes may increase under anthropogenic global warming in response to changes in 43 

the equatorial Pacific mean thermocline.  However, the recent increasing trend in the frequency 44 

of CP El Niño episodes (Lee and McPhaden 2010) may be indistinguishable from natural 45 

variability (Newman et al. 2011b; Yeh et al. 2011). 46 
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 The recent focus on the distinction between the EP and CP El Niño is consistent with the 47 

notion that ENSO may come in many different “flavors” (Trenberth and Stepaniak 2001) that are 48 

distinct from the canonical El Niño and La Niña composites and cannot be characterized by a 49 

single index.  In order to describe the structure and evolution of these various flavors, 50 

investigators have increasingly considered multiple indices that capture the zonal gradient of 51 

equatorial Pacific SST anomalies such as the “Trans-Niño Index” (Trenberth and Stepaniak 52 

2001) or, more commonly for the identification of EP and CP El Niño episodes, a comparison 53 

between Niño 3 (5ᵒS - 5ᵒN, 150ᵒ - 90ᵒW) and Niño 4 region (5ᵒS - 5ᵒN, 160ᵒE - 150ᵒW) SST 54 

anomalies.  Although this additional information clearly reveals some of the distinct properties 55 

between various ENSO episodes, such subjective index choices are not necessarily optimal for 56 

describing the various ENSO flavors that are discernible in the observational record.      57 

 Another common approach for distinguishing tropical SST patterns is through empirical 58 

orthogonal function (EOF) analysis, but this method is not guaranteed to reveal physically 59 

interpretable SST modes (e.g., L’Heureux et al. 2012).  In particular, the leading EOF of tropical 60 

Pacific SSTs generally resembles the canonical EP ENSO pattern, and either the second (e.g., 61 

Ashok et al. 2007) or third (e.g., L’Heureux et al. 2012) EOF resembles the CP ENSO pattern.  62 

However, this second or third EOF also tends to capture the spatial asymmetry between the EP 63 

El Niño and La Niña patterns (Hoerling et al. 1997; Rodgers et al. 2004), which means that this 64 

particular EOF is not uniquely identified with CP ENSO episodes.  This complication highlights 65 

one of the potential pitfalls of using a linear, orthogonal method like EOF analysis to 66 

characterize nonlinear, non-orthogonal SST patterns. 67 

 In this study we consider a new perspective and methodology for describing ENSO 68 

flavors.  Under the perspective presented here, we recognize that there is a continuum of ENSO 69 
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states but that the relatively brief observational record limits the number of distinct ENSO 70 

flavors that we can distinguish.  Here we consider a methodology that treats ENSO as a 71 

continuum but also determines a finite, maximum number of statistically distinguishable ENSO 72 

flavors.  This approach is based on a pairing of a type of neural network-based cluster analysis, 73 

called self-organizing map (SOM) analysis, with a statistical distinguishability test, described 74 

more thoroughly in the following section.  This approach represents a more objective partitioning 75 

of the equatorial Pacific SST data than the standard approach of partitioning by somewhat 76 

subjective SST indices. In addition, this approach, which is constrained by neither linearity nor 77 

orthogonality, avoids the disadvantages of common linear methods such as EOF analysis and 78 

often results in more easily interpretable physical patterns (Reusch et al. 2005; Liu et al. 2006; 79 

Johnson et al. 2008).   80 

Because tropical SST trends play a critical role in remote, regional temperature and 81 

precipitation trends (Shin and Sardeshmukh 2011) and tropical precipitation and circulation 82 

changes (Xie et al. 2010; Johnson and Xie 2010; Ma et al. 2012; Tokinaga et al. 2012), it is 83 

worthwhile to examine how changes in the frequency of different ENSO flavors impact the long-84 

term SST trend.  As demonstrated and discussed in the following three sections, the framework 85 

adopted here allows us to connect the long-term SST trend to changes in the frequency 86 

distribution of interannually varying SST patterns.   87 

 The remainder of the paper is organized as follows.  Section 2 provides a description of 88 

the general framework, methodology, and data used in this analysis.  Section 3 presents the main 89 

results, which include the SOM cluster patterns and the results of the trend analysis.  The paper 90 

concludes with discussion and conclusions in Sections 4 and 5.   91 

 92 
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 2. Data and Methodology 93 

 In this section we examine the approach for determining the ENSO region SST clusters 94 

and then determining the maximum number of distinguishable clusters.   95 

 96 

a. Self-organizing map SST cluster patterns 97 

 98 

 Conceptually, we would expect that determining the maximum number of distinguishable 99 

ENSO flavors would require a partitioning of tropical Pacific SST fields into groups that 100 

maximize similarity within groups while also maximizing the dissimilarity between groups.  101 

Computationally, this sort of partitioning may be accomplished either by K-means cluster or 102 

