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In this study, we used an empirical example based on 100 mitochondrial genomes from higher teleost fishes to compare the
accuracy of parsimony-based jackknife values with Bayesian support values. Phylogenetic analyses of 366 partitions,
using differential taxon and character sampling from the entire data matrix of 100 taxa and 7,990 characters, were
performed for both phylogenetic methods. The tree topology and branch-support values from each partition were
compared with the tree inferred from all taxa and characters. Using this approach, we quantified the accuracy of the branch-
support values assigned by the jackknife and Bayesian methods, with respect to each of 15 basal clades. In comparing the
jackknife and Bayesian methods, we found that (1) both measures of support differ significantly from an ideal support
index; (2) the jackknife underestimated support values; (3) the Bayesian method consistently overestimated support; (4)
the magnitude by which Bayesian values overestimate support exceeds the magnitude by which the jackknife
underestimates support; and (5) both methods performed poorly when taxon sampling was increased and character
sampling was not increases. These results indicate that (1) the higher Bayesian support values are inappropriate (in
magnitude), and (2) Bayesian support values should not be interpreted as probabilities that clades are correctly resolved.
We advocate the continued use of the relatively conservative bootstrap and jackknife approaches to estimating branch
support rather than the more extreme overestimates provided by the Markov Chain Monte Carlo—based Bayesian methods.

Introduction

Bayesian analyses have recently been proposed as
a new method for phylogenetic inference (Rannala and
Yang 1996; Yang and Rannala 1997; Larget and Simon
1999; Mau, Newton, and Larget 1999; Huelsenbeck et al.
2001). In maximum-likelihood analyses (Felsenstein
1973), the most likely trees are searched for. Branch
support may then be assessed secondarily using the
bootstrap (Felsenstein 1985) or jackknife (Farris et al.
1996). In contrast, Bayesian analyses estimate the
posterior probability of each clade based on the frequency
at which that clade is resolved among sampled trees once
stationary log-likelihood values have been reached.

The bootstrap has been variously interpreted as
a means of assessing confidence levels (Felsenstein
1985), a conservative measure of accuracy (Zharkikh and
Li 1992; Hillis and Bull 1993), a ““test of monophyly”
(Rodrigo 1993, p. 508), or simply as a means of assessing
evidential support (Sanderson 1995). Efron, Halloran, and
Holmes (1996) noted that, in a Bayesian framework,
bootstrap confidence levels may be comparable to
posterior probabilities, given a uniform prior (i.e., the
prior probabilities for the values of interest are equal).
Hillis and Bull (1993) described bootstrap values as
downwardly biased estimates of accuracy (see also
Felsenstein and Kishino [1993]). Efron, Halloran, and
Holmes (1996) noted that the bootstrap estimate may be
higher or lower than expected, depending on which
direction the boundary between alternative trees is curved
in tree-space. Iterated bootstrapping has been proposed to
accommodate the curved boundary between alternative
trees in tree-space so that bootstrap values may better
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reflect type 1 error (Rodrigo 1993; Zharkikh and Li 1995;
Efron, Halloran, and Holmes 1996). Alternatively, Berry
and Gascuel (1996) proposed utilizing Robinson and
Fould’s (1981) distance to reduce error.

Huelsenbeck and co-authors have stated that “The
posterior probability of a tree can be interpreted as the
probability that the tree is correct” (Huelsenbeck et al.
2001, p. 2310) and *... the numbers on the branches of
the tree now represent the posterior probability that the
clade is true” (Huelsenbeck et al. 2002, p. 675). Worded
so broadly, these statements are misleading, as posterior
probability assessments are all updates of a prior view,
conditional on the data, the model, and the information
content asserted in that prior view. So, although it is
appropriate to consider a posterior probability the
probability of truth given these conditions, it is not
appropriate to consider them universal probabilities of
truth. As such, we will refer to “‘phylogenetic accuracy’ or
the ““probability that a clade is correctly resolved’’ to mean
correct in this universal sense and reserve the term
posterior probability to refer to probability conditional on
the data, the model, and the prior.

Bayesian support values have been found to be
consistently higher than bootstrap values for the same
clades in empirical analyses (e.g., Rannala and Yang 1996;
Leaché and Reeder 2002; Whittingham et al. 2002). Two
recent papers comparing Bayesian posterior probabilities
with bootstrap values have presented conflicting results
based on simulations. Wilcox et al. (2002, p. 369)
concluded that:

Our simulation analysis indicates that these higher levels of
[Bayesian] support [values] are appropriate, and that Bayes-
ian support values provide much closer estimates of phyloge-
netic accuracy (even though they are still somewhat
conservative) than the estimates provided by corresponding
bootstrap proportions. Therefore, we recommend that when
available, Bayesian posterior probabilities should be used in
preference to bootstrap proportions to assess support for esti-
mated clades in phylogenetic trees.

In contrast, Suzuki, Glazko, and Nei (2002, p. 16140)
“demonstrated that the posterior probability in Bayesian
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phylogenetics can be excessively high in the analysis of
concatenated sequences even when the same model as that
for generating each gene sequence was used.” Suzuki,
Glazko, and Nei (2002) questioned the reliability of
phylogenies inferred using Bayesian methods and asserted
that their simulations were more realistic than those used
by Wilcox et al. (2002), in which the same model used to
generate sequences was used for phylogenetic inference.

