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Abstract

Despite decades of accumulated knowledge about proteins and their post-translational 

modifications (PTMs), numerous questions remain regarding their molecular composition and 

biological function. One of the most fundamental queries is the extent to which the combinations 

of DNA-, RNA- and PTM-level variations explode the complexity of the human proteome. Here, 

we outline what we know from current databases and measurement strategies including mass 

spectrometry–based proteomics. In doing so, we examine prevailing notions about the number of 

modifications displayed on human proteins and how they combine to generate the protein diversity 

underlying health and disease. We frame central issues regarding determination of protein-level 

variation and PTMs, including some paradoxes present in the field today. We use this framework 

to assess existing data and to ask the question, “How many distinct primary structures of proteins 

(proteoforms) are created from the 20,300 human genes?” We also explore prospects for 

improving measurements to better regularize protein-level biology and efficiently associate PTMs 

to function and phenotype.

Proteins come in all shapes, sizes and forms. They are deeply involved in the major 

processes of life and comprise a large and enigmatic space between human genetics and 

diverse phenotypes of both wellness and disease. Assigning function and dysfunction to 

proteins is a major challenge for the coming era of basic and clinical research, so we take up 

the challenge of defining protein composition, including diverse contributions to its variation 

and the biological ramifications of this diversity.

The size of the human proteome is a matter of debate, and numbers in the literature range 

from as few as 20,000 to several million1,2. The huge discrepancy between these numbers is 
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not a scientific controversy, but more a matter of definition. Thanks to the human genome 

project, we can now estimate the number of protein-coding genes to be in the range of 

19,587–20,245 (refs. 1,3,4). Thus, if a single representative protein from every gene is used 

as the definition of the proteome, the estimated size is just ~20,000. This number may 

decrease somewhat, as it has been difficult to find an expressed protein encoded by some of 

these putative protein-coding genes5,6. However, if one considers that many genes are 

transcribed with splice variants, the number of human proteins increases to ~70,000 (per 

Ensembl3). In addition, many human proteins undergo PTMs that can strongly influence 

their function or activity. These PTMs include glycosylation, phosphorylation and 

acetylation, among a few hundred others (Fig. 1a), giving rise to many hundreds of 

thousands of additional protein variants5; furthermore, though many proteins are 

unmodified, some fraction of proteins are already annotated with multiple modifications 

(Fig. 1b). Finally, selected genes for proteins like immunoglobulins and T-cell receptors 

undergo somatic recombination to increase the number of potential protein variants into the 

billions in certain cell types across one’s lifetime7,8.

Each individual molecular form of an expressed protein has come to be called a 

proteoform9. This term captures the disparate sources of biological variation that alter 

primary sequence and composition at the whole-protein level (Fig. 2). These include 

biological events that change single or multiple residues within the sequence of amino acids 

and the many modifications that can decorate the protein during its synthesis or after it is 

produced within a cell. These sources of variation produce the largely unmapped complexity 

of human proteoforms. At first glance, characterizing such diversity appears to be 

intractable, but closer inspection of the sources and limitations imposed upon proteoform 

diversity, as well as an examination of measurement techniques, can provide bounded 

estimates. In a few examples, proteoforms and their PTMs have been mapped, enabling early 

efforts to assign and understand their biological functions.

Sources of proteoform diversity

Our aim is to help diverse communities better understand the composition and nature of 

human proteins in health and disease. We now assemble known information for the main 

sources of variation at the levels of DNA, RNA and protein that contribute to proteoform 

diversity. We then examine how these sources of diversity expand the number of theoretical 

human proteoforms (Fig. 3a) and contrast that with the number of observed proteoforms 

carrying multiple PTMs that are actually produced in biological systems (Fig. 3b).

Estimates of DNA-level variation

Substantial sources of variation in human proteins include coding single-nucleotide 

polymorphisms (cSNPs) and mutations, with ~135,000 validated nonsynonymous cSNPs 

currently housed within SwissProt. In dbSNP, there are 4.7 million candidate cSNPs, yet 

only ~670,000 cSNPs have been validated in the 1,000-genomes set as nonsynonymous 

cSNPs that change the identity of an amino acid in a protein. However, the number of 

polymorphisms found in databases is reduced to only the two alleles actually harbored by 

any individual. Our adaptive immune system also presents a major source of somatic 
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alteration in specific cell types. One can therefore divide these two kinds of variations into 

‘population variation’, which exists across the human population, versus ‘individual 

variation’, which exists in an individual human being.