SOM analysis.  Specifically, K-means cluster analysis treats each SST field as an M-dimensional 103 

vector, where M is the number of grid points, and minimizes the sum of squared distances 104 

between each SST field and the nearest of the K cluster centroids.  There are several reasonable 105 

choices for a distance metric, but Euclidean distance is perhaps most commonly used, and is 106 

used in the analysis presented here.  The clusters are most commonly determined through an 107 

iterative, two-step procedure described as such:  Given an initial assignment of K cluster 108 

centroids, which may be a random distribution, the first step is the assignment of the data vectors 109 

(SST fields in this case) to the nearest cluster centroid, and the second step is the calculation of 110 

the new cluster centroids.  These two steps are repeated until the cluster assignments no longer 111 

change, which corresponds to a local minimum of the sum of squared distances described above.   112 

The value of K must be specified prior to the cluster analysis, and the method for determining K 113 

for this problem is discussed in Section 2b.  K-means cluster analysis has remained a popular 114 

method of cluster analysis in the atmospheric and ocean sciences for decades (e.g., Michelangeli 115 
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et al. 1995; Christiansen 2007; Johnson and Feldstein 2010; Riddle et al. 2012; Freeman et al. 116 

2012).     117 

 SOM analysis (Kohonen 2001) is a relatively new neural network-based cluster analysis 118 

that bears strong similarities to K-means clustering and has increased in popularity in the 119 

atmospheric and ocean sciences over the past decade (e.g., Hewitson and Crane 2002; 120 

Richardson et al. 2003; Liu et al. 2006; Leloup et al. 2007; Johnson et al. 2008; Jin et al. 2010; 121 

Lee et al. 2011; Chu et al. 2012).  SOM analysis most significantly distinguishes itself from K-122 

means cluster analysis through the addition of a topological ordering on a low-dimensional 123 

(typically one- or two-dimensional) map.  In other words, the clusters “self-organize” such that 124 

similar clusters are located close together on this low-dimensional map, often displayed as a grid, 125 

and dissimilar clusters are located farther apart.  This combination of clustering and topological 126 

ordering makes SOM analysis effective for providing a visualization of the continuum of 127 

patterns within a dataset.  Similar to the objectives of this study, SOM analysis has been used in 128 

previous studies to describe the continuum of atmospheric teleconnection patterns (e.g., Johnson 129 

et al. 2008; Lee et al. 2011) and to describe decadal changes in ENSO (Leloup et al. 2007).   130 

 The self-organizing nature of SOM analysis owes to a component called the 131 

neighborhood function, with an associated parameter called the neighborhood radius.  When the 132 

neighborhood radius is greater than zero, the clusters become organized within the low-133 

dimensional map.  When the neighborhood radius is set to zero, the SOM algorithm reduces to 134 

the K-means clustering algorithm.  Thus, SOM analysis can be considered a “constrained version 135 

of K-means clustering” (Hastie et al. 2009).  In the present analysis, a one-dimensional SOM 136 

analysis is performed such that the neighborhood radius gradually shrinks to a value of zero.  137 

Therefore, the SOM patterns become topologically ordered along a line when the neighborhood 138 
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radius is greater than zero, but the algorithm used to determine the cluster patterns converges to 139 

the K-means clustering algorithm.  The SOM approach is chosen to ensure that similar ENSO 140 

flavors are grouped together, but we would expect to see similar results with K-means cluster 141 

analysis.  See the appendix of Johnson et al. (2008) for a more thorough description of the basic 142 

SOM methodology and Liu et al. (2006) for additional information on recommended SOM 143 

parameter choices. 144 

 In this study, we consider ENSO flavors to be represented by SOM SST anomaly patterns 145 

in the equatorial Pacific domain.  We use September – February mean SST data for the period 146 

from 1950 through 2011 derived from the Extended Reconstructed Sea Surface Temperature 147 

Dataset, Version 3b (ERSST v3b; Xue et al. 2003; Smith et al. 2008).  The September – 148 

February period is used because of the seasonal phase locking of ENSO, which results in the vast 149 

majority of ENSO episodes peaking during boreal fall or winter.  The starting year of 1950 is 150 

chosen because of the improved spatial and temporal coverage of SST data that begins around 151 

that time (Deser et al. 2010; see their Fig. 3). In addition, prior to 1950 the SST patterns of 152 

