WATER RESOURCES RESEARCH, VOL.. 29, NO. 8, PAGES 26372649, AUGUST 1993

How Much Complexity Is Warranted i ina Ramfall-Runoﬁ' Model?

Al JAKEMAN L

N

! Umversiry, Canberra, Au.rmzhan Cdpx‘xal Temtary

ce and Envi ! Studi
' s

.. Centre for R

Au:tralwn N

G. M. HORNBERGER

Department of Environmental Sciences, Um‘ver.tity of Virg

Development of mathematical models relating the precipitation i

, Charlottesville

ident upon a h to the .

streamflow emanating from the catchment has been a major focus of surface water hydrology for
decades. Generally, values for parameters in such models must be selected so that runoff calculated
from the model “‘matches” recorded runoff from some historical period. Despite the fact that the
phyncsgovanmgthepaﬂ:ohdmpofwamthmughamchmtmtkemeammvolvcscomplex .
s, evidence indicates that the information content in a rainfall-ranoff record is sufficient to

mlahonshpretween

support models of only very limited complexity. This begs the question of what limits the observed ..

datapiaceontheaﬂowablecompiemyofmnfan—mmﬂ'models Timcsenestechmquesareapplwdfor_’ )
estimating transfer functions to determine how many-parameters ire appropriate to describe the: - -
mpuamnmds&umﬂnwinthamwbzmduaonmlypmwﬂam,dr“ .
temperature, and streamflow are available. Statistics from'an’information matrix'" provide the clues”
allowable model complexity., Time series.models are developed for seven :
varying physical characteristics. in different temperate,
demonstranethemethod.ltisfonndthataﬁermoduhﬁngthemmmdminﬁaﬂusmganonlmwloss

climatic. regimes to

function, the rainfall-runoff response of all catchments is well represented using g linear model. Also, ~ " °

for afl catchments a

linear model with four parameters is the model of choice. Thetwo

empirically the controls of

describing mnfall-mnoﬁ‘pmeess investigate
physical catchment descriptors, Iand use change, chmate@bange etc..onthedynnmicresponscof
mhmenmmmughtheeanmcanalyusofhxmdcaldmm

1. INTRODUCTION

The construction and application of watershed models
describing precipitation to streamflow processes has been a
prime focus of hydrological research and investigations for
many decades. Both the amount of effort and the complexity
of models seem to have increased continually with the
expansion in available computing power, Most attention has
been given to catchments subject to basically temperate
climatology where hydrological responses tend to be simpler
or inyolve a subset of the processes which occur in other
climatic regimes. Despite the activity in modeling the rain-
fall-runoff process and the concentration on temperate
catchments, hydrologists have noted the lack of real
progress being made in watershed modeling generally and
the problems of developing the process knowledge derived
at small scales for use at larger scales [e.g., Beven, 1987].
Philip [1975, p. 23] saw the need *‘to identify and to
recognise frankly the limits of what natural science and the
‘scientific method’ can bring to the tasks of catchment
prediction.” More specifically and recently, van Genuchten
[1991, p. 190] summarized that

future research in catchment modeling must address the prob-
lem of permissible system and model complexity, the scales
over which model components are valid, and the integration of
maodel components into an overall balanced framework.
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One of thc major problems in rainfall-runoff modeling is
dealing with overparameterization.. Loague and Freeze
[1985, p..245] applied several models of varying complexxty
to a number of catchments and concluded that the “ﬁwct that
simpler, less data intensive models . . . provided as good or
better predictions than a more physically based model is
food. for thought.”” Hornberger et al. [1985] incorporated
parameterizations into a version of TOPMODEL for pro-
cesses observed to be occurring in the field but found that
the 13 parameters could not be ‘eliably . estimated using
rainfall-runoff data; they-found that four parameters seemed
to suffice : to- represent. the - transformation of rainfall to
streamflow. Hooper ét i 1988] examined a very simple
hydrological mode! with $i parameters and still found it to
be overparametenzed, Beven [1989, p. 159] comments,

Thcrcuagmatdang«ofoverperametenzamn if it is at-
tempted to simulate all hydrological processes thought to be
relevamandﬂtthose parameters by optimisation agsinst an

observed discharge record. . . . It appears that 3 to S parame-
m:houldbemﬂimemmrepmduccmostoﬂheinformanonm
a hydrological record. 3

Hydrologists are faced with something of a dilemma. The
most frequent application of rainfall-runoff models is in cases
where thigionly data available are precipitation, temperature,
and stieamfiow. Models that seek to incorporate processes
known to be important hydrologically (at small scales) are
likely to contain a rather large number of parameters, many
of which will be correlated with other parameters [e.g.,
Clarke, 1973). How are these observations to be reconciled
with the contentions that only a model with a few parameters
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;-‘2 1 The Model B
There are many formal ways ‘to assess the . informauon
.content in data with respect to some model M. In a stochas- -
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can be supported by rainfall-runoff’ data? It appears that
there are challenges that face those concerned with rainfall-
runoff modeling. How much information is contained in
records of precipitation -and streamflow?  How complex a
parameterization is warranted in a rainfall-runoff model?
Does adding spatially distributed data on physical catchment
descriptors, such as on terrain, hydrologic soil, and vegeta-
tion properties, permit a more detailed parameterization?
A response to these challenges is attempted here first by
presenting a framework to answer the question of what
reliable information may reside in concurrent precipitation-
streamflow measurements for assessing the dynamic charac-
teristics of catchment response and for prediction of stream-
flow. In particular, the paper addresses the limitations of
precipitation-streamflow modeling when measurements. of
other dynamic flow or concentration variables are not used
as additional prior information in model construction. The
framework allows inference of thé number of streamflow
components that can be identified from given precipitation
and stream dnschargc observations. Its use‘is fllustrated for
catchments spanning a range of scales and basically temper-
ate hydroclimatological regimes. Mainly daxly data are used,

and the specific results are applicable to’analyses involving *

observational time series whose length is of the order of 100
times the quick flow response time constant. In the case of
daily data this is of the order of 1 year. -

The outcome of applying the framework is a hypothesxs
that, after allowing for antecedent conditions, the response
of a catchment is predominantly linear over a wide range of
temperate climatological regimes and down to small catch-
ment scale. In response to van Genuchten [1991], the *‘per-
missible model complexity’* seems to be generally low,
containing around half a dozen parameters, and “the scales
over which the model components are valid™ are very wide.
With much longer observational time series, it may be
possible to identify the values of additional parameters.
However, as pointed out by Sorooshian et al. [1983], rather
than length, it is the quality of information contained in the
data, which is important; data sequences which contain
larger hydrologic variability are more likely to result in
rchable paramcter estimates.