Like more common resampling-based support mea-
sures, such as the bootstrap and the jackknife, Bayesian
clade support has been interpreted as an indicator of
phylogenetic accuracy. Although several studies have
compared the accuracy of Bayesian clade support values
with the bootstrap, no study as yet has compared Bayesian
support with jackknife support. In this study, we used an
empirical example based on 100 mitochondrial genomes
from higher teleost fishes to determine whether Bayesian
clade support is a better indicator of accuracy than the
jackknife. Phylogenetic analyses of 366 partitions, using
differential taxon and character sampling from the entire
data matrix of 100 taxa and 7,990 characters, were
performed for both phylogenetic methods. The tree
topology and branch-support values from each partition
were compared with the tree inferred from all taxa and
characters. Using this approach, we quantified the re-
liability of the branch-support values assigned by the
jackknife and Bayesian methods, with respect to each of
15 basal clades. Our results indicate that (1) both measures
of support differ significantly from an ideal support index;
(2) the jackknife underestimated support values; (3) the
Bayesian method consistently overestimated support; (4)
the magnitude by which Bayesian values overestimate
support exceeds the magnitude by which the jackknife
underestimates support; and (5) both methods performed
poorly when taxon sampling was increased but character
sampling was not.

Materials and Methods
Data Matrix

Miya et al.’s (2003) data set based on 100 mito-
chondrial genomes from higher teleost fishes was selected
for this study because of its extensive taxon and char-
acter sampling and because many basal clades were
well supported. For the purposes of this study, well-
supported clades were defined as those with both 63% or
greater jackknife support and posterior probability for the
parsimony and Bayesian analyses, respectively. (The
lowest support values for the clades examined here were
68% jackknife support and 98% Bayesian support.) Sixty-
three per cent jackknife support corresponds to the
expected jackknife frequency for a clade supported by
a single uncontradicted synapomorphy (Farris et al. 1996).
Jackknife values, when the removal probability is set to
¢!, as performed here, are equivalent to bootstrap values
when parsimony-uninformative characters are eliminated
before calculating bootstrap support and an infinite number
of bootstrap replicates are performed (Farris et al. 1996).
Therefore, theoretically, the jackknife should be a superior
measure of support with more desirable statistical
properties than the bootstrap. Nevertheless, a general
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correspondence between jackknife and bootstrap values
has been demonstrated by Mort et al. (2000) and Salamin
et al. (2003). Also, Harshman (1994, p. 421) demonstrated
that the inclusion of uninformative characters results in
only minor decreases in bootstrap-support values, “and
can generally be ignored.” Therefore, although we
examine the jackknife, we expect that our results can be
generalized to the bootstrap as well.

Trees were rooted with Sardinops melanostictus,
following Miya, Kawaguchi, and Nishida (2001) and Miya
et al. (2003), based on Inoue et al.’s (2001) analysis of the
basal teleost fishes. Basal clades, each consisting of
multiple terminals, were examined in this study so that
differential taxon sampling could be used among the runs
from the second and third sampling strategies (see below).
For the purposes of this study, basal clades were arbitrarily
defined as those clades consisting of eight or more taxa in
the trees inferred from the complete matrix. Based on these
definitions, there are 16 well-supported basal clades, of
which 15 are indicated in figures 1 and 2 (also available as
Supplementary Material online at http://www.molbiolevol.
org/). The 16th clade was excluded because it was not
applicable (i.e., could not be nontrivially resolved
because it only included one terminal) in 22 of the 47
runs for each set (see below).

Sampling Strategies

Three alternative sampling strategies were performed.
Strategy 1 was based on increased character sampling
without any increase in taxon sampling. In contrast,
strategy 2 entailed increased taxon sampling without any
increase in character sampling. In strategy 3, effort was
split between increased taxon and character sampling. The
numbers of taxa and characters sampled for each run
within each strategy are shown in table 1. Runs were
terminated for strategies 1 and 2 when all taxa or
characters, respectively, had been sampled. This resulted
in a partial final run for strategy 2 (run 5.55). Each whole-
numbered run consists of a multiple of 14,382 nucleotides
(e.g., run 10, in which the second and third strategies each
consist of 143,820 nucleotides).

The strategies 1 and 2 represent the two extremes of
how data may be sampled. There are a multitude of ways
to split one’s effort between adding both taxa and
characters. The approach that was taken for strategy 3
was to sample taxa and characters in the ratio used for the
complete matrix of 100 taxa and 7,990 characters by Miya
et al. (2003), based on the equation y = mx + b (wherein
m = 87.695 and b = —779.51) and rounding to whole
numbers. The 47 Bayesian and parsimony runs for each set
were composed of the initial run of 18 taxa and 799
characters, nine runs for strategy 1, nine runs for strategy 2
(using the “A” and “B” taxon-sampling approaches [see
below]), and 28 runs for strategy 3 (using the “A” and
“B” taxon-sampling approaches).