ENSO episodes may depend strongly on the method of reconstruction for the SST dataset (Giese 153 

and Ray 2011; Ray and Giese 2012).  The chosen domain covers the tropical Pacific region 154 

between 120ᵒE and 50ᵒW and between 25ᵒS and 25ᵒN.  The ERSST v3b data are on a 2ᵒ 155 

latitude-longitude grid, but because the analysis described in the following section requires equal 156 

weight to be placed on each grid point, the data are linearly interpolated to an equal-area grid 157 

with 1ᵒ latitudinal spacing and longitudinal spacing that increases from 1ᵒ at the equator to 158 

approximately 1.1ᵒ at 25ᵒ latitude.  Anomalies are calculated by subtracting the seasonal cycle 159 

for the 1981-2010 base period.  The choice of the most recent 30-year climatology is based on 160 

the standard practice of the National Oceanic and Atmospheric Administration (NOAA) Climate 161 
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Prediction Center (CPC), but the focus of this study, the spatial variations and trends of ENSO 162 

flavors, is not sensitive to this choice of base period.  SOM analysis is performed on the SST 163 

anomaly data for various choices of K, as described in section 2b.  Because the analysis 164 

converges to a local rather than global minimum of the error function described at the beginning 165 

of this section, the SOM analyses and all tests of Section 2b are repeated five times without any 166 

noticeable change in results.  Thus, the results presented here are robust.  All SOM calculations 167 

are performed with the Matlab SOM Toolbox (Vesanto et al. 2000) that is freely available on the 168 

Web (http://www.cis.hut.fi/somtoolbox/).     169 

 170 

b. Determining the maximum number of distinguishable ENSO flavors 171 

  172 

Because K must be specified prior to a K-means cluster or SOM analysis, one challenge 173 

in any cluster analysis is the determination of the optimal number of clusters.  Many studies have 174 

suggested various useful heuristic methods for determining K (e.g., Michelangeli et al. 1995; 175 

Christiansen 2007; Hastie et al. 2009; Riddle et al. 2012), but an objective optimal K has 176 

remained elusive.  In this study we consider a new criterion for choosing K: the maximum 177 

number such that all clusters are statistically distinguishable from another.  Thus, if K* is the 178 

optimal K by this criterion, then we can determine K* unique cluster patterns, but K*+1 clusters 179 

would result in two or more clusters that are indistinguishable by this statistical definition.  In the 180 

present application, K* would refer to the maximum number of statistically discernible ENSO 181 

flavors.   182 

 The determination of whether two cluster patterns are statistically distinguishable 183 

requires a test of field significance.  Often times in the atmospheric and ocean sciences, field 184 
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significance tests have been conducted through Monte Carlo resampling methods (Livezey and 185 

Chen 1983).  Recently, another field significance approach based on the “false discovery rate” 186 

(FDR) has been introduced to the climate sciences (Benjamini and Hochberg 1995; Wilks 2006).  187 

The FDR refers to the expected proportion of local null hypotheses that are rejected but are 188 

actually true.  In the present application, the local hypotheses being evaluated are whether the 189 

SST anomalies at each grid point in cluster pattern i are significantly different from the 190 

corresponding SST anomalies in cluster pattern j.  If at least one local test has a p-value that 191 

satisfies the specified FDR criterion, typically q = 0.05, then the cluster patterns are statistically 192 

distinguishable also at the level q.  If no local tests meet the FDR criterion, then the cluster 193 

patterns are statistically indistinguishable.  Further explanation of this test is provided below.  194 

The FDR approach has a number of advantages over conventional field significance tests, 195 

including generally better test power, robust results even when the local test results are correlated 196 

with each other, and the identification of significant local tests while controlling the proportion 197 

of false rejections (Wilks 2006).  In addition, FDR tests are much more computationally efficient 198 

than Monte Carlo methods, and so a large number of field significance tests can be conducted 199 

with little computational effort, as required for the tests described here.   200 

 To determine if SOM cluster i is statistically distinguishable from SOM cluster j, we first 201 

calculate the p-values (two-sided) at each grid point corresponding to the Student’s t distribution 202 

for a difference of means, where the null hypothesis is that the local SST composite anomalies 203 

are the same in both clusters.  This test is based on the recognition that SOM cluster pattern i (j) 204 

with ni (nj) cluster members is equivalent to an SST composite pattern with ni (nj) samples that 205 
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comprise the composite
1
.  Each of the ni or nj cluster members is a seasonal SST anomaly field 206 

assigned to that cluster on the basis of minimum Euclidean distance.  For each pair of cluster 207 

pattern composites, we calculate the p-values corresponding to 208 

                                   t(λ,θ)  =  
                                                                                        (1) 209 

where                        210 

                                S(λ θ) =                                                                  (2) 211 

The variable            (          ) signifies the composite SST anomaly for SOM cluster i (j), and Si (Sj) 212 

indicates the standard deviation corresponding to all SST anomalies within cluster i (j) at latitude 213 

λ and longitude θ.  For these calculations, we assume that each SST anomaly field represents an 214 

independent sample, which is reasonable for seasonal fields separated by at least a year and 215 

usually several years within each cluster.   216 

 The calculations for a pair of cluster patterns described above result in a distribution of M 217 

p-values, where, again, M is the total number of grid points.  If all M local null hypotheses are 218 

true, and if the results of the local tests are independent of each other, then the resulting M p-219 

values will be a random sample from the uniform distribution U(0,1) (e.g., Folland and Anderson 220 

