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Background Most common human diseases are due to complex interactions among multiple 
genetic variants and environmental risk factors. There is debate over whether 
variants of a relatively small number of genes, each with weak or modest 
individual effects, account for a large proportion of common diseases in the 
population, or whether a large number of rare variants with large effects underlie 
genetic susceptibility to these diseases. It is not clear how many genes are 
necessary to account for an appreciable population-attributable fraction of these 
diseases. 

Methods In this analysis, we estimated the number of disease susceptibility genes needed 
to account for varying population attributable fractions of a common complex 
disease, taking into account the genotype prevalence, risk ratios for individual 
genes, and the model of gene–gene interactions (additive or multiplicative). 

Results Very large numbers of rare genotypes (e.g. those with frequencies of 1 per 5000 
or less) are needed to explain 50% of a common disease in the population, even 
if the individual risk ratios are large (RR = 10–20). On the other hand, only 
~20 genes are usually needed to explain 50% of the burden of a disease in the 
population if the predisposing genotypes are common (�25%), even if the 
individual risk ratios are relatively small (RR = 1.2–1.5). 

Conclusions Our results suggest that a limited number of disease susceptibility genes with 
common variants can explain a major proportion of common complex diseases 
in the population. Our findings should help focus the search for common genetic 
variants that provide the most important predispositions to complex human 
diseases. 
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The rapid identification of genes that are associated with human 
diseases has revolutionized the field of medicine, providing more 
accurate diagnosis, prevention opportunities, and the potential 
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for improved treatments.1 The development of human genome 
research has been accompanied by a shift of attention from the 
classical model of discovering loci involved in single-gene 
disorders (Mendelian traits) to elucidation of multiple genetic 
factors of small effect involved in common complex diseases. 

Most common diseases occur as a result of complex interac­
tions among multiple genetic and environmental predisposing 
factors.2–5 The present study provides a general framework for 
estimating the number of genes needed to account for an 
appreciable proportion of a disease in the population. The 
common-disease–common-variant hypothesis holds that the gen­
etic predisposition to common diseases results from multiple, 
relatively common genetic variants with small or modest 
effects.5,6 An alternative, the heterogeneity hypothesis, 
maintains that the genetic predisposition to common diseases is 
caused by many different rare genetic variants, with a relatively 
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large effect produced by each allele.4 We do not yet know which 
of these hypotheses is more often correct, or the extent to which 
some combination of rare alleles with relatively large effects and 
common variants with small effects may be important. 

Identification of these disease-associated genetic variants 
represents a high public health priority because of the 
contribution these common conditions make to the total 
burden of disease in the population.7 However, it is not clear 
how many genetic variants are needed to produce an 
appreciable population attributable fraction (PAF) of these 
diseases. The PAF may be defined as the proportion of disease 
cases in a population that result from the effects of a risk factor, 
in this case the genetic predisposition. In this analysis, we 
estimated the number of disease susceptibility genes needed to 
account for varying PAFs for a common complex disease, taking 
into account the number of genes involved, the genotype 
prevalence, the risk ratios for individual genetic variants, and 
the model of gene–gene interactions. 

Methods 
For simplicity of illustration, we consider N independent 
biallelic disease susceptibility loci; each disease-predisposing 
gene is assumed to have the same prevalence and risk ratio. We 
also assume that there is only one at-risk genotype for each 
disease susceptibility locus. We use ‘disease susceptibility gene’ 
and ‘genetic variant’ interchangeably, and both terms refer to 
the one at-risk genotype for each locus. The effect of each 
susceptibility genotype may be dominant or recessive, so it is 
important to note that G is the frequency of the at-risk 
genotype, not the allele. 

Let G be the population prevalence of the susceptibility 
genotype at each locus (0 = variant absent and 1 = variant 
present) and Rg be the lifetime risk ratio for disease for 
genotype = 1 compared with genotype = 0 at one locus. We 
assume no confounding or competing risks for Rg. We also 
assume that the lifetime risk of disease reflects the joint effects of 
measured genetic variants at N unlinked loci, along with other 
unmeasured factors. In reality, many genes/loci, environmental 
exposures and gene–gene/gene–environment interactions are 
probably involved in common diseases. We assume that the 
effects of additional genes and exposures are not directly 
measured here as part of the risk characterization equations. 

