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Abstract

When the Gibbs sampler is used to estimate posterior distributions (Gelfand and
Smith, 1990), the question of how many iterations are required is central to its imple-
mentation. When interest focuses on quantiles of functionals of the posterior distribu-
tion, we describe an easily-implemented method for determining the total number of
iterations required, and also the number of initial iterations that should be discarded to
allow for “burn-in”. The method uses only the Gibbs iterates themselves, and does not,
for example, require external specification of characteristics of the posterior density.

Here the method is described for the situation where one long run is generated,
but it can also be easily applied if there are several runs from different starting points.
It also applies more generally to Markov chain Monte Carlo schemes other than the
Gibbs sampler. It can also be used when several quantiles are to be estimated, when the
quantities of interest are probabilities rather than full posterior distributions, and when
the draws from the posterior distribution are required to be approximately independent.

The method is applied to several different posterior distributions. These include
a multivariate normal posterior distribution with independent parameters, a bimodal
distribution, a “cigar-shaped” multivariate normal distribution in ten dimensions, and
a highly complex 190-dimensional posterior distribution arising in spatial statistics. In
each case the method appears to give satisfactory results.

The results suggest that reasonable accuracy may often be achieved with 5,000 it-
erations or less; this can frequently be reduced to less than 1,000 if the posterior tails
are known to be light. However, there are frequent “exceptions” when the required
number of iterations is much higher. One important such exception is when there are
high posterior correlations between the parameters; even crude correlation-removing
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reparameterizations can greatly increase efficiency in such cases. Another important
exception arises in hierarchical models when the Gibbs sampler tends to get “stuck”;
there it seems that the use of different Markov chain Monte Carlo schemes may im-
prove matters. The method proposed here seems to diagnose such “exceptions” quite
effectively.

1 Introduction

The Gibbs sampler was introduced by Geman and Geman (1984) as a way of simulating from
high-dimensional complex distributions arising in image restoration. The method consists
of iteratively simulating from the conditional distribution of one component of the random
vector to be simulated given the current values of the other components. Each complete cycle
through the components of the vector constitutes one step in a Markov chain whose stationary
distribution is, under suitable conditions, the distribution to be simulated. Gelfand and
Smith (1990) pointed out that the algorithm may also be used to simulate from posterior
distributions, and hence may be used to solve standard statistical problems.

The Gibbs sampler can be extremely computationally demanding, even for relatively
small-scale statistical problems, and hence it is important to know how many iterations are
required to achieve the desired level of accuracy. Here we describe and investigate a simple
method for doing this, first briefly mentioned in Raftery and Banfield (1991).

We focus on the situation where there is a single long run of the Gibbs sampler, as
practiced by Geman and Geman (1984) and Besag, York and Mollié (1991), for example.
Gelfand and Smith (1990) have instead adopted the following alogithm: (i) choose a starting
point; (ii) run the Gibbs sampler for T' iterations and store only the last iterate; (iii) return
to (i). The choice between the two ways of implementing the algorithm has not been settled,
and was the subject of considerable debate and controversy at the recent Workshop on
Bayesian Computation via Stochastic Simulation in Columbus, Ohio in February, 1991.

Intuitive considerations suggest that one long run may well be more efficient. A heuristic
argument for this might run as follows. Consider the following two ways of obtaining S values
simulated from the posterior distribution. The first way consists of picking off every T'th
value in a single long run of length N = ST'. The second way is that of Gelfand and Smith
(1990). In the first way, the starting point for every subsequence of length 7" is closer to a
draw from the stationary distribution than the corresponding starting point in the second
way, which is chosen by the user. Thus, the first way gives a result which is, at least, no

worse than the second way. Sometimes, although not always, this may be exploited in the



first way by reducing the value of T', to obtain the same result with less total iterations. A
more formal argument along similar lines was presented by R.L. Smith in the concluding
discussion at the Workshop on Bayesian Computation via Stochastic Simulation.

