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Abstract Multiple imputation (MI) and full information
maximum likelihood (FIML) are the two most common
approaches to missing data analysis. In theory, MI and
FIML are equivalent when identical models are tested using
the same variables, and when m, the number of imputations
performed with MI, approaches infinity. However, it is
important to know how many imputations are necessary
before MI and FIML are sufficiently equivalent in ways
that are important to prevention scientists. MI theory
suggests that small values of m, even on the order of three
to five imputations, yield excellent results. Previous guide-
lines for sufficient m are based on relative efficiency, which
involves the fraction of missing information (γ) for the
parameter being estimated, and m. In the present study, we
used a Monte Carlo simulation to test MI models across
several scenarios in which γ and m were varied. Standard
errors and p-values for the regression coefficient of interest
varied as a function of m, but not at the same rate as relative
efficiency. Most importantly, statistical power for small
effect sizes diminished as m became smaller, and the rate of
this power falloff was much greater than predicted by
changes in relative efficiency. Based our findings, we
recommend that researchers using MI should perform many
more imputations than previously considered sufficient.
These recommendations are based on γ, and take into
consideration one’s tolerance for a preventable power falloff
(compared to FIML) due to using too few imputations.
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Since Rubin’s (1987) classic book on the subject, multiple
imputation has enjoyed a steady growth in popularity and
usefulness. Technical articles, books, and multiple imputa-
tion software abound (e.g., Collins et al. 2001; Graham et al.
2003; King et al. 2001; Schafer, 1997; Schafer and Graham
2002; Schafer and Olsen 1998). Perhaps a more telling
indication of the value of the procedure is the plethora of
substantive articles and chapters that make use of multiple
imputation (for example, http://www.multiple-imputation.
com/ lists 440 multiple-imputation-related publications as
of May 2006).

The main idea of multiple imputation is that plausible
values may be used in place of the missing values in a way
that allows (1) parameter estimates to be unbiased, and
perhaps more important, (2) the uncertainty of parameter
estimation in the missing data case to be estimated in a
reasonable way. This ability to estimate the uncertainty of
parameter estimation in the missing data case is due to what
is often referred to as “Rubin’s rules” for combining the
results of analysis of multiply imputed datasets (Rubin
1987). The point estimate of each parameter (e.g., a
regression coefficient, b) is simply the average of the
parameter estimate b

� �
obtained over the m imputed data-

sets. But it is the standard error for the parameter estimate that
really makes multiple imputation a uniquely useful tool. In
multiple imputation, the variance of estimation is partitioned
into the within imputation variance, which captures the usual
kind of sampling variability, and the between imputation
variance, which captures the estimation variability due to
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missing data. Formulas for these quantities, adapted from
Schafer (1997) are:

Ub ¼
X

SE2
b

.
m

for the within imputation variance of, say, a particular
regression coefficient, where Ub is the average of the squared
standard error (SE) for that regression coefficient over the m
imputed datasets, and

Bb ¼ 1
.

m� 1ð Þ
X

b� b
� �2

for the between imputation variance. Bb is the sample
variance of the parameter estimate over the m imputed
datasets. The formula for combining these two variances,
also adapted from Schafer (1997), is

Tb ¼ Ub þ 1þ 1=mð Þ½ �Bb

and

SEb ¼ sqrt Tbð Þ
The parameter estimate is then divided by its SE to give

a t-value. The degrees of freedom (df ) for this t-value,
again adapted from Schafer (1997), is:

df ¼ m� 1ð Þ 1þ mUb= mþ 1ð ÞBbð Þ½ �2

The t-value, along with its df may be used for statistical
inference. If one prefers, SEb may be used in the usual way
for calculating 95% confidence intervals.

Another quantity that figures prominently in multiple
imputation is known as the fraction of missing information
(γ). Schafer and Olsen (1998) give the formula for γ as

γ ¼ r þ 2= df þ 3ð Þ
r þ 1

where

r ¼ 1þ m�1ð ÞB
U

Although γ is the same as the amount of missing data in the
simplest case, it is typically rather different from (less than)
the amount of missing data, per se, in more complicated
situations (Rubin 1987; p. 114). For example, if other
variables included in the imputation model are highly
correlated with the (sometimes missing) variables of interest,
then the amount of missing information is generally smaller
than the percentage of missing data.