2002; Wilks 2006).  If some of the local null hypotheses are false, then the corresponding p-221 

values will be smaller than expected from this uniform distribution.  The FDR test evaluates the 222 

distribution of p-values to determine the local p-value that provides confidence in the correct 223 

rejection of local null hypotheses; that is, the p-value that controls the FDR at the level q, which 224 

                                                 
1
 The equivalence between SOM cluster patterns and composites is strictly true only when the neighborhood radius 

of the SOM algorithm is equal to zero, as specified as the final radius in this analysis.  This equivalence is always 

true for K-means cluster analysis.  
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is also the global or field significance level αglobal.  This test is conducted as follows.  Let p(m) 225 

denote the mth smallest of the M p-values.  The FDR can be controlled at the level q for  226 

                                                                             .                                              (3) 227 

All local tests that yield a p-value less than or equal to the largest p-value that satisfies the right-228 

hand side of (3) are deemed significant, which means that the expected fraction of local null 229 

hypotheses that are actually true for those tests is less than or equal to q.  If no local tests meet 230 

the criterion specified in (3), then the patterns are statistically indistinguishable.  In the present 231 

application, we shall not focus on the specific value of pFDR, but instead shall focus on whether 232 

or not any local tests satisfy (3) for q = 0.05; that is, whether or not the cluster patterns are 233 

statistically distinguishable at the 95% confidence level.  Although the assumption of 234 

independent local tests does not hold in this case due to high spatial correlation in the SST fields, 235 

the results of FDR tests do not appear sensitive to this independence assumption (Wilks 2006).    236 

 For K SOM cluster patterns there are K(K-1)/2 possible pairs of patterns to compare with 237 

the test described above.  To determine K*, we perform the SOM analysis for values of K that 238 

increase from two to 20 at an increment of one, perform the K(K-1)/2 field significance tests, as 239 

described above, for each choice of K, and count the number of SOM cluster pattern pairs that 240 

are statistically indistinguishable.  The maximum number of statistically distinguishable ENSO 241 

flavors, K*, is the largest value of K with zero statistically indistinguishable cluster pattern pairs.     242 

 243 

3. Results 244 

 We first examine the results of the field significance tests described above.  Figure 1 245 

illustrates the number of statistically indistinguishable cluster pattern pairs as a function of K.  246 
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We see that as K is increased from two to nine, all pairs of cluster patterns for each K remain 247 

statistically distinguishable.  When K is increased to ten, however, the number of statistically 248 

indistinguishable pairs rises above zero.  As we would expect, the number of indistinguishable 249 

pairs rises monotonically with K above nine
2
.  Thus, by the reasoning stated above, the 250 

maximum number of statistically distinguishable ENSO flavors is determined to be nine. 251 

 The value of K* may vary slightly based on the domain chosen to represent ENSO 252 

flavors.  Reasons for the slight variations include changes in the number of spatial degrees of 253 

freedom, the convergence of cluster analyses to local rather than global minima of the error 254 

functions, and the use of a sharp significance threshold of αglobal = 0.05.  However, we do obtain 255 

the same value of K* when we change the northern and southern boundaries to 20ᵒN/S or move 256 

the western boundary to 90ᵒE.  Moreover, the analysis performed on both smaller and larger 257 

domains results in similar interpretations of the variability and trends, supporting the robustness 258 

of the results discussed below. 259 

 260 

a.  SOM of tropical Pacific SST patterns       261 

 262 

 With K* determined, we now examine the nine SOM cluster patterns of tropical Pacific 263 

SST anomalies.  Figure 2 presents these nine patterns for the one-dimensional SOM.  Because of 264 

the topological ordering by the SOM, similar patterns are similarly numbered.  Figure 2 reveals 265 

three moderate to strong La Niña-like patterns (patterns 1-3), two weak La Niña-like patterns 266 

(patterns 4-5), two weak CP El Niño-like patterns (patterns 6-7), a moderate CP/EP El Niño-like 267 

pattern (pattern 8) and a strong EP El Niño-like pattern (pattern 9). In addition to amplitude, the 268 

                                                 
2
 If a SOM cluster has only a single member, then (1) is undefined, and the distinguishability test cannot be 

conducted.  Therefore, in cases where a cluster only has one member, all pairs that include that particular cluster are 

automatically assigned as statistically indistinguishable.    
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La Niña-like patterns most significantly distinguish themselves by the longitude of maximum 269 

equatorial cooling and by the presence of weak (pattern 1), negative (patterns 2 and 5), or 270 

positive (patterns 3 and 4) western Pacific SST anomalies. The El Niño-like patterns also 271 

distinguish themselves by amplitude and the longitude of maximum equatorial SST anomalies, 272 

but the western Pacific SST anomalies are similar for each El Niño-like pattern.  Pattern 9 273 

resembles the canonical EP El Niño, whereas pattern 8 seemingly represents a hybrid EP/CP El 274 