Gelman and Rubin (1991), on the other hand, have argued that, even if the one long run
approach may be more efficient, it is still important to use several different starting points.
The essence of their argument is that we cannot know, in the case of any individual problem,
whether a single run has converged, and that combining the results of runs from several
starting points gives an honest, if conservative, assessment of the underlying uncertainty.
They illustrate their argument by showing that in the Ising model convergence can be quite
slow. This example refers to the 10,000-dimensional binary state-space {—1,1}'%%° and
is thus untypical of the parameter spaces that arise in typical statistical problems, but it
should nevertheless be taken seriously. Here we suggest that combining internal information
from a partial run with properties of Markov chains may provide an alternative way of
solving the problem, without sacrificing the appealing simplicity of using a single long run.
In particular, Markov chain theory provides results not just about ergodicity, but also about
the (geometric) rate of convergence to the stationary distribution, and the distribution of
sample means. However, the method can easily be used when there are several runs from

different starting points.

2 The Method

2.1 How Many Iterations to Estimate a Posterior Quantile?

We consider the specific problem of calculating particular quantiles of the posterior distribu-
tion of a function U of the parameter §. We formulate the problem as follows. Suppose that
we want to estimate P[U < u | y] to within 4r with probability s, where U is a function of
6. We will find the approximate number of iterations required to do this when the correct
answer is . For example, if ¢ = .025, r = .005 and s = .95, this corresponds to requiring that
the cumulative distribution function of the .025 quantile be estimated to within 4+.005 with
probability .95. This might be a reasonable requirement if, roughly speaking, we wanted
reported 95% intervals to have actual posterior probability between .94 and .96. We run the
Gibbs sampler for an initial M iterations that we discard, and then for a further N iterations
of which we store every kth. Typical choices in the literature are M = 1,000, N = 10,000
and k = 10 or 20 (Besag, York and Mollié 1991). Our problem is to determine M, N, and k.

Note that when £ > 1, we may still store and use all the NV iterates, and the solution given



here is then conservative.

We first calculate U; for each iteration ¢, and then form 7Z; = 6(U; < u), where 6(+) is
the indicator function. {Z;} is a binary 0-1 process that is derived from a Markov chain
by marginalization and truncation, but it is not itself a Markov chain. Nevertheless, it
seems reasonable to suppose that the dependence in {Z;} falls off fairly rapidly with lag,
and hence that if we form the new process {Z } where 7" = = Z14(t-1)k, then {Z } will
be approximately a Markov chain for k sufficiently large.

No formal proof of this is presented here, but it does seem intuitively plausible. Here
a data-based method, described below, is used to assess whether the assumption provides
a reasonable approximation for the case at hand. A proof might go something as follows.
The process {Z;} is ergodic and, if the underlying Markov chain is ¢-mixing in the sense of
Billingsley (1968), which will often be a direct consequence of the construction, then {Z;}
is also ¢-mixing with the same rate. Thus the maximum difference between P[Zt(k) = 1g |
Zt(k)1 =1, Zt(k)Q] and P[Z ® = 4, | Ztk)1 = 11| eventually declines geometrically as a function
of k, and so {Z } is arbitrarily close to being a first-order Markov chain in that sense, for
k sufficiently large.

In what follows, we draw on standard results for two-state Markov chains; see, for ex-
ample, Cox and Miller (1965). Assuming that {Z } is indeed a Markov chain, we now

determine M = mk, the number of “burn-in” iterations, to be discarded. Let
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Thus M = m*k.

To determine N, we note that the estimate of P[U < w | D] is 72@ =15, Z® . For
(%)

n large, Z,  is approximately normally distributed with mean ¢ and variance %W
Thus the requirement that Plg — r < 72@ < ¢+ r] = s will be satisfied if
afB(2—a—0
*x _ (a+8)3

e
{®(§—(1+8))}

where ®(-) is the standard normal cumulative distribution function. Thus we have N = kn*.

To determine k, we form the series {Zt(k)} for k = 1,2,.... For each k, we compare the
first-order Markov chain model with the second-order Markov chain model, and choose the
smallest value of k£ for which the first-order model is preferred. We compare the models by
first recasting them as (closed-form) log-linear models for a 2° table (Bishop, Fienberg and
Holland, 1975), and then using the BIC criterion, G* —2log n, where G? is the likelihood ratio
test statistic. This was introduced by Schwarz (1978) in another context and generalized to
log-linear models by Raftery (1986); it provides an approximation to twice the logarithm of
the Bayes factor for the second-order model. One could also use a non-Bayesian test, but
the choice of significance level is problemmatic in the presence of large samples of the size
that arise routinely with the Gibbs sampler.