How Many Imputations are Needed: Previous Thinking

An important aspect of previous technical treatments of
multiple imputation (e.g., Rubin 1987; Schafer 1997;
Schafer and Olsen 1998) is the discussion of the number of

imputations that are needed for good statistical inference. For
example, Schafer and Olsen (1998) suggest the following.

In many applications, just 3–5 imputations are
sufficient to obtain excellent results. ... Many are
surprised by the claim that only 3–5 imputations may
be needed. Rubin (1987, p. 114) shows that the
efficiency of an estimate based on m imputations is
approximately

1þ γ
m

� ��1
;

where γ is the fraction of missing information for the
quantity being estimated.... gains rapidly diminish
after the first few imputations. ... In most situations
there is simply little advantage to producing and
analyzing more than a few imputed datasets (pp.
548–549).

Meaning of “Efficiency”

What does it mean to say that the “efficiency of the
estimate” is given by 1þ γ=mð Þ�1? “Efficiency”, a
quantity that is very common in statistics, is based on the
mean-square error (MSE) for one estimator compared to
another. In this case, we could calculate the MSE, or the
mean of the squared error, as:

MSE ¼ b� βð Þ2
.
N

where b is the estimated regression coefficient, and β is the
population value of that regression coefficient. N in this case
might be the number of random draws from the population
or the number of replications of a simulation.

Missing Data Methods: FIML vs. MI

Missing data theorists have argued that MI and FIML are
equivalent in theory, but not as practiced. Collins et al.
(2001) showed the value of including auxiliary variables
(variables not part of the model under study) in the missing
data model. It is an easy matter to include auxiliary
variables with MI, but FIML users rarely do so. Graham’s
(2003) models allow one to incorporate auxiliary variables
into FIML-based SEM models without altering the meaning
of the substantive model under study, thereby making it
easier for FIML users to make their analyses equivalent to
MI in this important sense.

Another way to compare equivalence of MI and FIML
involves the number of imputations (m) used with MI. We
take it as an axiom that MI and FIML are equivalent when
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the variables and models tested are the same, and when
m=∞. But what m is needed to approximate m=∞? As
noted above, MI theorists have argued that surprisingly
small m is needed for efficient estimation. Unfortunately,
relative efficiency is a quantity with little practical meaning
for prevention scientists. And, as we demonstrate in this
article, γ itself is unreliably estimated unless m is rather
large. Because one’s best choices of missing data analysis
in most cases are MI and FIML, it will be important to
know for what m MI is truly equivalent to FIML.

In this article, we expand on what one actually gets with
fewer or more imputations. We conduct a brief Monte Carlo
simulation to demonstrate our main points. We demonstrate
that the empirical estimates of efficiency, as defined above,
are rather close to the theoretical predictions given by
Schafer and Olsen (1998). However, we also show that
other important quantities, such as standard errors of the
estimate, p-values, and power all vary rather markedly with
the number of imputations (m). In particular, we show that
one of these quantities, statistical power can vary rather more
dramatically with m than is implied by the efficiency tables
presented in previous discussions of MI theory. Furthermore,
we evaluate the equivalence of MI and FIML across multiple
data scenarios involving variable levels of γ.

Materials and Methods

A Monte Carlo Simulation

For our simulation, we first generated 100,000 cases for
two normally distributed variables, X and Y (data were
generated using Jöreskog & Sörbom’s utility GENRAW.) In
this population, the regression coefficient for X predicting
Y was β=.0969. Second, for each replication of the
simulation, some number of cases were drawn at random
from the population, as shown in Table 1, depending on the
value of γ (within each replication, elements were drawn
from the population without replacement; however, the
same element could be drawn for two or more replications).
The values for Y for all but 800 of those cases were set to
missing (completely at random). That is, for each level of γ,

the number of complete cases was held constant at 800. As
γ increased, the proportion of cases with missing data
relative to those with complete data increased.