Main sources of RNA-level variation

Alternative splicing is a key contributor to transcriptome complexity and modulation of 

complex human traits10. RNA sequencing (RNA-seq) studies indicate that ~93% of human 

genes undergo alternative splicing and about 86% have a minor isoform frequency above 

15% (ref. 11). Recently, functional consequences of alternative splicing were explored12, 

showing that the interacting partners for minor isoforms from a given human gene are as 

different as those for proteins encoded by entirely different genes. Alternative splicing often 

leads to the inclusion or exclusion of mitochondrial targeting sequences, leading to two 

mature proteins that have identical warheads but are localized to two different places13. 

Transcriptome diversity is further expanded through RNA editing. Though over 4.5 million 

adenosine- to-inosine editing events (the most common type) have been detected in human 

transcripts, only ~4,400 actually alter the corresponding amino acid14.

There is yet a major gap between the number of alternative transcripts asserted by RNA-seq 

and that detectable by proteomics (e.g., <0.1% of putative novel splice junctions in cancer 

xenografts)15. This discrepancy is due, in part, to the limited sensitivity and coverage of the 

current proteomic platforms. Although deep proteomic analyses can identify the majority of 

gene expression, sequence coverage for most proteins remains low, particularly for low-

abundance genes. For example, the aggregated NCI-60 proteomics data set16 covers only 

12% of the whole encoded proteome, and only ~5% of the genes had sequence coverage 

>50% of their protein coding regions17.

Because small size is a confounding factor in gene prediction, small open reading frames 

(smORFs) in stretches of RNA previously assumed to be noncoding have only recently been 

annotated as protein coding regions owing to advances in sequencing and proteomics18. 

Although the total number of novel human small proteins encoded in smORFs is still 

unclear, with estimates ranging from hundreds to thousands, roles of specific small proteins 

in fundamental biological processes have been established (for example, control of genome 

maintenance)19.

Errors in translation

Errors during protein translation provide one very large source of potential proteome 

expansion, particularly in aging or stressed cells. Error frequencies of 0.01–0.1% per amino 

acid (AA) have been estimated for misincorporating structurally similar amino acids in 

vivo20. This source of low-level protein heterogeneity is apparent in characterized 

recombinant proteins expressed in Escherichia coli, for which misincorporations can range 

from 0.5 to 5%. Mistranslation events have also been identified in recombinant monoclonal 

antibodies expressed in mammalian cell lines, wherein asparagine is substituted for serine at 

0.01–0.2% of AGC codons21.
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Post-translational modifications

The exponential increase in the potential number of proteoforms due to PTMs generates an 

open question in the field that lies at the heart of this Perspective. To help inform and frame 

the question, one could divide co- and post-translational modifications in different ways (for 

example, based on their chemical structures or whether or not they are reversible). A 

structural view would divide PTMs into subtypes based on whether proteins are cleaved or 

site-specifically modified with ‘simple’ PTMs (for example, phospho, acetyl, methyl, O-

GlcNAc, etc.). The structures of other PTMs are highly complex in nature (for example, 

glycosylation, polyubiquitinylation, etc., as addressed below). The structural view of protein 

complexity is linked to how PTMs make the number of proteoforms increase and how 

difficult it is to characterize them precisely. A functional view focuses more on the way that 

proteoforms and their combinations of PTMs underlie cellular decision making and 

contribute to overall phenotypes (as has been shown for the histone code22).

Complex post-translational modifications

In contrast to the linear assembly of amino acids in polypeptide chains, the ten common 

monosaccharide building blocks of human glycans can be linked at multiple positions, 

resulting in highly branched structures. Taking into account the other structural features of 

oligosaccharides like linear sequence, linkage position and anomeric configuration, the 

number of possible glycan structures is large. However, one may also conclude that although 

glycan biosynthesis is untemplated, that does not mean it is unrestricted. Nature may only 

access a limited number of protein glycoforms. Thus far, on the order of a few tens23 to 

more than one hundred24,25 glycoform compositions above the ~1% detection threshold are 

readily measured by current technologies, with some examples provided in Table 1.

For ubiquitinylation, homo- and mixed polymers of the 8.5 kDa protein ubiquitin can reach 

~25 monomers in length, adding >200 kDa in molecular weight. These modifications exert 

profound influence on the subcellular location, function and degradation of (apparently) all 

cellular proteins26 through complex mechanisms that may include crosstalk with other 

PTMs (for example, phosphorylation or acetylation). For poly(ADP-ribose), linear chains of 

20–50 units combine to form branched polymers that are over 300 residues long. Though a 

comprehensive understanding of the composition of branched, polymeric PTMs may lie 

outside immediately available technologies, progress is being made with polyubiquitins, and 

the growth in native mass spectrometry for high-mass distributions will continue to make 

inroads and help elucidate the relationship between protein composition, function and 

disease phenotypes.

How does proteoform number scale with simple PTMs?