Niño pattern, with maximum warming in the central Pacific, but a tongue of positive SST 275 

anomalies that extends to the South American coast.  Together, these nine SST patterns represent 276 

the ENSO SST continuum.   277 

 As mentioned above, each September – February SST field is assigned to the best-278 

matching SOM pattern on the basis of minimum Euclidean distance.  The frequency of 279 

occurrence of each SOM pattern is indicated to the bottom right of each map, revealing that most 280 

patterns occur with similar frequency.  To verify that these nine patterns do, in fact, resemble the 281 

seasonal SST fields that comprise the clusters, centered pattern correlations (e.g., Santer et al. 282 

1993) between each SST field and its corresponding best-matching SOM pattern are calculated.  283 

The mean pattern correlation is 0.76, which confirms the close resemblance between these nine 284 

patterns and the individual constituent SST anomaly fields of each cluster.   285 

 286 

b. Changes in frequency distribution within the ENSO continuum 287 

 288 

 Next we examine how the frequency of occurrence of these nine SOM patterns has varied 289 

over the past 60 years and how these changes in frequency have influenced the long-term 290 

tropical Pacific SST trends.  Figure 3 illustrates the occurrence time series for each of the nine 291 
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patterns.  This plot demonstrates that each SOM pattern generally occurs for a single season and 292 

for no more than two consecutive years.  In addition, Figure 3 indicates whether at least four of 293 

the six months in the September through February season are classified as an El Niño or La Niña 294 

episode by NOAA CPC.  NOAA CPC classifies an El Niño (La Niña) episode when the three-295 

month running mean Niño 3.4 SST anomaly is greater than 0.5ᵒC (less than -0.5ᵒC) for at least 296 

five consecutive overlapping, three-month seasons.  Figure 3 confirms that patterns 1-4 are 297 

closely associated with La Niña episodes, and patterns 6-9 are tied to El Niño episodes.  Pattern 298 

5 generally occurs when neutral ENSO conditions are declared.  The CP El Niño episodes noted 299 

in previous literature (e.g., Kug et al. 2009) generally correspond with SOM patterns 6 (e.g, 300 

1977/78 and 1990/91), 7 (e.g., 2004/05), or 8 (e.g., 1994/95 and 2002/03).  The only clearly 301 

defined EP El Niño pattern, SOM pattern 9, corresponds with the strong El Niño episodes of 302 

1972/73, 1982/83, and 1997/98.  This observation that recent strong El Niño episodes have 303 

strongly positive SST anomalies centered in the eastern Pacific, but that all other El Niño 304 

episodes are centered over a broad range of longitudes is consistent with the recent studies of 305 

Giese and Ray (2011) and Ray and Giese (2012).          306 

Perhaps the most striking feature of Fig. 3 is the obvious trend in patterns 1-4, with 307 

patterns 1 and 2 prevalent early in the period but nearly absent in the second half of the period, 308 

and patterns 3 and 4 prevalent only after the mid 1990s.  This trend represents a transition from 309 

La Niña-like patterns with weak or negative SST anomalies in the western Pacific warm pool 310 

(patterns 1 and 2) to La Niña-like patterns with positive SST anomalies in the western Pacific 311 

warm pool (patterns 3 and 4).   312 

 This transition is demonstrated more clearly in Figure 4, which shows the trend in the 313 

frequency of occurrence for each SOM pattern.  Statistical significance is assessed with respect 314 
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to a K-state first-order Markov chain, as determined through a Monte Carlo test similar to that of 315 

Riddle et al. (2012).  For this test, 10,000 synthetic first-order Markov chain SOM pattern 316 

occurrence time series (like that of Fig. 3) are generated with the same transition probabilities as 317 

observed.  For each synthetic time series the trend in pattern frequency of occurrence is 318 

calculated.  Observed trends that are greater than the 97.5
th

 or less than the 2.5
th

 percentile of the 319 

synthetic trends are deemed statistically significant above the 95% confidence level.  Figure 4 320 

confirms that the trends in SOM patterns 1-4 are strongest, with only the trend in pattern 3 falling 321 

just short of statistical significance.  Although flavors of El Niño have received more focus than 322 

those of La Niña, none of the trends in the El Niño-like patterns (patterns 6-9) is statistically 323 

significant over the past 60 years.         324 

 To determine how these SOM pattern frequency trends have contributed to the total 325 

tropical Pacific SST trends, we calculate the SOM-derived trend as 326 

                                              
                                                                                     (4) 327 

where 
      is the frequency trend of SOM pattern i, and SSTi is SOM pattern i.  Figure 5 presents 328 

the total and SOM-derived September – February SST trends over the tropical Pacific region.  329 

The total SST trend (Fig. 5a) reveals warming over the past 60 years over almost the entire 330 

domain, but the most pronounced warming is indicated over the eastern equatorial Pacific and 331 

western Pacific warm pool.  The trend derived from (4) (Fig. 5b) also shows warming over most 332 

of the domain, but the warming is most pronounced only over the eastern Pacific region.  Figure 333 