'2 Mmons

PR

5

rainfall uy. At each time step & a catchment wetness index,
sy, or antecedent precipitation index is calculated by a
weighting of the rainfall time series, the weights decaying
exponentially backward in time from step &, namely,

sp=crg+ (1= 775
=clrit(1=75 g +(1=7. ) orp gt - )

The parameter 7, is approximately the time constant, or
inversely, the rate at which the catchment wetness declines
in the absence of rainfall. Hence a larger value of 7, gives
more weight to the effect of antecedent rainfall on catchment
wetness than a smaller one. The excess or effective rainfall is
computed using

up=rysy @

The parameter ¢ in (1) is chosen so that the volume of excess -
rainfall is equal to the total streamflow volume over the
calibiation period, after adjustment for change in catchment =
Storage between the beginning and end of the period. It is the
increase in storage index per unit rainfall in the absence of
evapotranspiration: It ‘is not really a free parameter but
merely a normalizing one. o
To account for fluctuations in evapotranspiration, a simple
function of temperature can be used to modulate the rate at

- which the catchment diies out. Then r,, in (1) is replaced

with the function ,
T {tp) = 1, exp [(20 — ‘k)f] 3)

where 1, is the temperature in degrees Celsius at time step k.
In this way, r, is inversely related to the rate at which
catchment wetness declines at 20°C. The patameter f is a -
temperature modulation factor which determines how 7,.(1;)

changes with temperature. )

The general conclusions of this paper are independent of
this nonlinear loss module. The structure of the accompany-
ing linear module identified from any {uy, qu} is indepen-
dent of the values of the parameters 7,,, ¢, and f, whereas-
the parameter values in the identified linear components are

.dependent. An explanation for this is that the nonlinearity

" between rainfali and streamﬂow has not becn strong enough

tic setting the model M and its parameters are most com-

pletely specified by its probability distribution p( M). Given
an evenly spaced time sequence of N rainfall-runoff samples

fras anb en=r ra > o0 TN AN =91 G277 0 aN)

where ry is observed rainfall and g, is observed streamflow
at time step k, the conditional distribution p( M/{ry, qn})
can be called the information about M contained in {rx, qu}.
In the next section, it will be argued how the covariance
matrix of our model parameters can be invoked to determine
the information about M in the time series samples.

The model used here to extract the information in rainfail-
streamflow time series data consists of one nonlinear and
one linear module. The nonlinear or rainfall loss module
represents the transformation of rainfall ry. to “‘excess”

:'to unpede the identiication. | _

od"cfghc odel';;onverjsexce mnfalluk

e

D Tt ‘?k"k:ef’ ”@“éi*i' : *i”.é,',".s’-éf '
@
a=xc+ b &)

wherein ¢, represents the addition of- all data and model
errors and x, is a hypothetical error-free streamflow vari-
able. The n + m + 1 elements of the vector a = (ay, ***,
an, Bk b,,,)’mxheparametcrstobcopumxzedmthe
linear modulc )

There are several reasons that this model (1)5) is a

" patural one to use for cxtractmg the mformatxon in time

series {uy, qy}:.
1. The model and a snmxlar version thh a simpler non-
linear loss module are good predictors-of streamfiow and
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Hon [Jakeman et al., 1990, 1991, 19934, b; Littlewood and
almnan, 1992} They fit streamflow records from calibra-

e fits for the catchments analyzed in this paper are
sentative of the range experienced with application of
e-mode! to around 50 catchments to. date..
-2, The - transfer function representation '(4), mcludmg
kcess rainfall inputs and streamflow outputs, is a discrete-
ﬁme equivalent of an approximation of the convolution
ategral relating excess rainfall and streamflow through a unit
ydrograph. It uses a series expansion of the unit hydro-
ph in terms of a linear combinationt of exponential terms
V/0f order n. The associated approximation of the unit hydro-
graph is an-efficient one parametrically, corresponding to a
onal function representation of a polynomial function
ich eventually decays. As will be seen, when used in
gnjunction with an appropriate parameter estimation tech-
plque" : tmcmre allows one to appeal to mmple criteria to
i among alternrtive model orders 1.1t is mathie-
cally attractive to solve an ill-posed inverse problem
such as that of unit hydrograph estimation) by expanding
the solution in terms of smooth slowly varying functions,
then estimating the dominant terms in that expansxon to
ftermine the amount of reliable information in the data
:{Newsam, 1984]. This discrimination process is objective in
zihe sense that it i is user-independent, particularly the method

3 In physical terms, the transfer function representation
2 esponds to a flexible configuration of linear storages
estonnected in parallel ‘and/or series paths for the transit of
gxcess rainfall to the stream. This is consistent with the
Beneral design of conceptual watershed models that possess
IMped parameterizations. The main difference bétween the
faasfer function and more standard conceptual models is

found throughout the traditional conceptual models.

44, More physically based models can also be regarded as

onfiguration of conceptual storages. Data on physical
=ment descriptors help to define the number and config-

on of storages. These and most models, including the

~

Mintall excess to streamﬂ.w

2t the nonlinearities in the former are all dealt with in the -
module, whereas thresholds and other nonlinearities can

s

. :
= = By - a,xy

s e 2 20 0 0 0

model: (linear)

model (1)-(5), also tend to- reqmre the calibration ot‘param

eters ‘related to” fiow. rates and volumetric throughputs.
Therefore’ the: mphmons of the results obtained from
applying this paper’s framework can be qualitatively de-
duced for physically based and conceptual models.

In using model (1)-{5), our explicit purpose is to infer what
conceptual pathways and lumped stores are unambiguously
manifest in time series {oy, qu}, taking into account the
noise levels in the time series and model. Thé properties of
these-stores and their configuration are determined by the
values in a and the orders (n, m), respectively. Note that
each storage i(i = 1, 2,-++, n) can be parameterized
completely by the volumetric throughput v;, relative to other -
storages, and its time constant 7, in response to'a puise
input of excess rainfall. The time constant can be defined as
the time taken for the peak in output of a storage to recess to
exp (—1) of that peak value. In terms of an equivalent
continuous time formulation, the characteristic response of
each storage can be considered to be defined by a unit
hydrograph (component) of form I; exp (—t/7;), where I-is
the relative peak of the hydrograph response and v, is the

‘iitegral of or area inder this hydrograph response ‘compo-

nent.’ We deﬁnef = 1y, Ty Vi T v,)7 and the

‘parameters T,,, f, and ¢’of the nonlinear module as the
“dynamic response charactéristics (DRCs) of the catchment.