The simplistic answer to how PTM number translates to scaling of the number of possible 

proteoforms is 2n, where n is the number of PTMs. This refers to site-specific PTMs that are 

‘binary’, like phosphorylation and acetylation (i.e., either on or off). However, consider that 

a lysine on a protein can exist in at least five different states, taking into account both 

acetylation and methylation (for example, Kunmod, Kme1, Kme2, Kme3 and Kac). The general 

formula describing how proteoform number grows with protein variation is shown in Box 1. 

A specific example is human histone H4 (UniProt accession: P62805), in which a 
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combinatorial explosion of its 58 SwissProt-annotated PTMs at 17 known sites gives rise to 

>1010 theoretical proteoforms. Use of just the most common 13 PTM sites from the 

literature and the E64Q variant (its minor allele frequency is ~0.001%) creates 98,304 

possible proteoforms (see Box 1). However, recent analyses of intact H4 proteoforms by 

seven participating labs reported just 75 proteoforms observed at >0.01% relative 

abundance27. The dramatic, orders-of-magnitude difference between actual and theoretical 

proteoforms aligns with a view wherein proteoform diversity is limited by a high degree of 

control over the enzymatic writing and maintenance of PTMs (see section below on 

proteoform diversity and function).

In protein databases, the number of PTM sites on a single protein can range from 0 to over 

90 (see PTM distributions in Fig. 1). Considering only binary modifications makes the 

number of theoretical proteoforms astronomically large (i.e., 290 = 1 × 1027). Here is where 

two paradoxes arise. The first one is rooted in technologies used to measure protein 

molecules, whereas the other is one of perspective. Use of technologies that either do, or do 

not, capture complete compositional information about whole proteoforms drastically 

changes what is measured and perceived by the scientists using them. Today’s perceptions 

about the diversity of human proteins can be in two extremes: that a majority of the possible 

variations exist on proteins or that only a minority of possible PTMs actually co-exist on the 

same protein (see Fig. 2). These different perspectives are central to understanding why 

protein-level biology is enigmatic, and authors on this Perspective offer a continuum of 

viewpoints and some data to help frame and inform this open question.

Limits on proteoform diversity

The exponential increase in possible proteoform number due to PTMs creates an explosion 

in the number of possible protein compositions populated by human biology. There are both 

natural and technological limits to this ‘proteoform explosion’, and we deal with each of 

these in turn.

Copy numbers limit protein complexity in single cells

One limit to protein complexity is copy number. Consider a protein present at 1,000 copies 

per cell; 1,000 proteoforms is then the maximal number in that cell at a given time. Of 

course, in a population of 1 million cells, the cell-to-cell diversity could significantly 

increase that number, especially as cells respond to stimuli by PTM remodeling over time. 

Such lines of thinking trigger questions regarding how post-translational diversity arose, its 

function and its range of variation in single states or in response to diverse stimuli.

Handling the proteoform explosion via abundance thresholding

Another valuable point of reference comes from consideration of just how many genes are 

expressed into a protein in a given cell type. Estimates from deep proteomics and transcript 

profiling suggest that about half the human genome is expressed in proteins at over 20 

copies per cell in a given cell type (i.e., about 10,000 of the 20,000 human genes)28. 

Assuming this expression threshold of 10,000 genes and allowing for detection of ~100 

proteoforms for each gene product, one then multiplies these two to arrive at a measurement 
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target of 1,000,000 distinct proteoforms in a given cell type. A 2016 estimate based on 

trends in databases indicated that the number may be ~6 million proteoforms29. Better 

estimates of this proteoform diversity are needed, and are analogous to the extrapolations of 

the number of human genes using expressed sequence tags (ESTs) in the year 2000 (ref. 30).

The question of how many proteoforms exist may prove impossible to answer fully (i.e., 

down to single copy proteins or across a billion-fold dynamic range of the most-to-least-

abundant proteoforms). Errors in transcription and translation or exposure to toxic chemicals 

can produce numerous low-abundance proteoforms, perhaps even at the single-molecule 

level in a large population of cells. However, this issue may be more philosophical than 

practical, as current technologies for identifying and tracking proteoforms (for example, 

chromatography, mass spectrometry and antibody-based measurements) are constrained to 

operate above a given abundance level (i.e., the number of detectable proteoforms rather 

than all proteoforms per se). Through this lens, the number and variety of proteoforms 

expressed in biological systems appears to be well below the theoretical combinatorial 

possibilities31, with several examples providing a glimpse into this open question (Table 1). 

However, should new technologies emerge that relieve these constraints (for example, 

single-molecule proteoform detection32), this comfortable myopia may prove fragile.