4 suggests that most of these ENSO flavor-related trends relate to changes in the frequency of La 334 

Niña-like rather than El Niño-like patterns.  This suggestion is confirmed in Fig. 6, which shows 335 

the trends from the application of (4) only for La Niña-like SOM patterns 1-5 (Fig. 6a) and only 336 

for El Niño-like SOM patterns 6-9 (Fig. 6b).  The trend pattern derived solely from La Niña-like 337 
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pattern frequency changes (Fig. 6a) closely resembles the total ENSO-related trend pattern (Fig. 338 

5b).  The positive trends in El Niño-like pattern frequencies have contributed to modest warming 339 

in the eastern equatorial Pacific region, but El Niño-related trends are weak throughout the rest 340 

of the domain (Fig. 6b).   341 

The difference between the total and SOM-derived trends (Fig. 5c) reveals generally 342 

weak and even negative SST trends over the equatorial Pacific domain but with pronounced 343 

positive trends remaining over the west Pacific warm pool.  This result suggests that trends in the 344 

frequency of occurrence of various ENSO flavors have dominated the SST trends in the eastern 345 

equatorial Pacific region, but the trends in the west Pacific warm pool reflect a combination of 346 

changes in frequency distribution and an additional superimposed long-term non-ENSO trend.  347 

  348 

4. Discussion  349 

The preceding analysis reveals nine statistically distinguishable patterns that represent the 350 

ENSO continuum.  This continuum perspective contrasts the framework of recent studies that 351 

suggest two clearly distinct types of El Niño.  This continuum perspective also is supported by 352 

the recent work of Giese and Ray (2011), who find that the central longitude of El Niño SST 353 

anomalies is not bimodal but rather is indistinguishable from a Gaussian distribution centered 354 

near 140ᵒW.  One notable observation is that the three strongest El Niño episodes of the past 60 355 

years as measured by Niño 3.4 SST anomalies (1972/73, 1982/83, and 1997/98) feature strongest 356 

SST anomalies in the eastern Pacific (SOM pattern 9).  Perhaps the increased attention paid to 357 

these strongest episodes has resulted in an over-emphasized sharpening of the differences 358 

between EP and CP El Niño episodes.  Evidence from an ocean reanalysis suggests that these 359 

strong EP El Niño episodes may have resulted in an eastward bias of reconstructed El Niño SST 360 
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anomalies for periods before 1950 owing to the influence of these strong El Niño episodes on the 361 

SST reconstructions (Giese and Ray 2011; Ray and Giese 2012).  362 

The analysis also reveals that these nine ENSO flavors have made a significant 363 

contribution to the long-term tropical Pacific SST trend through changes in their frequency 364 

distribution (Fig. 5b).  The most significant trends relate to the La Niña-like patterns, with the 365 

dominance of patterns with negative western Pacific SST anomalies (patterns 1 and 2) before the 366 

mid 1970s followed by the dominance of patterns with positive western Pacific SST anomalies 367 

(patterns 3 and 4) after the mid 1970s, particularly from the mid 1990s to the present.  These 368 

frequency trends have contributed to tropical Pacific warming, particularly in the western Pacific 369 

and eastern equatorial Pacific regions (Fig. 6a).  One may hypothesize that this behavior reflects 370 

a long-term warming trend most pronounced in the western Pacific warm pool superimposed on 371 

interannual ENSO variability.  However, this analysis suggests that there is a disproportionate 372 

western Pacific warming for La Niña-like patterns, while there is no similar trend in the western 373 

Pacific evident for the El Niño-like patterns
3
.  In fact, the positive trend in the frequency of El 374 

Niño-like patterns, particularly pattern 8, contributes to a weak negative SST trend in the west 375 

Pacific warm pool region (Fig. 6b).  Therefore, this analysis suggests that the simple paradigm of 376 

a long-term trend superimposed on interannual variability, as typically assumed in global 377 

warming attribution studies (e.g., Pall et al. 2011), may not be sufficient for understanding 378 

tropical Pacific SST variability and trends.  Rather, changes in the frequency distribution of 379 

interannually varying patterns within the ENSO continuum, as depicted in Fig. 2, may impart a 380 

significant contribution to the long-term trend.  Moreover, recent theoretical work (Liang et al. 381 

2012) proposes that the recent elevation in ENSO variance may be more of a cause than a 382 

                                                 
3
 See Fig. 10 of L’Heureux et al. (2012) for additional evidence of enhanced west Pacific warm pool warming trends 

in La Niña episodes relative to El Niño episodes during November – February. 
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consequence of eastern tropical Pacific warming, which would further underscore the difficulty 383 

of separating interannual variability from the tropical mean state.     384 

 The trend toward La Niña-like patterns with positive SST anomalies in the western 385 