The quantities J; can also be regarded as DRCs, but the
elements of the vector r are sufficient to completely define
the exponential response.

When n = 2 and m = 1 in (1), excess rainfall can be

_considered to travel through a configuration of two parallel
-storages as illustrated in Figure 1. In this case, I} + I3 = v,

+ vy = 1, ang.the storage with smaller time constant

-represents the quick flow component while that with the

nent. In this case; r can be
When n:= 2 and.m =-0, the

larger - the slow flow com
written as (fq, Tss vq, vt

~storages in Figure 1 are'in series. The simple relationships
‘between the’ parameters in v and a for the two pamllel

storage configuration in Figure 1 are”

14=—Aln (~ay) (6)
7, = =Alln (~a,) (@)
ve= Bl + ay) @)



v, = BJ(L + a,) )
where A is the sampling interval for the precipitation and

streamflow time series and .the & and B parameters are.
obtained from the decomposition of the polynomial transfer

function in the backward slnﬁ operator B ( Buk = u,‘_‘)
according to B R,

bo+bB 'B'.,A B
1+aB+aB? 1+a,B 1+a,B
The sampling interval sélected or available for the time
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small in volume and decays very slowly relative to the other
component.

An information matrix I for any input-output time series
{uy, qn} and transfer function model of the form (4)—(5) with
parameters a can be estimated [e.g., Pierce, 1972] as

< X=(NIEDERAT) (10
wherei = [=Rpey =Rgz ~Rjop Ug Ug—y "'uk IR
£, is an estimate of the noise-free streamflow x, and & =
Var (&) = Var [(g; — £)] is the model error or residual
variance. As described below, the information matrix and

series data clearly has an effect on the information that can  the residual variance allow one to determine how many
be extracted about a model M. Too coarse a sampling model parameters are supported by the data. The specific
- interval will result in a loss of information about response approach was first used by Young et al. [1980] and is in the
dynamics. Too fine an interval can result in numerical spirit of the philosophy of model parsmony espoused most

instabilities [e.p., Jakeman and Young, 1980]. For our
model, the appropriate sampling interval to select is one that
is of the order of, but preferably less than, the time constant
of the quickest identifiable response. This selection can
make identification of slower components numencally diffi-
cult. A particular algorithm was applied by Jakeman et al.
{19901 to obviate this problem and is again used here to
extract the different components.

- Note that with a two-parallel storage configuration, our ..

. -overall mode} has seven parameters, six of which must be
estimated. Use of the parameter ¢ in (1) constrains the .
volumetric gain between excess rainfall and streamflow, (b
+ b1 + ay ¥ ay), tobeumty s0 that only three of the
linear module parameters need be independently estimated.

2.2. Parameter Estimation and the Form
of the Covanauce Matrix._

The main interest of the paper is on me complexity of the
linear part of the model. Estimation is therefore focused on

notably by Box and Jenkins [1976]. .

If a simple refined instrumental vanable (SRIV) algorithm
is used to estimate a .then an analogous matrix I* is the
information matrix. This com:sponds to I above except that
“each element is replaced by an a.nalogous astensked variable
which is filtered accordingto.. .. .. :

= —agfho - a8t

wh = —&,ui_.. - '—>5,V,u',“_‘,, + ﬁk v

" Here (&}, &, +++ , &,) are the SRIV estimates of the first 7
elements of a.

The cova.nancc'mamx P of the paramcters in a is esn-
mated as

p=1! (an
- Undef cértdin éonditions’ [e.g., Pierce, 1972], the parameters
estimated in a are asymptotically normally distributed with
covariance P. Thus for any model M, a and P theoretically

the mean and covariance of the parameters in the linear are total extracts of the information in the data {uN. qy}.
module given values of the parameters 7,,, f, and ¢ in the ‘They contain the probability distribution of the linear re-
nonlinear module. The parameter c is obtained simply from sponse characteristics of the associated catchment. In the
the data and 7,, and f using (2). The latter parameterscanbe  context of the model (4)(5), ecither the information or
optimized by trial and error using a simple search technique. . covariance matrix permits specification of which configura-
The search can be applied to select those values which, | tion. (or model orders (n, m)) can be identified unambigu-
- when used in ‘conjunction with an- -automatic algorithm for ously-(or with specified uncertainty) from the.data. Over-

‘estimating the parameters 8 sansfy an ob;ccnve ﬁmctton in spectﬁcauon of eitheF model order as n' or m' will fesult in

k ﬁtung streamflow. -

"' There ‘are’ many’ algonthms available for cstunaﬂng the
parameters in transfer function ‘models of  the form (4).
Instrumental variable techniques are preferred here because
they lead to sxmpler algorithms with good properties if one is
mainly interested in the system dynamlcs and one cannot

.an I matrix which is not well conditioned because of a  Iack of
.cross correlation between £, and lagged values. of i or
" between Uy and lagged values of £;. These cross corre-
lations form some of the oﬁ'~dmgonal elements in (10). The
greater the overspecification of.n and s, the worse the
conditioning of the information matrix or tendency to singu-

model or is not interested in the precise nature of the errors.  larity, and hence the larger the elements in the covariance
They yield consistent estimates provided the errors §; are matrix. Underspecification of either model order will result
uncorrelated with the input u#;. Therefore they do not in a substanually hxgher value of &% than for any model
require the errors to be Gaussian or even independent and orders ' = n, and m’ = m. In practide, the values of &* (or
identically distributed. They can yield asymptotically effi- the coefficient of determination D = 1 — &*Var (q,)) can
cient estimates if the errors are stationary. A covariance be expected to decline (rise) to a plateau as the model order

matrix is a by-product of the algorithms. The algorithmic increaggs while standard measurement norms of the covari-

details will not be reported here. Jakeman et.al. [1989, 1990]
summarize the properties of various instrumental variable
algonthms and cite the major literature. The simple refined
version is the one preferred because it performs well in the
most difficult cases, in particular the case of esumatmg two
hydrological stores or components where one component is

ance matrix become unacceptably large.’ A measure of the
passage of I from. bcmg well conditioned for small parame-
terizations to being ‘ill condltioned for models that are
overparameterized is the average relative parameter error
(ARPE). This quantity is the average of diagonal entries in
the covariance matrix P, each entry normalized by the



" JAKEMAN AND HORNBERGER: LEVEL OF COMPLEXITY IN RAINFALL-RUNOFF MODELS"

TABLE 1.