Challenges in measuring proteoforms

Inference versus direct readout of proteoforms

The dominant paradigm of modern proteomics is the ‘bottom-up’ strategy, in which protein 

mixtures are digested with a protease, typically trypsin, to yield complex mixtures of 

peptides (Box 2). These peptides are analyzed by LC–MS/MS and identified by comparison 

of their MS/MS fragmentation spectra with theoretical spectra produced from the known 

genome sequence of the organism under study or customized protein sequence databases 

derived from matched DNA- or RNA-sequencing data from the same sample. The presence 

of a given protein in the sample is inferred from identification of the peptides it contains, in 

a process known as ‘protein inference’32. Although protein inference is a widely employed 

cornerstone of bottom-up proteomics, it is not generally possible to identify proteoforms in 

the same manner, as different proteoforms often share most of their peptides with one 

another. Instead, it is necessary to use ‘top-down’ proteomic methods, in which the entire 

proteoform is analyzed by LC–MS/MS without prior digestion to peptides (Box 2). Ideally, 

the complete amino acid sequence and localized PTMs are obtained; for proteins that are 

especially large or those harboring many PTMs, there are often ambiguities in the complete 

description of related proteoforms. Addressing these limitations of top-down proteomics in 

both denatured and native modes is a frontier area of current research.

Mapping protein composition with complete molecular specificity

The next stage of proteomic investigation goes beyond identification of peptides and 

individual PTMs to reach for complete protein characterization through proteoform-resolved 

measurement34,35. For elucidating functions of proteoforms, complete knowledge of their 

molecular composition and that of their interacting partners is preferred. A potential 

confounding factor in this endeavor can arise from artifacts of sample preparation of tissues, 
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cells and their extracts via enzymatic or chemical modification or degradation (for example, 

oxidation and chain cleavage). As a result, proteoforms can be proteolytically truncated, 

thereby forming new proteoforms with a loss of correlative power and relationship to their 

function. Enzymatic conversions of proteoforms also occur in body fluids in vitro, further 

complicating their quantification. For example, brady-kinin, a proteoform of kininogen-1 

and a vasoactive peptide hormone, is degraded faster in vitro than in vivo (half-life of 17 s). 

In addition, other enzymes like phosphatases can convert proteoforms in homogenates 

unless they are inhibited. With respect to these problems, new sampling procedures like 

direct mass-spectrometric imaging36,37 of tissues yielding the spatial distribution of 

proteoforms and Picosecond InfraRed Laser technology (PIRL) are promising for providing 

higher fidelity readouts of whole proteoforms38. Tissue samples collected with PIRL by 

cold, soft and very fast ablation show more intact proteoforms than those obtained by 

conventional protein extraction39.

Prospects for mapping the majority of human proteoforms

With proteins being dynamic and so dependent on their context, it is critical to frame the 

dimensions of their measurements. Analysis of protein molecules can be performed at 

different levels in the hierarchical organization of the human body (Fig. 4). Mapping of 

proteins can also mean determining their spatial distribution in a solid tissue or deducing 

their atom composition. The question arises as to what level of understanding is needed to 

obtain a holistic view of the human proteome and how that would augment our biomedical 

goals for science, technology and society. Recent efforts to describe the composition and 

spatial distribution of proteins have advanced in draft maps of the human proteome40,41 and 

the Human Protein Atlas2, respectively. This year, a major endeavor called the Human Cell 

Atlas has been launched to define the cell types that comprise the human body42. This effort 

will expand with a variety of consortia and take on the definition of cell types in diverse 

organs, the immune system of the blood and bone marrow, and even the brain.

How much proteoform variation exists between cell types?

Recent advances in single-cell RNA sequencing (scRNA-seq) technology allow 

comprehensive and data-driven characterization of major cell types within a tissue42. For 

some tissues, estimates based upon the sum total of previous (pre-single-cell) studies 

provide a good estimate of the number of cell types, whereas for other tissues there are many 

cell types that remain to be classified. One could envision that analysis of cellular 

proteoforms would complement the scRNA-seq gene expression data and add power to 

robust classification of cell types and states. Additionally, with the availability of the Human 

Cell Atlas, an effort focused on compositional mapping of proteoforms in each human cell 

type could become feasible, as outlined in a separate publication43. This cell-based approach 

to compositional mapping of human proteins was framed for a depth of 250,000 proteoforms 

per cell type43, with a focus on defining normal variation in health and wellness; such a 

project would require establishing cost effective approaches to cell- and proteoform-specific 

measurements.

