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If a picture tells a thousand words, then we might ask our-

selves how many photons does it take to form a picture? In

terms of the transmission of the picture information then the

multiple degrees of freedom (e.g. wavelength, polarisation,

spatial mode) of the photon mean that high amounts of infor-

mation can be encoded such that the many pixel values of an

image can, in principle, be communicated by a single pho-

ton. However, the number of photons required to transmit the

image information is not necessarily, at least technically, the

same as the number of photons required to image an object.

Therefore, another equally important question is how many

photons does it take to measure an unknown image?

The literature reports many different types of imaging sys-

tems based on low numbers of photons ranging from: the use

of entangled photon sources to give sub-shot noise images1

and sensing2,3, imaging and manipulation of correlations and

entanglement4–12, single-photon 3D imaging13, imaging with

fewer than one detected photon per pixel14, indirect 3D imag-

ing based on first-photon arrival15 and object tracking outwith

the direct line of sight16. However, in this short perspective we

wish to discuss the more basic principle: given near perfect

technology how many detected photons are required to infer

an image? Here an image is defined as a spatially dependent

intensity structure, the structure of which can be described in

terms of an array of pixels.

There are some constrained circumstances where an en-

tire image could be determined from a single photon. In

recent years, the spatial transverse modes of both classical

beams and single photons has been considered as a degree of

freedom for space-division multiplexing within communica-

tion systems17,18 and as a high-dimensional Hilbert space for

quantum information processing19. Significant within these

studies has been the orbital angular momentum of light typi-

fied by the Laguerre-Gaussian modes20, however, the funda-

mental opportunities and limitations apply to any orthogonal

complete modal set21. It has been shown that even at the level

of single-photons it is possible to separate these modes so that

each single mode can be directed to a different element of

a detector array22. In principle an N-element array, where

each element is sensitive to a single photon, can distinguish

one mode from all others with 100% efficiency. In essence

this is equivalent to a spectrometer that can distinguish the

wavelength of individual photons using a prism and a multi-

element detector array. This perfect separation is possible be-

cause the complex amplitude distributions of the modes are

orthogonal to each other.

Complex images cannot be reconstructed from an individ-
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ual photon measurement, even if the object is illuminated with

a coherent source the phase of the backscattered light is usu-

ally ill controlled, rather the image information is contained

purely in the intensity information alone. Different real-world

images spatially overlap and therefore are not orthogonal to

each other and the modal separation optics cannot therefore

distinguish images from each other at the level of a single

photon. There are potentially exceptions to this where two

images may contain regions that are orthogonal to each other,

such as a position where in one image the is bright and the

other dark, and vice versa24. If the measurement is restricted

to these regions, then two images could be distinguished by a

single photon and 2N images readily distinguished from each

other by N photons.

A distinction must be made at this point between the num-

bers of photons that need to be detected to compose or iden-

tify an image, and the number of photons that needs to probe

an object or a scene in order to acquire a full image. This

distinction becomes particularly important when considering

quantum phenomenon. On one hand, by using quantum states

of light one can reduce both the number of photons required to

probe a sample and the number of photons required to consti-

tute its image compared to classical schemes for an equivalent

image quality.

Such quantum schemes can be realised using either an en-

tangled photon source1,25,26 or equivalently using a source

with a well-defined number of photons (Fock states) to ob-

tain sub-shot noise images27. But on the other hand, one can

somehow decouple the probing of an object and the detection

of the image by harnessing the wave-particle behaviour of the

light. An example of this is given by the quantum imaging

with undetected photons28–30, where the photons that inter-

act with the object need not be the same ones that are mea-

sured for an image to be obtained. A similar situation arises

with interaction-free measurements31,32, in which the effec-

tive number of photons necessary to probe and detect an im-

age are decoupled33. Ultimately it can be shown that through

a modification of this experiment, a binary object can in the-

ory be probed without any photons ever reaching it34.

