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Abstract

In the simplest cosmological models consistent with General Relativity, the total vol-
ume of the Universe is either finite or infinite, depending on whether or not the spatial
curvature is positive. Current data suggest that the curvature is very close to flat,
implying that one can place a lower limit on the total volume. In a Universe of finite
age, the ‘particle horizon’ defines the patch of the Universe which is observable to
us. Based on today’s best-fit cosmological parameters it is possible to constrain the
number of observable Universe sized patches, Ny. Specifically, using the new WMAP
data, we can say that there are at least 21 patches out there the same volume as ours,
at 95% confidence. Moreover, even if the precision of our cosmological measurements
continues to increase, density perturbations at the particle horizon size limit us to
never knowing that there are more than about 10° patches out there.
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Understanding how big all of space is and our place within its immensity, has long been
one of the great mysteries for human beings to ponder. Within simple cosmological models,
consistent with General Relativity, the total volume depends on the curvature of the spatial
sections, while the volume of the Universe which is accessible to observation is determined
by the expansion history of the Universe. Since we now have good empirical knowledge
of both global curvature and cosmological dynamics, we can constrain the fraction of the
Universe comprised by our observable ‘patch’.

Although introductory cosmology courses teach the principles of non-Euclidean spaces,
we now know that our Universe is very close to having flat spatial geometry. The newest
results from the Wilkinson Microwave Anisotropy Probe (WMAP, [1]) measurements of the
cosmic microwave background (CMB) combined with other cosmological data show that the
average density of the Universe is within a few percent of the value required for flatness.

Sometimes it is assumed that the Universe s spatially flat. However, this is an empirical
question, and right now we do not know whether the Universe is slightly closed or slightly
open. A closed universe, appealing on theoretical grounds (see @] and references therein),
would have finite volume, while an open or exactly flat space would have infinite volume.
Because of this, we do not know whether our own observable part is a negligible or significant
fraction of the whole volume, although as we discuss below, it is now possible to place a
rather robust limit on this fraction.

Tegmark has used the claim that the Universe is known to have infinite volume to argue
B] that there are as many ‘observable universe’ patches as there are ‘multiverses’ in the
quantum mechanical ‘many-worlds’ picture, and hence we are already forced to imagine
2, 1019 copies of ‘the Universe’, perhaps more than the number of different possible particle
configurations. Hence the suggestion is that modern cosmological observations lead one to
imagine that there are many near-copies of our patch out there in the vastness of the entire
Universe. However, as we will see below, the empirically-motivated limit is more like 10
than 10'%. Hence there is no reason, purely on the grounds of cosmological observations, to
be forced to believe in other versions of oneself, differing by only a few bits of information.

Of course, we have no possibility for observationally determining the character of the
Universe on scales larger than the (apparent) particle horizon — that is, we cannot see farther
away (using photons at least) than the last scattering surface, where the CMB radiation
was released. Nevertheless, we can determine that the observable volume is very close to
homogeneous and isotropic, and, by applying the cosmological principle, conclude that the
Universe continues to be well approximated by a homogeneous and isotropic Robertson-
Walker (RW) metric on scales much larger still. As we stated above, such a spacetime can
be spatially open and infinite, in which case the arguments of Tegmark may be relevant, or
it can be spatially closed and finite. In this latter case, our observable volume is a finite
fraction of the total volume, and those arguments are invalid.

If the universe is closed, current cosmological observations put an upper limit on the
spatial curvature, and hence can be used to place a lower limit on the radius of curvature
of such a model. By using an observational probability distribution for curvature (together
with other relevant cosmological parameters), and treating the Universe globally as an RW
spacetime, it becomes a straightforward problem to determine the minimum ratio of the total
volume to the observable volume consistent with observations, i.e. the minimum number of
observable-universe-sized ‘patches’ that must exist.