Aebersold et al. Page 7

Nat Chem Biol. Author manuscript; available in PMC 2019 February 14.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Mapping proteoforms and their kinetics in health and disease

With the overview above regarding sources of combinatorial variation, what are some 

functional implications arising from this protein-level diversity? Once a PTM present only 

on a specific splice variant can be asserted precisely, how does it vary across cell type and 

disease? Such questions are being addressed using a common approach of mapping 

proteoforms, determining their composition (including any new ones resulting from 

mutation or aberrant PTM patterning), and then correlating proteoform-level dynamics to 

functional readouts and phenotype (Fig. 5). Several examples from the past few years are 

summarized in Table 1, with reviews available to highlight early examples44. In the domain 

of microbiology and infectious disease, the process of assigning proteoform function and 

obtaining clinical value is farthest along. In more complex human diseases across the 

spectrum of neurodegeneration, oncology and cardiovascular disease, functional assignment 

for combinations of events detected at the proteoform level are accruing, albeit at a slower 

rate.

In cancer epigenetics, there are several examples in which PTM crosstalk has been mapped 

definitively (see also the top rows of Table 1)22,45–49. It has been estimated that ~1,000 H3 

proteoforms above a 0.1% abundance threshold exist for each of three histone H3 genes50. 

Such examples have been mapped in the context of multiple myeloma51 and diffuse intrinsic 

pontine glioma (DIPG)52. In each case, a global decrease in trimethylation of histone H3 on 

lysine 27 (H3K27me3; normally ~20% abundance) could result in hundreds of dysregulated 

histone codes in the diseased epigenome. In other disease areas, including organ fibrosis, 

several examples exist in which a mutation at one site can affect PTM profiles elsewhere on 

the protein53–55. In neurological disease and aging, modified proteins are the 

histopathological hallmarks of a number of diseases, such as SOD1 in amyotrophic lateral 

sclerosis (ALS)56,57, and a class of diseases long referred to as the proteinopathies57, 

including tauopathies in Alzheimer’s disease58 and inclusions of amyloid-β59, α-synuclein 

in Parkinson’s60,61 and multiple secondary ubiquitinopathies62,63. In heart disease, 

proteoform dynamics have been observed on proteins such as cardiac troponin I64, 

apolipoprotein C-III65, and B-type natriuretic peptide, the latter a key regulator of blood 

pressure and also the gold standard biomarker for clinically assessing heart failure66. Within 

the field of infectious diseases, proteoform-resolved approaches have been instrumental for 

understanding infectivity and dissemination of Salmonella typhimurium67, Corynebacterium 

glutamicum68 and Neisseria meningitidis69. Finally, the clinically deployed use of whole-

protein MALDI–TOF MS for rapid identification of the species and strain of pathogenic 

bacteria has been adopted by thousands of hospitals and clinics worldwide70,71.

Deciphering the functions of proteoforms and their PTMs

With a far more precise understanding of protein composition and distribution in human 

biology, several advances can be anticipated. For compositional proteomics, the assignment 

of proteoform function and their combinations of PTMs can be made more efficient, as this 

is a holy grail in both basic and translational research. The use of proteoforms as protein-

based biomarkers of disease is in its infancy (Table 1). To assign biological functions to 
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proteoforms and their PTMs, a more precise map of protein composition would be the basis 

for the creation of new reagents and tools, such as the two examples outlined below.

Proteoform synthesis for functional studies

Understanding the language of site-specific PTMs remains a challenge, in part, because 

endogenous proteins are complex mixtures of related compositions, depending on their 

biosynthesis, functional regulation and subcellular distribution. Tools and technologies for 

precision proteoform synthesis (i.e., the ability to produce useful quantities of proteins with 

defined post-translational decorations for biochemical, mechanistic and structural studies) 

have advanced recently via two main approaches. First, the installation of genetically 

encoded chemistry by co-translationally incorporating noncanonical amino acids site 

specifically into proteins has afforded new advances (for example, phosphorylated amino 

acids)72–74. Furthermore, precision installation of glycans affords chemically defined 

glycoforms to study their structure and function. Recent efforts in glycoengineering of 

cellular systems have also expanded our ability to reliably synthesize chemically defined 

glycoforms75. Complementing these cell-based strategies (and emerging cell-free 

alternatives76) are well-established protein chemical synthesis and semisynthesis strategies 

for preparing proteoforms containing a wide repertoire of PTMs77. For example, histone 

proteoforms harboring multiple PTMs have been generated for functional studies via 

semisynthesis.