For N independent disease susceptibility genotypes, the 
population can be partitioned into 2N strata, with a different 
genotype prevalence and disease risk associated with each 
stratum. The lifetime risk of disease (D) in the population as a 
whole is a function of the size and disease risk associated with 
each stratum.8 We assume that interactions among multiple 
disease susceptibility genes may occur for most common 
diseases, but we do not know how these joint effects operate. We 
recognize that any set of predisposing genotypes may interact in 
a variety of different ways, but for simplicity we consider these 
joint effects on either a purely additive or purely multiplicative 
scale in this analysis.9 We also assume that these interactive 
effects are of the same magnitude for all genotypes involved. 

Additive effects model 

To illustrate the additive effects model, we consider two disease 
susceptibility genes, G1 and G2. Let Rg11, Rg10 and Rg01 be risk 

ratios of people having both genes, gene 1 only (G1) or gene 2 
only (G2), respectively. The state of no interaction on an 
additive scale is given as: (Rg11 � 1) = (Rg10 � 1) + (Rg01 � 1) 
or Rg11 = Rg10 + Rg01 � 1. 

Assuming additive joint effects of multiple disease susceptibility 
genes, the lifetime risk in the population as a whole of a common 
disease (D) involving N genes can be modelled as: 

N N
D = I �(1 � G)N + � �G(1 � G)(N�1) R + � �G2(1 � G)(N�2) 

1 g 2 

N j� 2(R g � 1) + · · ·  + G j (1 � G)(N� ) ( jRg �( j�1))� j �

N


+ � �GN (NR g �(N�1))�N
N N! 

Gj (1�G)(N�j) ( jRg �( j�1)), (1)= I� j!(N � j)!j=0 

where I is the background risk of disease in the absence of the 
N susceptibility genotypes and J ( j = 0, 1, 2,…, N) indicates the 
number of disease susceptibility genotypes. 

Multiplicative effects model 

The state of no interaction on a multiplicative scale is given 
* Rg01. Assuming multiplicative joint effects ofas: Rg11 = Rg10 

multiple disease susceptibility genes, the lifetime population risk 
of a common disease (D) involving N genes might be modelled as: 

1 2
D = I �(1 � G)N + � �G(1 � G)(N�1) R  + � �G2(1 � G)(N�2) 

gN N

Nj j) Rj� R2 + · · · + � j �G (1 � G)(N�
g + �N�GN RN�g N g 

N 
= I � N! 

Gj (1�G)(N�j)Rg 
j , (2) 

j=0 j!(N � j)! 

where I and J are defined as in the Equation (1). 

Estimating N 

For a given lifetime risk (D), genotype prevalence (G), number 
of susceptibility genes (N) and risk ratio (Rg), we can solve 
Equation (1) or (2) for I. In a hypothetical population with 
multiple disease susceptibility loci, there will be some number of 
genes N, given any particular combination of background dis­
ease risk I and risk ratio R that satisfies I * [N * Rg � (N � 1)] �1g 
for the additive model or I * RN � 1 for the multiplicative model,g 

i.e. the background risk I multiplied by stratum-specific risk for 
disease exceeds 100%. For values of j, for which I * [j * 

jR � (j � 1)] � 1 for the additive model (or I * R g � 1 for theg 
multiplicative model), we define the risk to be 1. 

Population attributable fraction 

In epidemiological research, PAF (also called attributable risk or 
aetiologic fraction) is usually defined as the proportion of disease 
cases in a population that would be prevented if an exposure 
were eliminated, assuming the exposure to be causal. In applying 
this concept to genetic predispositions to disease, we recognize 
that genetic risk factors cannot be removed, but interventions 
could be developed on the basis of information about the 
genotype. Therefore, we define PAF for a genetic predisposition 
to disease as the proportion of disease cases in a population that 
would not occur if interventions prevented the occurrence of 
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adverse effects of the genetic variants in that population. For 
the disease risk model we used, we can define the PAF as: 

D � I
PAF = 

D 
, (3) 

where D is the population lifetime risk of disease and I is the 
background risk of disease in the absence of the genetic 
susceptibility variants.10 

