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Abstract  
 
The human visual system is remarkably tolerant to degradation in image resolution: 
human performance in scene categorization remains high no matter whether low 
resolution images or multi-mega pixel images are used. This observation raises the 
question of how many pixels are required to form a meaningful representation of an 
image and identify the objects it contains. In this paper, we show that very small 
thumbnail images at the spatial resolution of 32x32 color pixels provide enough 
information to identify the semantic category of real world scenes. Most strikingly, this 
low resolution permits observers to report, with 80% accuracy, 4-5 of the objects that the 
scene contains, despite the fact that some of these objects are unrecognizable in isolation. 
The robustness of the information available at very low resolution for describing 
semantic content of natural images could be an important asset to explain the speed and 
efficiently at which the human brain comprehends the gist of visual scenes. 
 
 
Introduction 
 
In the images shown in Figure 1(a), we can easily categorize each picture into scene 
classes (a street, an office, etc.). We can also recognize and segment many of the objects 
in each image.  Interestingly though, these pictures have only 32 × 32 pixels (the entire 
image is just a vector of 3072 dimensions with 8 bits per dimension), yet at this 
resolution, the images seem to already contain most of the relevant information needed to 
support reliable recognition of many objects, regions and scenes. This observation raises 
the question of how many pixels are needed to form a meaningful image. In other words, 
what is the minimal image resolution at which the human visual system can reliably 
extract the gist of a scene (the scene category and some of the objects that compose the 
scene)?  
 
The gist of the scene (Friedman, 1979; Oliva, 2005, Wolfe, 1998) refers to a summary of 
a semantic description of the scene (i.e. its category, layout and a few objects that 
compose the scene). Such a summary may be extracted from very low-resolution image 
information (Oliva & Schyns, 2000; Oliva & Torralba, 2001) and, therefore, can be 
computed very efficiently. Low dimensional image representations, and short codes for 



describing images, can be important to explain how the brain recognizes scenes and 
objects very fast. VanRullen & Thorpe (2001) have suggested that, given how fast 
recognition happens (150ms after stimulus onset), the first stages of recognition might be 
carried out by strictly feedforward mechanisms (see also Serre et al. 2007) in which 
neurons only have time to fire one or two spikes. They discuss that even with such a 
small amount of information, and when only a small fraction of the neurons fire one 
spike, it is possible to perform challenging recognition tasks (such as detecting the 
presence of animals in natural images). Bar (2007) suggests that low-spatial frequencies 
activate expectations that will facilitate bottom-up processing. In Torralba et al (2007), a 
low dimensional image representation is used to guide attention incorporating 
information about the scene context and task constraints.  
 

 
Figure 1: Scenes, patches and, objects all at 32x32 pixels. Note how rich the scenes 
(a) and objects (c) are in comparison with the image patches (b).  
 
Studies on face perception (Bachmann, 1991; Harmon & Julesz, 1973; Schyns & Oliva, 
1997; Sinha et al., 2006) have shown that when a picture of a face is down-sampled to a 
resolution as low as 16x16 pixels, observers are able to perform various face recognition 
tasks reliably (i.e. identity, gender, emotion). Remarkable performance with low 
resolution pictures is also found on scene recognition tasks (Oliva & Schyns, 2000; 
Castelhano & Henderson, 2008).  
 
In this paper we study the minimal resolution required to perform scene recognition and 
object segmentation in natural images. Note that this problem is distinct from studies 
investigating scene recognition using very short presentation times and perception at a 



glance (Greene & Oliva, in press; Joubert el al., 2005; Schyns & Oliva, 1994; Oliva & 
Schyns, 1997; Potter et al., 2002; Intraub, 1981; Rousselet et al., 2005; Thorpe et al., 
1997; Fei-Fei et al., 2007; Rousselet et al., 2005; Renninger & Malik, 2004). Here, we are 
interested in characterizing the amount of information available in an image as a function 
of the image resolution (there is no constraint on presentation time). In this work we will 
show that at very low resolutions, difficult tasks such as object segmentation can be 
performed reliably. 
 
Patches, objects and scenes 
 
Figure 1(b) shows 32x32 pixel patches randomly selected from natural images. A number 
of studies (Olshausen & Field, 1996; Lee et al, 2003; Chandler & Field, 2006) have 
focused on characterizing the space of natural images by studying the statistics of small 
image patches such as the ones shown in Fig. 2(b). Those studies helped to understand 
the receptive fields of visual neurons in early visual areas (Olshausen & Field, 1996). 
However, many of these patches do not contain enough information to be recognized as 
part of a specific object or region as they contain flat surfaces or insufficient edges.  
 