Third, the missing values were imputed using m=3, 5,
10, 20, 40, or 100 imputations (SAS Proc MI, versions 8.2
and 9.1, was used for the simulation). Fourth, a simple
regression analysis (PROC REG) was performed on the
resulting datasets (X predicting Y), and the results were
saved. In total, there were five levels of γ (.1, .3, .5, .7, .9)
and six levels of m, yielding 30 cells for the simulation. We
used 8000 replications for each of these 30 cells.

Results

The main results of the simulation are presented in Table 2.
The first thing to note in Table 2 is that the regression
coefficients were essentially unbiased for all values of m
and all values of γ. Then, within each level of γ, as the
number of imputations decreased from m=100 to m=3: (1)
the values of MSE and SE increased; (2) power (the
probability of rejecting the false null hypothesis) was
reduced (for γ=0.5, for example, this reduction was from
.78 to .59); (3) the estimate of γ differed somewhat more
from its true value; and (4) the variability of the estimate of
γ increased as m decreased; this increase in variability was
highest for intermediate values of γ.

Table 3 rearranges some of the key findings of Table 2
and provides a direct comparison with values calculated
from the efficiency formula from MI theory. Column 9
(labeled “Relative Efficiency: MI Theory”) shows the
efficiency based on Schafer and Olsen’s (1998) formula
for a particular m compared to m=100 for that same level of
γ. Column 8 (labeled “Relative Efficiency: Empirical”)
shows the same values derived from our simulation. These
two columns are not the same, of course, but in terms of
absolute values, these two columns are more similar to each
other than they are to any other column in this table. That
is, despite the slight simulation “wobble”, our simulated
estimates of efficiency map rather well onto the theoretical
values derived from Rubin’s formula.

Columns 5, 6, and 7 (located under the heading “Percent
of Optimal”) show what happens to statistical power, SE,
and the p value as the number of imputations decrease from
m=100 to m=3. These figures are presented in a metric that
allows a direct comparison with the “Relative Efficiency:
MI Theory” values (column 9). Column 6 (labeled “SE”)
shows the m=100 SE value divided by the each of the
remaining SE values. Note that the deviations from the
optimal SE (i.e., SE for m=100), based on the simulation
results, are much less dramatic than the falloff in efficiency
implied by MI theory (column 9). Column 2 (labeled
“Power”) is taken from Table 2.

Table 1 Simulation sample sizes drawn from the population

γ N selected from Population

0.10 889
0.30 1,143
0.50 1,600
0.70 2,667
0.90 8,000

For each level of γ N=800 cases had no missing data.
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Columns 3 and 4 (located under the heading “Power
Falloff”) show the power falloff when m is small compared
to m=100 (column 3) and the comparable FIML analysis
(column 4). Column 3 shows the percent by which each
power figure is less than the power observed for m=100.
Note that the power falloff shown by our simulation is
rather more dramatic than the falloff of efficiency predicted
by MI theory, especially as m gets small. Column 4 shows
the percent by which each power figure is less than the
power for the corresponding FIML model (0.7839). For γ>
0.30, the falloff compared to the FIML analysis is slightly
higher than that for m=100.

The numbers presented in Table 3 show that efficiency is
a quantity that must be evaluated carefully. It is rather clear,
for example, that this quantity does not reflect the actual
increase in the standard error as the number of imputations
is diminished. Nor does it reflect the increase in the p value;
the p value increased much more rapidly than predicted by
the efficiency formula as m goes from 100 to 3.

Details of Power Falloff

Most importantly, it is rather clear that the drop in
efficiency does not reflect the loss of power seen in our

Table 2 Results of Monte Carlo simulation

m Power b SE t df p γ SDγ MSE (×103)