To estimate the number of genes needed to achieve a 
particular PAF with varying genotype prevalence G and risk 
ratios Rg, we need to solve Equation (1) or (2) for N. We have 
not found a closed form for N that corresponds to the PAF, so we 
developed a simple computing algorithm to estimate N for any 
given PAF. For example, to estimate the number of genes needed 
to achieve a PAF of 30% (target PAF) for a lifetime disease risk 
of 5% (D = 5%), genotype prevalence 10% (G = 10%), and risk 
ratio 1.5 (Rg = 1.5) using a multiplicative model [Equation (2)], 
we start with one gene and solve Equation (2) for I, then use 
Equation (3) to calculate the PAF and check if the calculated PAF 
is less than, equal to, or greater than the target PAF (30% in this 
example). If the calculated PAF is less than the target PAF, we 
increase N to two genes, solve Equation (2) for I, then 
recalculate the PAF to see if it is less than, equal to, or greater 
than the target PAF. We repeat this process until the calculated 
PAF is equal to or greater than the target PAF. In this example, 
nine or more genes are needed to produce a PAF �30%. 

The PAF calculated for the number of genes determined by 
this algorithm often is greater than the target PAF, especially if 
the genotype is common (prevalence �30%). For example, the 
PAF calculated for nine genes in the example given above is 
actually 32.3% (not 30% exactly). If the genotype prevalence in 
this example were 50% instead of 10%, the estimated PAF 
would be 36% for three genes. 

Results 
For common diseases involving multiple susceptibility genetic 
variants with weak to moderate effects (Rg = 1.2–1.5),11–13 the 
genotype prevalence plays a dominant role in determining the 
number of genes needed to account for an appreciable PAF. For 
genotype frequencies of 10%, the number of genes needed to 
explain 50% of the burden of disease in the population ranges 
from 15 to 50 (Table 1). For very common genotypes 
(G � 30%), only 10–20 genes are needed to achieve a PAF of 
50%, even if the effect size for each gene is weak (Rg = 1.2), and 
regardless of whether the genes exert additive or multiplicative 
joint effects. 

As few as five disease susceptibility genes with risk ratios in 
the range of 1.01–2.00 will often produce a PAF of �30% if the 
genotype prevalence is very common (G � 30%, D = 5%) 
(Figure 1). For 10 genes, the expected PAF for a disease with a 
population risk of 5% is almost always �30% when calculated 
using our model (Figure 2), but individual genotype 
prevalences of �1% predict that people who have all or even 
most of these 10 susceptible genotypes will probably never be 
observed. For example, if there are 10 susceptibility genotypes, 
each with a population prevalence of 1%, the expected 
frequency of people with all 10 susceptibility genotypes would 
be 10�20. In reality, most people would have various subsets 
of the 10 susceptibility genotypes.14 

Table 1 Number of genes needed to achieve a given population 
attributable fraction (PAF) for a complex disease with lifetime risk of 
5% in the population and high genotype prevalences and low risk 
ratios for each gene 

PAF 

Genotype prevalence 5% 10% 30% 50% 

Additive model 

Risk ratio = 1.2 

1% 

5% 

10% 

20% 

30% 

50% 

Risk ratio = 1.5 

1% 

5% 

10% 

20% 

30% 

50% 

27 56 215a 500a 

6 12 43 100 

3 6 22 50 

2 3 11 25 

1 2 8 17 

1 2 5 10 

11 23 86a 200a 

3 5 18 40 

2 3 9 20 

1 2 5 10 

1 1 3 7 

1 1 2 4 

Multiplicative model 

Risk ratio = 1.2 

1% 

5% 

10% 

20% 

30% 

50% 

Risk ratio = 1.5 

1% 

5% 

10% 

20% 

30% 

50% 

26b 53b 179b 347b 

6 11 36b 70b 

3 6 19 36b 

2 3 10 18 

1 2 7 12 

1 2 4 8 

11b 22b 72b 140b 

3 5 15 29b 

2 3 8 15b 

1 2 4 8 

1 1 3 5 

1 1 2 4 

a Indicates that I * [ j * Rg � ( j � 1)] � 1 for some values of j (i.e. lifetime 
disease risk is �100% ); for these values of j we set risk = 1. 

b Denotes that I * Rg 
N � 1 for some values of j (i.e. lifetime disease risk is 

�100%); for these values of j we set risk = 1. 