Affinity reagents and assays

The need to understand and assert PTM function benefits from antibody and mass-

spectrometric methods working in a complementary and proteoform-informed fashion. For 

the development of affinity reagents, full-length proteoforms or domains decorated with 

PTMs are needed as antigens for production and validation of high-quality affinity reagents 

using methods like phage display78. The use of multiple antibodies, created using full-length 

antigens, can be deployed for cell-type-resolved or spatial mapping using frontier methods 

like mass cytometry (CyTOF) or for targeted analysis of a few dozen epitopes using single-

cell proteomics79. Combining these methods with proteoform information by creating 

affinity reagents based upon precise knowledge of protein composition would enable efforts 

to map the spatial information of proteoforms in distinct cell types within human tissues. In 

the long-term, it is crucial to generate recombinant antibody tools as monospecific, 

permanent and renewable reagents to replace perishable animal-derived polyclonal or even 

monoclonal antibodies. Moreover, to detect proteins in their natural state, it is important that 

recombinant antibodies be generated to intact and folded proteins, because most high-

affinity and specific antibodies recognize tertiary, not primary, sequence determinants. To 

this end, the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium’s 

(NCI–CPTAC) Antibody Portal (http://antibodies.cancer.gov) provides well-characterized, 

renewable antibodies against full-length protein antigens that are useful in development of 

targeted assays (e.g., immuno-MRM; http://assays.cancer.gov).

On the roles of PTM complexity in human biology

Below, we provide some thoughts on the possible roles of proteoform diversity, first through 

the evolution of complex traits and then on information processing for complex systems like 
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human cells. Although the potential complexity afforded to proteins by PTMs is enormous, 

the few studies available suggest that only a small amount of this complexity is accessed in 

any given biological context. At the same time, different contexts may elicit diverse parts of 

proteoform complexity, so large swaths of PTM combinatorial space could have been 

explored over evolutionary timescales. One way to think about the role of this complexity is 

that it offers an ‘escape’ from the central dogma by accessing a far broader ensemble of 

protein compositions than can be realized from the genetic level alone80. PTMs thereby 

create capabilities that would not be accessible through protein translation or diverse 

splicing mechanisms. This viewpoint interprets PTMs as providing protein conformational 

states that may subsequently be exploited to modulate effector pathways in response to 

physiological conditions. For instance, PTM codes on central hub proteins like histones can 

be seen as a form of molecular ‘weak linkage’, which can facilitate evolution of higher 

complex traits81.

Another perspective is that biological systems select for proteoform diversity to improve 

robustness by having a distribution of forms and activities. This point of view actually 

argues for some level of promiscuity of PTM transferases in creating proteoform diversity. 

Natural selection must constantly wrestle with the tradeoff between fidelity and variability. 

High fidelity of biochemical processes would seem, at first blush, to be advantageous for a 

tightly orchestrated biological system; however, the higher the fidelity, the more amenable 

the organism is to the mutation and selection processes that are central to evolution. 

Moreover, although natural selection cannot look ahead, variation within proteins in a 

population allows more opportunities for later exploitation and adaptation as selective 

conditions change.

Protein compositions play a central role in cellular information processing47. For 

information ‘coding’ in cellular signaling, the ‘histone code’ is perhaps the best-known 

example22. It is usually implied that some highly modified proteins can act as hubs to 

integrate signals and orchestrate complex cellular functions82. In this area of chromatin 

biology, individual PTMs are sometimes called ‘marks’; combinations of PTM marks make 

up ‘codes’ (which are captured through proteoform measurement). Different combinatorial 

patterns of PTMs are ‘written’ on these hubs by the combined activity of forward-modifying 

and reverse-demodifying enzymes in response to varied physiological conditions. This 

framework is being extended to other PTM marks like phosphorylation, methylation, 

acetylation, ubiquitination, etc., and they combine to regulate responses to physiological 

conditions80 and to fine-tune individual molecular interactions. Such interactions can 

themselves be formidably intricate. More than 5% of the protein complement in a cell are 

enzymes (for example, ~500 kinases and ~140 protein phosphatases are encoded in the 

human genome), which can both compensate for and compete with each other at individual 

amino acids (for example, O-GlcNAcylation on canonical phosphorylation sites) and PTMs 

can be clustered in ‘hotspots’ at which different PTMs can influence each other. The 

resulting combinatorial patterns of PTMs convey information through ‘PTM crosstalk’ on 

the protein. The resulting PTM codes can then be ‘read’ by downstream interacting proteins 

in effector pathways. In this way, multiple upstream processes can collectively orchestrate a 

variety of downstream processes in various ways depending on conditions while working 

through one or a few hub proteins. The tumor suppressor p53, which can be modified on 
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over 100 sites47, serves as a clear example of this case; however, what is unknown is how 

many of these PTMs coexist on the same proteoform.