Character and Taxon Sampling

Miya et al.’s (2003) character sampling, including
their exclusion of third codon positions, was followed. The
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Table 1
Number of Taxa and Characters Sampled for Each of the
Three Sampling Strategies from the 15 Runs

Strategy 1 Strategy 2 Strategy 3
Run Taxa  Characters Taxa Characters Taxa  Characters
1 18 799 18 799 18 799
2 18 1,598 36 799 23 1,251
3 18 2,397 54 799 27 1,598
4 18 3,196 72 799 30 1,918
5 18 3,995 90 799 33 2,179
5.55 — — 100 799 — —
6 18 4,794 — — 36 2,397
7 18 5,593 — — 39 2,581
8 18 6,392 — — 41 2,806
9 18 7,191 — — 43 3,010
10 18 7,990 — — 45 3,196
11 — — — — 47 3,366
12 — — — — 49 3,522
13 — — — — 51 3,666
14 — — — — 53 3,799
15 — — — — 54 3,995

data matrix includes characters from first and second
codon positions of 12 protein-coding genes and 21 tRNA
genes. The two rDNA genes were excluded because
unambiguous alignment based on secondary structure
models was not possible (Miya and Nishida 2000), and
ND6 was excluded following Miya, Kawaguchi, and
Nishida (2001) and Miya et al. (2003). Additionally, 397
nucleotide positions from ambiguously aligned regions
were excluded. The final matrix is composed of 7,990
nucleotide characters, 749 of which contain gaps or
missing data in one or more taxa. To eliminate locus-
specific effects on the results, characters were sampled
randomly. This was deemed important because some
mitochondrial genes in animals have been described as
particularly problematic for phylogenetic inference (e.g.,
Baker, Wilkinson, and DeSalle 2001; Shevchuk and Allard
2001).

For the initial run, 18 taxa were sampled such that
each of the 15 well-supported, basal clades for the
complete matrix included two or more taxa. A minimum
of two taxa within each clade was necessary for nontrivial
resolution of the clade. Within each of the 15 clades, the
two taxa were selected such that their inferred most-recent
common ancestor is the same as the most-recent common
ancestor of the entire clade. This was done so as not to
have the results confounded by different clades being
examined in the different runs, as described by Sanderson
and Wojciechowski (2000).

In this study, two approaches to taxon addition were
utilized for the second and third sampling strategies in an
attempt to bracket the extremes of how additional taxa may
be sampled. The “A” approach entailed adding one taxon
immediately above each of the initial 18 taxa from the tree
based on the complete matrix, as the trees were drawn in
figures 1 and 2. Because branches on the trees were rotated
such that the sister group that included more terminals was
placed on the lower part of the tree, this had the general
effect of adding taxa that were inferred to be closely
related to those taxa already included in the analysis. The
“B” approach entailed adding one taxon immediately
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below each of the initial 18 taxa. This had the general
effect of adding taxa that were inferred to be distantly
related to those taxa already included in the analysis. For
both approaches, taxa were added by successively
scrolling up or down the tree, respectively, until the
appropriate number of taxa was added.

One-tenth of the total number of characters (799) was
sampled for the initial run. This is roughly equivalent to
the number of first and second codon positions sampled in
many phylogenetic analyses based on single genes. Four
independent sets of successive runs were performed for
each sampling strategy. Each set was based on the same
taxa sampled for a different group of randomly selected
characters.

Tree Searches

The parsimony jackknife is a common method of
assessing support that corresponds generally to the
parsimony bootstrap (see above) but as yet has not been
compared with Bayesian clade support. This would seem
to make our comparison of jackknife and Bayesian support
timely. However, in this study, parsimony jackknife
analyses were substituted for parsimony bootstrap analyses
primarily for efficiency of analysis because jackknife tree
searches require optimization of fewer characters on each
of the alternative trees. Maximum-likelihood bootstrap
analyses were not performed because of their much higher
computational cost (Sanderson and Kim 2000). Although
maximume-likelihood analyses are arguably more compa-
rable to Bayesian analyses, thousands of maximum-
likelihood bootstrap analyses of data sets with as many
as 100 taxa would be computationally prohibitive.
Therefore, in this paper, the jackknife serves as a surrogate
for the bootstrap. All parsimony-based tree searches were
performed using equally weighted parsimony. When
searching for the most parsimonious tree(s), 1,000 tree
searches were performed with random taxon addition, tree-
bisection-reconnection branch swapping, and a maximum
of 10 trees held per search using NONA version 2.0
(Goloboff 1993). Jackknife tree searches were performed
using WinClada version 1.00.08 (Nixon 2002), running
NONA as a daughter process. One thousand jackknife
replicates were performed, with each replicate running one
search and up to 10 trees held per search.