Alternatively, we can scrutinise the minimum number of

photons that are needed to compose the detected image or sig-

nal needed for the image acquisition to be performed. In this

low photon-number regime the noise is Poissonian rather than

Gaussian and at these low photon numbers the anticipated

noise in the bright and dark areas of the image needs to be

accounted for in any merit function optimisation to avoid in-

correct image reconstructions, such as overfitting to the bright

areas of the image35,36. As we will discuss later the number

of photons required to compose an image will depend on the

complexity of the scene and consequently on the prior knowl-

edge we have and can use about this scene. But in the most
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Perspective: How many photons does it take to form an image? 2

FIG. 1. A demonstration of reconstructing an image from sparse photon measurements. The ground truth is sampled in a simulated photon

counting approach, producing a sparsely sampled image. The image is reconstructed based on a boot-strapping regularizer algorithm23, where

spatial resolution has been sacrificed for the benefit of image similarity.

general case we can assume that there is no strong knowledge

about the scene other than as any realistic object it might ex-

hibit some form of sparsity in certain domain. In this context

a reasonable starting assumption is that an image comprising

of N independent pixels could be probed with N photons, the

end result being a binary image with no grey-scale informa-

tion. This rational also applies similarly to classical sources

where the expectation value is set at one photon per pixel,

which yields a signal-to-noise figure of order unity37. By

making the assumptions of an intensity correlation between

adjacent pixels, one can apply smoothing algorithms to im-

prove the signal-to-noise ratio and the hence the number of

grey-scale levels in the image, albeit at the expense of spatial

resolution. It is interesting to note that although smoothing

the image does allow resolution to be sacrificed in order to

improve the signal-to-noise value of the resulting image, in

general the process results in an overall loss of information.

Figure 1 shows one example of taking a binary photon sparse

image and applying image processing techniques23 to obtain

a grey-scale image, albeit at reduced spatial resolution.

Rather than applying smoothing, a more sophisticated ap-

proach is to assume sparsity in the spatial frequency domain

or any other appropriate basis, it is then possible to con-

strain the image solution to one that is both statistically com-

patible with the measured data and also favours the sparsity

constraint38–40. These concepts are central to the field of com-

pressed sensing and depending upon the strength of the re-

striction applied to the likely image solutions the number of

photons per pixel can be reduced below one41. The degree of

compression or denoising that can be applied depends criti-

cally on the complexity of the scene and the strength of the

image prior that can be applied. For example, if the image is

known to comprise a single white disc on a black background

then the full image can be characterised by three variables:

the x-y position and the radius of the disc. Such a prior if

applied to the image reconstruction would allow a very high

degree of compression of the measurements. Indeed a simi-

lar prior could be applied to centre of mass localisation mi-

croscopy techniques such as PALM and STORM42. More

typically for generalised scenes, a convenient prior is to as-

sume a sparsity on the spatial frequency domain. This spar-

sity assumption is same image property that lies at the heart

of JPEG image compression. In such situations it is often the

case that the number of measurements M that is required to

estimate an N pixel can be reconstruct from K-sparse vec-

tors can be reconstructed with a high probability using just

M ≥ O(K log(N/K)) random measurements43. Such systems

might again be based on an N element detector array with ef-

ficient single-photon sensitivity, placed in the focal plane of

an imaging lens. Such single-photon sensitive detector arrays

are themselves not without challenges.

The detectors for single-photon imaging took the signifi-

cant step in moving from single element detectors such as

a photomultiplier tube or a single-photon avalanche photo-

diode (SPAD)44 to SPAD array detectors that offer timing

within the pixel to measure the arrival time of photons over

the whole pixel array45. Alternatively, charge-coupled de-

vice (CCD) cameras have demonstrated single-photon sensi-

tive with the addition of electron multiplication registers to

make EMCCDs46, the drawback being these devices suffer

from read-out noise in the form of clock-induced charge, lead-

ing to a significant false positive detection rate. The compet-

ing technology of CMOS imaging sensors now have readout

noise that is almost competitive with the current generation

of EMCCDs, with sensors now showing significant improve-

ment in room temperature detection of single photons47.