To implement the method, we run the sampler for an initial number of iterations, Ny,
and use this run to determine the number of additional runs required, as above. The proce-
dure can be iterated, in that once the indicated number of iterations has been run, we may
apply the method again to the entire run, reestimating o and 3 to determine more precisely
if the number of iterations produced was in fact adequate. To determine N, we note that
the required N will be minimized if successive values of {Z;} are independent, in which case
M=0,k=1and

N = Nt = 07 (514 ) a(1 = 0}/
For example, when ¢ = .025, r = .005 and s = .95, we have Ny, = 3, 748.

We also note that the user is not required to use only every kth iterate; if all the iterates
are used the method proposed here will be conservative in the sense of possibly overestimating
the number of iterations required. On the other hand, in the majority of cases that we have
examined, the preferred value of k& was, in fact, 1. Also, storage considerations often point
to the desirability of storing only a portion of the iterates if this is reasonable.

The user needs to give only the required precision, as specified by the four quantities g,

2

r, s and . Of these, the result is by far the most sensitive to r, since N oc r7*. It may



Table 1: Maximum percent error in the estimated .025 quantile

T Niin Percent error
(s=.95) N(0,1) ¢4 Cauchy
.0025 14982 2 4 11
.005 3748 5 8 25
.0075 1665 8 13 43
.01 936 11 19 67
.0125 600 14 26 101
.015 416 19 37 150
.02 234 31 65 402

often be more natural to specify the required precision in terms of the error in the estimate
of a quantile rather than the error in the cumulative distribution function at the quantile,
which is what r refers to. In order to see how r relates to accuracy on the former scale, we
have shown in Table 1 the approximate maximum percentage error in the estimated quantile
corresponding to a range of values of r, for ¢ = .025. This is defined as 100 max{%%l— 1},
and is shown for three distributions: normal (light-tailed), {4 (moderate tails), and Cauchy
(heavy-tailed).

Suppose we regard a 14% error as acceptable, corresponding to an estimated .975 quantile
of up to 2.24 in the normal distribution, compared with the true value of 1.96. Then, if we
knew p(U | y) to have light, normal-like, tails, Table 1 suggests that r = .0125 would be
sufficiently small. However, with the heavier-tailed ¢4 distribution, r = .0075 is required
to achieve the same accuracy, while for the very heavy-tailed Cauchy, r = .003 is required,
corresponding to Ny, ~ 10, 000.

This suggests that if we are not sure in advance how heavy the posterior tail is, r = .005
is a reasonably safe choice (even for the Cauchy it is not catastrophic). It also suggests that
the present method could be refined by using the initial set of Gibbs iterates to estimate
the asymptotic rate of decay of the posterior tail nonparametrically with methods such as
those of Hall (1982), and then choosing r in light of the estimate, perhaps by referring to a
t-distribution with the appropriate degrees of freedom. At first sight it might appear that a
component-wise reparametrization to lighten the tails would be a good remedy. However, we
suspect that this would not be a real solution, and that the problem would reappear when
the results were transformed back to the scale on which the quantity of actual interest is

measured.



2.2 Extensions

Several quantiles: If there are () quantiles to be estimated (¢ > 1), it is possible to run
the Gibbs sampler for Ny, iterations, apply the method in Section 2.1 to each quantile
individually and then use the maximum values of M, k and N. This will guarantee that for
each quantile marginally, at least the specified accuracy will be achieved, or, equivalently,
that the expected number of estimated quantiles that lie within r of the true value is at least
s@. A different and more demanding accuracy requirement is that with probability s, all @
quantiles lie within r of the true value. A conservative solution to this uses the Bonferroni

bound idea and consists of replacing s by s/@ and proceeding as before.