Figure 1(c) shows tight crops of objects rescaled at 32x32 pixels. These are the kind of 
images many times used in computer vision to train object detection algorithms. 
Olshausen et al. (1993) proposed an attentional system that selected 32x32 windows 
around regions of interest and argued that this was enough for recognizing most objects. 
Tight object and crops of objects, without background, have also been the focus of many 
studies in visual cognition. Many of those studies have focused on the study of faces, 
using image resolution as a way of controlling the amount of global and local information 
available.  
 
Figure 1(a) depicts full scenes (what a human would typically see when standing on the 
ground and looking at a wide scene), scaled to 32x32 pixels. These scenes contain many 
objects which are surprisingly still recognizable despite the fact that they occupy just a 
few pixels each. The scene pictures used in this study have biases introduced by the way 
that photographers tend to take pictures. Although this could be considered as a drawback 
of our dataset, we think that the scene recognition and object segmentation tasks remain 
challenging and such biases are due to observer constraints and should be taken into 
account when coding images.  
 
Materials and methods 
 
The images used for this study were drawn from the scenes dataset from Oliva & 
Torralba (2001) and the LabelMe database (Russell et al, 2008). In order to cover a large 
variety of different scenes, we collected 240 images evenly distributed within 12 scene 
categories. The scene categories included in this study are: 6 outdoor categories (street, 
highway, seaport, forest, beach and mountainous landscape) and 6 indoor categories 
(corridor, kitchen, bathroom, living-room, bedroom and office). All the images were 
originally of size 256x256 pixels. 
 



For each image we generated low-resolution images at 4x4, 8x8, 16x16, 32x32, 64x64 
and 128x128 pixels. In order to reduce the resolution of each image, we first applied a 
low pass binomial filter to each color channel (with kernel [1 4 6 4 1]) and then we 
downsampled the filtered image by a factor of 2. Next, each pixel of the low-resolution 
images was quantized to 8 bits for each color channel. For visualization, the low 
resolution images were upsampled to 256x256 pixels. 
 
Previous studies used a Gaussian filter in order to blur the images. The problem with 
using a Gaussian filter without downsampling the image is that it is difficult to evaluate 
the exact amount of information that is available to the observer. By first subsampling the 
image, the image resolution provides a clear upper bound on the amount of visual 
information available. In this paper we will use the size of the downsampled image as a 
measure of the amount of visual information that is available in the blurred images. 
 
 
Scene recognition  
 
Experiment 
 
There were 28 naïve observers (age ranging from 18 to 40 years old) that took part in the 
scene recognition experiment. They all gave informed consent. The experiment had two 
conditions, color images and grayscale images: 14 observers participated in the color 
condition and 14 in the grayscale condition. Each image was shown at one of the 6 
possible resolutions 4x4, 8x8, 16x16, 32x32, 64x64 and 128x128 pixels. All images were 
upsampled to 256x256 pixels for display and shown only once to each observer. The 
procedure consisted in a 12 alternative choice task: each image was categorized as 
belonging to one of the 12 possible scene categories. Participants where shown one 
example of each category in advance. The image was displayed on the screen until the 
participant made a choice by pressing one of the buttons associated to the 12 scene 
categories. Each participant saw a total of 240 images presented in random order.  
 
Results 
 
Figure 2 provides the overall pattern of results in the scene categorization task for the 
color and grayscale images as a function of image resolution. Below the graph, the top 
row of images illustrates the number of pixels at each resolution. The lower row shows 
the images that were presented to the participants during the experiment.  
 
When images were shown at 128x128 pixels, performances were at ceiling, at 96% 
correct recognition rate. A few of the scene images in our dataset are ambiguous in terms 
of a unique scene category (like a road with a mountain which could be classified as a 
mountainous landscape or as a highway) therefore 100% recognition rate is impossible at 
this task. Chance level in this task is at 8.3%. At a resolution of 4 x 4 pixels, performance 
for grayscale images was 9% and was not significantly different from chance (t(13)<1), 
but classification of color images was significantly higher than grayscale performance 
(t(26)=3.8, p<0.001) with a correct rate of 18.4%.  