If the susceptibility genotypes are rare (e.g. 1 per 5000), many 
genes (N = 183–556) are needed to explain 50% of a common 
disease in the population, even with large individual risk ratios 
(Rg = 10–20) (Table 2). Many of the combinations of G, RR, and 
PAF given in Table 2 predict a lifetime risk for disease �100% 
among individuals with all of the susceptibility genotypes, 
indicating an inappropriate assumption about the joint effects. 
For example, assuming a population lifetime disease risk of 0.1% 
and rare susceptibility genotypes, most of the estimates for 
number of genes needed to achieve an appreciable PAF 
(PAF �10%) for the multiplicative model have I * Rg 

N � 1, i.e. 
the risk is �100% to develop the disease. We used  a much lower 
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<30% 

30-50% 

>50% 

30-50% 

>50% 

<30% 

Figure 1 Expected population-attributable fraction (PAF) of five disease susceptibility genes with varying genotype prevalences and risk ratios 
assuming an additive (top) or multiplicative (bottom) joint effects model and lifetime risk of disease = 5.0% 

lifetime risk for disease in Table 2 than in Table 1 (0.1% vs 5%) 
because the predicted risk for disease for almost all scenarios 
would be �100% if a common lifetime risk, e.g. 5%, were used, 
although the estimated number genes needed for any PAF would 
remain unchanged. This demonstrates a limitation of our model 
in the situation of multiple rare alleles with high risk ratios. 

Example 

In the United States, colorectal cancer is the fourth most 
common cancer, with an estimated annual incidence of 55.1 per 
100 000 population and a lifetime risk of 5.7% in 2000.15 

A meta-analysis examined 30 genetic variants in 20 different 
genes for colorectal cancer susceptibility.16 The study suggested 
that seven genetic variants were associated with the risk of 
colorectal cancer. We excluded the aldehyde dehydrogenase 2 
(ALDH2) gene, which is only prevalent among Asians, and the 
tumour protein p53 (TP53) gene, with which an association had 
only been found in one study.16 We included the remaining five 

colorectal cancer-associated genetic variants in our example: 
c-Ha-ras1 proto-oncogene (HRAS, rare allele), glutathione S­
transferase theta 1 (GSTT1, null allele), tumour necrosis factor 
alpha-chain (TNF-α, a2 allele), N-acetyl transferase-2 (NAT2; 
fast acetylation phenotype) and 5,10-methylenete-
trahydrofolate reductase gene (MTHFR, lack of C677T variant). 

As shown in Table 3, the prevalence of the four genotypes 
and one phenotype (NAT2) considered ranges from 4.0 to 
60.0%, the odds ratios range from 1.4 to 2.7 and the PAF for 
each genetic variant considered alone ranges from 6.3 to 29.1%. 
Assuming that the effects of these five genetic variants are 
independent, the population can be partitioned into 32 strata 
(Appendix Table A1). The lifetime risk of colorectal cancer (D) 
in the population as a whole is a function of each stratum’s size 
(G) and associated risk (Rg) [Equation (1) or (2)]. Solving 
Equation (1) or (2) for I and using Equation (3) to calculate the 
PAF for the five genetic variants together, we estimate a 
combined PAF of 53.9% (95% CI 28.7–68.9%) assuming 
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30-50% 

30-50% 

>50% 

<30% 

<30% 

>50% 

Figure 2 Expected population-attributable fraction (PAF) of 10 disease susceptibility genes with varying genotype prevalences and risk ratios 
assuming an additive (top) or multiplicative (bottom) joint effects model and lifetime risk of disease = 5.0%. PAF is not plotted if 
I * [N * R g � ( j � 1)] � 1 (additive model) or I * RN � 1 (multiplicative model), i.e. lifetime disease risk is �100% g 

additive joint effects, and a combined PAF of 63.9% (95% CI 
31.5–82.5%) assuming multiplicative joint effects (Table 3). If 
we exclude the NAT2 gene (since the phenotype, not the 
genotype, is associated with increased risk for colorectal 
cancer), the estimated PAFs are 43.2% (95% CI 25.1–57.1%) 
and 49.1% (95% CI 27.0–67.0%) for additive and multi­
plicative joint effects, respectively. 

Discussion 
Identification of genes associated with common complex 
diseases is accorded a high public health priority because of the 
large contribution these conditions make to the total burden of 
disease in the population. Measurement of PAF provides a 

public health dimension to the appraisal of risks and creates an 
important link between disease causality and public health 
action.17 In this paper, we have explored hypothetical scenarios 
in which causality is assumed to follow straightforward 
polygenic models with simple forms of gene–gene interaction. 
In the real world, causality has to be established on the basis of 
appraisal of the entire body of evidence,18 and such simple 
models of gene action are very unlikely to be encountered. 