Hydrometeorological Characteristics of Catchments forYeersAnalyzedm This Paper .

Average Daily R
. o Maximym
- S yowe Precipitation, - Temperature, - Annual
Catchment ._Area, km? mmfyr °c Yield, %
Orroral Valley (Australian Capital 89.6 1101 18.9 27
Territory)
Licking Hole (Australian Capital 20.6 1426 18.9 53
Territory) .
Monachyle (Balquhidder, Scotland) 7.7
Kirkton (Balquhidder, Scotland). = . 69
.., Watershed 36 (Coweeta, North 0.49
0 Catoling)- I
~ Watershed 34 (Cowecta. Nmth

Here pa denoted not availablé:
square of its estimated mean value. It has been used by
Jakeman et al. {1989, 1990}, for example.”

The covariance matrix in (11) is dependent on (1) the input
sequence of excess rainfall #;, (2) the underlying response
(model) parameters (because 25 is. the output of the model
and £} and w} are transformed. from x, and u; using
&y, v+~ a,), (3) the variance of the combined data and
model errors, &%, and (4) the sample size, N.. For any
"~ temporal pattern of excess rainfall, response parameter

values, and error level {or alternatively sample size), P can
be evaluated using (10) and (11) to determine the absolute
minimum  sample size (error variance) required to achieve
some predetermined accuracy in the parameter estimates a
- and hence in the linear dynamic response characteristics 7.

2.3. Example Catchments

~ To answer our fundamental question, How coinplex a
" parameterization is warrantedin a ramfall runoff model?, the -
_‘nxodehng fmmework was apphed t0'a selection of catch-
. merits’ éovering a rangc of scales and' chmauc condmons

'fi

"pairs of catchiménits were chiosen in ‘close proximity
differing Fesponses so that model’ performance couid be

examined undet similar climatic conditions (almost identical

" calibration periods) but different ‘catchimerit descriptors.
The largest pair of catchments selected for analysis con-
sisted of the upland subcatchments of the Murrumbidgee and
Cotter rivers in the Australian Capital Territory about 50 km
southwest of Canberra. Their centers are about 10 km apart.
The stream gauge on the larger Orroral Valley catchment is
at an elevation of 870 m, while that on the Licking Hole

catchment is at 1090 m. Land falls steeply in both catch-

" ments from high ridges. Both contain a large diversity of

vegetation, mainly native eticalypts, but the cover at Licking -
Hole was completcly burned by brushfire just prior to the
) penod of analysxs. Soils are deep in the two, but quick flow )
in the Orroral Valley is considered to be mainly interflow
above a semipermeable layer (R. Knee, personal commum- .

cation, 1992).

The pair of intermediate sized catchments selected contain
the Kirkton and Monachyle streams, situated near Balquhid-
der, Scotland. about 60 km north of Glasgow. The catchment
centers are less than S km apart. Both catchments have steep
slopes, flat valley bottoms, and generally thin soils, but the

Monachyle has more extensive peat areas in its 1 upper patts
- Thé" Kirkton has forést and grass vegetation, while ‘the
Monachyle is covered with' heather and grass. Jakeman et
al. [1993b] have analyzed precipitation-streamflow data
from these catchments before and after experimental land
usechangeawereeﬁ‘ectedmexaminqtheassocimdchangcs
in.the hydrological response. Detailed descriptions of the
catchments and the experimental Balqnlndder program are
given by Blackie [1987] and Johnson {1988). - :

The smallest pair of catchments selected was from the
Coweeta Hydrologtcal Laboratory in the United States.
Coweeta is located in the Nantahala Mountains of western
North Carolina. Watershed 36 is a high-elevation, steeply
sloping catchment with shallow soils, and a high annual yield

and a large proportion of quick flow [Swift et al., 1988].

Watemhcd 34 is a midelevation catchment with somewhat
deeper soils and, consequently, substanﬁally more delayed
flow.. Details of the physical ‘characteristics of the Coweeta
catchmcnts are given by Swank and Crassley. [1988).
Hydmpill is a. small expenmental patchment of 490 m

“near Nanjing, Ch.ma. 1t has been used to mmngqtc isotopic
. beterogeneity. in subsurface. waters by, Kendall a
[1991] Accordmg to tbem, the ca!chman

R

“was cted with s oftwo
intersecting slopes with 14° mad:ent.s overlaying bedrock. Im-
‘permeable ‘walls' enclose the' catchment on the top and sides.
Theaquiclndewascavmdwnhlmofasﬁtyloamthatwax
free of concretions. The bulk density was adjusted to approxi-
mate the natural soil profile. Grass was then planted over the
surface. After three years of settling, a drainage trench was dug
at the intersection of the two slopes and the wamr-samplmg

_ instromentation was installed.

Five troughs, each 40 m long and constructed of fibreglass,
were installed longitudinally in the trench. These troughs were
stacked on top of each other to create a set of long zero-tension
lysimeters. BachuoughhasaZOcmaluminumlipthxtextznds
_honmntallymmthewillayer;o,, Jeakage t
. laym. Waters collected in each trough pasa through V-nou:h
weirs wherc discharge is m ed and
' recorded ... theuypermosttroughcollectsmn, the next lower
trough -collects surface runoff. The next three troughs collect
subsurface flow from soil layers spanning the depths of, respec~
tively, 0-30 cm, 30-60 cm, and 60100 cm.

For each catchment pair, that is, excepting Hydrohill, one
year of excess rainfall and streamflow values was used to
estimate model structure and the associated parameter val-

o

~.