Estimating probabilities: The Gibbs sampler is often used to estimate probabilities rather
than distributions. Examples include the probability that the ground truth at a pixel is of a
particular “color” in image reconstruction (Besag, 1986), the probability that an individual
is of a given genotype in genetic pedigree analysis (Sheehan, 1990), and the probability
that an individual has a specific disease based on an expert system diagnosis (Lauritzen
and Spiegelhalter, 1988). The present method is directly applicable to this case, and indeed
takes a slightly simpler form. The {Z,} process is given and does not not have to be formed
by truncation. One does not have to specify ¢, which is just the required probability. One

simply specifies r and s and proceeds as before.

Independent iterates: When it is much more expensive to analyze a Gibbs iterate than
to simulate it, as it may be in complex applications such as genetic pedigree analysis, it is
desirable that the Gibbs iterates used be approximately independent. This can be achieved
by making k£ big enough. To determine k, we can compare the independence model with
the first-order Markov chain model for {Zt(k)} and choose the smallest value of k for which
the independence model is preferred. The models can be compared by recasting them as the
independence and saturated models for a 2 x 2 table and using the BIC criterion. M is then
calculated exactly as before, and we have N = kN, by the approximate independence of

the iterates.

3 Examples

We now apply the method to several examples, both simulated and real. In each case, we

give the results only for ¢ = .025, r = .005, s = .95 and ¢ = .001. The results are shown



Table 2: Results for the five examples

Example Mk N F(F~1(.025))
1. Indep. normal pars. 3 1 3,914 .023

2. Bimodal 4 1 4,256 028

3. Cigar 36 3 26,916 024

4. Spatial uy 3 1 4,052 024

5. Spatial smoothness 40 2 24,346 -

in Table 2 for all the examples. The value in the column headed F(F‘l(.025)) should be
between .02 and .03 for this specification. Results for other quantiles and other accuracy

requirements, not shown here, were qualitatively similar.

Example 1: Multivariate normal distribution with independent parameters

In this simulated example the method gave k = 1, a very small number of burn-in iterations
(M = 3), and a value of N which is only slightly larger than the theoretical minimum (3,914
as against 3,748). Also, the result is within the specified bounds. While this is very much

as one would expect, it is also a reassuring check on the performance of the method.

Example 2: A bimodal posterior distribution

Here we simulated, using the Gibbs sampler, from a mixture of two bivariate normal distri-

butions, namely

1 1
§BVN(:M17 E) + §BVN(:M27 E)v

where y; = (=1, 1)T, pa = (1,0)T and

(1)

The joint distribution is quite strongly bimodal, although the marginal distributions of the
two components are not. The first 1,000 simulated values of the second component are shown
in Figure 1. The result is surprisingly similar to that in Example 1. Again, kK = 1, the amount
of burn-in is negligible (M = 4), and N = 4,256 is not much larger than the theoretical
minimum. The Gibbs iterates are slightly more highly correlated than in Example 1, and
the value of N can be regarded as an index of this. Once again, the result is within the

specified bounds.



Example 3: A cigar in ten dimensions

In order to investigate the effect of high posterior correlations between parameters, we used
the Gibbs sampler to simulate from a 10-dimensional multivariate normal posterior distribu-
tion where each component had zero mean and unit variance, and all the pairwise correlations
were equal to .9. This is a highly correlated distribution, where the first principal component
(proportional to the mean of the parameters) accounts for 91% of the variance; the posterior
distribution is concentrated about a thin “cigar” in 10-space. Note that this is a very poor
parameterization for the Gibbs sampler.

The first 1,000 simulated values of the first parameter are shown in Figure 2. The results
of applying the method are strikingly different from what we saw before. The amount of
burn-in is no longer negligible, although it is not huge (M = 36). The dependency structure
of the binary sequence is more complicated than before, leading to & = 3, and the level of
dependency is high, so that the required N is very large, at 26,916. After that number of
iterations, the result was accurate. This phenomenon seems to be due to the high level of
dependency in the sequence, and not primarily to the sampler being slow to converge to the
desired distribution.