There is a substantial difference in interpretation of the PAF 
related to the genetic contribution to a common complex 
disease and interpretation of a conventional attributable 
fraction calculated for a single exposure (risk factor) in an 
epidemiological study. The PAF is generally considered to be the 
fraction of disease cases that could be prevented by eliminating 
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Table 2 Number of genes needed to achieve a given population a causal exposure. It has been argued that PAF is a meaningless 
attributable fraction (PAF) for a complex disease with lifetime risk concept in genetics because genetic risk factors cannot be
of 0.1% in the population and varying genotype prevalences and 

removed.19 While it is certainly true that one cannot eliminate
risk ratios 

the genetic risk factors an individual has inherited from his or 
PAF her parents, we believe that the concept of PAF for genetic 

Genotype prevalence 5% 10% 30% 50% susceptibility provides a useful metric of the potential impact of 
Additive model interventions that may be developed on the basis of information 

Risk ratio = 10	 about that genotype. Perhaps the most intuitive potential 
applications are genotype-specific screening and targeted

1/10,000 59 121a 477a �1000a 
interventions. Although targeted interventions are not available 

2/10,000 30 62 239a 556a for the majority of mutations that have been identified so far,19 

1/1,000 6 13 48 112 examples such as neonatal screening indicate the potential 
importance of such an approach for public health.20 More 

2/1,000 3 7 24 56


Risk ratio = 20


1/10,000 28 59a 226a 

2/10,000 14 30 113a 

1/1,000 3 6 23 

2/1,000 2 3 12 

Multiplicative model 

generally, knowledge that a group of genetic variants accounts 
for a substantial PAF could enhance understanding of disease 

527a pathogenesis and thereby aid in identifying interventions 

264a relevant to the general population. In particular, Mendelian 
randomization has been proposed as a means of obtaining 

53 estimates of the effects of environmental exposures in 
27 association studies of functional genetic variants.21–23 

A further issue regarding the application of the concept of 
PAF to genetic variants is that the genotypes may have 

Risk ratio = 10 

1/10,000 58b 118b 397b 

2/10,000 29b 59b 199b 

1/1,000 6 12b 40b 

2/1,000 3 6 20b


Risk ratio = 20


simultaneous effects on many different diseases.19,24 PAF is 
771b 

disease-specific, but genetic predispositions to common diseases 

386b such as cancer or autoimmunity, for example, often are not. The 

78b attributable community risk (ACR), a measure recently 
reintroduced by Wacholder,25 is particularly useful for 

39b 
comparing the potential population impact of complex 
genotypes on several different diseases. The ACR is the 

366b proportion of the population that develops disease that is1/10,000 28b 56b 188b 

2/10,000 14b 28b 95b 

1/1,000 3 6b 20b 

attributable to an exposure or, in the current context, a disease 
183b 

susceptibility genotype. The ACR is related to PAF: 
37b 

2/1,000 2 3 10b 19b ACR = PAF * D, 

where D is the lifetime risk of disease. For example, for a diseasea Indicates that I * [ j * Rg � ( j � 1)] � 1 for some values of j (i.e. lifetime 
disease risk is �100%); for these values of j we set risk = 1. for which the lifetime risk is 5% and estimated PAF 50%, the 

N � 1 for some values of j (i.e. lifetime disease risk is corresponding ACR is 2.5%. For a disease with a lifetime risk ofb	 Denotes that I * Rg 

�100%); for these values of j we set risk = 1. 1% and PAF 50%, the corresponding ACR is 0.05%. 

Table 3 Prevalence, risk (95% CI), and population attributable fraction (PAF) (95% CI) of five genetic variants for colorectal cancer susceptibility 

Genotype Odds ratio PAF % 
Genetic variants Risk group prevalence (%) (95% CI) (95% CI)a 

HRAS1 Rare allele vs 4.0 2.67 (1.47–4.85) 6.3 (1.9–13.3) 
others 

GSTT1 Null vs others 37.6 1.37 (1.17–1.60) 12.2 (6.0–18.4) 

TNF-α α2 allele vs others 39.2 2.02 (1.51–2.71) 28.6 (10.0–40.1) 

NAT2 [imputed from Fast acetylation vs [60.3] 1.68 (1.11–2.46) 29.1 (6.2–46.8) 
phenotype] others 

MTHFR Wild-type vs 42.3 1.35 (1.12–1.64) 12.9 (4.8–21.3) 
variant (C677T) 

Five genes combined 

Additive model – – – 53.9 (28.7–68.9) 