(γ=0.10)
100 0.7910 0.0972 0.0353 2.76 10.8 K 0.049 0.101 0.0194 1.2022
40 0.7880 0.0969 0.0353 2.75 4,527 0.050 0.102 0.0250 1.2270
20 0.7846 0.0972 0.0353 2.76 2,454 0.050 0.105 0.0332 1.2203
10 0.7799 0.0968 0.0354 2.74 1,711 0.052 0.109 0.0483 1.2429
5 0.7760 0.0968 0.0355 2.73 4,714 0.052 0.119 0.0766 1.2288
3 0.7620 0.0967 0.0357 2.72 5,562 K 0.056 0.131 0.1143 1.2967
(γ=0.30)
100 0.7881 0.0969 0.0353 2.75 1137 0.048 0.303 0.0353 1.1954
40 0.7873 0.0974 0.0353 2.77 471 0.049 0.306 0.0524 1.2120
20 0.7824 0.0975 0.0355 2.76 249 0.051 0.311 0.0726 1.2339
10 0.7613 0.0963 0.0356 2.72 157 0.056 0.320 0.1064 1.2346
5 0.7308 0.0965 0.0360 2.72 370 0.062 0.337 0.1611 1.2880
3 0.6873 0.0971 0.0364 2.75 173 K 0.071 0.348 0.2215 1.3106
(γ=0.50)
100 0.7809 0.0965 0.0353 2.74 403 0.051 0.503 0.0399 1.2247
40 0.7763 0.0970 0.0354 2.75 164 0.052 0.506 0.0596 1.2390
20 0.7719 0.0978 0.0356 2.77 84 0.053 0.512 0.0851 1.2494
10 0.7479 0.0974 0.0359 2.76 47 0.059 0.521 0.1243 1.2709
5 0.6819 0.0967 0.0361 2.76 62 0.071 0.525 0.1840 1.3545
3 0.5863 0.0972 0.0368 2.80 48 K .093 .523 .2543 1.4361
(γ=0.70)
100 0.7780 0.0971 0.0354 2.75 203 0.052 0.703 0.0327 1.2451
40 0.7710 0.0967 0.0353 2.76 82 0.055 0.704 0.0505 1.2602
20 0.7486 0.0965 0.0356 2.75 41 0.059 0.709 0.0721 1.2753
10 0.7116 0.0966 0.0358 2.77 21 0.066 0.712 0.1056 1.2878
5 0.6096 0.0969 0.0366 2.82 25 0.087 0.713 0.1660 1.3872
3 0.4930 0.0962 0.0368 2.93 1,413 K 0.118 0.688 0.2403 1.4836
(γ=0.90)
100 0.7756 0.0964 0.0353 2.75 122 0.053 0.901 0.0136 1.2057
40 0.7618 0.0970 0.0355 2.77 48 0.055 0.902 0.0211 1.2507
20 0.7291 0.0968 0.0356 2.78 24 0.063 0.903 0.0322 1.3216
10 0.6689 0.0967 0.0360 2.83 12 0.075 0.903 0.0520 1.3517
5 0.5334 0.0966 0.0365 2.97 6 0.102 0.895 0.0997 1.4009
3 0.3876 0.0969 0.0364 3.33 236 0.147 0.862 0.1782 1.6662

Figures for each cell were based on 8,000 replications. The population r=b=0.0969. Theoretical power=0.7839 for N=800. Power for equivalent
FIML analysis was also 0.7839 (for all levels of γ).
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simulation as the number of imputations dropped from m=
100 to m=3. When γ was small (γ=0.1), the power falloff
was not dramatic. For γ=.1, the power falloff was less than
1% with m=40 or 20, but was somewhat larger for m<20
1.4, 1.9, and 3.7% for m=10, 5, and 3, respectively). For γ=
0.3 the power falloff was less than 1% for m=40 and m=20,
but was 3.4, 7.3, and 13% for m=10, 5, and 3, respectively.
In comparison with the corresponding FIML model, the
power falloff figures were very slightly lower than the falloff
compared with m=100.

On the other hand, for γ≥0.5, the power falloff was
noticeable, even with 20 or more imputations. When γ=.5
the power falloff was less than 1% for m=40, but was
greater than 1% for m<40 (1.2%, 4.2%, 12.7%, and 24.9%
for m=20, 10, 5, and 3, respectively). For γ=.7, the power

falloff was just less than 1% for m=40, but was 3.8%,
8.5%, 22%, and 37% for m=20, 10, 5, and 3, respectively.
For γ=.9, the power falloff for m≤40 was greater than 1%
(1.8%, 6%, 14%, 31%, and 50% for m=40, 20, 10, 5, and
3, respectively). In comparison with the corresponding
FIML model, the power falloff figures were slightly higher
than the falloff compared with m=100.