 

 
Figure 2: Scene recognition as a function of image resolution.  Error bars represent 
one standard error of the mean, obtained from 12 participants for each condition. 
The vertical axis represents the correct recognition rate and the horizontal axis 
corresponds to the image resolution in a logarithmic scale. The black horizontal line 
represents chance level. The two rows of images illustrate the amount of 
information available at each resolution. The top row shows the downsampled 
images at each resolution (from 4x4, to 128x128 pixels) and the second row shows 
the images upsampled to 256x256 pixels that were shown to the participants. 
 
 
At very low resolutions 4x4 and 8x8, there was a strong bias towards selecting the beach 
category (20% of the time) in both color and grayscale conditions. This response bias was 
present in early and late trials. At these low resolutions, images that belong to the 
categories highway and seaport were incorrectly classified as belonging to the beach 
category. For high resolutions there were no biases in the responses of the participants.  
 
Scene recognition performance remains high even at relatively low spatial resolutions (in 
agreement with the results by Oliva & Schyns, 2000). Participants had an 81.8% correct 
recognition rate when color images were presented at a resolution of 32x32 pixels. In out 
study, performance over 80% is found for an image resolution slightly higher than the 
one reported in Oliva & Schyns (2000), who used a Gaussian filter and measured the 
frequency of 50% cut-off instead of the number of pixels in the downsampled image. For 
grayscale images, performance was at 73% at 32x32 pixels. As we lower the resolution, 
performances drop. There is a significant improvement in recognition accuracy when 



color is present (Oliva & Schyns, 2000; Castelhano & Henderson, 2008; Rousselet et al., 
2005; Wurm et al 1993) for low resolution images. 
 

The results presented in figure 2 were averaged over all scene types. However, it is 
important to note that different types of images will lose information at different rates as 
their resolution decreases. Figure 3 shows six images, at 6 resolutions, sorted according 
to the amount of image resolution needed to enable recognition. As the figure illustrates, 
some images can be recognized at extremely low resolutions (even when only 8x8 pixels 
are available), as the images on the left in Figure 3, while others require higher 
resolution. 

 

 
Figure 3: Images sorted by the amount of resolution required for becoming 
recognizable. Each row shows images that had been down-sampled to a resolution of 
12x12, 18x18, 28x28, 42x42 and 64x64 pixels. The two images on the left (a corridor 
and a beach) are correctly categorized by most of the participants even at the lowest 
resolutions. The two images on the left require very high resolution in order to 
become recognizable (an office and a bedroom). The two images in the center need 
around 32x32 pixels in order to be recognized by most of the participants. Easy 
images are formed by few surfaces, and had diagnostic spatial layouts. 

 



 
Figure 4: Performances for the 12-way classification task averaged over indoor 
scenes (6 categories), outdoor man made environments (street, sea port, and 
highway) and outdoor natural landscapes (beach, forest, mountainous landscape). 
Error bars correspond to the standard error.  

 
 
Figure 4 shows the recognition performances averaged over three groups of scenes: 

indoor, outdoor man-made and outdoor natural scenes. Each of these super-ordinate 
scene groups has different requirements in terms of resolution and contribution of color 
information for the scene categorization task. Indoor scenes are the hardest classes of 
scenes to be recognized. First, we note that the contribution of color information for 
indoor scenes is marginal compared to the other scene types. Recognition rate at 32x32 
pixels is at 77.8% correct for color images and at 67.8% for grayscale images.  On the 
other hand, outdoor man-made scenes have a 92.2% correct recognition rate when 
presented in color at 32x32 pixels and 78.8% when presented in grayscale. For outdoor 
scenes, the inclusion of color information provides a great improvement on the 
recognition rate compared to the results on indoor scenes. A similar trend is observed for 
outdoor natural scenes, although for natural scenes recognition rate remains high even for 
very low resolutions (at 8x8 pixels, performance is still around 65.1%).  

 
Figure 5(a) provides the recognition performance as a function of image resolution 

for the 12 scene categories used in the experiment. Also, note that adding color 
information does not improve recognition performance with respect to grayscale images 
for most indoor categories. On the other hand, color provides a dramatic increase in 
recognition performance for natural environments, especially at very low resolutions. The 
contribution of color information is made clear in figure 5. Figure 5 shows the average of 
all the images that belong to each of the 12 scene categories. The top row represents the 
indoor categories. Only the corridor category can be easily recognized in this average 
image. The bottom row represents the 6 outdoor scene categories used in the 
experiments. Outdoor categories have a wider distribution of colors that are good 
predictors of the scene category. In a series of experiments, Oliva & Schyns (2000) 
showed that diagnostic colors are important in many outdoor categories, particularly 
natural landscapes, as color of surfaces is a diagnostic feature of the scene category (see 
also Goffaux et al., 2005; Rousselet et al., 2005). However, color becomes less important 
to differentiate among man-made environments, where the color of objects and surfaces 
is often accidental and is not constrained by the function or material properties.  