Multiplicative model – – – 63.9 (31.5–82.5) 

HRAS1, c-Ha-ras1 proto-oncogene; GSTT1, glutathione S-transferase theta 1; TNF-α, tumor necrosis factor alpha-chain; NAT2, N-acetyl transferase-2 gene;

MTHFR, 5,10-methylenetetrahydrofolate reductase gene.

a The lower and upper 95% CIs of the PAF were calculated by taking lower and upper 95% odds ratio estimates, respectively.
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There is controversy over whether the genetic basis for 
susceptibility to common diseases results from a relatively small 
number of common alleles that each produce only a modest 
predisposition or a larger number of rare variants each of which 
has a much greater predisposing effect4,5,26–28 Our analysis 
suggests that genetic information would have a much greater 
public health impact if the first scenario, the common-
disease–common-variant hypothesis were correct. From a public 
health perspective, the important issue is to identify common 
genetic factors that lead to strategies for the prevention or 
improved treatment of common complex disease in these 
predisposed individuals. Depending on the nature of the 
gene–environment interactions involved, pharmacological, 
dietary, or lifestyle interventions among genetically predisposed 
individuals may have a disproportionately large effect on the 
associated morbidity and mortality in the population as a whole. 
This targeted approach to prevention may be especially useful in 
the case of diseases with major environmental components, such 
as type 2 diabetes and cardiovascular diseases.7,29 

Most common human diseases are due to complex interactions 
among multiple genetic variants and environmental risk factors.2,3 

The present study provides a general framework for estimating the 
number of genes needed to account for an appreciable proportion 
of a disease in the population, but different methods are required 
to estimate the separate effects of genes and environmental 
exposures or of gene–environment interactions.30 Our model can 
be extended to include gene–environment interactions by adding 
additional terms in each of the 2N strata. Persons exposed to 
environmental risk factors may be considered to be a higher-risk 
subgroup within each stratum. Considering both genetic and 
environmental risk factors together may permit assessment of the 
relative benefits and feasibility of eliminating environmental risk 
factors within genetically predisposed groups as opposed to 
eliminating these exposures in the population as a whole. 
Although eliminating environmental risk factors and promoting a 
healthy lifestyle are usually recommended for the population as a 
whole regardless of genetic predisposition, there are situations in 
which targeted intervention may be more cost-effective.31 

For most common diseases, we do not understand the nature 
of the joint effects among predisposing genes. We considered only 
the simplest additive and multiplicative models and assumed that 
the multiple disease susceptibility genes are unlinked. In reality, 
the gene–gene and gene–environment interactions for common 
diseases are likely to be much more complex, and a model 
combining both additive and multiplicative interactions might 
more accurately reflect biological reality.32 

Furthermore, the models we considered have some limita­
tions. For a fixed lifetime risk of disease D in the population as 

a whole, the maximum number of genes attainable (keeping 
risk of the disease �100%) is 

1
N � 

I[R g � ( j � 1)] 

for the additive model and 

1
N � 

NI * R g 

for the multiplicative model. As the lifetime risk of disease 
becomes more common, the background risk I increases, and 
the number of genes that satisfy the conditions of the model 
becomes smaller. Alternatively, for the multiplicative effect 
model, one may use the odds ratio instead of the risk ratio in a 
logistic risk model to estimate the population risk of a common 
disease D involving N genes. The logistic risk model is free from 
the constraint of the background risk I multiplied by stratum­
specific risk for disease �100%. 

We employed an epidemiological approach to estimate the 
number of genes needed to account for an appreciable PAF for 
common diseases. Another commonly used approach is the 
mutifactorial-threshold model, which postulates a continuously 
distributed latent trait, liability, that causes the disease.33 Two 
additive, normally-distributed components underlie liability—a 
genetic component produced by numerous small, additive 
(polygenic) effects, and a random environmental component. 
An individual is affected by the disease when her or his liabil­
ity exceeds a particular threshold. Risch has discussed the 
multifactorial-threshold model and its relationship to 
epidemiological attributable risk in common forms of cancer.34 

He introduced the concept of PAF related to genetic factors and 
pointed out its dependence on the combined effect of all 
susceptibility alleles at disease-predisposing loci. 