Estimation of γ

We have shown in our simulation that the power falloff was
relatively modest when γ≤ .3. In fact, one might believe,
from MI theory, and from our simulations, that when γ≤ .3,
one really can get by with a smaller number of imputations.
One problem with this argument, however, is that γ itself is

Table 3 Rearranged simulation results

Power falloff Percent of optimal Relative efficiency

m (1) Power (2) m=100 (3; %) FIML (4; %) Power (5) SE (6) p value (7) Empirical (8) MI theory (9)

γ=.10 100 0.79 0
40 0.79 0.4 0 1.0 1.0 0.98 0.98 1.0
20 0.78 0.8 0 0.99 1.0 0.98 0.99 1.0
10 0.78 1.4 0.5 0.99 1.0 0.94 0.97 0.99
5 0.78 1.9 1.0 0.98 0.99 0.94 0.98 0.98
3 0.76 3.7 2.8 0.96 0.99 0.88 0.93 0.97

γ=.30 100 0.79 0
40 0.79 0.1 0 1.0 1.0 0.98 0.99 1.0
20 0.78 0.7 0.2 0.99 0.99 0.94 0.97 0.99
10 0.76 3.4 2.9 0.97 0.99 0.86 0.97 0.97
5 0.73 7.3 6.8 0.93 0.98 0.77 0.93 0.95
3 0.69 13 12.3 0.87 0.97 0.68 0.91 0.91

γ=.50 100 0.78 0.4
40 0.78 0.6 1.0 0.99 1.0 0.98 0.99 0.99
20 0.77 1.2 1.5 0.99 0.99 0.96 0.98 0.98
10 0.75 4.2 4.6 0.96 0.98 0.86 0.96 0.96
5 0.68 13 13 0.87 0.98 0.72 0.90 0.91
3 0.59 25 25 0.75 0.96 0.55 0.85 0.86

γ=.70 100 0.78 0.8
40 0.77 0.9 1.6 0.99 1.0 0.95 0.99 0.99
20 0.75 3.8 4.5 0.96 0.99 0.88 0.98 0.97
10 0.71 8.5 9.2 0.91 0.99 0.79 0.97 0.94
5 0.61 22 22 0.78 0.97 0.60 0.90 0.88
3 0.49 37 37 0.63 0.96 0.44 0.84 0.82

γ=.90 100 0.78 1.1
40 0.76 1.8 2.8 0.98 0.99 0.96 0.96 0.99
20 0.73 6.0 7.0 0.94 0.99 0.84 0.91 0.97
10 0.67 14 15 0.86 0.98 0.71 0.89 0.93
5 0.53 31 32 0.69 0.97 0.52 0.86 0.86
3 0.39 50 51 0.50 0.97 0.36 0.72 0.77

Power falloff (column 3) and Efficiency Formula figures are compared to values when m=100. Power falloff figures in column 4 are compared to
equivalent FIML model. Falloff figures of “0” in column 4 were very slightly positive (greater power), and were fixed at 0. Power for equivalent
FIML analysis was also 0.7839 (for all levels of γ).
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not reliably estimated unless m is rather large. Table 4
shows the estimates of γ for various levels of γ and m.

One can see in Table 4 that one standard deviation above
the mean for true γ=.30 and m=5 is γ=.50. However, the
consequences are relatively minor for thinking one’s γ is
higher than it really is. If one believes erroneously that
one’s γ=.50, then one simply asks for more imputations,
and all is well. However, if one believes erroneously that
one’s γ=.30 when it is really .50, there could be
unacceptable loss of power. Thus, we argue that the most
important values of γ in Table 4 are .50 and larger.

As shown in Table 4, when true γ=.50, with m=5, one
will estimate γ to be as small as .34 a non-trivial amount of
time. When true γ=.50, even with m=10, one will estimate
γ to be as small as .40 some of the time. When true γ=.70,
with m=5, one will estimate γ to be as small as .50 some of
the time.