TABLE 2. Identification Statisti
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for Two Adji Catch in the A Ji

Territory Using 1 Year of Daily Rainfall and Streamflow Data Beginning in April 1983

Om)ml Vailey ..
i Catchment Licking Hole Catchment
Conﬁgumnan and Modcl

i, Order (rym): - .. . 3 ~ARPE,% .. D: i.... ARPE, %
One storage (1, 0) 0.761 0 087 - -~ - .0.817 - - -0.,033
Two serial (2, 0.768 3.366 0.824 3.442
- Two paraliel (2, 1) 0.787 0.108 0.870 0.043
“Three serial (3, 0) 0.788 1.251 0.842 2.013
One serial, two parallel (3, l) - 0.787 945.474 0.854 4,425
Three parallel (3, 2) 0.785 365.680 0.8712 104.358

ues. For Hydrohill, analysis was performed on a.storm
covering a period of about 34 hours with data spaced at 6
min. For all catchments analyzed, the corresponding sample
sizes were sufficient to identify the appropriate configuration
of linear storages and their approximat,e parameter values.

" “configuration of the linear module identified is the same for
any values of the nonlinear module parameters, 7,, and f
which 'vield reasonable fits to streamfiow. Indeed it is the
samexfnononhneanhcsareassnmedandrmnfaﬂ:stmated
as excess rainfall. However, only one storage may be
identified if either base flow is absent or data {uy, qy} are
sampled over a coarse enough time interval. From monthly

data, only one storage was identified by Littlewood and™

Jakeman [1992] for the Thames Basin at Kingston, and the
match between observed and model flow was excellent.

3.1. The Paired Catchments

Identification results. A general pattern emerges from
the results of the modeling approach applied to a year of
daily data from each of the six catchments (Tables 2-4). In
terms of D, the single-storage and two-serial storage config-
urations lead to lower values than the two-paralle] storage
sconfiguration (with the exception of the Monachyle catch-

* ment). The former also have fewer parameters, two and

three, respectively, compared to four for the laiter. In the

small (<0.1 as will be scen in Table 5) that tl;evformgr
configurations suffer no reduction in D value by not fitting
the low recessions. The slow flow volume fraction at Kirkton

Forabroadofrangeofcatchmentswehavef d,aswe;
Ahavc for thé seven’ catcbmcntsmthzspapcr -that the most _
" commionly 1dennﬁed configiration is fheonemFigm-el of

" “two ‘storages in parallel driven. by’ excess rainfall. This

is also small enough (estimated az 0.15) to yield only small
differences in D among the different configurations.

With all six-catchments, more complex configurations
than two parallel storages yield no substantial improvement
in D values, less than 1.3%, and they may yield a substantial

:-decrease. The average relative parameter erfror:(ARPE) of

the single-storage and two-parallel storage configurations is

;. orders of magnitude lower than for the.other configurations.

Therefore -the results: show - that & rainfall-runoff ‘model

-configuration with more than two storages is not warranted
by the data. If larger configurations are fit, the uncertainty or

ambiguity. in parameter estimates is exceedingly high. I
configurations involving fewer parameters are estimated, the
fit to streamflow for all the catchments is visually inferior,
especially during long recessions, and is generally manifest
as lower D values.

Qualitative relation of DRC values to physical catchment
descriptors. - The dynamic response characteristics of the
linear module for each of the"six cat¢chments, derived di-
rectly from the parameter estimates @, show a variability
reflecting our wide choice of catchment types (Table 5). A
comprehensive interpretation of the estimated DRC values is
beyond the scope of this paper, but some comments are
warranted. Note that size of the catchment bears little
relation to the time constants of the quick and slow compo-
neats. Orroral Valley, the largest catchment by far, has a
much smaller 7,.(faster quick response) than the next three
largest catchmeénts. Licking Hole, which is much larger than
both Coweeta catchments, has a smaller 7, (faster slow

_response) than these, If DRCs are related to physical catch-
‘mént desmptors, as suggésted by Jakeman et al. [1992],

case of the Monachyle, the-slow flow- -volume fraction-is so---more than catchment size is involved.

Qualitatxvely, some of the controlling differences between
catchments in each pair can be argued. This is because the
climatic forcing variables are basically the same and some of

TABLE 3. Identification Statistics for Two Adjacent Catchments Near Balquhidder, Sootland
. Using 1 Year of Daily Rainfall and Streamflow Data Beginning in July 1985 °,

N Monachyle Catchment Kirkton Catchment

Configuration and Model .
Order (‘n, m) D -WE.«% D . ARPE, %

One storage (1, 0) " 0.686 " 0492 0.728 0475
Two serial (2, 0) 0686 450,004 0.728 292,149
Two parallel 2, l) 0685 1.555 0733 0278

' - Three serial (3, 0] ! : - 0.690 '29.589 0.740- - 4.549
One serial, two parallel [ 3 ))] 0.654 34,147 0.742 836.647
0.695 89,647 0.746 - '19,528.081

Three parallel (3, 2)
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ldcnuﬁcanon Stausncs t‘or Two Ad)acem Catchments in Nonh Carohna Using 1 Year

. TABLE 4.
e ofDaﬂyRmnfaHmdSmamﬂomeBegmnmngcmber 1981 -
) . Caweeta 36 Catchment Coweeta 34 Catchment
Conﬁgumtion and Model . | - -
Order {n, m) - . D ARPE, % D ARFPE, %

One storage (1, 0) 0.741 0.074 0.808 , 0.043
Two serial (2, 0) 0.749 4339 - aee - @
Two parallel 2, 1) 0.891 0.063 0.916 0.078
Three serial (3, 0) , 0.788 1.502 [ eee @
One serial, two paraliel (3, 1) 0893 . 5.465 0.908 3.264
Three parallel (3, 2) 0.900 7.427 0.922 49.691

“..... Here, » denotes divergent model. -

insection 2.3..For’ the largest: pair (the: Australian Capital
.- Territory catchments), terrain is.of thé-same. type, with the