It is of interest to consider the situation after 6,700 iterations; this is a large number, but
substantially less than the prescribed 27,000. By that point, diagnostics based on changes
in cumulative estimates suggest the Gibbs sampler to have converged. However, after 6,700
iterations, 1 — F(F‘l(.975)) = .045, compared to the true value of .025, which is well outside
the prescribed tolerance, and the empirical .975 quantile was 2.22 instead of 1.96. However,
the present method indicated clearly that the number of iterations was insufficient to achieve
the desired accuracy.

This example also illustrates the importance of parameterization for the Gibbs sampler
(see also Wakefield, 1991). A parameterization that leads to a highly correlated posterior
distribution like the one considered in this example is a very poor one for the Gibbs sam-
pler, and leads to considerable inefficiency. It seems likely that even a very simple linear
reparameterization would lead to at least a five-fold reduction in the required number of

iterations.

Example 4: An 190-dimensional posterior distribution from spatial statistics

Besag, York and Mollié (1991) considered the problem of mapping the risk from a disease

given incidence data. Let z; denote the unknown log relative risk in zone ¢ and y; the



corresponding observed number of cases. They assumed y; to have a Poisson distribution
with mean ¢;e”, where ¢; is the expected number assuming constant risk. They let x; = u;+v;
where the u; have substantial spatial structure represented by the joint density

1 1
et o)
K2 K

i~]

where ¢ ~ j denotes the fact that zones ¢ and j are contiguous and & is a spatial smoothness
parameter. The v; are assumed to be generated by Gaussian white noise with parameter \.
The prior distribution was p(k, A) o< exp{—.005(x~" + A~")}. Although this is improper, the
resulting posterior distribution is proper. The main aim is to find the posterior distribution
of z;, but other features of the underlying mechanism may also be of interest.

Here we show only the result for w; for thyroid cancer deaths in 94 departements of
France; the results for the other u; and for the v; are similar. The Gibbs sampler here
involves 190 parameters: the 94 w;’s, the 94 v;’s, k and A. The first 1,000 iterations are
shown in Figure 3. The result is very similar to that for Examples 1 and 2. The number in
the last column was obtained by running the Gibbs sampler for a total of 11,000 iterations,

and treating the value obtained from this complete run as the “true” value.

Example 5: The spatial smoothness parameter

We now consider separately the spatial smoothness parameter k£ from Example 4. The first
1,000 Gibbs iterations are shown in Figure 4. The results are quite different from those
for uy, and are somewhat similar to those for Example 3. The dependency structure in the
induced binary sequence is complex, leading to k& = 2, and the dependency is high, leading to
N = 24,346. The amount of burn-in, however, while not negligible, is fairly small (M = 40).
It was not feasible to determine the correct answer in this case.

While the difficulty with Example 3 could probably be resolved by appropriate reparam-
eterization, the problem here seems more fundamental. Here the problem is due to the fact
that & sometimes gets “stuck” close to zero for several hundred iterations at a time. This is
because having the u; close together (i.e. high spatial smoothness) makes a small value of &
likely, while a small value of k forces the u; to be close together. Thus the Gibbs sampler
gets caught periodically in a “vicious circle”; to escape it requires a rare event. The solution
here may be the use of a different variation on Metropolis dynamics than the Gibbs sampler,
perhaps involving simultaneous updating of some kind. This kind of problem seems likely
to arise often in hierarchical models more generally. Note that the present method for de-

termining the number of iterations would carry over to other forms of Metropolis dynamics.
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4 Discussion

We have proposed a method for determining how many iterations are necessary in the Gibbs
sampler. This is easy to implement and does not require anything beyond an initial run from
the sampler itself. It appears to give encouraging results in several examples. However, much
more thorough investigation is required for various kinds of difficult posterior distributions.

For “nice” posterior distributions, the examples suggest that accuracy at the level speci-
fied for illustration in this paper can be achieved by running the sampler for 5,000 iterations
and using all the iterates. However, when the posterior is not “nice”, the required number
can be very much greater. Example 3 suggests that poor parameterization can be one reason
for massive inefficiency of the Gibbs sampler, and that even simple-minded reparameteri-
zation may have the potential to lead to substantial savings. Problems may also arise in
hierarchical models where the Gibbs sampler sometimes has a tendency to get “stuck”; this
is illustrated in Example 5.