Whether in the context of human evolution or cellular signaling, this tension arises for 

proteoforms: are PTMs and other differences between proteoforms carefully controlled and 

regulated or are they subject to high levels of stochastic ‘noise’? The answer may well be 

both, with different strategies being appropriate in different cellular or developmental 

contexts. For histones, a relatively strict doctrine of PTM writing and maintenance appears 

to limit the combinatorial explosion of proteoforms. Outside of histone biology, it is not well 

known whether systems for protein-based coding in the language of PTMs are prone to 

‘loose constructionism’, defined here as a high tolerance for imprecision and noise in writing 

and erasing PTMs in cells of a living organism. How much of each strategy is operative and 

in which contexts? For unravelling such questions regarding the fidelity of information 

encoding and transfer, it will be essential to quantify the distribution of modification patterns 

on proteins, to develop mathematical and statistical frameworks for analyzing these 

distributions and to experimentally demonstrate how protein ‘readers’, ‘writers’ and 

‘erasers’ interact with these distributions. Addressing these challenges in distinct areas of 

biology, even with improved tools for precise determination of protein composition at the 

proteoform level, will take several years to sort out47.

Summary and future prospects

From the many considerations above, a precise estimate of the number of human 

proteoforms is still difficult to provide. Finding ways to sample and better estimate 

proteoform number would assist in bounding the breadth and depth of the human proteome. 

For a given cell type, the depth of proteome coverage needed to detect the majority of 

human proteoforms above a specified threshold can serve as a protein-level analog of the 5× 

genome coverage employed for sequencing the first human genomes. For example, the 

1,000,000 proteoform mark for cells of a given type would allow for mapping of ~100 

proteoforms for each expressed gene. Compositional proteomics is maturing to the point 

whereby such depth may become possible to better decipher conserved, functional PTMs 

relative to biochemical noise. At whatever depth, building proteoform-informed 

measurement modalities to translate absolute molecular knowledge for proteins (and their 

combinatorial sources of modification) into deep functional insight will assist efforts to 

regularize and even domesticate the human proteome in the years ahead. Whether a large-

scale endeavor to compositionally map cellular proteomes is launched depends on the 

perceived feasibility, endpoint(s) and value of such a project, and we hope this Perspective 

allows diverse communities to better frame the open questions about the composition and 

nature of the human proteome in both health and disease.
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Box 1

Calculating the number of theoretical proteoforms

Recent analyses of human histone H4 (P62805) mapped 75 proteoforms in human cells 

(see main text). Considering the 13 most common PTMs (acetylation, methylation and 

phosphorylation, shown below) and a single SNP, 98,304 theoretical proteoforms are 

possible.

26 (K5/8/12/16/31/91 ac) × 31 (R3 me1/2) × 41 (K20 me1/me2/me3) × 25 

(S1/S46/Y51/T79/Y87 ph) × 2 (N-term ac) × 2 (E63Q cSNP) = 98,304 proteoforms

Aebersold et al. Page 18

Nat Chem Biol. Author manuscript; available in PMC 2019 February 14.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t

http://www.uniprot.org/uniprot/P62805


Box 2

Bottom-up and top-down strategies for the analysis ofprotein sequence 
and composition

With the ‘bottom-up’ proteomics workflow, preanalytical processing of proteins (and 

corresponding proteoforms) is performed with proteases (e.g., trypsin) to generate 

analytically manageable peptides (top) that are sequenced in order to determine protein 

identity. The ‘top-down’ approach avoids the digestion step and characterizes proteoform 

microheterogeneity directly through tandem mass spectrometry techniques (bottom). 

Analysis at the intact level is advantageous because 100% of the proteoform’s primary 

structure is present in the top-down workflow, contrasting with bottom-up methods in 

which incomplete sampling of peptides across the protein backbone may cloud actual 

proteoform determination.
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Figure 1. Two parsings of post-translational modifications from the SwissProt database of 20,245 
human proteins

(a) Histogram of PTMs in SwissProt for Homo sapiens (taxon identifier: 9606). 

Phosphorylation (phospho) is by far the most frequently annotated PTM at 38,030 (72%). 

Note that there are ~400 different types of PTMs known in biology (see: http://

www.unimod.org). (b) Histogram of PTMs per SwissProt entry. Note that the distribution of 

PTMs is not uniform with 75% of entries containing two or fewer annotated PTMs; yet only 

five entries have >90 annotated PTMs.
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Figure 2. Graphical depiction of sources of protein variation that combine to make up 
proteoforms, each of which map back to a single human gene

Depicted is a single human gene and two of its isoforms, which differ by the coding for 

several different amino acids of a protein primary sequence (at left); isoforms commonly 

arise from alternative splicing of RNA and from use of different promoters or translational 

start sites. Isoform variation combines with site-specific changes to generate human 

proteoforms (at right); three examples of site-specific changes include single-nucleotide 

polymorphisms (SNPs) and co- or post-translational modifications like N-glycosylation or 

phosphorylation, respectively.
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Figure 3. Contrasting the potential sources of protein variability versus those that actually occur 
in combination as proteoforms detectable in actual human systems

(a) Common sources of protein variability include alternative splicing of RNA, single-

nucleotide polymorphisms (SNPs) in regions of genes coding for amino acids, and PTMs. 