Note that in this context so called quantum illumination

protocols48,49 can be implemented to get rid of some of the

camera single photon counting noise, together with potential

external sources of noise that could pollute the image and pre-

vent a low photon acquisition from being performed8,9. We

can use entangled photon pairs that exhibit spatial correlations

to perform imaging in the presence of a spoofed scene that

is illuminated by a thermal source. As may be seen in the

schematic presented in figure 2, two spontaneous parametric

down-conversion beams are spatially separated and one of the

beams acts as the reference beam and is detected on the cam-

era while the other beam probes the object. The spoof ob-

ject is illuminated by a thermal light source and is detected

on the same region of the camera as the object to be im-
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Perspective: How many photons does it take to form an image? 3

FIG. 2. Simplified experimental setup of the implementation of the

quantum illumination protocol in the context of imaging9. By ex-

ploiting the spatial correlations between the entangled photon-pairs

the image of the object illuminated by quantum light (the bird) may

be recovered in the presence of both detector noise and a false im-

age illuminated here by thermal light (the cage). The bird object is

placed in the far-field of the crystal in which the probe beam and the

reference beam are spatially separated and this plane is re-imaged on

the camera sensor. The cage is imaged onto the region of the sensor

on which the probe beam (which interacts with the bird object) is

detected.

aged. The classical image detected on the camera is the bird

within its cage as the events registered by the camera may

not be distinguished as to their source. Performing a pixel-

by-pixel AND-operation to the regions of the sensor that de-

tect the reference beam and the probe beam for each of the

acquired frames, the camera events resulting from the spa-

tially correlated photon-pairs may be preferentially selected.

By performing this AND-operation the events that comprise

the object probed by the quantum light (the bird) may be pref-

erentially selected over those that originate from either sensor

noise or the classically illuminated spoof object (the cage) and

result in an image of the bird released from the cage in the

quantum image, thereby illustrating the ability of the scheme

to remove the noise present in an image.

An alternative to using a detector array is to employ a

single-pixel imaging system50. To reconstruct a photon-sparse

image, a single-photon sensitive detector is used in combina-

tion with a way to recover spatial information by applying a

series of binary (transmissive/opaque) intensity masks to the

illumination. The system corresponds to that of a single-pixel

camera43 albeit one in which extreme temporal resolution re-

veals the time-of-flight between source and object and hence

enables depth imaging with a low number of photons51. For a

fully general image solution one requires N orthogonal masks

to fully measure an N-pixel image.

In the absence of Poissonian noise associated with finite

photon number, the underlying strength of the signal associ-

ated with each mask is a measure of the overlap between the

mask and the object. Assuming that the mask comprises N

independent and randomly set pixels which overlap with the

object ≈ 50% of the time then the average signal will be pro-

portional to N/2 with a standard deviation of
√

N/2. It is

this fluctuation in the signal, and not the average, which con-

tains the image information. When measuring signal associ-

ated with each mask using only a finite number of photons,

then it is reasonable to assume that the fluctuation in mask

signal must not be disguised by the shot noise related to the

number of photons measured. This leads us to the conclu-

sion that the number of photons P required per mask is of or-

der P ≈ N/2. Hence the number of photons required to fully

measure a general image is N2/2. This demonstrates that a

single-pixel camera configuration is inherently less informa-

tion efficient than an N-pixel focal-plane array detector, albeit

without in general the timing and hence 3D capability of the

single-pixel approach. Within the single-pixel approach, one

can apply compressed sensing techniques to again take ad-

vantage the sparsity of a typical in a user-chosen basis (e.g.

sparsity in spatial frequencies) to either reduce the number of

measurements required or improve the signal to noise of the

resulting image. These techniques are typified by an optimi-

sation process based on the minimisation of a cost function

which combines the goodness of fit of the solution to data

combined with a regularization function.