Bayesian analyses were conducted with MrBayes
version 2.01 (Huelsenbeck and Ronquist 2001) using the
GTR + I+ I' model. The hierarchical likelihood ratio test
(Huelsenbeck and Crandall 1997) and the Akaike in-
formation criterion (Akaike 1974), as implemented in
Modeltest version 3.06 (Posada and Crandall 1998),
selected GTR + I + I' as the best-fitting model for the
complete matrix. The rates for the GTR model and the
shape of the gamma distribution (Yang 1993) estimated by
Modeltest were specified as starting values for all Bayesian
analyses. The GTR rates and the shape of the gamma
distribution were not fixed. Nucleotide frequencies were
estimated from the data. For each matrix, two independent
Bayesian analyses were performed to check for conver-
gence (as in Miller, Buckley, and Manos 2002), with four
chains per analysis and trees sampled every 100
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generations. Majority-rule consensus trees were calculated
using PAUP* (Swofford 1998).

One million generations were performed for each
Bayesian analysis of the complete matrix of 100 taxa and
7,990 characters. The analyses reached stationarity before
100,000 and 250,000 generations, respectively. The
16,500 trees sampled at stationarity were used to infer
the Bayesian tree with support values. For the Bayesian
analyses performed on the different partitions of the
complete matrix (as listed in table 1), at least 350,000
generations were performed for each analysis. The first
250,000 generations were discarded as ‘‘burn-in,”” and the
remaining 2,000 trees that were sampled at stationarity
from the combined analyses were used to produce a 50%
majority-rule consensus tree with clade frequencies. When
stationarity was not reached for both analyses within the
first 250,000 generations, or when the same stationarity
was not reached for both analyses, the analyses were rerun
using 600,000 or 1,000,000 generations, as necessary.

The GTR + I+ I" model and the same set of starting
values as used for the Bayesian analysis of the complete
matrix were used for all Bayesian analyses (as listed in
table 1). Because the characters were randomized, this
approach is appropriate in that there should be no locus-
specific effects for any given data matrix. This approach of
using the same model and starting values to analyze
matrices that include differential taxon sampling has been
advocated by Hillis (1999) (but see Posada and Crandall
2001). It is also expected to be an advantage for Bayesian
analyses given that the model and starting values were
selected using all taxa available (Pollock and Bruno 2000).
Finally, even though the model parameters may differ
between the complete matrix and any given one of
partitioned matrices, Bayesian analyses do not necessarily
use the initial parameters once stationarity (and, hence,
estimation of the posterior probabilities) has been reached
(Rannala and Yang 1996; Huelsenbeck et al. 2002).

Because of topological differences between the most-
parsimonious tree and the Bayesian tree (figs. 1 and 2), not
all of the same taxa were sampled for any of the 47
different runs (table 1) from each set (except the run in
which all 100 taxa were sampled for strategy 2). Therefore,
except for the single redundant run, Bayesian analyses
were also performed using the parsimony-based taxon
sampling, and parsimony analyses were also performed
using the Bayesian-based taxon sampling. As such, the
results from the parsimony analyses are directly compa-
rable with the results from the Bayesian analyses, and the
taxon-sampling methodology used should not be biased in
favor of one method over the other. A total of 366 analyses
were performed for both the parsimony and the Bayesian
methods.

Quantifying Results

Although it would be nice to know the true
mitochondrial gene tree for the higher teleost fishes
sampled, it is fundamentally impossible to know the true
tree for empirical analyses, outside of those based on
experimental phylogenies (e.g., Hillis et al. 1992).
However, an adequate substitute is the tree that is

supported by the most inclusive taxon and character
sampling (following Cummings, Otto, and Wakeley 1995)
and therefore represents the best-tested hypothesis of
relationships (Kluge 1989; Nixon and Carpenter 1996).
We term this the “reference” tree. Hence, we are testing
for internal consistency of the parsimony and Bayesian
methods, not correspondence to an unknown true tree.
This is the same approach used by Miller (2003), with
respect to character sampling, and Lecointre et al. (1993),
Poe (1998), and Simmons and Freudenstein (2003), with
respect to taxon sampling.

For each of the 366 analyses performed for the
parsimony and Bayesian methods, each clade resolved was
compared with the 15 well-supported basal clades from the
respective reference tree constructed using the complete
matrix of 100 taxa and 7,990 characters (figs. 1 and 2). If
the clade in question corresponded to one of the 15 well-
supported basal clades from the reference tree (with
respect to the taxa sampled in the given run), it was scored
as “‘correctly” resolved. If the clade in question contra-
dicted any of the 15 well-supported basal clades from the
respective reference tree, it was scored as ‘“‘incorrectly”
resolved.

An important qualification to note for any study that
evaluates branch-support values for multiple clades,
whether they be simulation studies (e.g., Hillis and Bull
1993; Wilcox et al. 2002) or empirically based studies, is
that branch-support values from different clades are not
strictly independent of one another (Faith and Ballard
1994; Gatesy 2000). The only way to bypass this issue of
nonindependence would be to limit oneself to studying
matrices that completely lack character conflict or those
that include only four taxa and thereby have only a single
internal branch.