: .. soils and vegetation being the obyvious difference. The deep
-: . soils and reduced vegetation at Licking Hole provide rela-

o tively larger increases in storage (see separation in Pigure 3'
versus . Figure 2) immediately following rainfall, slow flow
contributing more to the hydrograph peaks, whereas an

underlying less permeable soil layer at Orroral Valley pro-~

vides 'a_much flashier ‘quick: flow response (1, = 1.61
compared 10 3.79 days) and a slow flow storage Wlnch isless
responsive to rainfall and recedes more than twice as slowly
(75 = 97 compared to 36 days). In the case of the Balqulnd—,
“der catchments. the topography is similar, the ‘main differ- -
ences also being the vegetation and soils. The larger areas of
upland peat may contribute to the greater proportion of
quick flow volume in the Monachyle (v, = 0.93 compared
to 0.85 and see sepamnon in Figure 5 versus Figure 4). For
the Coweeta pair the differences in soils and topography are
substantial. The steep slopes and thin soils at watershed 36
yield 2 much smaller proportion of slow flow volume than do
the deep soils at watershed 34 (v, = 0.58 compared to 0. 80
: and see separatlon m Fxgure 6 versus Flgure 7) -

the physimi éatchhlem descriptors:are sxmilar as:described

: ‘I‘ABLE 5 Dynamfc Response Characteristics of the Lineai Mddule and

Correspondence between DRC values and stream hydro-
graph patterns. There is also a very reasonable correspon-
. dence between the patterns in the stream hydrographs in
Figures 27 and ‘the " DRC’ valucs of thc Tinear module,
especxally if one does'the companson thhin each pair where
the climatic forcing variableés are, basxcaﬁy the same. The low
value of 'rq for the Orroral Valley stream response accords
well with its qualitative flashiness (Figure 2). Perhaps not so
easy ‘to appreciate from the figures are the similar relative
volumes of quick (and. hence slow) flow throughput for
Orroral: Valley and Licking Hole (Figires 2 and. 3). For
Orroral, the long slow flow time constant 7, of almost: 100
days and the flashiness of quick flow. evidently ensure a
strong’ contribution of slow flow to total stream volume
despite the ‘relatively low magnitude of sfow flow during
rainfall events. For the Balquhidder catchments, Monachyle
shows a flashier guick response and a smaller slow flow ,
volume than Kirkton (Figures 4 and 5). The DRC values/
(Table 5) confirm this view. But it is more difficult froni
inspection of the stream hydrographs to appreciate the
identified longer response times of quick (and siow) compo-
" nents for Coweeta watershed 34 versus 36 (Table 5). This is
partly due to thc obvxously larger slow ﬂow voluum for

Hef M i ConfdenceIntervals for the Seven Catchments ©

. Dynamic Response Ch jstic
e tor s . ves Cwp
“Catchment days days ‘fraction " fraction’
Orroral Valley
Value ’ . 161 97 ‘ - 0.62 0.38
90% confidence intérval (1.45, 1.78) (—308, 458) (0.34, 0.96) (0.02, 0.66)
Licking Hole
Value . .79 36 0.63 0.37
. 90% confidence interval (3.44, 4.18) . (25, 64) (0.56, 0.69) (0.30, 0.43)
Monachyle o ot .
Value e 085 . 39 . . 093" 0.07
90% conﬁdcncc mterval (0 72, 1.00) (—102, 86) 0.81,1.07) = (~0.07, 0.20)
Value 1.35 .. 46 085- - . 015
0% conﬁdcnce ,(! 18, 1.54) . A~176, 25 (0.73,0.99) ... .(0.01, 0.28)
interval o L. L E
.Coweeta 36 .
Value - - 2.32-- 50- - - 042 - - 0.58
90% oonﬁdcncc interval (2.07, 2 64) 2, 61) (0.38, 0.46) (0.54, 0.62)
Cowesta 34 .
Value - 3.45 69 0.20 0.80
90% confidence interval 2.97, 4.12) (64, 75) (0.18, 0.22) (0.78, 0.83)
Hydrohill 0.0054 0.2417 0.77 0.23
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Fig. 6. Rainfall (millimeters), model fit, resxduals and total/slow
separation for daily streamflow (mﬂhmetcm) at Coweeta watershed
36 in 1981-1982

watershed 34 obscuring direct appreciation from the stream
hydrograph of the rate of quick response.

Uncertainties in DRC values. A measure of the uncer-
© tainties for estimated mean values of the DRCs for the linear,
. module is also provided in Table 5. These were computed by
Monte Carlo sampling of the estimated covariance matrix of :
a, calculating the ensemble of ¢ values using :(6)(9) and’
. rejecting the largest and smallest 5% of values to obtain 90%

confidence intervals. The table illustrates that the underlying
nature of a catchment’s response has.a strong effect on the
accuracy with which the properties of that response can be
calculated. Notice the large uncertainties on 7, vy, and v,
for Kirkton, Monachyle, and Orroral. These large uncertain-
ties are principally due to the low magnitude of slow flow at
many time steps. Absolute errors in time series calibration
data and model have a larger relative éffect on slow flow
magnitude, swamping the underlying slow flow signal in the
streamflow series to a greater degree. .
There is also an effect which compounds' these uncertain-
- ties. The absolute data errors are probably larger in these
three catchments than in the others examined in the paper.
- For the Balquhidder pair, some precipitation in the winter.
months occurs as snowfall, and its delayed transfer to excess
rainfall as it melted was not attempted (see the model's
premature response to snowfall in early January in Figures 4
and S). In Orroral Valley the rain gauge, being situated in the
largest by far of our seven catchments, will not yield as
representative a measure of incident rainfall over the catch-
ment.

-series: qff,
= qg+3o+so+loo) andqg “‘*"’“’ -N = 250, The resulting

cu:mts‘u‘m RO e A Wy i AR Gep Gk New
Fig. 7. Rainfall (millimeters), model fit, residuals and totalislow

separation for daily streamflow (millimeters) at Coweeta watershed
34 in 1981-1982.

3.2. The Hydrohill Catchment, China

Rainfall time series data ry from a storm on July 5, 1989,
were' analyzed by C. Kendall et al. (manuscript;in prepara-
tion, 1993) ‘using model (4) separately with' discharge mea-
surements qf’, % g0, and q{{% and vatious additions
of these (¢.8., g oo o qﬁ” + g% for each k), employing
an obvious notation to represent discharge collected at each
trough. The time step selected was 0.1 hours, and analysis

. was undertaken from 8.7 hours after the storm commenced,

‘still fedving almost 25 hours of record (N = 250) before
surface discharge ceased. Deletion of the first 8.7 hours of
the storm data allows omission from the analysis of some
missing discharge measurements in that early period. As will
be seen, rainfall after this period, from time steps 88 to 337,
can be treated as excess rainfall, That is, ug = r; is set for

.this catchment, allowing omission of the nonlinear module.