Our experience suggests that the present method diagnoses such problems fairly well.
When the prescribed number of iterations is much larger than Np;,, there seem to be two
ways to proceed. One is simply to run the sampler for the specified number of iterations; this
seems the best course when iterates are computationally inexpensive. Otherwise it may well
be worthwhile to reparameterize or to use a different Markov chain Monte Carlo scheme.

It has been common practice when running the Gibbs sampler to throw away a substantial
number of initial iterations, often on the order of 1,000. Our results here suggest that
this may not usually be necessary, and indeed, will often be quite wasteful. This is not
too surprising given the geometric rate of convergence of Markov chains to the stationary
distribution. When large numbers of iterations were required, this was due to the high level
of dependence between successive iterates rather than to the failure of the Gibbs sampler to
converge initially.

Thus, we suspect that, for typical statistical problems, the uncertainty due to the initial
starting point that Gelman and Rubin (1991) capture with their methods will be a relatively
small part of the overall uncertainty if the number of Gibbs iterations is realistically large. Of
course, we are far from having established that conclusively here, and diagnostic checks such
as those proposed by Gelman and Rubin (1991) remain important. Indeed, our method and
theirs may be regarded as complementary in that our method can be viewed as determining
the total number of iterations required, which will typically be little changed whether there

is one long run or a small number of shorter runs from different starting points. More
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specifically, if there are to be R different runs from different starting values, then each
run should have NR™! + M iterations, of which the first M are discarded. Thus the two
methods could be synthesized by using our approach to determine the total number of
required iterations, and using the method of Gelman and Rubin (1991), both as a further
check for convergence, and also to incorporate uncertainty about the starting point.

It has also been common practice to use only every 10th or 20th iterate and to discard
the rest. The results here also suggest that in many cases this is rather prolifigate. Indeed,
in the “nice” cases, the dependency between successive iterates is weak and it makes sense
to use them all, even when storage is an issue.

An alternative approach to determining the number of iterations starts by viewing the
sequence of Gibbs iterates as a standard time series (e.g. Geyer, 1991; Geweke, 1991; Hills
and Smith, 1991). If the quantity of interest is the mean of a function of the series, then the
variance of such a mean is equal to the spectrum of the corresponding series at zero, which
can be estimated using standard spectral methods. This requires the user to specify both a
spectral window and a window width, and the estimate of the spectrum at zero can be quite
sensitive to these choices.

Obtaining posterior quantiles defining Bayesian confidence intervals is often a key goal
of an analysis. When this is the case, the present method exploits the natural simplification
that arises from the implied dichotomization. Thus it avoids the need to specify quantities
other than the required precision (such as spectral window widths), it yields a simple estimate
of the number of “burn-in” estimations, and it provides a practical lower bound, Ny, on
the number of iterations that is known before the Gibbs sampler starts running.

It may be argued that often all that is required is a posterior mean and standard deviation,
and that these are not quantiles. If this is indeed the case, and there is really no interest
in the shape of the posterior distribution, then there may well be little point in running the
Gibbs sampler at all, as cheaper methods are frequently available for posterior means and
standard deviations. However, the posterior mean and standard deviation are often used to
provide a summary of the posterior distribution. In that case, a robust measure location,
such as the median, may be preferable to the posterior mean as a descriptive measure, and
the median is a quantile. Also, the posterior standard deviation is often used as a way of
obtaining an approximate confidence interval, say by taking the posterior mean plus or minus
two posterior standard deviations. However, if a sample from the posterior is available, it
seems worth calculating the required interval directly—again this will be defined by quantiles.

Even if a single measure of posterior dispersion is required, it may well be better to use a

12



more robust measure than the posterior standard deviation, such as a scaled version of the
inter-quartile range; again this is defined by quantiles. Thus, appropriate summaries of the
posterior distribution are often defined in terms of quantiles, even when at first sight it seems
that a mean-like quantity is required.

One important message is that the required number of iterations can be dramatically
different for different problems, and even for different quantities of interest within the same
problem. Thus, it seems unwise to rely on a single “rule of thumb”, and it would seem to
be important to use some method, such as the one proposed here, to determine the number

of iterations that are needed for the problem at hand.
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