Previous studies have compared the relative perfor-
mance of the bootstrap to Bayesian posterior values
(Wilcox et al. 2002; Suzuki, Glazko, and Nei 2002; Alfaro,
Zoller, and Lutzoni 2003; Cummings et al. 2003; Douady
et al. 2003). Suzuki, Glazko, and Nei (2002) and
Cummings et al. (2003) concluded that Bayesian support
values are less accurate than bootstrap values, whereas
Wilcox et al. (2002) and Alfaro, Zoller, and Lutzoni
(2003) have asserted the opposite, and Douady et al.
(2003) concluded that the methods differ in strengths and
liabilities at upper and lower bounds of support. In each of
these studies, one measure is asserted to perform better
than the other either generally or in a given context.

Wilcox et al. (2002, p. 366) stated, “In our
simulations, nonparametric bootstrapping significantly
underestimated the probability of recovering a clade for
all but the lowest support values, as has been previously
reported by several authors (Hillis and Bull 1993; Rodrigo
1993; Zharkikh and Li 1995). In contrast, Bayesian
support values provided much closer estimates of the true
probabilities of recovering the respective clades ... Here,
subjective graphical proximity of a measure’s distribution
to an idealized line is the criterion for determining
significance.

Suzuki, Glazko, and Nei (2002, p. 16138) were more
cautious, pointing out only that Bayesian support values
are inflated, whereas bootstrap values are conservative,
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ultimately concluding that the bootstrap is ‘“more suitable support is, in general, preferable to an inflated one, they
for assessing the reliability of phylogenetic trees than did not determine whether their bootstrap values under-
posterior probabilities ...”” While we agree with Suzuki, estimated the ideal less than the Bayesian values over-
Glazko, and Nei (2002) that a conservative measure of estimated it.
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FiG. 3.—Scatter plots of jackknife and Bayesian support values plotted relative to the percent of the time that clades with that support value
were correctly resolved, relative to the respective reference tree. The support values for the different sampling strategies are as follows: panel A,
jackknife under strategy 1; panel B, Bayesian under strategy 1; panel C, jackknife under strategy 2; panel D, Bayesian under strategy 2; panel E,

jackknife under strategy 3; panel F, Bayesian under strategy 3.

In their paper comparing Bayesian values with
bootstraps under ML and parsimony, Alfaro, Zoller, and
Lutzoni (2003, p. 261) asserted, “‘[Bayesian MCMC
posterior probability] appeared to lie closest to the line of
perfect correspondence between accuracy and support for
most scenarios.” As in Wilcox et al. (2002) and Suzuki,
Glazko, and Nei (2002), the decision rule is subjective
visual inspection. Continuing this visual decision rule,
Alfaro, Zoller, and Lutzoni (2003, p. 264) stated,
“Furthermore, [maximum parsimony] bootstrapping was
usually more susceptible than [maximum likelihood]
bootstrapping to assigning high support values to incorrect
internodes (fig. 3 and table 1),”” and attribute the difference
to long-branch attraction on the part of parsimony.
However, their results showed that the Bayesian average
is higher than the parsimony bootstrap average, the average
parsimony bootstrap for incorrect internodes was minutely
higher than that of maximum likelihood, and the ranges of
all three measures were largely overlapping. Statistical
treatment of these averages might well reveal no difference
among any of the support values. However, because they
did not test for any difference, Alfaro, Zoller, and Lutzoni
(2003) effectively did not show any difference among the
three methods.

In another recent paper, Douady et al. (2003) used
linear regression to estimate the correlation between
Bayesian support values and bootstrap values. Like
Suzuki, Glazko, and Nei (2002), Douady et al. (2003, p.
252) found that Bayesian values were generally higher
than bootstrap support, whether clades were correctly or
incorrectly resolved, concluding, *““Thus, the more conser-
vative [ML Bootstrap] and [bootstrapped Bayesian values]

seem less subject to the behavior of strongly supporting
a node when it is actually false.”” Unfortunately, the
parametric linear regression, which is particularly sensitive
to violations of its strict assumptions, is likely inappropri-
ate for distributions of support value data. With these data,
the assumptions of normality, standard deviation equality,
or linearity are not likely met. However, the support for
Douady et al.’s (2003) claims is stronger than most of the
other papers on this topic because their decision rule was
not subjective.

More recently, Cummings et al. (2003) compared
Bayesian support values with the bootstrap by comparing
their simulated data with a distribution that resulted from
the randomized permutation of those data. This kind of
statistic, which makes no assumption about the distribu-
tional properties of the data, is completely appropriate for
support value data. As such, the conclusions drawn by this
paper—that Bayesian values are inflated—are the most
robust of all studies completed so far.

In each of these five papers, the authors asserted that
one measure is superior to the other in a given context.
However, Wilcox et al. (2002), Suzuki, Glazko, and Nei
(2002), and Alfaro, Zoller, and Lutzoni (2003) did not
assess the degree of disparity using a standard statistic.
This lack of statistical comparison makes it difficult to
interpret the relative merits of different conclusions when
they contradict one another. However, the conclusions of
Douady et al. (2003) and Cummings et al. (2003) are not
subject to this kind of subjectivity.