Transfer fungtion model identification was applied (C.
Kendall et al. (manuscript in preparation, 1993) give detailed
results and. compare. the quick flow-slow flow separations

with chémical separations) to the following discharge time
a®, PO ﬁso) qifom ) g fe0+100),

model fits were found to be credible ity all cases, Figure 8
shows the fit to total discharge, for example, including
simulation of rainfall through the model for the first 87 time
steps not used for model calibration. The identified configu-
rations of the different models (omitting the subscript N)
were a single storage for z with ¢, @, ¢, and ¢©*3®
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.. Of course, the response at any level is composed of |
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precipitation, air temperature, and streamflow. In this re-
spect, the actual model used is important only insofar as it
allows a statistical evaluation of the number of parameters
(taken by us to be an index of model complexity) that can be
- logically supported by-the data. The major result of our
= Observed Streamfow study is that, for catchments in temperate climates but over

R st et o o o | d tremendously. wide range..of scales, only a handful of
parameters can be reliably estimated from minfall-anoff
data. This result confirms suggestions made by others using

- conceptual or more physically based models [e.g., Beven,
1989]. -

Before proceeding. with a dxscussxon of the main infer-
ences drawn from the modeling work, it should be empha-
sized what our work does not do. First, there are many
reasons for building rainfall-runoff models. From a scientific
perspective, for example, insights derived from physically
based models, whether or not such models can be rigorously
parameterized -using . statistical-methods, can:be extraordi-

- narily useful, Our work should not be taken as.a recommen-
-dation. to: replace. in- toto--physically -based.. models ~with
transfer function models-suchas used heres ;- -~ .-,
= Better-definition-of the: spatial dxsm’bnnons of catchment
characteristics, moisture:status, precipitation, and S0 forth is
likely to be achieved-in the future as a result of promising
-.modemn technigues. Such additional information may result
in an improved ability to identify some of the "complex
hydrological mechanisms that drive catchment response.
N I I Y ] For example, it has been argued that a knowledge of the
Time (0.1 hours) distribution of precipitation over a catchment would greatly
Fig. &, § eters), model fit, residuuals and totalislow enhance our ability to simulate hydrographs [e.g., Wilson et
ig. 8. Rainfall (millimeters), 5K al., 1979]. This knowledge may become routinely available
oy é‘;ﬁ,?,ﬁm”;“?u’,y’fggg‘“‘ﬂ” (107" cuble meters BT . from data obtained from sophisticated weather radar nts
C that are being installed around the world. The work pre-
TS ’ ~. sented here should not be taken as an.implied limitation on

)

and two storages in pamncl for q1, q“"* 100) qm+6°+loo) possibilities for the future;

and q@+30+60+100) Our modeling approach may be utilitarian for such pur-

from the Hydrohill results is that  Poses as flow forecasting. However, repeated applications in
hlgAh::zi:ll:rl z%m:; oftﬁnc:, sjt{oragcs x oﬁl:n be this style will not, in and of themselves, iead to scientific
well approximated by lower-order linear ones. The sum of 2dvances. We believe that there are two main paths to the
individual exponential decay responses (to a pulse of rmin) in  Sevelopment of intuition and advances in the sciences that
different parts of the catchment can bé well approximated by ~deal with the natural environment. The first, building up
the lincar combination: of 2 smaller number of exponential from a physically based understanding of local processes to
terms. Using rainfall and total discharge time series data {u, the Iatge scales of natural catchments, is one with which

,,.q(o+3o+so+wo)} ‘only two components,” W ‘to five < most scientists ‘are "comfortable. The second- approach,

i i ips at the larger scales-with the sim of
separately identified components froin measurements offour studying relationships' at . s-with T
individual troughs, dre necessary to approximate 89% of the -discovering: patterns. that-may: subsequently .be. explained
variance of the total discharge at the outlet (Figure 8). - * "USing conventional scientific wisdom; is also-valuable. It is
" through’ the ‘second- approach' that -our modeling - results

“ultim ‘be applied in-a scientific sense: We do not
numerous components. Data and model errors prevent iden- “I“f“?“ly may be applic entiy A 0
tification of more than a small number of them, Estimation of laim that we have arrived at this point. The aim of this
parameters in higher-order configurations than those identi- Paper is to' investigate the number of parameters that are
fied lead to litde improvement (of the order of 1% in D) in supported by rainfall-runoff data sets. Nevertheless, we
accounting for the variance of observed discharge. These indulge later in this discussion in some speculation as to how
configurations also carry high parameter variances. Thus OUr approach might prove to be useﬁll in empirical scientific
¢even in cases where several runoff components are observed exploration.
directly, only. a smail number (four) of parameters are )
needed to fit streamflow well and to separate a slow flow  4.f%M Complexity

“

 component. Complexity has been analyzed within a statistical frame-

- . work using a specific family of models which allows an

4. Dlscussxon AND Caxcx.usxous . " opuonal nonlinear rainfall loss model and any parallel and/or

“The main issue addrcsscd in this work is that of complex- - series arrangement of linear reservoirs. Strictly, the results
ity in rainfall-runoff models parameterized using only dataon’  are valid' only under these conditions. However, we will



Luuaum AND Hommm Lavm. OF Com.maw N RAINFM.L-RUNOFF Monm.s

'proﬁ'er some xmphcaﬁons Later for mmfaﬁ-runoﬁ' modehng in

- 'general.’’

For a broad range of catchments we have found that the
most commonly identified configuration for a rainfall.runoff

model is two storages in paralle]l driven by excess rainfall as .

illustrated in Figure 1. (If base flow is negligible or the data
sampling interval is too coarse, then only one storage may be
identified). This four-parameter (two in the case of onc

identified storage) linear model obviously may require sup- -

plementation to allow for antecedent precipitation condi-
tions and fluctuations in evapotranspiration. In humid catch-

S mm, ‘this need add only a few more parameters.

Itappearstobcambustconcluslonthatonlyasmall

e number of conceptual storages is warranted: Orroral Valley

with an area~of ‘about 90 km? is the largest catchment

i reported:here, but similar resulfs can be obtained of much
=" . larger ‘catchments: éspecially when: one has ‘a good: spatial
+7: : distribution of rain ‘gauges to estimate-areal rainfall; For the
* 894-km® Teifi basin in Wales and the 767-km? French Broad

River basin in North Carolina, for example, Jakeman et al.

{19934] identified from daily data only a parallel quick flow
and slow flow configuration as the Jinear module. Addition of
the loss model {1)-(3) produced a seven-parameter model
with good calibration and validation statistics. Use of finer
temporal data for small catchments also leads to identifica-
tion of the parallel configuration, Jakeman et al. [1990] used
hourly rainfall and streamflow for two small (0.72 and 0.34

*. km?®) mootiand catchments above Liyn‘Brianne, Wales, and

found the two-parallel storage configuration. The Hydrohill
results also show how individual discharge responses at
different depths become identifiable as either only a quick
component or a quick and a slow component when discharge
data are aggregated in space at the “‘stream™ outlet.