Based on growing circumstantial evidence, together with strong theoretical motivation,
there is good reason to believe that a period of inflation in the early Universe drove the



spatial curvature very close to zero. However, we take the approach here of determining
what can be said about the curvature based on empirical evidence alone, coupled with the
minimal extra ingredient of the assumption of global homogeneity and isotropy. Indeed
we will see that inflation itself predicts that we will never be able to determine the spatial
curvature precisely. In addition, non-trivial topologies can render a spatially flat universe
finite in volume, but that possibility only strengthens our contention that we cannot conclude
that the Universe is spatially infinite. Current limits on the topology size are in fact a little
larger than the particle horizon distance M]
The metric for a spatially closed RW cosmology can be written

ds* = a*(n) (—dn? + dx* + sin® y d2?) , (1)

where 7 is the conformal time, d©2? is the solid angle element, Y is the comoving radial
coordinate which runs from zero at our location to 7 at the opposite ‘pole’ of a homogeneous
closed spatial slice, and we have set ¢ = 1. In this particular form of the metric, the scale
factor a is not arbitrary, but in fact equals the physical radius of the spatial slices. This
conformal form makes it trivial to calculate the comoving distance to the particle horizon,
i.e. the greatest value x,n within our past light cone. The result is
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where the subscript ( indicates a current value. Here (y, €2, and €2, are the present-day
energy densities in matter, radiation, and cosmological constant, respectively, as fractions of
the critical density today, peiy = 3H§ /8. The parameter {2k measures the contribution
of curvature to the dynamics (Qx =1 — Qy — 2, — Qa by the energy constraint equation).
The integral D is given by
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D(QM, Q% QA) = A (Q’Y + QMCL + QKCL2 + QACL4) 12 da. (3)

The volume of the current spatial slice out to distance xyp is
Vn = [ Vhd'e = maf 2xpn — sin(2xon)] (4)

where h is the determinant of the spatial part of the metric (Il). Thus in particular the
volume of the entire slice is Vit = 27r2a8, and so the number of particle horizon volumes
that can fit in the entire slice is
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The parameters Qy, (2, and Q4 are now well-measured @] and they fix Qk through
the energy constraint equation, assuming Einstein gravity. Choosing the best-fit WMAP 3
year data set parameters Qy = 0.24, Q, = 5.5 x 107°, and Q4 = 0.76, we find, performing
the integral (3]), that D ~ 3.5. This tells us that the apparent particle horizon exceeds
the current Hubble radius by the factor 3.5. Note that this calculation, through Eq. (3),
depends on the assumption of radiation domination into the arbitrary past. Of course
standard inflationary models violate this assumption, and the particle horizon can actually
diverge in these models. But we are interested here in the apparent particle horizon, i.e. the



comoving distance to the last scattering surface, as this determines the size of the observable
Universe.

We can estimate the limit on the number of observable Universe patches by looking at
the observed probability distributions for the cosmological parameters, and through Eqgs. ([2)
and ([B)), convert these to a distribution for Ny. Since, of the relevant parameters, 2k has
the greatest relative uncertainty, the uncertainty in Ny will be dominated by that of )k
through Eq. (). Using the Markov Chain Monte Carlos provided by the WMAP team for
non-flat cosmologies (together with additional information on the Hubble constant from the
Hubble Space Telescope (HST) Key Project []) we calculated the likelihood function for
Ny; the result is presented in Fig. Il Based on this distribution we find a 95% confidence
lower limit of Ny > 21. That is, 95% of models consistent with the WMAP and HST data
are closed models with more than 21 observable-universe-sized patches, or are open models.
Different choices of cosmological data, model spaces, and Bayesian priors yield somewhat
different distributions for Ny, but all reasonable choices yield a lower limit of Ny 2 10.

Ultimately we are limited by cosmic variance in our observable patch. Due to the spec-
trum of perturbations produced by standard inflationary models, the curvature perturbation
on the scale of our patch today is of order 107° (see also for example ﬂa]), and hence we are
unlikely to ever know with confidence that |Qx| < 107 (since we could live a few o into the
tail of the distribution). In that case Eq. (B becomes
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Hence the best lower limit that we will ever be able to place is Ny < 10°, unless of course
improved measurements find that the Universe is actually open. But assuming that we
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FIG. 1: Probability distribution (in arbitrary units) for the number of universe patches Ny based
on WMAP + HST data. The 95% confidence lower limit is Ny > 21. Although by eye this
distribution appears to favour values near Ny ~ 100, this is actually not the case due to the
logarithmic scale and because of a large peak at infinite Ny corresponding to open models.



continue to measure that the curvature is close to flat, then cosmology alone will only enable
us to infer that there are at least 100,000 other observable patches out there. Determining
that the Universe is genuinely infinite will remain beyond the reach of purely empirical
studies.
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