We assessed the statistical departure of the jackknife
and Bayesian support values from ideal by way of the
nonparametric Wilcoxon Signed Ranks test. The Wilcoxon
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Table 2
Data and Results for Various Statistical Comparisons of Support Value Distributions Using the Wilcoxon Signed Ranks Test"
Test 1 Test 2 Test 3
Comparison N Ranks Statistical Results Comparison N Ranks Statistical Results Comparison N Ranks Statistical Results
JACI versus Ideal — +12 BAY1 versus Ideal ~ +48 BAY1* versus JAC1*  +42
(A of figure 3) -36 Z=-2472 (B of figure 3) -3 Z = —5.980 -5 Z = —-5471
0 P =0.013 0 P =0.000 1 P =0.000
JAC2 versus Ideal +19 BAY?2 versus Ideal 451 BAY2* versus JAC2* +9
(C of figure 3) =5 Z = -3.300 (D of figure 3) -0 Z=-6.215 —15 Z = —-0957
0 P = 0.001 0 P = 0.000 0 P =0.338
JAC3 versus Ideal +11 BAY3 versus Ideal  +51 BAY3* versus JAC3*  +50
(E of figure 3) -39 Z = -3944 (F of figure 3) -0 Z=-6.215 -1 Z = —6.205
1 P = 0.000 0 P =0.000 0 P =0.000

Note.—The “N Ranks” columns show the number of support value points that overestimated (+), underestimated (—), and tied (no sign) Ideal. The “Statistical
Results” columns show the Z-values and approximate P-values for each comparison. Z-values indicate the magnitude of overall departure from perfect fit (Z =0.0). All P-
values are two-tailed, testing the hypothesis that the two distributions are the same (Hy: mq = 0; Ha: mé =0). Test 1: Support to Ideal (see Materials and Methods) for
jackknife analyses. JACI, JAC2, and JAC3 represent the distributions of jackknife values resulting from parsimony analyses under strategies 1, 2, and 3, respectively (see
Materials and Methods). Test 2: Support to Ideal (see Materials and Methods) for Bayesian analyses. BAY 1, BAY2, and BAY3 represent the distributions of Bayesian
values resulting form Bayesian (Likelihood model = GTR + I+ I') analyses under strategies 1, 2, and 3, respectively (see Materials and Methods). Test 3: Across Support

Value, Within Strategy (see Materials and Methods). Comparisons of Bayesian support to jackknife support for all three sampling strategies.

test is a so-called distribution-free statistic, meaning its
interpretation does not depend on detailed assumptions
regarding the properties of the distributions being com-
pared (Devore and Peck 1993). The percentage of clades
across replicates that correctly recovered clades found in
the reference tree for a given support value were compared
with an idealized support measure. Such an idealized
measure would find 50% support for clades recovered
correctly 50% of the time, 60% support for clades
recovered correctly 60% of the time, and so forth (as in
Wilcox et al. [2002]). This is phylogenetic accuracy sensu
Hillis and Bull (1993). Support values were ranked
according to their magnitude of departure from the ideal.
Three kinds of statistical comparisons were conducted: (1)
Support to Ideal—the performance of both jackknife and
Bayesian support values were compared with ideal under
each of the three sampling strategies described above; (2)
Across Support Value, Within Strategy—the performance
of the jackknife was compared with Bayesian support for
the same sampling strategy; and (3) Within Support Value,
Across Strategy—the performance of one support method
(jackknife and Bayesian) was compared with the perfor-
mance of the same method under different sampling
strategies. These three statistical comparisons allowed us
to test which method most accurately approximates the
ideal. In other words, we tested whether either method
outperforms the other and whether that performance was
conditional on the sampling strategy employed. Note that
the initial runs based on 18 taxa and 799 characters were
not included when comparing the relative performance of
jackknife and Bayesian support for each of the three
sampling strategies independently of one another.

Results

A Microsoft Excel file of the raw data is available as
Supplementary Material online at http://www.molbiolevol.
org/.

Statistical Tests: Support to Ideal

Figure 3 shows the distribution of jackknife and
Bayesian support values for all clades with support values
of at least 50% for analyses under each of the three
sampling strategies individually (plots A to F). By looking
at the distribution of data points relative to the ideal
(dashed line), it appears that the jackknife values very
nearly approximated ideal in each case, except for strategy
2. Also, visual inspection indicates that the Bayesian
values consistently overestimated support. However, our
statistical analyses indicate that all of the jackknife support
distributions and all of the Bayesian value distributions
differed significantly from the ideal (table 2). The
distribution of ranks above and below ideal for each
comparison (table 2) show that the jackknife distributions
fell above and below ideal, whereas the Bayesian values
are almost entirely overestimates. Only in the strategy 1
did any Bayesian values underestimate support; in every
other case, all the support values were overestimates (table
2, test 2). This observation is further supported by the
skew of Z-values for Bayesian values compared with
jackknife values. The departure of the Z-value from zero
indicates the magnitude of departure from ideal exhibited
by the distribution (Devore and Peck 1993), and many of
the Bayesian Z-values show twice the departure from ideal
when compared with the jackknife Z-values. However,
there is no way to use difference in Z-values to validly
measure the significance of difference. Although the Z-
values indicate tendency and magnitude of difference, they
themselves cannot be used alone to assess significance.