 
Figure 5: A) Performance on scene recognition for each scene category (chance is at 
8.3% correct recognition rate) with grayscale and color images. Error bars 
correspond to the standard error. B) Average images of all the scene pictures that 
belong to each scene category. Each average is obtained and the pixel wise average 
of the 20 images in each group. The categories shown are (from left to right and top 
to bottom): bathroom, bedroom, corridor, kitchen, living room, office, seaport, 
highway, street, beach, forest and mountainous landscape.  
 
An important observation is that not all the images can be correctly interpreted at very 
low resolutions. In order to study the distribution of resolutions needed to reach 80% 
recognition rate on single images, we performed an item analysis. As we do not have 
enough data to estimate the performance at each resolution independently, we use a 
psychometric function to estimate the relationship between recognition performance and 
image resolution.  For each image we use logistic regression to fit the psychometric 
function (Klein 2001) relating probability of correct recognition as a function of image 
resolution (we use this function as it seems to fit the observed data, however, there are 
several other choices that are also valid). This function is defined by only two parameters 
(a,b); therefore it can be estimated with only few samples. 
 

P(correct | resolution; a, b) = 1 / (1+exp(-a-b. log(resolution))) 
 
The parameters of this psychometric function are estimated using maximum likelihood. 
Once the parameters are estimated we find the minimal resolution needed to reach 80% 



recognition rate for each image (this is the resolution for with 80% of the participants 
correctly recognized the scene category for a given picture).   
 
Figure 6 shows the histogram of image resolutions needed to reach 80% recognition rate 
for the color and grayscale conditions. Only a very small percentage (3% with color) of 
the images need high resolution (more than 90x90 pixels). For color images, the 
maximum of the distribution is in the bin between 11x11 and 22x22 pixels. In that 
resolution interval, 28% of color images are recognized by 80% of the participants. For 
grayscale images 38% of the images are recognized when shown with a resolution 
between 22x22 and 45x45 pixels. 
 
 

 
Figure 6: Distribution of image resolutions for which images are recognizable by 
80% of the observers. For resolutions between 6x6 and 11x11 pixels, there are 20% 
of color images that are recognizable, while only 11% of the images can be 
recognized in that resolution range when shown in grayscale. 
 
 
Object segmentation  
 
Experiment 
 
15 participants perform a total of 1195 trials. For each trial, an image was randomly 
selected from the set of 240 images described before. Each image was presented at one of 
the 6 possible resolutions 4x4, 8x8, 16x16, 32x32, 64x64 and 128x128. For this 
experiment, images were presented in color. 
 
Participants were first asked to provide the scene category of the image (this part of the 
experiment was identical to the scene recognition experiment described before), then, 
participants were asked to segment, using a drawing tool, as many objects and regions as 



they could recognize in each image. They traced and segmented one region/object at a 
time, entered its possible name, and then traced a second object, named it, etc. The 15 
participants annotated a total of 5706 objects-regions.  
 
In this experiment, participants were not given a list of objects to use.  Therefore, once 
the experiment was concluded, we ran a validation procedure to decide which objects 
were correctly recognized. For this ground truth validation, each object was shown at the 
original resolution together with the annotation provided by one of the participants. For 
the validation, the information about the level of blur shown to the participant was not 
shown to avoid any bias. The images and participants were randomized for the validation 
stage. The validation was performed by the author. 
 
Results 
 
Figure 7(a) shows an example image and the segmentations produced by 6 participants at 
different resolutions. As the resolution of the image increases, the participants reported 
more objects and the reported objects had a higher probability of being correctly 
recognized. The question that we address here is to find what is the minimal image 
resolution needed so that participants can extract the information equivalent to the gist of 
the scene. Oliva (2005) and Wolfe (1998) argue that the gist of the scene might be 
composed of a coarse representation of the scene layout and a list of 4 or 5 objects.  
 
Figure 7(b-c) summarizes the object recognition results for each of the three super-
ordinate scene categories. Figure 7(b) gives the number of reported objects as a function 
of image resolution. As more resolution is available, more objects become recognizable. 
The number of objects reported seems to grow logarithmically with the image resolution 
for the three super-ordinate scene categories. Participants reported fewer objects for 
natural environments than for man-made environments. Figure 7(c) gives the recognition 
rate for the reported objects.  
 