Discussion

MI vs. FIML

A question is often raised as to which missing data approach is
better: MI or FIML. Missing data theorists (e.g., Collins et al.
2001; Schafer and Graham 2002; Graham et al. 2003) have
argued that MI and FIML are equivalent. Collins et al.
(2001), for example, have argued that the two approaches “...
will always yield highly similar results when the input data
and models are the same, and the number of imputations, M,
is sufficiently large.”

The Collins et al. (2001) article focused mainly on the
idea that MI and FIML approaches yield similar results
when the same variables are taken into account. This issue
applies mainly to the idea of including additional variables

in the model to “help” with the imputation; Collins et al.
referred to these additional variables as “auxiliary” varia-
bles. With MI, adding such variables to the missing data
model is easy to do. With FIML approaches, however,
Collins et al. noted that the researcher must take extra steps
to include these auxiliary variables in the model. Graham
(2003) suggested models that accomplish these extra steps
for FIML-based Structural Equation Modeling (SEM).

The present article also addresses the issue of whether
MI and FIML methods are equivalent. Our results show
rather clearly that compared to MI with m=100, MI with
fewer imputations can lead to an unacceptable power
falloff. An important point of this article is that one can
avoid this preventable power falloff simply using MI with
more imputations.

But it is also important to compare one’s power using MI
with a certain number of imputations with power that could
be achieved using the equivalent FIML procedure. As long
as it is reasonable to assume that power based on MI with
m=100 is essentially the same as power based on MI with
m=∞, then the power falloff figures we show in our tables
also apply reasonably to power falloff with respect to the
comparable FIML analysis. Indeed, when γ is small, for
example, when γ≤ .3, power based on MI with m=100 is
essentially the same as power based on the equivalent
FIML analysis.

However, when γ=.5, power based on MI with m=100
is a little lower than power based on the equivalent FIML
analysis. For γ=.7 and γ=.9, the differences are even larger.
Thus, when one adds the small power falloff for MI based
on m=100 (with respect to FIML) to the power falloff for
MI with a smaller number of imputations (with respect to
MI with m=100), the total power falloff with respect to
FIML is slightly larger overall. This overall power falloff
with respect to the equivalent FIML analysis was shown in
Table 3.

Table 4 Estimates and variability of γ

Population γ

m 0.90 0.70 0.50 0.30 0.10

−1 +1 −1 +1 −1 +1 −1 +1 −1 +1
SD γ SD SD γ SD SD γ SD SD γ SD SD γ SD

100 0.89 0.90 0.92 0.67 0.70 0.74 0.46 0.50 0.54 0.27 0.30 0.34 0.08 0.10 0.12
40 0.88 0.90 0.92 0.65 0.70 0.76 0.45 0.51 0.57 0.25 0.31 0.36 0.08 0.10 0.13
20 0.87 0.90 0.94 0.64 0.71 0.78 0.43 0.51 0.60 0.24 0.31 0.38 0.07 0.11 0.14
10 0.85 0.90 0.96 0.61 0.71 0.82 0.40 0.52 0.65 0.21 0.32 0.43 0.06 0.11 0.16
5 0.80 0.90 1.0 0.55 0.71 0.88 0.34 0.53 0.71 0.18 0.34 0.50 0.04 0.12 0.20
3 0.68 0.86 1.0 0.45 0.69 0.93 0.27 0.52 0.78 0.13 0.35 0.57 0.02 0.13 0.25

“−1 SD” means one standard deviation below the mean for γ for that level of γ. “+1 SD” means one standard deviation above the mean for γ for
that level of γ.
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Recommended Number of Imputations

The simulation results shown in this study are interesting,
and have important implications for prevention scientists.
Based on these results, we advise users of multiple
imputation to ask for many more imputations than has
previously thought to be needed. How many imputations
are needed depends on γ, to be sure, but also on one’s
tolerance for the (preventable) power falloff due to
choosing m to be too small.