Statistical Tests: Across Support Value, Within Strategy

To determine whether the jackknife values departed
from ideal /ess than the Bayesian values, as their Z-values
suggest, the jackknife values for each sampling strategy
were compared with the Bayesian values for the same
strategies (see table 2, test 3). However, because under

220z 1snbny Lz uosenb Aq L8/ L L L/88L/L/LZ/e19Ie/aqu/woo dno olwapeoe//:sd)y woly papeojumoq



196 Simmons et al.

Table 3

Data and Results for Various Statistical Comparisons of Support Value Distributions Using the Wilcoxon

Signed Ranks Test

Test 4 Test 5
Comparison N Ranks Statistical Results Comparison N Ranks Statistical Results
JACI* versus JAC2* +19 BAY1* versus BAY2* +33
—4 Z = —3.337 —16 Z = -2.696
1 P =0.001 2 P =0.007
JACI* versus JAC3* +17 BAY1* versus BAY3* +22
—21 Z = -0.073 -29 Z = -0473
10 P =0.942 0 P =0.636
JAC2* versus JAC3* +5 BAY2* versus BAY3* +16
-19 Z = -3.743 -35 Z = —3.464
0 P = 0.000 0 P =0.001

each strategy, the jackknife values tended to underestimate
support, and the Bayesian values overestimated support,
the raw values could not be meaningfully compared. This
is because the tendencies of each support score was to the
other side of the ideal, and as the distribution of support
values of both methods under each strategy differed
significantly from the ideal, comparing the raw distribu-
tions would necessarily result in significant differences.
Therefore, adjusted distributions, calculated from the
absolute value of the difference between each support
datum and the ideal, were used for comparison (indicated
by asterisks [*] in table 2, test 3). In each case except for
strategy 2, the distribution of Bayesian values differed
significantly from the distribution of jackknife values.
This, coupled with the Z-values from the first two sets of
comparisons (table 2, tests 1 and 2), demonstrates that
although both the jackknife and Bayesian values differed
from the ideal under every sampling strategy, jackknife
values, with the exception of those for strategy 2, differed
significantly less from ideal than did the Bayesian values.
However, jackknife values under strategy 2 did not
perform more poorly than did Bayesian values under
strategy 2 (table 2, test 3, P = 0.338). Neither method
performed well when taxa were increased and characters
were not, resulting in the situation where the characters
could not resolve the relationships reliably.

Statistical Tests: Within Support Value, Across Strategy

To address which sampling strategy gave the best
results for each optimality criterion, the Wilcoxon Signed
Ranks test was again used to compare the performance of
each sampling strategy with ideal for both the jackknife
and Bayesian analyses. As in test 3 (table 2), the absolute
values of the difference between each support datum and
ideal were used for comparisons (indicated by *). The
distribution of jackknife values for sampling strategy 1
differed significantly from those of strategy 2 but did not
differ from that of strategy 3 (table 3, test 4). The same
phenomenon was observed for the Bayesian analyses
(table 3, test 5). We have already established that the
jackknife values from sampling strategies 1 and 3 more
closely approximated ideal than did the Bayesian values
for strategies 1 and 3 (table 2, test 3). In addition, the

equally poor performance of both the jackknife and
Bayesian values under strategy 2 was established (table
2, test 3). Given this, the results in table 3 further support
the observation that the jackknife is a superior measure of
ideal support. The jackknife values for strategies 1 and 3
appear to differ from the poorly performing values of
strategy 2 more than the Bayesian values for strategies 1
and 3 differ from the poorly performing Bayesian values
from strategy 2 (see more extreme P-values and Z-values
for jackknife values in table 3).

Discussion

Proponents of Bayesian phylogenetics have pointed
out that many of the details of these analyses remain to be
elucidated (Huelsenbeck et al. 2002; Holder and Lewis
2003). One of these is the central claim that the frequency
of clades summarized by the majority-rule consensus of
trees generated under this procedure reflects the probability
that the clade is true, given the priors, the model, and the
data (but see Huelsenbeck et al. [2002, p. 675], who have
suggested that other consensus methods may be valid).
Recently, the phylogenetics community has begun to
explore the limits of this assertion using both simulated
(Suzuki, Glazko, and Nei 2002; Wilcox et al. 2002; Alfaro,
Zoller, and Lutzoni 2003; Cummings et al. 2003; Douady
et al. 2003) and empirical (Douady et al. 2003) data. Thus
far, conclusions are split among the view that Bayesian
support values are more reliable than the bootstrap as
indicators that clades are correctly resolved (Wilcox et al.
2002; Alfaro, Zoller, and Lutzoni 2003), the opposite view
(Suzuki, Glazko, and Nei 2002; Cummings et al. 2003),
and the view that Bayesian values may form a reliable
upper bound, whereas bootstrap values may form a more
valid lower bound (Douady et al. 2003). However, the
conclusions of all of these studies cannot be viewed
equally, and conflicts among the conclusions of the various
papers are likely the result of the various methods by
which inferences were drawn from the data (i.e., statistical
comparison vs. visual inspection).