Pacific warm pool is of particular interest because this general pattern may represent the “perfect 386 

ocean for drought” over many midlatitude regions (Hoerling and Kumar 2003).  This SST 387 

pattern, captured by SOM patterns 3 and 4, dominated during the period between 1998 and 2002 388 

(Fig. 3), which was a period of prolonged drought throughout much of the United States, 389 

southern Europe, and Southwest Asia.  Climate model simulations suggest that both the negative 390 

SST anomalies in the eastern Pacific and positive SST anomalies in the western tropical Pacific 391 

acted synergistically to force the persistent drought during this period (Hoerling and Kumar 392 

2003; Lau et al. 2006).  Figure 3 reveals that SOM patterns 3 and 4 occurred several additional 393 

times since that period.  In addition, there is evidence that the positive trend in Indo-Pacific 394 

warm pool SSTs has contributed to changes in the wintertime teleconnection response to La 395 

Niña, a trend toward a more zonally oriented circumglobal teleconnection pattern (Kumar et al. 396 

2010; Lee et al. 2011).  Given the widespread societal impacts of these particular La Niña 397 

flavors, it is worthwhile for future studies to investigate whether the disproportionate warm pool 398 

warming for La Niña-like patterns shall continue.   399 

 Both an EP (pattern 9) and CP/EP El Niño (pattern 8) SOM pattern also have experienced 400 

positive trends in the frequency of occurrence over the past 60 years, but these trends are 401 

indistinguishable from natural variability (Fig. 4).  Given the recent focus on whether CP El 402 

Niño episodes will become more frequent under global warming (Yeh et al. 2009), the positive 403 

trend of CP El Niño-like SOM pattern 8 is of particular interest.  However, the lack of a 404 

significant trend is consistent with recent studies based on long integrations of a multivariate red 405 
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noise model (Newman et al. 2011b) and a coupled climate model (Yeh et al. 2011), which found 406 

that the recent multidecadal increase in CP El Niño relative to EP El Niño episodes is consistent 407 

with natural variability.    408 

 The changes in frequency of the ENSO flavor SOM patterns have contributed to an 409 

overall positive SST trend in the central and eastern equatorial Pacific region (Fig. 5b), which is 410 

consistent with recent findings linking positive equatorial Pacific trends to ENSO (Compo and 411 

Sardeshmukh 2010; Lee and McPhaden 2010; L’Heureux et al. 2012).  In addition, the increased 412 

dominance of SOM patterns 3 and 4 at the expense of patterns 1 and 2 has contributed to the 413 

warming trend in the tropical West Pacific region.  The residual SST trend (Fig. 5c) reveals 414 

positive SST trends in the western Pacific but weak or even negative SST trends throughout the 415 

equatorial eastern Pacific region.  Interestingly, this residual trend in Fig. 5c is somewhat similar 416 

to the ENSO-unrelated SST trends obtained after applying a dynamic ENSO filter (Compo and 417 

Sardeshmukh 2010; Solomon and Newman 2012).  This particular filter, which accounts for the 418 

SST evolution during ENSO and is obtained through a linear inverse modeling approach, reveals 419 

a trend pattern of western Indo-Pacific warming and eastern equatorial Pacific cooling after the 420 

trends associated with ENSO have been removed.  The approach adopted here similarly shows 421 

that ENSO-related trends have contributed to eastern equatorial Pacific warming (Fig. 5b), and 422 

the residual SST warming is most pronounced in the west Pacific warm pool (Fig. 5c).  423 

However, we must exercise caution when viewing long-term SST trends, given the data 424 

uncertainties.  In particular, a recent SST reconstruction based only on bucket SST and nighttime 425 

marine surface air temperature measurements suggests less pronounced western Pacific warming 426 

relative to that of the eastern Pacific (Tokinaga et al. 2012).  Although beyond the scope of this 427 

study, future research shall continue to investigate whether this enhanced western Pacific 428 
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warming is real, and, if so, whether it represents a response to anthropogenic warming (Clement 429 

et al. 1996, Cane et al. 1997) or if enhanced equatorial Pacific warming, as in global climate 430 

models (Collins et al. 2010; Xie et al. 2010), is more likely.  The interplay between the potential 431 

impact of greenhouse gas warming on ENSO (Guilyardi et al. 2009; Yeh et al. 2009; Collins et 432 

al. 2010; Vecchi and Wittenberg 2010) and on long-term SST trends is a challenging problem, 433 

but the approach presented here provides a possible framework for exploring this interaction.   434 

 435 

5. Conclusions 436 

This study opens with the question: how many ENSO flavors can we distinguish?  To 437 

address this question, we examine an approach that partitions tropical Pacific SST fields through 438 

SOM analysis and then determines the maximum number of SOM cluster patterns that are 439 

statistically distinguishable.  This approach can be applied more generally to other cluster 440 

analysis problems, particularly those of K-means cluster or SOM analysis, in order to answer the 441 

recurring question of what is the optimal, or at least the maximum number of clusters to retain.  442 