Our recommendations for number of imputations are
summarized in Table 5. We begin with the assumption that
the tolerance for a preventable power falloff will normally
be low. When statistical power matters most, for example,
we would require that the preventable power falloff be less
than 1%. We also start by comparing our analysis with the
corresponding FIML analysis (the rightmost column in
Table 5), which is equivalent to an infinite number of
imputations. With these assumptions, we recommend that
one should use m=20, 20, 40, 100, and >100 for true γ=
0.10, 0.30, 0.50, 0.70, and 0.90, respectively. It could be
argued that one should use these conservative recommen-
dations even if a FIML approach is not an option.

On the other hand, there may be situations when one
wishes to compare the power falloff with a large number of
imputations, say m=100. Also, there may be situations in
which one is willing to tolerate a greater power falloff.
These situations are captured in the left three columns of
Table 5. For example, if one is willing to tolerate a 3%
power falloff compared to m=100, then one should use m=
5, 10, 20, 40, and 40 for true γ=0.10, 0.30, 0.50, 0.70, and
0.90, respectively.

In sum, our simulations results show rather clearly that
FIML is superior to MI, in terms of power for testing small
effect sizes, unless one has a sufficient number imputations.
The number of imputations required is substantially greater
than previously thought. The number of imputations
required for equivalence with FIML procedures is dramati-
cally higher than previously thought when the fraction of
missing information (γ) is very high.

Implications for Large and Small Effect Sizes

The results of this study were based on one effect size (β=
0.0969—a “small” effect size in Cohen’s 1977, terms).
With larger effect sizes, the power falloff as described in
Table 3 would be much smaller. However, selecting the
number of imputations in a study is a bit like selecting a
sample size. A change in sample size of say, N=500, may
have relatively little impact on the power to detect large
effects in a study, but it may have a meaningful impact on
the power to detect small effects. Similarly, with multiple
imputation, the power for testing larger effects may be
relatively unaffected by the m chosen for the study.
However, smaller effects will be materially affected by the
choice of m. Most prevention researchers go into a study
with the idea that various effects, large and small, will be
tested. If one wants all of one’s hypotheses to be tested with
good power, then one must pay close attention to power
calculations for the smaller effects in the study.

Final Thoughts

In this article, we recommend that researchers using
multiple imputation should use many more imputations
than has previously been recommended. One might
conclude from these recommendations that multiple impu-
tation is no longer a useful tool for dealing with missing
data. However, two facts about multiple imputation must be
taken into account in deciding upon the usefulness of this
tool. First, how much additional computational effort is
really required between, say, m=20 imputations and m=100
imputations? In our experience, some analyses do require
considerable time, and multiplying that time by 100 would
represent a substantial increase in computational effort. On
the other hand, in our experience, many analyses (e.g.,
multiple regression analyses and structural equation models
with continuous data) take just seconds to run, sometimes
just a fraction of a second. Multiplying this computational
time even by 100 represents a trivial increase in overall
computational effort. Further, the issue of computational
speed very likely will become less important (1) as the
computers become more powerful, and (2) as analytic
software becomes more efficient.

The second fact relates to the ease with which auxiliary
variables (variables highly correlated with the variables of
interest, but not part of the model to be tested) may be
incorporated into the model. Although it is possible to
incorporate any number of auxiliary variables into FIML
models (e.g., see Graham 2003; for suggestions regarding
SEM-based FIML models), doing so becomes very tedious
as the number of auxiliary variables increases. Further,
latent class, and other categorical variable models are
becoming more common. However, to date, there have

Table 5 Imputations needed based on the fraction of missing
information (γ), and on tolerance for power falloff

Acceptable Power Falloff

Compared to m=100 Compared to FIML

<5% < 3% < 1% < 1%

0.1 3 5 20 20
0.3 10 20 20 20
0.5 10 20 40 40
0.7 20 40 40 100
0.9 40 40 100 >100
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been no published works describing how to incorporate
auxiliary variables into these models. Ease of incorporating
auxiliary variables into one’s model is also likely to become
less of an issue over time. Future versions of FIML-based
software will very likely include features that allow one to
incorporate important auxiliary variables into one’s model
as easily with FIML as can be done currently with multiple
imputation.

Taking these two facts into account, we argue that
multiple imputation and FIML procedures will both remain
highly useful analytic tools for dealing with missing data.
We encourage researchers to make use of both of these
important tools.
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