Wilcox et al. (2002) and Suzuki, Glazko, and Nei
(2002) tested the general performance of the two methods,
drawing opposite conclusions. Suzuki, Glazko, and Nei
(2002) and Wilcox et al. (2002) did agree that Bayesian
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support values are higher than bootstrap overall. Indeed,
many other studies have shown that Bayesian support
values are high relative to bootstrap values (e.g., Rannala
and Yang 1996; Leaché and Reeder 2002; Whittingham
et al. 2002). So, although the authors of these studies have
made different inferences about which measure is
preferable, all agree on one property of Bayesian support
values: they are comparatively high. Unfortunately, neither
of these studies statistically established that bootstrap
support differed significantly from Bayesian support or
that either approximated an ideal measure better than the
other. Cummings et al. (2003) analyzed statistically the
general accuracy of Bayesian and bootstrap support in
a simulated star topology case and concluded that
bootstrap support is generally lower than Bayesian support
because the latter is inflated. This statistically rigorous
study supported the conclusions of Suzuki, Glazko, and
Nei (2002).

Alfaro, Zoller, and Lutzoni (2003) and Douady et al.
(2003) investigated support in a more specific, partitioned
way. These two studies examined the performance of
Bayesian and bootstrap support values when clades are
correctly resolved and when they are incorrectly resolved.
Both Alfaro, Zoller, and Lutzoni (2002) and Douady et al.
(2003) showed that Bayesian support values are higher
than bootstrap values when clades are resolved both
correctly and incorrectly. These authors explained this
relative inflation by asserting that Bayesian support
performs better than the bootstrap when clades are correct,
but this pattern would also emerge if Bayesian support
were inflated regardless of character support. Even if this
alternate explanation is incorrect, high support for in-
correct clades is clearly worse than low-support values for
correct clades.

In their four-taxon simulation study, Cummings et al.
(2003) analyzed data that, when plotted, appear similar to
the data of Alfaro, Zoller, and Lutzoni (2003) and Douady
et al. (2003). However, after the application of an
appropriate statistic, Cummings et al. (2003) concluded
that in most cases, the bootstrap and Bayesian values were
not significantly different. This accords with Douady et
al.’s (2003, p. 250) conclusion that Bayesian support and
ML bootstrap values are ‘“‘moderately correlated.”

In this study, we used a reference tree based on
mitochondrial genomes of higher teleost fishes—the
topology of which was the same for both Bayesian and
parsimony methods of reconstruction for the 15 clades
examined—to assess the statistical differences among
Bayesian support values, parsimony jackknife values,
and an ideal support measure. Our results show that
Bayesian support values performed more poorly overall
than do jackknife support values. Furthermore, our results
demonstrated that Bayesian support values significantly
overestimated support by a magnitude greater than the
jackknife, and hence the bootstrap, underestimated sup-
port. These results were not dependent on the taxon and
character sampling strategy employed (except for jack-
knife support for strategy 2, in which there were limited
data available).

Our empirically based results statistically indicate that
jackknife values are a better, albeit conservative, approx-
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imation of ideal, and that Bayesian values consistently
overestimate support. These findings agree with the
conclusions of Suzuki, Glazko, and Nei’s (2002, p.
16140) simulations, which indicated the bootstrap to be
“slightly conservative,”” whereas Bayesian support values
are ‘“‘excessively high.” Our results also accord with
Cummings et al. (2003, p. 484), who also found Bayesian
support to be “excessively high.”

In summary, our results indicate that (1) Bayesian
support values are high relative to more common
resampling support measures, (2) these higher Bayesian
support values are inappropriate in magnitude (contra
Rannala and Yang 1996; Wilcox et al. 2002), and (3)
Bayesian support values should not be interpreted as
probabilities that clades are correctly resolved (contra
Rannala and Yang 1996; Huelsenbeck et al. 2001, 2002;
Wilcox et al. 2002). The first conclusion has been found in
all studies (including the present study) that have
examined this issue. The second conclusion is one of
statistical quantification, which only Douady et al. (2003),
Cummings et al. (2003), and the present study have
investigated, all of which agree with regards to inflation of
Bayesian support values. The third conclusion is a logical
deduction from the union of the first and second
conclusions. By extension, our results suggest that
methods that produce support values similar to Bayesian
support values (e.g., metaGA [Lemmon and Milinkovitch
2002]) are also overestimating support and should not be
interpreted as probabilities that clades are correctly
resolved.

Larget and Simon (1999, p. 756) correctly noted that
“The validity of the [Bayesian] inferences depends on the
validity of the likelihood model, prior distributions, and
data” (see also Wilcox et al. 2002, p. 369). However,
given that the likelihood model, prior distributions, and
subsets of data that we used for each Bayesian analysis
were the same as those used to construct the reference tree,
these qualifications cannot be used to explain away our
results. We expect our results to apply equally well to
traditional heuristic-search maximum-likelihood—based
bootstrap analyses when compared with Bayesian support
values. In conclusion, we advocate the continued use of
the relatively conservative bootstrap and jackknife ap-
proaches to estimating branch support rather than the more
extreme overestimates provided by the Markov Chain
Monte Carlo—based Bayesian methods.
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