At a resolution of 32x32 pixels with color images, participants segmented and named 5 
objects on average with 80% correct recognition rate (across all the super-ordinate scene 
categories).  Figure 7(d) shows the distribution of sizes for the segmented objects. For all 
image resolutions most of the reported objects had an area that covered between 1/8 and 
1/2 of the image area. Figure 7(e) shows that the percentage of correctly recognized 
objects did not vary a lot between scales despite the large variation of object sizes. Figure 
8(a) shows several examples of images at 32x32 pixels and the segmentations provided 
by the participants. Figure 8(b) shows some of the objects isolated from the scene. Some 
of the objects are defined by just a few blobs and recognition is only reliable when they 
are immersed in the scene.  
 



 
Figure 7: As we increase the resolution, participants report an increasing number of 
objects. The number of objects reported per image seems to increase logarithmically 
with respect to the image resolution (B). From those objects, the object correctly 
recognized also increases with resolution reaching 80% around 32x32 resolution 
images (C). D) Average number of reported objects per image as a function of 
object size (measured as the proportion of the image occupied by the object). For all 
image resolutions, most of the reported objects cover an image area in the interval 
[1/8, 1/4] of the total image size. This is, between 12% and 25% of the image size. E) 
Recognition rate for reported objects as a function of their size on the image.  



 

 
Figure 8: Images at a resolution of 32x32 pixels and the segmentations provided by 
the participants. Figure B shows some of the recognized objects cropped. Many of 
those objects become unrecognizable once they are extracted from the context. 
 
 
At very low resolutions, recognition is heavily driven by contextual relationships between 
objects. This point is quantified in figure 9. Figure 9 shows that there is a significant 
interaction between performances on the scene recognition task and the object 
segmentation task. Figure 9 splits the object recognition results depending on whether 
participants identified correctly the scene prior to the object segmentation task. The 
number of objects reported did not change when participants miss-classified the scene 
category.  
 
On average, for 32x32 images, participants segmented 5 objects independently on 
whether they assigned the correct or incorrect scene category to the picture. However, 
object recognition performance drops dramatically for low resolutions. At a resolution of 
32x32 pixels, the segmented objects were correct 89% of the times when the scene was 
correctly identified. Performances dropped to 53% when the scene category was wrong. 
Failing to recognize the scene context has a major effect on object recognition 
performances at low image resolutions. At high-resolution, the effect is not so important. 
The same trends are observed when the performances are analyzed for the three super-
ordinate scene groups (indoors, man-made outdoor and natural outdoor). 
 
 



 
Figure 9: Performance on object recognition as a function of whether the scene was 
correctly identified or not. A) Number of objects reported as a function of image 
resolution, B) Recognition rate for reported objects as a function of resolution.  
 
 
Conclusion 
 
In this paper, we have explored two tasks, scene and object recognition as a function of 
image resolution. We have shown that 32x32 color images are already well formed 
pictures, with meaningful and recognizable global and local structures. Strikingly, for 
more than 80% of the images used in our experiments, the gist of the scene (the scene 
category and the identity and localization of 4-5 objects that compose the scene) is 
available with an image resolution of just 32x32 color pixels. Even, the lowest spatial 
frequency channels provide enough information for reliable recognition of the scene 
category, which can, in turn, be used to facilitate subsequent analysis of local regions and 
smaller objects in the scene. 
 
How is recognition even possible at such low resolutions? A 32x32 pixel image 
represents 0.1% of the information available in a megapixel picture (similar to the 
number of nerve fibers in the optic nerve). Which image features can support 
recognition? At a resolution of 32x32 pixels most regular image features generally used 
to study the activation of the early cortical visual areas such as edges, junctions and 
textures are not available or are very weak. A lot of research effort has been devoted to 
understanding how early visual areas in the brain process fine image structures. However, 
very low resolution blobs, particularly colored blobs, provide an incredible amount of 
information that could guide the processing of high-resolution image detail (Schyns & 
Oliva, 1994; Bar 2007). At low resolutions, the analysis of blob shapes and their spatial 
relationships become central for understanding the image content. A coding of the 
contextual relationships between regions is mandatory in order to achieve good 
recognition performance.   
 



From a computational view point, low-resolution images can be processed very fast and 
require small amount of memory (Torralba et al., 2008). The robustness of a short code 
for describing semantic content of natural images could be an important asset to explain 
the speed and efficiently at which the human brain comprehends the gist of visual scenes. 
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