However, it is possible to adopt a machine learning ap-

proach where the measurement masks that extract the max-

imum image information from the smallest number of mea-

surements can be derived via a deep learning approach52. The

approach taken was to image with a low number of photons

by using a deep learned set of patterns to sample the scene

along with a reconstruction algorithm based on the trained

neural network. These mask designs are derived from an

extensive image library comprising of many thousands of

typical images. Compared to a cost-function based regu-

larization, the machine learning approach transfers the com-

putation load from a post measurement optimisation which

has to be performed after every image acquisition to a pre-

measurement learning based on prior information which, al-

though extremely computationally intensive, only has to be

performed once53. Ultimately both approaches rely upon the

image solution being sparse in one basis or other but whereas

the traditional denoising and compressed sensing requires typ-

ically require an explicit user-choice of a prior, the machine

learning effectively establishes its own prior based upon a

defined library. Following this machine learning approach,

we were able to dramatically reduce the number of masks re-

quired to obtain a depth image, even though the masks them-

selves had been derived from a 2D image library. An example

of the improvements in acquisition is shown in figure 3. This

machine learning approach has also been applied to imaging

with low numbers of photons54 and phase detection55.

Having considered how it is possible to reduce the number

of measurements to be fewer than the number of image pixels,

a second unexplored avenue is to consider whether the num-

ber of photons needed per measurement can itself be reduced.

Within this avenue, one option might be to take advantage

of the temporal bandwidth of the single-pixel detector and ap-

ply homodyne or heterodyne detection strategies where coher-

ent illumination can be combined with a much more power-

ful local oscillator to make the measurement of a small signal

possible56. However, although this might overcome the noise
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Perspective: How many photons does it take to form an image? 4

FIG. 3. A comparison of conventional single-pixel LIDAR imaging with a deep learning approach. (a) A photograph of the scene. The data

captured via Hadamard patterns of resolution (b) 32× 32, (c) 64× 64 and (d) 128× 128, this is shown in comparison to (e) a deep learned

pattern set and reconstruction for a 128× 128 image. All measurements were measured over a total interval of 2 seconds. With a greater

number of patterns there is less time to acquire the signal for each pattern, and this decreases the signal to noise of the image. As deep

learning requires fewer patterns it can reduce this noise at higher resolutions. Reproduced from N. Radwell et. al., “Deep learning optimized

single-pixel LiDAR,” Applied Physics Letters 115, 231101 (2019), with the permission of AIP Publishing.

floor of a detector it might not overcome the shot noise limit

of intensity measurement itself. To overcome the shot noise

one needs to use an intensity-squeezed light source57,58, how-

ever this potential advantage is only easy accessible in a low

loss modality due to the low repetition rate of the squeezed

light source, the sensing is performed in transmission rather

than backscatter configuration. These considerations are im-

portant for applications such as LIDAR where efficient de-

tection demands that we fully utilise the minimal information

available from the sparse number of photons received by the

detector59,60.

Historically the question as to “how many photons does it

take to form an image” would have been answered by consid-

ering the noise floor of the detector. However, various types of

detectors ranging from scientific CMOS cameras, gated inten-

sified cameras and SPAD arrays are all capable of detecting at

the single photon level, and the question as to the number of

photons required is now a theoretical challenge. Whilst com-

plex spatial modes can be distinguished from each other by a

single photon, most real images cannot. For intensity images

it seems that one detected photon per image pixel is a realistic

guide, but this may be reduced by making further assumptions

on the sparsity of an image in a chosen basis, such as spatial

frequency. In this last respect the advent of machine learning,

knowledge-based reconstruction and similar techniques alle-

viates the need for a user to explicitly define the sparse basis,

but rather the prior is determined from a library of previously

recorded images of a similar type. This machine learnt prior

can then potentially be designed into the optimum measure-

ment strategy. It seems likely therefore that future imaging

systems will combine state of the art single photon detectors

with knowledge-based processing both in the design of the

system itself and in the processing of the collected data to

yield images or decisions based on this data on the basis of ex-

tremely low numbers of photons, potentially well below one

photon per image pixel.
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