Note that there are ~33,000 splice isoforms, ~78,000 site-specific amino acid variants (i.e., 

polymorphisms and mutations) and ~53,000 PTMs in the October 2017 release of the 

Human SwissProt database. (b) Depiction of two proteoforms from specific combinations of 

protein variability.
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Figure 4. Levels of organization in the human body

Starting from protein primary structure (proteoforms), the complexity of organ systems is 

built up in layers. A key concept is that diverse measurement approaches in proteomics 

seeks analysis of protein molecules at the various levels and contexts represented. 

Proteoform membership in protein complexes and localization within organelles, cells and 

tissues are all aspirations of measurement technologies to map protein molecules more 

precisely in molecular composition, across space and through time.
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Figure 5. Proteoforms and their families underlie complex traits and molecular mechanisms 
operative in living systems

In nature, individual proteoforms (left), arising from variable sources of biological variation 

like PTMs, often exist in groups of related proteoforms. These dynamic ‘proteoform 

families’ (middle left) are the true protein products from the same human gene that convey 

information within signaling and regulatory networks (middle right) that underlie complex 

traits in wellness and disease (right). Discrete proteoforms and their families offer 

challenging, high-value targets for direct measurement by top-down proteomics.
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Table 1

Examples of mapping proteoforms and correlating them to function and phenotype in complex systems

System Number of 
proteoforms 
mapped

Proteoform→PTM→function

14-3-3 proteins83
11a Phosphorylation mediates protein–protein interaction

α-Synuclein; human brain in Parkinson’s disease60 11 Phosphorylation→weak correlation to Parkinson’s disease 
pathology

Amyloid-β; human brain in Alzheimer’s disease59 23 Diversity of proteoforms is not captured by traditional ELISA 
assays

Angiotensin converting enzyme; human84
24a Multiple isozymes with multiple functions

Apolipoprotein C-III; human high-density lipoprotein 

particles65

4 Branched glycoproteoforms on Thr104 correlate with HDL-C 
levels

B-type natriuretic peptide; heart failure66,85 7–24 Multiple PTMs and proteolysis correlate with heart failure

Cardiac troponin I; heart failure64,86 17 Altered in phosphoproteoforms associated with cardiac disease

Chorionic gonadotropin; α/β subunits, human23
10 and 24b Sialic acid content influences receptor binding activity and 

clearance

Erythropoietin; recombinant fusion protein expressed 
in CHO cells

>230c Modulation of receptor binding kinetics during red blood cell 
production

Etanercept; human24 >80 Galactosylation and fucosylation modulate immunogenic 
potency

Histone H2B; human46 15 Many gene family members possible→few observed 
proteoforms

Histone H3; human87
>250d Low dosage of H3.3K27M (<10%) associated with pediatric 

diffuse intrinsic pontine gliomas (DIPG)52

Histone H4; human27,88 75 Associated with both gene repression and activation

Interferon β-1a; commercial recombinant protein 

(Avonex)89

138 Loss of N-terminal Met correlated with multiple sites of 
deamidation and loss of potency (used clinically to treat 
multiple sclerosis)

Myosin regulatory light chain; swine heart failure90 4 Decreased phosphorylation correlates with myocardial 
infarction

Outer membrane proteins in C. glutamicum68 30 O-mycoloylation→localization to the outer membrane

PilE, pilin proteins in N. meningitidis infection69 18 Phosphoglycerylation→increased in vivo dissemination and 
virulence

Reactive cysteines in S. typhimurium infection67 34 S-glutathionylation and S-cysteinylation→infection-like 
conditions

Transthyretin; familial amyloidosis55 25 Genetic mutation alters PTM profiles

Proteoforms and their PTMs have been mapped on selected microbial, pig, mouse and human proteins.

a
Estimated.

b
Human chorionic gonadotropin (hCG) is another prominent example for which glycosylation strongly regulates its biological function. The hCG 

protein contains more than 40 N- and O-glycan structures on two glycosylated subunits. Combinatorial analysis for the α-subunit and β-subunit 

predicts ~16,000 theoretical glycoforms; however, only 10 and 24 could be assigned for each subunit, respectively.

c
Although glycosylation is an untemplated process, when one takes into account multiple functional and biosynthetic arguments, it has been 

estimated that fewer than 3,000 N- and O-linked glycan monomers exist in humans91.

d
Recent estimates from middle-down studies suggest that ~1,000 proteoforms exist for each of the H3 genes50,92.
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