The approach adopted here has the appeal of being grounded in an accessible concept, statistical 443 

distinguishability.  Many other applications with serially correlated data would face the 444 

additional challenge of accounting for serial correlation in the calculation of local p-values, but 445 

the basic approach described here still would apply.   446 

Although the present study focuses on seasonal SST patterns, ENSO also undergoes other 447 

types of interdecadal variations, including changes in the seasonal evolution of ENSO-related 448 

SST anomalies.  Future extensions of this study may explore seasonal variations of ENSO 449 

flavors.  In addition, the dynamical processes responsible for these nine patterns remain an open 450 

question.  Through a multivariate red noise framework for tropical SST variability, Newman et 451 
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al. (2011a,b) find that the leading optimal structure corresponding with the EP ENSO is driven 452 

by both surface and thermocline interactions, as in the classic “recharge-discharge” mechanism 453 

(Jin 1997).  In contrast, the optimal structure corresponding with CP ENSO evolves through non-454 

local SST interactions, such as the advection of SST anomalies, but without the recharge-455 

discharge mechanism.  The CP ENSO event growth is more modest than that of the EP ENSO, 456 

but the lack of a discharge mechanism allows the CP ENSO to decay more slowly (Newman et 457 

al. 2011b). Because these two optimal initial structures are orthogonal, the framework of 458 

Newman et al. (2011a,b) suggests a continuum of “mixed” CP/EP ENSO patterns with 459 

intermediate dynamical characteristics.  The analysis presented here is consistent with this 460 

general framework, but additional work is needed.  461 

The analysis presented here also suggests that although El Niño flavors often receive 462 

more focus than those of La Niña in the literature, changes related to La Niña-like SST patterns 463 

have made a stronger impact on long-term SST trends over the past 60 years.  A number of 464 

outstanding questions remain.  Given that tropical Pacific SST anomalies have far-reaching 465 

effects through tropical convection anomalies and the triggering of atmospheric teleconnections, 466 

future research shall augment recent efforts (e.g., Larkin and Harrison 2005; Weng et al. 2007; 467 

Mo 2010; Hu et al. 2012) to examine how many ENSO flavor teleconnections and remote 468 

impacts can be distinguished.  In addition, the various ENSO flavors within the ENSO 469 

continuum and their relationship with the long-term SST trend remain an active area of research 470 

(Guilyardi et al. 2009; Yeh et al. 2009; Collins et al. 2010; Liang et al. 2012).  A unique set of 471 

questions raised in this study relates to the trend toward La Niña-like patterns with enhanced 472 

SST anomalies in the west Pacific warm pool.  Why has there been disproportionate west Pacific 473 

warming for La Niña patterns?  Will this trend continue?  Can coupled global climate models 474 
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capture this sort of variability?  The approach presented here provides a framework for 475 

examining the ENSO continuum and questions like these with a manageable set of representative 476 

ENSO flavors.   477 
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(La Niña) episode during at least four of the six months, and grey bars indicate the classification 717 

as an ENSO neutral season.        718 
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Niño-like SOM patterns 6-9. 729 
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FIG. 1. The number of SOM SST cluster pattern pairs that are statistically indistinguishable at the 

95% confidence level as a function of the number of SOM patterns, K.   
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FIG. 2. The nine SST anomaly cluster patterns for a one-dimensional SOM.  The contour interval 

is 0.2ᵒC, with the zero contour line omitted.  Stippling indicates anomalies that are statistically 

significant above the 95% confidence level.  The percentages to the bottom right of each map 

refer to the frequency of occurrence of the pattern for the 1950-2011 period.     

 

 

 

 

 

 

 



36 

 

  

FIG. 3.  Occurrence time series for each of the nine SOM patterns in Figure 2 (the assigned year 

corresponds to that of January-February in the September-February season).  Filled bars indicate 

pattern occurrence for the particular year.  Red (blue) bars indicate the occurrence of an El Niño 

(La Niña) episode during at least four of the six months, and grey bars indicate the classification 

as an ENSO neutral season.       
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FIG. 4.  Trends in the frequency of occurrence for each of nine SOM patterns in Figure 2.  Filled 

bars signify trends that are statistically significant above the 95% confidence level with respect 

to a nine-state first-order Markov chain (see text for details).        
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FIG. 5.  (a) Total and (b) SOM-derived September – February SST trend (ᵒC/50 years) for 1950-

2011. (c) Difference between total and SOM-derived SST trends [(a) minus (b)].  The contour 

interval is 0.1ᵒC/50 years, and the zero contour line is omitted. 
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FIG. 6.  As in Fig. 5b but calculated only for (a) La Niña-like SOM patterns 1-5 and for (b) El 

Niño-like SOM patterns 6-9. 
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