4.2. Llneamy of Response
* Wehave observed a predommant hncamy inthe response'

. of watersheds ovér a large range of catchment scales; evenif -
- only’a simple adjustment is made for antecedent rainfall
*. -conditions, -The linearity.. assumption -.of; unit hydrograph .

{* theory therefore seems applicable in temperate catchments’

' and works just as well for slow flow as for quick flow. The

* major evidence for this is twofold. First, there is the ability

of the exponentiallike response of the transfer function .

approximation to the convolution integral to fit stream
hydrograph recessions gererally quite well, indicating that
nonlinearities can be described by the transformation of
rainfall to excess rainfall. Second, the Hydrohill results
reinforce our observations of a predominantly linear re-
sponse in catchments and add considerable justification for
the modeling approach used in the paper to extract informa-
tion. Despite considerable spatial heterogeneity in the sub-
surface wetting of the experimental catchmeént [see Kendall
and Gu; 1991}, the discharge response (without any nonlin-
ear adjustment between rainfall and excess rainfall) is quite

"“linear; and as found by C. Kendall et al. (manuscript in

preparation, 1993), it is a linear response at all four troughs.
Such linearity is perhaps surprising on so small a scale: The
catchment is only 490 m? in area. Chapman [1992] has also
observed linearity from analysis of event data using a
nonparametric unit hydrograph method. Caroni [1986] used
a unit hydrograph approach to consider variation of param-
eters with flow and, despite findings of nonlinearity, ac-
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'knowledged that linear models” may very “well be good
" approximations.

4.3, Implicatibns for Current Modeling Practice

The amount of information that can be gleaned from
climatic time series of rainfall and temperature and from
streamflow seems a great deal smaller than much of the
current modeling practice, largely performed in temperate
catchments, would indicate. With or without adjustment of
rainfall for antecedent conditions, almost always, one guick
flow component and one slow flow component are all that
can be identified. Experiments by the authors with synthetic

.data nnder ideal conditions (no error in excess rainfall and
. Gaussian noise in streamflow) show that, for a large range of
; systems, three true componeits caribe identified only for
. impracticably low noise levels; more than two components
" can definitely be identified with no noise on the streamflow
. ‘series. It may be possible to identify three components in

some catchments when the nature of the ruinfall, dynamic
response, and quality of records allow this. To find more
than three components without knowledge of internal states,

such a8 levels of hydraulically connected groundwater,

would seem to be a rare achievement.

The ability to identify more than one response component
with reasonable accuracy requires data sets of reasonable
lengthandquality,asweﬂasanalgoﬁthmthatmakesfew
assumptions about the nature of errors and that is numeri-
cally stable enough to extract the slow flow component.
Even when just two components are identified, high param-
eter variance (see Table 5) and covariation exist for estima-
tion from daily data of 1 year in length. Such uncertainty is
exacerbated when the difference in relative volume ,between ’
quick and slow flow response is large and absolute errors in
rainfall or excess rainfall are high. For'a wide variety of
catchment types, the calibration of n:lnnvely complcx mod-

“els (conceptual, physically based or otherwise), solely from
 climatic and streamflow data, ip the hope'of understandmg
I pmcesses or inferring the compa.rtmentahzanon of storage,

" is likely 1o be largely. nonproﬁtablc (see also" Bey

[1989]

and Hooper et al. [1988]).
* The inclusion “of ‘spatial data on’ physxcal catchment de-

scriptors (PCDs) would not appear to resolve the identifi-

ability problem substantially, While the model (1)-(5) does
not explicitly allow the incorporation of additional data on
PCDs, the framework used permits speculation as to what
additional information such data provide for model calibra-
tion. With physically based models there tend to be spatial
elements (areas or volumes), representative of a level of

- physical homogeneity, upon which incident precipitation

falls and/or to which flow from other elements may travel.
Each element réghires- some minimal leveél of definition by
parameters describing, for example, the rate at which water
is transmitted and the potential throughput or storage. One
can therefore regard such models as being nonlinear versions
of our concéptual model. Indeed, precipitation enters the
surface component of elements in parallel, and flow out of
these storages may pass to other storages of the same
element or storages of neighboring elements. The PCD data -
permit an attempt to specify the nimber and configuration of
storages. However, the precipitation and streamflow data
are still used in physically based models to estimate those
key parameters of each storage related to the transport of
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water. The results obtained in this paper help argue that,
basically independent of the scale of representative ele-
ments, information on the flow needs to be obtained from
time series data on the inputs and-outputs-of about every
second storage that is separately parameterized. If, for three

- or'more connected storages; one has flow. data only into the-
_ first and out of the last ‘storage, then the uncertainties .of -
estimating the’ characteristic hydrological’ propcmcs of all -

these will be extremely high.

One way around this problem would be to assume that
characteristic hydrological properties are related to suitable
PCDs in a parametrically efficient way. For example, it may
be possible to obtain a simple relation between them wherein
each of the parameters associated with an element is de-
signed to have the same calibrated value over all elements or
a large subset of clemcnt typcs )

4.4. Oppommitxes

An ability to represent succmcﬁy the response of a catch-
ment to precipitation and other climatic inputs proffers many
opportunitics for enhancing our knowledge of hydrological
phenomena on a local, regional, and global basis. The
transfer function-unit hydrograph separation approach al-

lows one to quantify the differences and similarities of

catchment behavior in terms of dynamic response character-
istics such as our wetness declination time constant 7y,
temperature modulation factor f, change in storage index
per unit rainfall ¢, and the time constants and fractional
volumetric throughputs associated with each linear storage.
Such a parsimonious, yet effective and physically plausible
parameterization at catchment scale, may provide 2 common
basis for accumulating knowledge through collective appli-
cation of the associated identification procedure to rainfall-
streamflow data sets. An obvious research ayenue is exam-

ination of the relationships between estimated DRC values
and physical catchment descriptors. Any such procedure
will need to account for systematic and random uncertainties
deriving from rain gauge coverage errors and possible drifts
and shifts in stream stage-height rating curves. While the
amount and quality of time series data required to generate
sufficiently reliable DRC values for any catchment require
investigation, it is likely that there are a useful number of

catchments worldwide with adequate data.
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