Our findings have a potential impact on narrowing the search 
for disease susceptibility genes for complex human diseases. For 
common genetic variants (G � 10%), only a limited number of 
genes are needed to produce an appreciable PAF, even if the 
disease risk associated with each gene is moderate or weak (e.g. 
R � 1.5). From a public health point of view, identification of g 
these genes should receive high priority. On the other hand, the 
PAF associated with rare genetic variants (G � 1/1000) tends to 
be small, and a large number of genes (N � 150) are needed to 
produce an appreciable PAF, even if the risk associated with each 
gene is strong (Rg � 10). These patterns suggest that greater 
public health importance is likely to be associated with common 
disease-predisposing genetic variants than with rare variants, 
even if the rare variants each produce a higher relative risk. 

KEY MESSAGES 

•	 Most common human diseases result from complex interactions among multiple genetic variants and environmental risk factors. 

•	 Variants of as few as 20 susceptibility genes, each of which has weak to moderate individual effects, may account for �50% of 

the burden of most common complex diseases if each variant is common in the population. 

•	 Identifying these common variants is potentially of great public health importance because their recognition may provide 

opportunities for screening and targeted reduction of modifiable environmental risk factors. 
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Appendix 

Table A1 Expected population prevalence, risk and associated population attributable fraction (PAF) of selected genetic variants susceptibility to 
colorectal cancer 

Genetic variantsa 
Expected 

population Risk PAF % 

HRAS1 GSTT1 TNF-α NAT2 MTHFR prevalence%b Additive Multiplicative Additive Multiplicative 

0 0 0 0 0 8.1 1.0 1.0 – – 

1 0 0 0 0 0.3 2.7 2.7 0.3 0.2 

0 1 0 0 0 4.9 1.4 1.4 0.8 0.7 

0 0 1 0 0 5.2 2.0 2.0 2.4 1.9 

0 0 0 1 0 12.3 1.7 1.7 3.8 3.0 

0 0 0 0 1 6.4 1.4 1.4 1.0 0.8 

1 1 0 0 0 0.2 3.0 3.7 0.2 0.2 

1 0 1 0 0 0.2 3.7 5.4 0.3 0.3 

1 0 0 1 0 0.5 3.4 4.5 0.6 0.6 

1 0 0 0 1 0.3 3.0 3.6 0.3 0.3 

0 1 1 0 0 3.1 2.4 2.8 2.0 2.0 

0 1 0 1 0 7.4 2.1 2.3 3.6 3.5 

0 1 0 0 1 3.9 1.7 1.9 1.3 0.2 

0 0 1 1 0 7.9 2.7 3.4 6.2 6.8 

0 0 1 0 1 4.1 2.4 2.7 2.6 2.6 

0 0 0 1 1 9.7 2.0 2.3 4.6 4.4 

1 1 1 0 0 0.1 4.1 7.4 0.2 0.3 

1 1 0 1 0 0.3 3.7 6.1 0.4 0.6 

1 1 0 0 1 0.2 3.4 4.9 0.2 0.2 

1 0 1 1 0 0.3 4.4 9.1 0.5 1.0 

1 0 1 0 1 0.2 4.0 7.3 0.2 0.4 

1 0 0 1 1 0.4 3.7 6.1 0.5 0.7 

0 1 1 1 0 4.8 3.1 4.6 4.5 6.3 

0 1 1 0 1 2.5 2.7 3.7 2.0 2.5 

0 1 0 1 1 5.8 2.4 3.1 3.8 4.5 

0 0 1 1 1 6.3 3.1 4.6 5.9 8.1 

1 1 1 1 0 0.2 4.7 12.4 0.3 0.8 

1 1 1 0 1 0.1 4.4 10.0 0.2 0.3 

1 1 0 1 1 0.2 4.1 8.3 0.3 0.6 

1 0 1 1 1 0.3 4.7 12.2 0.5 1.1 

0 1 1 1 1 3.8 3.4 6.3 4.2 7.2 

1 1 1 1 1 0.2 5.1 16.8 0.3 0.9 

a	 HRAS1, c-Ha-ras1 proto-oncogene: rare allele vs others; GSTT1, glutathione S-transferase theta 1: null vs others; TNF-α, tumor necrosis factor alpha-chain 
gene: a2 allele vs others; NAT2, N-acetyl transferase-2 gene (imputed phenotype): fast-acetylation vs others; MTHFR, 5,10-methylenetetrahydrofolate 
reductase gene: wild-type vs C677T variant. 1 indicates the present of the genetic variants and 0 indicates the absence. 

b We assume the independent assortment of multiple genetic variants in the population. 


